AD5625BCPZ-R2

更新时间:2024-11-08 12:35:56
品牌:ADI
描述:Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/°C On-Chip Reference, I2C Interface

AD5625BCPZ-R2 概述

Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/°C On-Chip Reference, I2C Interface 四, 12位/ 14位/ 16位nanoDACs 5 PPM / °时C片参考, I2C接口 DA转换器

AD5625BCPZ-R2 数据手册

通过下载AD5625BCPZ-R2数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Quad, 12-/14-/16-Bit nanoDACs with  
5 ppm/°C On-Chip Reference, I2C Interface  
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
V
V
/V  
DD  
GND  
REFIN REFOUT  
Low power, smallest pin-compatible, quad nanoDACs  
AD5625R/AD5645R/AD5665R  
AD5625R/AD5645R/AD5665R  
1.25V/2.5V REF  
12-/14-/16-bit nanoDACs  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
On-chip, 2.5 V, 5 ppm/°C reference in TSSOP  
On-chip, 2.5 V, 10 ppm/°C reference in LFCSP  
On-chip, 1.25 V, 10 ppm/°C reference in LFCSP  
AD5625/AD5665  
12-/16-bit nanoDACs  
External reference only  
INPUT  
DAC  
STRING  
DAC A  
V
V
V
V
A
B
C
D
OUT  
OUT  
OUT  
OUT  
ADDR1  
ADDR2  
SCL  
REGISTER  
REGISTER  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC B  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC C  
3 mm × 3 mm, 10-lead LFCSP; 14-lead TSSOP; and 1.665 mm  
× 2.245 mm, 12-ball WLCSP  
SDA  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC D  
2.7 V to 5.5 V power supply  
POWER-ON RESET  
POWER-DOWN LOGIC  
Guaranteed monotonic by design  
Power-on reset to zero scale/midscale  
Per channel power-down  
Hardware LDAC and CLR functions  
I2C-compatible serial interface supports standard (100 kHz),  
fast (400 kHz), and high speed (3.4 MHz) modes  
LDAC CLR  
POR  
NOTES  
1. THE FOLLOWING PINS ARE AVAILABLE ONLY ON 14-LEAD PACKAGE:  
ADDR2, LDAC, CLR, POR.  
Figure 1. AD5625R/AD5645R/AD5665R  
V
V
REFIN  
DD  
GND  
AD5625/AD5665  
APPLICATIONS  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
Process control  
Data acquisition systems  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
INPUT  
DAC  
STRING  
DAC A  
V
V
V
V
A
B
C
D
OUT  
OUT  
OUT  
OUT  
ADDR1  
ADDR2  
SCL  
REGISTER  
REGISTER  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC B  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC C  
GENERAL DESCRIPTION  
SDA  
The AD5625R/AD5645R/AD5665R and AD5625/AD5665  
members of the nanoDAC® family are low power, quad, 12-/  
14-/16-bit, buffered voltage-out DACs with/without an on-chip  
reference. All devices operate from a single 2.7 V to 5.5 V supply,  
are guaranteed monotonic by design, and have an I2C-compatible  
serial interface.  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC D  
POWER-ON RESET  
POWER-DOWN LOGIC  
LDAC CLR  
POR  
NOTES  
1. THE FOLLOWING PINS ARE AVAILABLE ONLY ON 14-LEAD PACKAGE:  
ADDR2, LDAC, CLR, POR.  
Figure 2. AD5625/AD5665  
The AD5625R/AD5645R/AD5665R have an on-chip reference. The  
LFCSP versions of the AD56x5R have a 1.25 V or 2.5 V, 10 ppm/°C  
reference, giving a full-scale output range of 2.5 V or 5 V; the  
TSSOP versions of the AD56x5R have a 2.5 V, 5 ppm/°C refer-  
ence, giving a full-scale output range of 5 V. The WLCSP package  
has a 1.25 V reference. The on-chip reference is off at power-up,  
allowing the use of an external reference. The internal reference is  
enabled via a software write. The AD5625/AD5665 require an  
external reference voltage to set the output range of the DAC.  
The AD56x5R/AD56x5 use a 2-wire I2C-compatible serial  
interface that operates in standard (100 kHz), fast (400 kHz),  
and high speed (3.4 MHz) modes.  
Table 1. Related Devices  
Part No.  
Description  
AD5025/AD5045/AD5065  
Dual 12-/14-/16-bit DACs  
AD5624R/AD5644R/AD5664R,  
AD5624/AD5664  
Quad SPI 12-/14-/16-bit DACs,  
with/without internal reference  
Dual I2C 12-/14-/16-bit DACs,  
with/without internal reference  
AD5627R/AD5647R/AD5667R,  
AD5627/AD5667  
The part incorporates a power-on reset circuit that ensures that  
the DAC output powers up to 0 V (POR = GND) or midscale  
(POR = VDD) and remains there until a valid write occurs. The  
on-chip precision output amplifier enables rail-to-rail output swing.  
AD5666  
Quad SPI 16-bit DAC with internal  
reference  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2007-2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
External Reference ..................................................................... 24  
Serial Interface............................................................................ 24  
Write Operation.......................................................................... 24  
Read Operation........................................................................... 24  
High Speed Mode....................................................................... 26  
Input Shift Register .................................................................... 26  
Multiple Byte Operation............................................................ 26  
Broadcast Mode.......................................................................... 28  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Specifications—AD5665R/AD5645R/AD5625R ..................... 3  
Specifications—AD5665/AD5625 ............................................. 5  
AC Characteristics........................................................................ 7  
I2C Timing Specifications............................................................ 8  
Absolute Maximum Ratings.......................................................... 10  
ESD Caution................................................................................ 10  
Pin Configurations and Function Descriptions ......................... 11  
Typical Performance Characteristics ........................................... 13  
Terminology .................................................................................... 21  
Theory of Operation ...................................................................... 23  
Digital-to-Analog Converter (DAC) ....................................... 23  
Resistor String............................................................................. 23  
Output Amplifier........................................................................ 23  
Internal Reference ...................................................................... 23  
LDAC  
Function .......................................................................... 28  
Power-Down Modes .................................................................. 30  
Power-On Reset and Software Reset ....................................... 31  
Internal Reference Setup (R Versions) .................................... 31  
Applications Information.............................................................. 32  
Using a Reference as a Power Supply for the  
AD56x5R/AD56x5..................................................................... 32  
Bipolar Operation Using the AD56x5R/AD56x5 .................. 32  
Power Supply Bypassing and Grounding................................ 32  
Outline Dimensions....................................................................... 33  
Ordering Guide .......................................................................... 35  
REVISION HISTORY  
3/13—Rev. B to Rev. C  
12/09—Rev. A to Rev. B  
Added 12-Ball WLCSP ......................................................Universal  
Change to Features and General Description Sections ............... 1  
Changes to Reference Output (1.25 V), Reference TC  
Changes to Features Section, General Description Section,  
and Table 1..........................................................................................1  
Changes to Table 2.............................................................................3  
Changes to Internal Reference Section........................................ 22  
Updated Outline Dimensions....................................................... 32  
Changes to Ordering Guide.......................................................... 33  
Parameter, Table 2............................................................................. 4  
Added θJA Thermal Impedance, WLCSP Parameter, Table 6 ... 10  
Added Figure 8; Renumbered Sequentially ................................ 12  
Added Table 8; Renumbered Sequentially .................................. 12  
Changes to Internal Reference Section........................................ 23  
Changes to Serial Interface Section and Table 9 Title................ 24  
Changes to Figure 58 and Figure 60 Captions............................ 25  
Updated Outline Dimensions....................................................... 33  
Changes to Ordering Guide .......................................................... 35  
6/09—Rev. 0 to Rev. A  
Changes to Features and General Description Sections ..............1  
Changes to Table 2.............................................................................3  
Changes to Table 3.............................................................................5  
Changes to Digital-to-Analog Converter (DAC) Section, Added  
Figure 54 and Figure 55, Renumbered Subsequent Figures ..... 22  
Changes to Ordering Guide.......................................................... 33  
3/07—Revision 0: Initial Version  
Rev. C | Page 2 of 36  
 
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
SPECIFICATIONS  
SPECIFICATIONS—AD5665R/AD5645R/AD5625R  
VDD = 2.7 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
A Grade  
Min Typ  
B Grade  
Typ  
Parameter  
STATIC PERFORMANCE2  
Max  
Min  
Max  
Unit  
Test Conditions/Comments1  
AD5665R  
Resolution  
16  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5645R  
±±  
±16  
±1  
Guaranteed monotonic by design  
Guaranteed monotonic by design  
Resolution  
14  
12  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5625R  
±2  
±4  
±0.5  
Resolution  
12  
Bits  
LSB  
±0.25 LSB  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
Offset Error  
Full-Scale Error  
Gain Error  
Zero-Code Error Drift  
Gain Temperature Coefficient  
DC Power Supply Rejection  
Ratio  
±1  
±4  
±1  
10  
±10  
±0.5  
±1.25  
±0.5  
±1  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
2
±1  
2
±1  
10  
mV  
mV  
±10  
±0.5  
±1  
−0.1  
±0.1  
±2  
±2.5  
−100  
−0.1  
±0.1  
±2  
±2.5  
−100  
% FSR  
% FSR  
µV/°C  
ppm  
dB  
All 1s loaded to DAC register  
Of FSR/°C  
DAC code = midscale; VDD = 5 V ± 10%  
DC Crosstalk (External  
Reference)  
15  
15  
µV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
10  
±
10  
±
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
DC Crosstalk (Internal  
Reference)  
25  
25  
µV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
20  
10  
20  
10  
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
0
VDD  
2 ×  
0
VDD  
2 ×  
V
Internal reference disabled  
Internal reference enabled  
VREF  
VREF  
Capacitive Load Stability  
2
2
nF  
nF  
Ω
mA  
µs  
RL = ∞  
RL = 2 kΩ  
10  
0.5  
30  
4
10  
0.5  
30  
4
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 5 V  
Coming out of power-down mode;  
VDD = 5 V  
REFERENCE INPUTS  
Reference Current  
Reference Input Range  
Reference Input Impedance  
210  
26  
260  
VDD  
210  
26  
260  
VDD  
µA  
V
kΩ  
VREF = VDD = 5.5 V  
0.75  
0.75  
Rev. C | Page 3 of 36  
 
 
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
A Grade  
Min Typ  
B Grade  
Typ  
Parameter  
Max  
Min  
Max  
Unit  
Test Conditions/Comments1  
REFERENCE OUTPUT (1.25 V)  
Output Voltage  
1.247  
1.253  
1.247  
1.253  
V
At ambient  
TSSOP and LFCSP packages  
WLCSP package  
Reference TC3  
1ꢀ  
7.5  
1ꢀ  
15  
7.5  
ppm/°C  
ppm/°C  
kΩ  
Output Impedance  
REFERENCE OUTPUT (2.5 V)  
Output Voltage  
Reference TC3  
Output Impedance  
VDD = 4.5 V to 5.5 V  
At ambient  
2.495  
2.5ꢀ5  
2.495  
2.5ꢀ5  
1ꢀ  
V
1ꢀ  
7.5  
5
7.5  
ppm/°C  
kΩ  
LOGIC INPUTS (ADDRx, CLR,  
LDAC, POR)3  
IIN, Input Current  
1
1
μA  
V
V
pF  
V
VINL, Input Low Voltage  
VINH, Input High Voltage  
CIN, Pin Capacitance  
VHYST, Input Hysteresis  
LOGIC INPUTS (SDA, SCL)3  
IIN, Input Current  
VINL, Input Low Voltage  
VINH, Input High Voltage  
CIN, Pin Capacitance  
VHYST, Input Hysteresis  
ꢀ.15 × VDD  
ꢀ.15 × VDD  
ꢀ.85 × VDD  
2
ꢀ.1 × VDD  
ꢀ.85 × VDD  
2
ꢀ.1 × VDD  
1
1
μA  
V
V
pF  
V
V
ꢀ.3 × VDD  
ꢀ.3 × VDD  
ꢀ.7 × VDD  
2
ꢀ.1 × VDD  
ꢀ.ꢀ5 × VDD  
ꢀ.7 × VDD  
2
ꢀ.1 × VDD  
ꢀ.ꢀ5 × VDD  
High speed mode  
Fast mode  
LOGIC OUTPUTS (SDA)3  
VOL, Output Low Voltage  
ꢀ.4  
ꢀ.6  
1
ꢀ.4  
ꢀ.6  
1
V
V
μA  
ISINK = 3 mA  
ISINK = 6 mA  
Floating-State Leakage  
Current  
Floating-State Output  
Capacitance  
2
2
pF  
V
POWER REQUIREMENTS  
VDD  
2.7  
5.5  
2.7  
5.5  
IDD (Normal Mode)4  
VDD = 4.5 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 4.5 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
IDD (All Power-Down Modes)5  
VDD = 2.7 V to 5.5 V  
VDD = 3.6 V to 5.5 V  
VIH = VDD, VIL = GND, full-scale loaded  
Internal reference off  
Internal reference off  
Internal reference on  
Internal reference on  
1.ꢀ  
ꢀ.9  
1.9  
1.4  
1.16  
1.ꢀ5  
2.14  
1.59  
1.ꢀ  
1.16  
1.ꢀ5  
2.14  
1.59  
mA  
mA  
mA  
mA  
ꢀ.9  
1.9  
1.4  
ꢀ.48  
ꢀ.48  
1
1
ꢀ.48  
ꢀ.48  
1
1
μA  
μA  
VIH = VDD, VIL = GND (LFCSP)  
VIH = VDD, VIL = GND (TSSOP)  
1 Temperature range of A and B grades is −4ꢀ°C to +1ꢀ5°C.  
2 Linearity calculated using a reduced code range: AD5665R (Code 512 to Code 65,ꢀ24), AD5645R (Code 128 to Code 16,256), AD5625R (Code 32 to Code 4ꢀ64). Output  
unloaded.  
3 Guaranteed by design and characterization; not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 All DACs powered down. Power-down function is not available on 14-lead TSSOP parts when the part is powered with VDD < 3.6 V.  
Rev. C | Page 4 of 36  
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
SPECIFICATIONS—AD5665/AD5625  
VDD = 2.7 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
B Grade  
Typ  
Parameter  
Min  
Max  
Unit  
Test Conditions/Comments1  
STATIC PERFORMANCE2  
AD5665  
Resolution  
16  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5625  
±±  
±16  
±1  
Guaranteed monotonic by design  
Resolution  
12  
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
±0.5  
±1  
±0.25  
10  
LSB  
LSB  
mV  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
2
Offset Error  
Full-Scale Error  
Gain Error  
Zero-Code Error Drift  
Gain Temperature Coefficient  
DC Power Supply Rejection Ratio  
DC Crosstalk (External Reference)  
±1  
±10  
±0.5  
±1  
mV  
−0.1  
±0.1  
±2  
±2.5  
−100  
15  
% FSR  
% FSR  
µV/°C  
ppm  
dB  
All 1s loaded to DAC register  
Of FSR/°C  
DAC code = midscale; VDD = 5 V ± 10%  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
µV  
10  
±
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
DC Crosstalk (Internal Reference)  
25  
µV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
20  
10  
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
VDD  
V
Capacitive Load Stability  
2
nF  
nF  
Ω
mA  
µs  
RL = ∞  
RL = 2 kΩ  
10  
0.5  
30  
4
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 5 V  
Coming out of power-down mode; VDD = 5 V  
REFERENCE INPUTS  
Reference Current  
210  
26  
260  
VDD  
µA  
V
kΩ  
VREF = VDD = 5.5 V  
Reference Input Range  
Reference Input Impedance  
LOGIC INPUTS (ADDRx, CLR, LDAC, POR)3  
IIN, Input Current  
VINL, Input Low Voltage  
VINH, Input High Voltage  
CIN, Pin Capacitance  
VHYST, Input Hysteresis  
LOGIC INPUTS (SDA, SCL)3  
IIN, Input Current  
VINL, Input Low Voltage  
VINH, Input High Voltage  
CIN, Pin Capacitance  
0.75  
±1  
0.15 × VDD  
µA  
V
V
pF  
V
0.±5 × VDD  
0.1 × VDD  
2
2
±1  
0.3 × VDD  
µA  
V
V
pF  
V
V
0.7 × VDD  
VHYST, Input Hysteresis  
0.1 × VDD  
0.05 × VDD  
High speed mode  
Fast mode  
Rev. C | Page 5 of 36  
 
 
 
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
B Grade  
Typ  
Parameter  
Min  
Max  
Unit  
Test Conditions/Comments1  
LOGIC OUTPUTS (SDA)3  
VOL, Output Low Voltage  
0.4  
0.6  
±1  
V
V
µA  
pF  
ISINK = 3 mA  
ISINK = 6 mA  
Floating-State Leakage Current  
Floating-State Output Capacitance  
POWER REQUIREMENTS  
VDD  
2
2.7  
5.5  
V
IDD (Normal Mode)4  
VIH = VDD, VIL = GND, full-scale loaded  
VDD = 4.5 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
IDD (All Power-Down Modes)5  
1.0  
0.9  
1.16  
1.05  
mA  
mA  
VDD = 2.7 V to 5.5 V  
VDD = 3.6 V to 5.5 V  
0.4±  
0.4±  
1
1
µA  
µA  
VIH = VDD, VIL = GND (LFCSP)  
VIH = VDD, VIL = GND (TSSOP)  
1 Temperature range of B grade is −40°C to +105°C.  
2 Linearity calculated using a reduced code range: AD5665 (Code 512 to Code 65,024), AD5625 (Code 32 to Code 4064). Output unloaded.  
3 Guaranteed by design and characterization; not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 All DACs powered down. Power-down function is not available on 14-lead TSSOP parts when the part is powered with VDD < 3.6 V.  
Rev. C | Page 6 of 36  
 
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.  
Table 4.  
Parameter1,2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments3  
Output Voltage Settling Time  
AD5625R/AD5625  
AD5645R  
AD5665R/AD5665  
Slew Rate  
3
3.5  
4
4.5  
5
7
µs  
µs  
µs  
V/µs  
¼ to ¾ scale settling to ±0.5 LSB  
¼ to ¾ scale settling to ±0.5 LSB  
¼ to ¾ scale settling to ±2 LSB  
1.±  
Digital-to-Analog Glitch Impulse  
1 LSB change around major carry  
15  
5
0.1  
−90  
0.1  
1
4
1
4
340  
−±0  
120  
100  
15  
nV-s  
nV-s  
nV-s  
dB  
nV-s  
nV-s  
nV-s  
nV-s  
nV-s  
kHz  
LFCSP  
TSSOP  
Digital Feedthrough  
Reference Feedthrough  
Digital Crosstalk  
VREF = 2 V ± 0.1 V p-p, frequency 10 Hz to 20 MHz  
Analog Crosstalk  
External reference  
Internal reference  
External reference  
Internal reference  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
Output Noise Spectral Density  
VREF = 2 V ± 0.1 V p-p  
dB  
VREF = 2 V ± 0.1 V p-p, frequency = 10 kHz  
DAC code = midscale, 1 kHz  
DAC code = midscale, 10 kHz  
0.1 Hz to 10 Hz  
nV/√Hz  
nV/√Hz  
µV p-p  
Output Noise  
1 Guaranteed by design and characterization; not production tested.  
2 See the Terminology section.  
3 Temperature range is −40°C to +105°C, typical @ 25°C.  
Rev. C | Page 7 of 36  
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
I2C TIMING SPECIFICATIONS  
VDD = 2.7 V to 5.5 V; all specifications TMIN to TMAX, fSCL = 3.4 MHz, unless otherwise noted.1  
Table 5.  
Parameter Test Conditions2  
Min  
Max  
100  
400  
3.4  
Unit  
kHz  
kHz  
MHz  
MHz  
μs  
μs  
ns  
ns  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
Description  
3
fSCL  
Standard mode  
Serial clock frequency  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
1.7  
t1  
4
tHIGH, SCL high time  
tLOW, SCL low time  
Fast mode  
0.6  
60  
120  
4.7  
1.3  
160  
320  
250  
100  
10  
0
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
t2  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
t3  
t4  
tSU;DAT, data setup time  
tHD;DAT, data hold time  
3.45  
0.9  
Fast mode  
0
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
0
0
4.7  
0.6  
160  
4
70  
150  
ns  
ns  
μs  
μs  
ns  
μs  
t5  
t6  
tSU;STA, setup time for a repeated start condition  
tHD;STA, hold time (repeated) start condition  
Fast mode  
High speed mode  
Standard mode  
0.6  
160  
4.7  
μs  
ns  
μs  
t7  
t±  
tBUF, bus-free time between a stop and a start  
condition  
Fast mode  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
1.3  
4
0.6  
160  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU;STO, setup time for a stop condition  
tRDA, rise time of SDA signal  
t9  
1000  
300  
±0  
160  
300  
300  
±0  
160  
1000  
300  
40  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
10  
20  
t10  
t11  
t11A  
tFDA, fall time of SDA signal  
tRCL, rise time of SCL signal  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
10  
20  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
10  
20  
±0  
1000  
tRCL1, rise time of SCL signal after a repeated start  
condition and after an acknowledge bit  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
300  
±0  
160  
ns  
ns  
ns  
10  
20  
Rev. C | Page ± of 36  
 
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Parameter Test Conditions2  
Min  
Max  
300  
300  
40  
Unit  
ns  
ns  
ns  
ns  
Description  
t12  
Standard mode  
tFCL, fall time of SCL signal  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
10  
20  
10  
10  
10  
300  
±0  
t13  
ns  
LDAC pulse width low  
Fast mode  
ns  
ns  
ns  
High speed mode  
Standard mode  
t14  
Falling edge of ninth SCL clock pulse of last byte  
of a valid write to LDAC falling edge  
Fast mode  
300  
30  
20  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
High speed mode  
Standard mode  
Fast mode  
High speed mode  
Fast mode  
t15  
CLR pulse width low  
4
tSP  
50  
10  
Pulse width of spike suppressed  
High speed mode  
0
1 See Figure 3. High speed mode timing specification applies only to the AD5625RBRUZ-2/AD5625RBRUZ-2REEL7 and AD5665RBRUZ-2/AD5665RBRUZ-2REEL7.  
2 CB refers to the capacitance on the bus line.  
3 The SDA and SCL timing is measured with the input filters enabled. Switching off the input filters improves the transfer rate but has a negative effect on the EMC  
behavior of the part.  
4 Input filtering on the SCL and SDA inputs suppresses noise spikes that are less than 50 ns for fast mode or less than 10 ns for high speed mode.  
t11  
t12  
t6  
t2  
t6  
SCL  
SDA  
t1  
t3  
t5  
t10  
t8  
t4  
t9  
t7  
P
S
S
P
t14  
t13  
LDAC*  
CLR  
t15  
*ASYNCHRONOUS LDAC UPDATE MODE.  
Figure 3. 2-Wire Serial Interface Timing Diagram  
Rev. C | Page 9 of 36  
 
 
 
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 6.  
Parameter  
Rating  
VDD to GND  
−0.3 V to +7 V  
VOUT to GND  
VREFIN/VREFOUT to GND  
Digital Input Voltage to GND  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
Operating Temperature Range, Industrial −40°C to +105°C  
ESD CAUTION  
Storage Temperature Range  
Junction Temperature (TJ maximum)  
Power Dissipation  
−65°C to +150°C  
150°C  
(TJ max − TA)/θJA  
θJA Thermal Impedance  
LFCSP_WD (4-Layer Board)  
TSSOP  
61°C/W  
150.4°C/W  
75°C/W  
WLCSP  
Reflow Soldering Peak Temperature,  
RoHS Compliant  
260°C ± 5°C  
Rev. C | Page 10 of 36  
 
 
 
 
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
LDAC  
SCL  
SDA  
GND  
1
2
3
4
5
10  
9
V
V
A
B
V
V
/V  
OUT  
REFIN REFOUT  
ADDR1  
AD5625R/  
AD5645R/  
AD5665R  
TOP VIEW  
(Not to Scale)  
AD5625R/  
AD5645R/  
AD5665R  
TOP VIEW  
(Not to Scale)  
OUT  
DD  
V
DD  
8
GND  
SDA  
V
V
A
V
B
D
OUT  
OUT  
OUT  
7
V
V
C
SCL  
OUT  
C
V
OUT  
CLR  
ADDR2  
6
D
ADDR  
OUT  
POR  
REFIN REFOUT  
8
V
/V  
EXPOSED PAD TIED TO GND.  
Figure 4. Pin Configuration (14-Lead TSSOP), R Suffix Version  
Figure 6. Pin Configuration (10-Lead LFCSP), R Suffix Version  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
LDAC  
SCL  
SDA  
GND  
1
2
3
4
5
10  
9
V
V
A
B
V
V
OUT  
REFIN  
ADDR1  
AD5625/  
AD5665  
TOP VIEW  
(Not to Scale)  
OUT  
DD  
AD5625/  
AD5665  
TOP VIEW  
(Not to Scale)  
V
DD  
8
GND  
SDA  
V
V
A
C
V
V
B
D
OUT  
OUT  
OUT  
OUT  
7
V
V
C
SCL  
OUT  
OUT  
6
D
ADDR  
POR  
CLR  
ADDR2  
EXPOSED PAD TIED TO GND.  
8
V
REFIN  
Figure 7. Pin Configuration (10-Lead LFCSP)  
Figure 5. Pin Configuration (14-Lead TSSOP)  
Table 7. Pin Function Descriptions  
Pin Number  
14-Lead 10-Lead Mnemonic Description  
1
N/A  
LDAC  
Pulsing this pin low allows any or all DAC registers to be updated if the input registers have new data.  
This allows simultaneous update of all DAC outputs. Alternatively, this pin can be tied permanently  
low.  
2
3
N/A  
9
ADDR1  
VDD  
Three-State Address Input. Sets the two least significant bits (Bit A1, Bit A0) of the 7-bit slave address  
(see Table 10).  
Power Supply Input. These parts can be operated from 2.7 V to 5.5 V, and the supply should be  
decoupled with a 10 μF capacitor in parallel with a 0.1 μF capacitor to GND.  
4
5
6
1
4
N/A  
VOUT  
VOUT  
POR  
A
C
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Power-On Reset Pin. Tying the POR pin to GND powers up the part to 0 V. Tying the POR pin to VDD  
powers up the part to midscale.  
7
10  
VREFIN/VREFOUT The AD56x5R have a common pin for reference input and reference output. When using the internal  
reference, this is the reference output pin. When using an external reference, this is the reference  
input pin. The default for this pin is as a reference input. (The internal reference and reference output  
are only available on R suffix versions.) The AD56x5 has a reference input pin only.  
±
9
N/A  
N/A  
ADDR2  
CLR  
Three-State Address Input. Sets Bit A3 and Bit A2 of the 7-bit slave address (see Table 10).  
Asynchronous Clear Input. The CLR input is falling-edge sensitive. While CLR is low, all LDAC pulses  
are ignored. When CLR is activated, zero scale is loaded to all input and DAC registers. This clears the  
output to 0 V. The part exits clear code mode on the falling edge of the ninth clock pulse of the last  
byte of the valid write. If CLR is activated during a write sequence, the write is aborted. If CLR is  
activated during high speed mode, the part exits high speed mode.  
10  
11  
12  
13  
5
2
3
±
VOUT  
VOUT  
GND  
SDA  
D
B
Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
Serial Data Line. This is used in conjunction with the SCL line to clock data into or out of the 16-bit  
input register. It is a bidirectional, open-drain data line that should be pulled to the supply with an  
external pull-up resistor.  
14  
7
SCL  
Serial Clock Line. This is used in conjunction with the SDA line to clock data into or out of the 16-bit  
input register.  
N/A  
6
ADDR  
Three-State Address Input. Sets the two least significant bits (Bit A1, Bit A0) of the 7-bit slave address  
(see Table 9).  
EPAD  
For the 10-lead LFCSP, the exposed pad must be tied to GND.  
Rev. C | Page 11 of 36  
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
BALL A1  
INDICATOR  
1
2
3
V
/
REFIN  
V
V
A
REFOUT  
GND OUT  
A
B
VDD  
V
V
B
C
D
GND  
OUT  
OUT  
OUT  
SDA GND  
C
D
SCL ADDR V  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 8. Pin Configuration (12-Ball WLCSP)  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
A1  
VREFIN/VREFOUT The AD5665R has a common pin for reference input and reference output. When using the internal reference,  
this is the reference output pin. When using an external reference, this is the reference input pin. The default  
for this pin is as a reference input.  
A2, B2, C2 GND  
Ground Reference Point for All Circuitry on the Part.  
A3  
B1  
VOUT  
VDD  
A
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Power Supply Input. The AD5665R can be operated from 2.7 V to 5.5 V, and the supply should be decoupled  
with a 10 μF capacitor in parallel with a 0.1 μF capacitor to GND.  
B3  
C1  
VOUT  
SDA  
B
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Serial Data Line. This is used in conjunction with the SCL line to clock data into or out of the 16-bit input  
register. It is a bidirectional, open-drain data line that should be pulled to the supply with an external pull-up  
resistor.  
C3  
D1  
VOUT  
SCL  
C
Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Serial Clock Line. This is used in conjunction with the SDA line to clock data into or out of the 16-bit input  
register.  
D2  
D3  
ADDR  
Three-State Address Input. Sets the two least significant bits (Bit A1, Bit A0) of the 7-bit slave address  
(see Table 9).  
Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
VOUTD  
Rev. C | Page 12 of 36  
 
 
 
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
10  
V
T
= V = 5V  
REF  
DD  
= 25°C  
V
T
= V = 5V  
REF  
DD  
= 25°C  
A
0.8  
0.6  
0.4  
0.2  
8
A
6
4
2
0
–2  
–4  
0
–0.2  
–0.4  
–0.6  
–6  
–8  
–0.8  
–1.0  
–10  
0
10k  
20k  
30k  
CODE  
40k  
50k  
60k  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k  
CODE  
Figure 12. DNL, AD5665, External Reference  
Figure 9. INL, AD5665, External Reference  
0.5  
4
V
= V = 5V  
REF  
DD  
= 25°C  
V
= V = 5V  
REF  
DD  
T = 25°C  
A
T
A
0.4  
0.3  
0.2  
0.1  
3
2
1
0
0
–0.1  
–1  
–2  
–3  
–4  
–0.2  
–0.3  
–0.4  
–0.5  
0
2500  
5000  
7500  
CODE  
10000  
12500  
15000  
0
2500  
5000  
7500  
CODE  
10000  
12500  
15000  
Figure 10. INL, AD5645R, External Reference  
Figure 13. DNL, AD5645R, External Reference  
1.0  
0.8  
0.20  
0.15  
0.10  
0.05  
0
V
T
= V  
REF  
= 5V  
V
T
= V = 5V  
REF  
DD  
= 25°C  
DD  
= 25°C  
A
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.05  
–0.10  
–0.15  
–0.20  
0
500  
1000 1500 2000  
2500 3000 3500 4000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
CODE  
Figure 11. INL, AD5625, External Reference  
Figure 14. DNL, AD5625, External Reference  
Rev. C | Page 13 of 36  
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
1.0  
0.8  
0.6  
0.4  
0.2  
10  
V
V
T
= 5V  
V
V
= 5V  
DD  
REFOUT  
= 25°C  
DD  
= 2.5V  
8
6
4
2
= 2.5V  
REFOUT  
TA = 25°C  
A
0
0
–0.2  
–2  
–0.4  
–0.6  
–4  
–6  
–0.8  
–1.0  
–8  
–10  
CODE  
CODE  
Figure 15. INL, AD5665R, 2.5 V Internal Reference  
Figure 18. DNL, AD5665R, 2.5 V Internal Reference  
4
0.5  
0.4  
0.3  
0.2  
0.1  
V
V
= 5V  
V
V
= 5V  
DD  
DD  
= 2.5V  
= 2.5V  
REFOUT  
REFOUT  
3
2
TA = 25°C  
TA = 25°C  
1
0
0
–0.1  
–1  
–2  
–0.2  
–0.3  
–3  
–4  
–0.4  
–0.5  
CODE  
CODE  
Figure 19. DNL, AD5645R, 2.5 V Internal Reference  
Figure 16. INL, AD5645R, 2.5 V Internal Reference  
1.0  
0.20  
0.15  
0.10  
0.05  
V
V
T
= 5V  
V
V
= 5V  
DD  
REFOUT  
= 25°C  
DD  
= 2.5V  
0.8  
0.6  
0.4  
0.2  
= 2.5V  
REFOUT  
TA = 25°C  
A
0
–0.2  
–0.4  
–0.6  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
500  
1000  
1500 2000 2500 3000  
CODE  
3500 4000  
0
500  
1000  
1500 2000 2500 3000  
CODE  
3500 4000  
Figure 20. DNL, AD5625R, 2.5 V Internal Reference  
Figure 17. INL, AD5625R, 2.5 V Internal Reference  
Rev. C | Page 14 of 36  
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
10  
1.0  
V
V
= 3V  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
DD  
REFOUT  
= 25°C  
8
6
= 1.25V  
0.8  
0.6  
= 1.25V  
T
T
A
A
4
0.4  
2
0.2  
0
0
–2  
–4  
–6  
–0.2  
–0.4  
–0.6  
–8  
–0.8  
–1.0  
–10  
CODE  
CODE  
Figure 21. INL, AD5665R,1.25 V Internal Reference  
Figure 24. DNL, AD5665R,1.25 V Internal Reference  
4
3
0.5  
0.4  
V
V
= 3V  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
DD  
REFOUT  
= 25°C  
= 1.25V  
= 1.25V  
T
T
A
A
0.3  
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–1  
–2  
–3  
–4  
–0.4  
–0.5  
CODE  
CODE  
Figure 22. INL, AD5645R, 1.25 V Internal Reference  
Figure 25. DNL, AD5645R,1.25 V Internal Reference  
1.0  
0.8  
0.20  
0.15  
0.10  
0.05  
0
V
V
= 3V  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
DD  
REFOUT  
= 25°C  
= 1.25V  
= 1.25V  
T
T
A
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
Figure 23. INL, AD5625R,1.25 V Internal Reference  
Figure 26. DNL, AD5625R, 1.25 V Internal Reference  
Rev. C | Page 15 of 36  
 
 
 
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
8
0
–0.02  
–0.04  
–0.06  
–0.08  
V
= 5V  
DD  
6
MAX INL  
V
= V = 5V  
REF  
DD  
GAIN ERROR  
4
2
MAX DNL  
MIN DNL  
0
–0.10  
–0.12  
–2  
–4  
–6  
–8  
–0.14  
–0.16  
FULL-SCALE ERROR  
MIN INL  
80  
–0.18  
–0.20  
–40  
–20  
0
20  
40  
60  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. INL Error and DNL Error vs. Temperature  
Figure 30. Gain Error and Full-Scale Error vs. Temperature  
10  
8
1.5  
MAX INL  
1.0  
ZERO-SCALE ERROR  
6
0.5  
0
V
= 5V  
DD  
= 25°C  
4
T
A
2
MAX DNL  
MIN DNL  
–0.5  
0
–2  
–4  
–6  
–1.0  
–1.5  
–2.0  
–2.5  
OFFSET ERROR  
MIN INL  
4.25  
–8  
–10  
0.75 1.25  
–40  
–20  
0
20  
40  
60  
80  
100  
1.75  
2.25  
2.75  
3.25  
(V)  
3.75  
4.75  
TEMPERATURE (°C)  
V
REF  
Figure 28. INL Error and DNL Error vs. VREF  
Figure 31. Zero-Scale Error and Offset Error vs. Temperature  
8
6
1.0  
0.5  
MAX INL  
T
= 25°C  
A
4
2
GAIN ERROR  
0
MAX DNL  
MIN DNL  
FULL-SCALE ERROR  
–0.5  
0
–2  
–4  
–6  
–8  
–1.0  
MIN INL  
–1.5  
–2.0  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
V
V
DD  
DD  
Figure 32. Gain Error and Full-Scale Error vs. Supply  
Figure 29. INL Error and DNL Error vs. Supply  
Rev. C | Page 16 of 36  
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
1.0  
2.0  
T
A
= 25°C  
= 5.5V  
T
= 25°C  
A
V
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
DD  
0.5  
0
ZERO-SCALE ERROR  
V
= 2.5V  
= 5V  
REFOUT  
–0.5  
–1.0  
–1.5  
V
REFIN  
–2.0  
–2.5  
OFFSET ERROR  
512  
10512  
20512  
30512  
CODE  
40512  
50512  
60512  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
V
DD  
Figure 33. Zero-Scale Error and Offset Error vs. Supply  
Figure 36. Supply Current vs. DAC Code  
30  
25  
20  
15  
10  
5
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
= 3.6V  
= 5.5V  
DD  
DD  
T
= 25°C  
A
0
3.7  
4.2  
(V)  
4.7  
5.2  
2.7  
3.2  
V
DD  
I
(mA)  
DD  
Figure 37. Supply Current vs. Supply  
Figure 34. IDD Histogram with External Reference  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
25  
20  
15  
10  
5
V
V
= 3.6V  
= 5.5V  
DD  
DD  
V
= V  
REF  
= 5V  
= 3V  
DD  
V
= V  
REF  
DD  
V
= 1.25V  
V
= 2.5V  
REFOUT  
REFOUT  
0
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
I
(mA)  
DD  
Figure 35. IDD Histogram with Internal Reference  
Figure 38. Supply Current vs. Temperature  
Rev. C | Page 17 of 36  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
0.5  
DAC LOADED WITH  
FULL-SCALE  
SOURCING CURRENT  
DAC LOADED WITH  
ZERO-SCALE  
SINKING CURRENT  
0.4  
0.3  
0.2  
V
= V = 5V  
REF  
DD  
= 25°C  
T
A
V
V
= 3V  
DD  
FULL-SCALE CODE CHANGE  
0x0000 TO 0xFFFF  
0.1  
= 1.25V  
REFOUT  
OUTPUT LOADED WITH 2kΩ  
AND 200pF TO GND  
0
–0.1  
–0.2  
–0.3  
V
= 909mV/DIV  
OUT  
V
V
= 5V  
DD  
1
= 2.5V  
–2  
REFOUT  
–0.4  
–0.5  
TIME BASE = 4µs/DIV  
–10  
–8  
–6  
–4  
0
2
4
6
8
10  
CURRENT (mA)  
Figure 42. Full-Scale Settling Time, 5 V  
Figure 39. Headroom at Rails vs. Source and Sink  
6
5
4
3
2
1
V
T
= V = 5V  
REF  
V
V
= 5V  
DD  
= 25°C  
DD  
REFOUT  
= 25°C  
FULL SCALE  
= 2.5V  
A
T
A
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
V
DD  
1
2
MAX(C2)  
420.0mV  
0
ZERO SCALE  
V
OUT  
CH2 500mV  
–1  
–30  
CH1 2.0V  
M100µs 125MS/s  
A CH1 1.28V  
8.0ns/pt  
–20  
–10  
0
10  
20  
30  
CURRENT (mA)  
Figure 40. AD56x5R with 2.5 V Reference, Source and Sink Capability  
Figure 43. Power-On Reset to 0 V  
4
SYNC  
SLCK  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
= 1.25V  
T
A
1
3
3
2
1
FULL SCALE  
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
V
OUT  
V
= 5V  
DD  
0
ZERO SCALE  
2
–1  
–30  
CH1 5.0V  
CH3 5.0V  
CH2 500mV  
M400ns  
A CH1  
1.4V  
–20  
–10  
0
10  
20  
30  
CURRENT (mA)  
Figure 44. Exiting Power-Down to Midscale  
Figure 41. AD56x5R with 1.25 V Reference, Source and Sink Capability  
Rev. C | Page 1± of 36  
 
 
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
2.538  
2.537  
2.536  
2.535  
2.534  
2.533  
2.532  
2.531  
2.530  
2.529  
2.528  
2.527  
2.526  
2.525  
2.524  
2.523  
2.522  
2.521  
V
T
= V = 5V  
REF  
V
T
= V = 5V  
REF  
DD  
= 25°C  
DD  
= 25°C  
A
A
DAC LOADED WITH MIDSCALE  
5ns/SAMPLE NUMBER  
GLITCH IMPULSE = 9.494nV  
1LSB CHANGE AROUND  
MIDSCALE (0x8000 TO 0x7FFF)  
1
4s/DIV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
Figure 45. Digital-to-Analog Glitch Impulse (Negative)  
Figure 48. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
2.498  
2.497  
2.496  
2.495  
2.494  
2.493  
2.492  
2.491  
V
V
= 5V  
V
= V  
REF  
= 5V  
DD  
REFOUT  
= 25°C  
DD  
= 25°C  
= 2.5V  
T
A
T
A
5ns/SAMPLE NUMBER  
ANALOG CROSSTALK = 0.424nV  
DAC LOADED WITH MIDSCALE  
1
0
50  
100 150 200 250 300 350 400 450 512  
SAMPLE NUMBER  
5s/DIV  
Figure 49. 0.1 Hz to 10 Hz Output Noise Plot, 2.5 V Internal Reference  
Figure 46. Analog Crosstalk, External Reference  
2.496  
2.494  
2.492  
2.490  
2.488  
2.486  
2.484  
2.482  
2.480  
2.478  
2.476  
2.474  
2.472  
2.470  
2.468  
2.466  
2.464  
2.462  
2.460  
2.458  
2.456  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
= 1.25V  
T
A
DAC LOADED WITH MIDSCALE  
1
V
V
= 5V  
DD  
REFOUT  
= 25°C  
= 2.5V  
T
A
5ns/SAMPLE NUMBER  
ANALOG CROSSTALK = 4.462nV  
4s/DIV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
Figure 47. Analog Crosstalk, Internal Reference  
Figure 50. 0.1 Hz to 10 Hz Output Noise Plot, 1.25 V Internal Reference  
Rev. C | Page 19 of 36  
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
800  
16  
14  
12  
10  
8
T
= 25°C  
V
= V  
DD  
A
REF  
= 25°C  
MIDSCALE LOADED  
T
A
700  
600  
500  
400  
300  
200  
V
= 3V  
DD  
V
=
5V  
DD  
V
V
= 5V  
DD  
REFOUT  
= 2.5V  
6
4
100  
0
V
V
= 3V  
DD  
REFOUT  
= 1.25V  
1k  
100  
10k  
FREQUENCY (Hz)  
100k  
1M  
0
1
2
3
4
5
6
7
8
9
10  
CAPACITANCE (nF)  
Figure 51. Noise Spectral Density, Internal Reference  
Figure 53. Settling Time vs. Capacitive Load  
–20  
–30  
–40  
5
0
V
T
= 5V  
V
T
= 5V  
DD  
A
DD  
= 25°C  
= 25°C  
A
DAC LOADED WITH FULL SCALE  
V
= 2V ± 0.3V p-p  
REF  
5  
10  
15  
20  
25  
30  
35  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
2k  
4k  
6k  
8k  
10k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
Figure 52. Total Harmonic Distortion  
Figure 54. Multiplying Bandwidth  
Rev. C | Page 20 of 36  
 
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a  
straight line passing through the endpoints of the DAC  
transfer function.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time it takes for  
the output of a DAC to settle to a specified level for a ¼ to ¾  
full-scale input change, and it is measured from the rising edge  
of the stop condition.  
Differential Nonlinearity (DNL)  
Digital-to-Analog Glitch Impulse  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic  
by design.  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-s  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000) (see  
Figure 45).  
Zero-Code Error  
Zero-code error is a measurement of the output error when zero  
scale (0x0000) is loaded to the DAC register. Ideally, the output  
should be 0 V. The zero-code error is always positive in the  
AD5665R because the output of the DAC cannot go below 0 V  
due to a combination of the offset errors in the DAC and the out-  
put amplifier. Zero-code error is expressed in millivolts (mV).  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into the  
analog output of the DAC from the digital inputs of the DAC  
but is measured when the DAC output is not updated. It is  
specified in nV-s and is measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s and vice versa.  
Full-Scale Error  
Reference Feedthrough  
Full-scale error is a measurement of the output error when full-  
scale code (0xFFFF) is loaded to the DAC register. Ideally, the  
output should be VDD − 1 LSB. Full-scale error is expressed as a  
percentage of full-scale range (FSR).  
Reference feedthrough is the ratio of the amplitude of the signal  
at the DAC output to the reference input when the DAC output  
is not being updated. It is expressed in decibels (dB).  
Output Noise Spectral Density  
Gain Error  
Output noise spectral density is a measurement of the internally  
generated random noise, which is characterized as a spectral  
density (nanovolts per square root of hertz frequency (nV/√Hz)).  
It is measured by loading the DAC to midscale and measuring  
noise at the output. It is measured in nanovolts per square root  
of hertz frequency (nV/√Hz). A plot of noise spectral density is  
shown in Figure 51.  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from ideal  
expressed as a percentage of full-scale range (FSR).  
Zero-Code Error Drift  
Zero-code error drift is a measurement of the change in  
zero-code error with a change in temperature. It is expressed in  
microvolts per degrees Celsius (µV/°C).  
DC Crosstalk  
DC crosstalk is the dc change in the output level of one DAC  
in response to a change in the output of another DAC. It is  
measured with a full-scale output change on one DAC (or soft  
power-down and power-up) while monitoring another DAC  
kept at midscale. It is expressed in microvolts (μV).  
Gain Temperature Coefficient  
Gain temperature coefficient is a measurement of the change in  
gain error with changes in temperature. It is expressed in parts  
per million (ppm) of full-scale range per degrees Celsius  
(FSR/°C).  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has on  
another DAC kept at midscale. It is expressed in microvolts per  
milliampere (μV/mA).  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function. Offset error is measured on the AD5665R  
with Code 512 loaded in the DAC register. It can be negative or  
positive.  
Digital Crosstalk  
This is the glitch impulse transferred to the output of one DAC  
at midscale in response to a full-scale code change (all 0s to all  
1s and vice versa) in the input register of another DAC. It is  
measured in standalone mode and is expressed in nanovolts per  
second (nV-s).  
DC Power Supply Rejection Ratio (PSRR)  
DC PSRR indicates how the output of the DAC is affected by  
changes in the supply voltage. PSRR is the ratio of the change in  
V
OUT to the change in VDD for full-scale output of the DAC. It is  
measured in decibels (dB). VREF is held at 2 V, and VDD is varied  
by 10%.  
Rev. C | Page 21 of 36  
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
Analog Crosstalk  
Multiplying Bandwidth  
Analog crosstalk is the glitch impulse transferred to the output  
of one DAC due to a change in the output of another DAC. It is  
measured by loading one of the input registers with a full-scale  
code change (all 0s to all 1s and vice versa) and then executing  
a software LDAC and monitoring the output of the DAC whose  
digital code was not changed. The area of the glitch is expressed  
in nanovolts per second (nV-s).  
The multiplying bandwidth is a measure of the finite bandwidth  
of the amplifiers within the DAC. A sine wave on the reference  
(with full-scale code loaded to the DAC) appears on the output.  
The multiplying bandwidth is the frequency at which the output  
amplitude falls to 3 dB below the input.  
Total Harmonic Distortion (THD)  
THD is the difference between an ideal sine wave and its  
attenuated version using the DAC. The sine wave is used as the  
reference for the DAC, and the THD is a measurement of the  
harmonics present on the DAC output. It is measured in  
decibels (dB).  
DAC-to-DAC Crosstalk  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
analog output change of another DAC. It is measured by  
loading the attack channel with a full-scale code change (all 0s  
LDAC  
to all 1s and vice versa) with  
low while monitoring the  
output of the victim channel that is at midscale. The energy of  
the glitch is expressed in nanovolts per second (nV-s).  
Rev. C | Page 22 of 36  
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
THEORY OF OPERATION  
DIGITAL-TO-ANALOG CONVERTER (DAC)  
RESISTOR STRING  
The resistor string is shown in Figure 57. It is simply a string of  
resistors, each of value R. The code loaded to the DAC register  
determines at which node on the string the voltage is tapped off  
to be fed into the output amplifier. The voltage is tapped off by  
closing one of the switches connecting the string to the amplifier.  
Because it is a string of resistors, it is guaranteed monotonic.  
The AD56x5R/AD56x5 DACs are fabricated on a CMOS  
process. The AD56x5 does not have an internal reference, and  
the DAC architecture is shown in Figure 55. The AD56x5R does  
have an internal reference and can be configured for use with  
either an internal or external reference (see Figure 55 and  
Figure 56).  
OUTPUT AMPLIFIER  
Because the input coding to the DAC is straight binary, the ideal  
output voltage when using an external reference is given by  
The output buffer amplifier can generate rail-to-rail voltages on its  
output, which gives an output range of 0 V to VDD. It can drive a  
load of 2 kΩ in parallel with 1000 pF to GND. The source and  
sink capabilities of the output amplifier are shown in Figure 39  
and Figure 40. The slew rate is 1.8 V/μs with a ¼ to ¾ full-scale  
settling time of 7 μs.  
D
VOUT VREFIN  
2N  
V
/V  
REFIN REFOUT  
REF  
BUFFER  
OUTPUT  
AMPLIFIER  
GAIN = ×2  
R
REF (+)  
DAC  
REGISTER  
RESISTOR  
STRING  
V
R
OUT  
REF (–)  
TO OUTPUT  
R
AMPLIFIER  
GND  
Figure 55. Internal Configuration When Using an External Reference  
R
R
The ideal output voltage when using the internal reference is  
given by  
D
VOUT 2VREFOUT  
2N  
Figure 57. Resistor String  
where:  
D is the decimal equivalent of the binary code that is loaded to  
the DAC register, as follows:  
INTERNAL REFERENCE  
The AD5625R/AD5645R/AD5665R feature an on-chip reference.  
Versions without the R suffix require an external reference. The  
on-chip reference is off at power-up and is enabled via a write to a  
control register. See the Internal Reference Setup section for details.  
0 to 4095 for AD5625R/AD5625 (12-bit).  
0 to 16,383 for AD5645R (14-bit).  
0 to 65,535 for AD5665R/AD5665 (16-bit).  
N is the DAC resolution.  
Versions packaged in a 10-lead LFCSP have a 1.25 V reference  
or a 2.5 V reference, giving a full-scale output of 2.5 V or 5 V,  
depending on the model selected (see the Ordering Guide). The  
WLCSP package has an internal reference of 1.25 V. These parts  
can be operated with a VDD supply of 2.7 V to 5.5 V. Versions  
packaged in a 14-lead TSSOP have a 2.5 V reference, giving a  
full-scale output of 5 V. Parts are functional with a VDD supply  
of 2.7 V to 5.5 V, but with a VDD supply of less than 5 V, the  
output is clamped to VDD. See the Ordering Guide for a full list  
of models. The internal reference associated with each part is  
available at the VREFOUT pin (available on R suffix versions only).  
V
/V  
REFIN REFOUT  
1.25V INTERNAL  
1
OUTPUT  
AMPLIFIER  
GAIN = ×2  
REFERENCE  
REF (+)  
DAC  
REGISTER  
RESISTOR  
STRING  
V
OUT  
REF (–)  
1
CAN BE OVERDRIVEN  
BY V .  
/V  
REFIN REFOUT  
GND  
A buffer is required if the reference output is used to drive  
external loads. When using the internal reference, it is recom-  
mended that a 100 nF capacitor be placed between the reference  
output and GND for reference stability.  
Figure 56. Internal Configuration When Using the Internal Reference  
Rev. C | Page 23 of 36  
 
 
 
 
 
 
 
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
EXTERNAL REFERENCE  
The 2-wire serial bus protocol operates as follows:  
The VREFIN pin on the AD56x5R allows the use of an external  
reference if the application requires it. The default condition of  
the on-chip reference is off at power-up. All devices can be  
operated from a single 2.7 V to 5.5 V supply.  
1. The master initiates data transfer by establishing a start  
condition when a high-to-low transition on the SDA line  
occurs while SCL is high. The following byte is the address  
byte, which consists of the 7-bit slave address. The slave  
address corresponding to the transmitted address responds  
by pulling SDA low during the ninth clock pulse (this is  
termed the acknowledge bit). At this stage, all other devices  
on the bus remain idle while the selected device waits for  
data to be written to or read from its shift register.  
2. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge  
bit). The transitions on the SDA line must occur during the  
low period of SCL and remain stable during the high  
period of SCL.  
3. When all data bits have been read or written, a stop  
condition is established. In write mode, the master pulls  
the SDA line high during the 10th clock pulse to establish a  
stop condition. In read mode, the master issues a no  
acknowledge for the ninth clock pulse (that is, the SDA line  
remains high). The master brings the SDA line low before  
the 10th clock pulse, and then high during the 10th clock  
pulse to establish a stop condition.  
SERIAL INTERFACE  
The AD56x5R/AD56x5 have 2-wire I2C-compatible serial inter-  
faces. The AD56x5R/AD56x5 can be connected to an I2C bus as  
a slave device, under the control of a master device. See Figure 3  
for a timing diagram of a typical write sequence.  
The AD56x5R/AD56x5 support standard (100 kHz), fast  
(400 kHz), and high speed (3.4 MHz) data transfer modes.  
High speed operation is only available on selected models. See  
the Ordering Guide for a full list of models. Support is not  
provided for 10-bit addressing and general call addressing.  
The AD56x5R/AD56x5 each has a 7-bit slave address. The  
10-lead and 12-ball versions of the part have a slave address  
whose five MSBs are 00011, and the two LSBs are set by the  
state of the ADDR address pin, which determines the state of  
the A0 and A1 address bits. The 14-lead versions of the part  
have a slave address whose three MSBs are 001, and the four  
LSBs are set by the ADDR1 and ADDR2 address pins, which  
determine the state of the A0 and A1 and A2 and A3 address  
bits, respectively.  
WRITE OPERATION  
When writing to the AD56x5R/AD56x5, the user must begin  
The facility to make hardwired changes to the ADDR pin allows  
the user to incorporate up to three of these devices on one bus,  
as outlined in Table 9.  
W
with a start command followed by an address byte (R/ = 0),  
after which the DAC acknowledges that it is prepared to receive  
data by pulling SDA low. The AD5665 requires two bytes of  
data for the DAC and a command byte that controls various  
DAC functions. Three bytes of data must, therefore, be written  
to the DAC, the command byte followed by the most significant  
data byte and the least significant data byte, as shown in Figure 58  
and Figure 59. After these data bytes are acknowledged by the  
AD56x5R/AD56x5, a stop condition follows.  
Table 9. ADDR Pin Settings (10-Lead and 12-Ball Packages)  
ADDR Pin Connection  
A1  
A0  
VDD  
0
0
NC  
1
0
GND  
1
1
The facility to make hardwired changes to the ADDR1 and the  
ADDR2 pins allows the user to incorporate up to nine of these  
devices on one bus, as outlined in Table 10.  
READ OPERATION  
When reading data back from the AD56x5R/AD56x5, the  
user begins with a start command followed by an address byte  
Table 10. ADDR1, ADDR2 Pin Settings (14-Lead Package)  
W
(R/ = 1), after which the DAC acknowledges that it is prepared  
ADDR2 Pin  
Connection  
ADDR1 Pin  
Connection  
to transmit data by pulling SDA low. Two bytes of data are then  
read from the DAC, which are both acknowledged by the master  
as shown in Figure 60 and Figure 61. A stop condition follows.  
A3  
0
A2  
0
A1  
0
A0  
0
VDD  
VDD  
VDD  
NC  
0
0
1
0
VDD  
NC  
GND  
VDD  
0
1
0
0
1
0
1
0
NC  
NC  
1
0
1
0
NC  
GND  
VDD  
NC  
1
1
1
1
0
1
1
1
1
0
1
1
1
0
0
1
GND  
GND  
GND  
GND  
Rev. C | Page 24 of 36  
 
 
 
 
 
 
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
1
9
1
9
SCL  
0
0
0
0
0
1
1
A1  
A0  
R/W  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
SDA  
ACK. BY  
AD56x5  
ACK. BY  
AD56x5  
START BY  
MASTER  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB7  
DB6 DB5 DB4  
DB3  
DB2  
DB1  
DB0  
DB8  
(CONTINUED)  
STOP BY  
MASTER  
ACK. BY  
AD56x5  
ACK. BY  
AD56x5  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
FRAME 4  
LEAST SIGNIFICANT  
DATA BYTE  
Figure 58. I2C Write Operation (10-Lead and 12-Ball Packages)  
1
9
1
9
SCL  
SDA  
0
1
A3  
A2  
A1  
A0  
R/W  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
ACK. BY  
AD56x5  
ACK. BY  
AD56x5  
START BY  
MASTER  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
DB7  
DB6 DB5 DB4  
DB3  
DB2  
DB1  
DB0  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
(CONTINUED)  
STOP BY  
MASTER  
ACK. BY  
AD56x5  
ACK. BY  
AD56x5  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
FRAME 4  
LEAST SIGNIFICANT  
DATA BYTE  
Figure 59. I2C Write Operation (14-Lead Package)  
1
9
1
9
SCL  
SDA  
0
0
1
1
A1  
A0  
R/W  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
ACK. BY  
AD56x5  
ACK. BY  
MASTER  
START BY  
MASTER  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB7  
DB6 DB5 DB4  
DB3  
DB2  
DB1  
DB0  
DB8  
STOP BY  
MASTER  
ACK. BY  
MASTER  
NO ACK.  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
FRAME 4  
LEAST SIGNIFICANT  
DATA BYTE  
Figure 60. I2C Read Operation (10-Lead and 12-Ball Packages)  
Rev. C | Page 25 of 36  
 
 
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
1
9
1
9
SCL  
0
0
1
A3  
A2  
A1  
A0  
R/W  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
SDA  
ACK. BY  
AD56x5  
ACK. BY  
MASTER  
START BY  
MASTER  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB7  
DB6 DB5 DB4  
DB3  
DB2  
DB1  
DB0  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
STOP BY  
MASTER  
ACK. BY  
MASTER  
NO ACK.  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
FRAME 4  
LEAST SIGNIFICANT  
DATA BYTE  
Figure 61. I2C Read Operation (14-Lead Package)  
FAST MODE  
HIGH-SPEED MODE  
1
9
1
9
SCL  
SDA  
0
0
0
0
1
X
X
X
0
0
1
A3  
A2  
A1  
A0  
R/W  
NO ACK.  
SR  
START BY  
MASTER  
ACK. BY  
AD56x5  
HS-MODE  
MASTER CODE  
SERIAL BUS  
ADDRESS BYTE  
Figure 62. Placing the AD56x5RBRUZ-2/AD56x5RBRUZ-2REEL7 in High Speed Mode  
HIGH SPEED MODE  
INPUT SHIFT REGISTER  
Some models offer high speed serial communication with a  
clock frequency of 3.4 MHz. See the Ordering Guide for a full  
list of models.  
The input shift register is 24 bits wide. Data is loaded into the  
device as a 24-bit word under the control of a serial clock  
input, SCL. The timing diagram for this operation is shown in  
Figure 3. The eight MSBs make up the command byte. DB23  
is reserved and should always be set to 0 when writing to the  
device. DB22 (S) is used to select multiple byte operation.  
The next three bits are the command bits (C2, C1, and C0)  
that control the mode of operation of the device. See Table 11  
for details. The last three bits of the first byte are the address bits  
(A2, A1, and A0). See Table 12 for details. The rest of the bits  
are the 16-/14-/12-bit data-word. The data-word comprises the  
16-/14-/12-bit input code followed by two or four don’t care bits  
for the AD5645R and the AD5625R/AD5625, respectively (see  
Figure 65 through Figure 67).  
High speed mode communication commences after the master  
addresses all devices connected to the bus with the Master Code  
00001XXX to indicate that a high speed mode transfer is to  
begin. No device connected to the bus is permitted to acknowl-  
edge the high speed master code; therefore, the code is followed  
by a no acknowledge. Next, the master must issue a repeated  
start followed by the device address. The selected device then  
acknowledges its address. All devices continue to operate in  
high speed mode until the master issues a stop condition. When  
the stop condition is issued, the devices return to standard/fast  
CLR  
mode. The part also returns to standard/fast mode when  
activated while the part is in high speed mode.  
is  
MULTIPLE BYTE OPERATION  
Multiple byte operation is supported on the AD56x5R/AD56x5.  
A 2-byte operation is useful for applications that require fast  
DAC updating and do not need to change the command byte.  
The S bit (DB22) in the command register can be set to 1 for  
2-byte mode of operation (see Figure 64). For standard 3-byte  
and 4-byte operation, the S bit (DB22) in the command byte  
should be set to 0 (see Figure 63).  
Rev. C | Page 26 of 36  
 
 
 
 
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
BLOCK 1  
BLOCK 2  
BLOCK n  
S = 0  
S = 0  
S = 0  
SLAVE  
ADDRESS  
COMMAND MOST SIGNIFICANT LEAST SIGNIFICANT COMMAND MOST SIGNIFICANT LEAST SIGNIFICANT  
BYTE DATA BYTE DATA BYTE BYTE DATA BYTE DATA BYTE  
COMMAND MOST SIGNIFICANT LEAST SIGNIFICANT  
STOP  
BYTE  
DATA BYTE  
DATA BYTE  
Figure 63. Multiple Block Write with Command Byte in Each Block (S = 0)  
BLOCK 1  
BLOCK 2  
BLOCK n  
S = 1  
S = 1  
S = 1  
SLAVE  
ADDRESS  
COMMAND MOST SIGNIFICANT LEAST SIGNIFICANT MOST SIGNIFICANT LEAST SIGNIFICANT  
BYTE DATA BYTE DATA BYTE DATA BYTE DATA BYTE  
MOST SIGNIFICANT LEAST SIGNIFICANT  
STOP  
DATA BYTE  
DATA BYTE  
Figure 64. Multiple Block Write with Initial Command Byte Only (S = 1)  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
R
S
C2  
C1  
C0  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC DATA  
COMMAND BYTE  
DATA HIGH BYTE  
DATA LOW BYTE  
Figure 65. AD5665R/AD5665 Input Shift Register (16-Bit DAC)  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
R
S
C2  
C1  
C0  
A2  
A1  
A0  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
X
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC DATA  
COMMAND BYTE  
DATA HIGH BYTE  
DATA LOW BYTE  
Figure 66. AD5645R Input Shift Register (14-Bit DAC)  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
R
S
C2  
C1  
C0  
A2  
A1  
A0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
X
X
X
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC DATA  
COMMAND BYTE  
DATA HIGH BYTE  
DATA LOW BYTE  
Figure 67. AD5625R/AD5625 Input Shift Register (12-Bit DAC)  
Rev. C | Page 27 of 36  
 
 
 
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
BROADCAST MODE  
LDAC FUNCTION  
Broadcast addressing is supported on the AD56x5R/AD56x5  
in write mode only. Broadcast addressing can be used to synchro-  
nously update or power down multiple AD56x5R/AD56x5  
devices. When the broadcast address is used, the AD56x5R/  
AD56x5 respond regardless of the states of the address pins.  
The AD56x5R/AD56x5 broadcast address is 00010000.  
The AD56x5R/AD56x5 DACs have double-buffered interfaces  
consisting of two banks of registers: input registers and DAC  
registers. The input registers are connected directly to the input  
shift register, and the digital code is transferred to the relevant  
input register upon completion of a valid write sequence. The  
DAC registers contain the digital code used by the resistor strings.  
LDAC  
Access to the DAC registers is controlled by the  
pin.  
pin is high, the DAC registers are latched  
and the input registers can change state without affecting the  
LDAC  
Table 11. Command Definition  
C2 C1 C0 Command  
LDAC  
When the  
0
0
0
0
0
1
0
1
0
Write to input Register n  
Update DAC Register n  
Write to input Register n, update all  
(software LDAC)  
contents of the DAC registers. When  
is brought low,  
however, the DAC registers become transparent and the contents of  
the input registers are transferred to them. The double-buffered  
interface is useful if the user requires simultaneous updating of  
all DAC outputs. The user can write to one of the input registers  
low when writing to  
the other DAC input register, all outputs update simultaneously.  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
Write to and update DAC Channel n  
Power up/power down  
Reset  
LDAC  
individually and then, by bringing  
LDAC register setup  
Internal reference setup (on/off )  
These parts each contain an extra feature whereby a DAC register  
is not updated unless its input register has been updated since  
LDAC  
LDAC  
the last time  
was brought low. Normally, when  
is  
Table 12. DAC Address Command  
brought low, the DAC registers are filled with the contents of the  
input registers. In the case of the AD56x5R/AD56x5, the DAC  
register updates only if the input register has changed since the  
last time the DAC register was updated, thereby removing  
unnecessary digital crosstalk.  
A2  
A1  
A0  
ADDRESS (n)  
0
0
0
DAC A  
0
0
1
DAC B  
0
1
0
DAC C  
0
1
1
DAC D  
The outputs of all DACs can be simultaneously updated, using  
1
1
1
All DACs  
LDAC  
the hardware  
pin.  
.
Rev. C | Page 2± of 36  
 
 
 
 
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
LDAC  
Synchronous  
LDAC  
Table 13.  
Register Mode of Operation on the 10-Lead  
LDAC  
The DAC registers are updated after new data is read in.  
can be permanently low or pulsed.  
LFCSP (Load DAC Register)  
LDAC Bits  
(DB3 to DB0)  
LDAC Mode of Operation  
LDAC  
Asynchronous  
The outputs are not updated at the same time that the input  
LDAC  
0
Normal operation (default), DAC register  
update is controlled by the write command.  
registers are written to. When  
registers are updated with the contents of the input register.  
LDAC  
goes low, the DAC  
1
The DAC registers are updated after new data  
is read in.  
The  
the hardware  
parts that do not have the hardware  
This register allows the user to select which combination of  
LDAC  
register gives the user full flexibility and control over  
LDAC LDAC  
pin (and software  
LDAC  
on the 10-lead  
pin—see Table 13).  
LDAC  
Table 14.  
Register Mode of Operation on the 14-Lead  
TSSOP (Load DAC Register)  
LDAC Bits  
(DB3 to DB0)  
channels to simultaneously update when the hardware  
LDAC  
LDAC Pin  
LDAC Operation  
pin is executed. Setting the  
channel means that the update of this channel is controlled by  
LDAC  
bit register to 0 for a DAC  
0
1/0  
Determined by the LDAC pin.  
1
x = don’t  
care  
The DAC registers are updated  
after new data is read in.  
the  
updates; that is, the DAC register is updated after new data is  
LDAC  
pin. If this bit is set to 1, this channel synchronously  
read in, regardless of the state of the  
pin. The device  
pin as being pulled low. See Table 14  
register mode of operation. This flexibility is  
LDAC  
effectively sees the  
LDAC  
for the  
useful in applications when the user wants to simultaneously  
update select channels while the rest of the channels are  
synchronously updating.  
LDAC  
Writing to the DAC using Command 110 loads the 4-bit  
register [DB3:DB0]. The default for each channel is 0; that is,  
LDAC  
the  
the DAC register is updated, regardless of the state of the  
pin. See Figure 68 for the contents of the input shift register  
pin works normally. Setting the bits to 1 means that  
LDAC  
LDAC  
during the  
register setup command.  
R
0
S
C2  
1
C1  
1
C0  
0
A2  
A2  
A1  
A1  
A0 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
X
A0  
X
X
X
X
X
X
X
X
X
X
X
X
DAC D DAC C DAC B DAC A  
DAC ADDRESS  
(DON’T CARE)  
DAC SELECT  
(0 = LDAC PIN ENABLED)  
COMMAND  
DON’T CARE  
DON’T CARE  
LDAC  
Figure 68.  
Setup Command  
Rev. C | Page 29 of 36  
 
 
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
Table 15. Modes of Operation for the AD56x5R/AD56x5  
POWER-DOWN MODES  
DB5  
DB4  
Operating Mode  
Normal operation  
Power-down modes  
Command 100 is reserved for the power-up/power-down  
function. The power-up/power-down modes are programmed  
by setting Bit DB5 and Bit DB4. This defines the output state of  
the DAC amplifier, as shown in Table 15. Bit DB3 to Bit DB0  
determine to which DAC or DACs the power-up/power-down  
command is applied. Setting one of these bits to 1 applies the  
power-up/power-down state defined by DB5 and DB4 to the  
corresponding DAC. If a bit is 0, the state of the DAC is  
unchanged. Figure 70 shows the contents of the input shift  
register for the power-up/power-down command.  
0
0
0
1
1
1
0
1
1 kΩ pull-down resistor to GND  
100 kΩ pull-down resistor to GND  
Three-state, high impedance  
RESISTOR  
STRING DAC  
AMPLIFIER  
V
OUT  
When Bit DB5 and Bit DB4 are set to 0, the part works normally  
with its normal power consumption of 1 mA at 5 V. However,  
for the three power-down modes, the supply current falls to  
480 nA at 5 V. Not only does the supply current fall, but the  
output stage is also internally switched from the output of the  
amplifier to a resistor network of known values. This allows the  
output impedance of the part to be known while the part is in  
power-down mode. The outputs can either be connected  
internally to GND through a 1 kΩ or 100 kΩ resistor or be left  
open-circuited (three-state) as shown in Figure 67.  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Figure 69. Output Stage During Power-Down  
The bias generator, output amplifier, resistor string, and other  
associated linear circuitry are shut down when power-down  
mode is activated. However, the contents of the DAC register  
are unaffected when in power-down. The time to exit power-  
down is typically 4 μs for VDD = 5 V or VDD = 3 V.  
Note that the 14-lead TSSOP models offer the power-down  
function when the part is operated with a VDD of 3.6 V to 5.5 V.  
The 10-lead LFCSP models offer the power-down function  
when the part is powered with a VDD of 2.7 V to 5.5 V.  
R
0
S
X
C2  
1
C1  
0
C0  
0
A2  
A2  
A1  
A1  
A0 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
A0  
X
X
X
X
X
X
X
X
X
X
PD1 PD0 DAC D DAC C DAC B DAC A  
DAC SELECT  
POWER-  
DAC ADDRESS  
(DON’T CARE)  
COMMAND  
DON’T CARE  
DON’T CARE  
DOWN MODE  
(1 = DAC SELECTED)  
Figure 70. Power-Up/Power-Down Command  
Rev. C | Page 30 of 36  
 
 
 
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
POWER-ON RESET AND SOFTWARE RESET  
Table 16. Software Reset Modes for the AD56x5R/AD56x5  
The AD56x5R/AD56x5 contain a power-on reset circuit that  
controls the output voltage during power-up. The 10-lead  
version of the device powers up to 0 V. The 14-lead version has  
a power-on reset (POR) pin that allows the output voltage to  
be selected. By connecting the POR pin to GND, the AD56x5R/  
AD56x5 output powers up to 0 V; by connecting the POR pin to  
VDD, the AD56x5R/AD56x5 output powers up to midscale. The  
output remains powered up at this level until a valid write sequence  
is made to the DAC. This is useful in applications where it is  
important to know the state of the output of the DAC while it is  
in the process of powering up.  
DB0  
Registers Reset to Zero  
0
DAC register  
Input shift register  
DAC register  
Input shift register  
LDAC register  
1 (Power-On Reset)  
Power-down register  
Internal reference setup register  
INTERNAL REFERENCE SETUP (R VERSIONS)  
The on-chip reference is off at power-up by default. It can be  
turned on by sending the reference setup command (111) and  
setting DB0 in the input shift register. Table 17 shows how the  
state of the bit corresponds to the mode of operation.  
Any events on  
or during power-on reset are ignored.  
LDAC CLR  
There is also a software reset function. Command 101 is the  
software reset command. The software reset command contains  
two reset modes that are software programmable by setting bit  
DB0 in the input shift register.  
Table 17. Reference Setup Command  
DB0  
Action  
0
1
Internal reference off (default)  
Internal reference on  
Table 16 shows how the state of the bit corresponds to the  
software reset modes of operation of the devices. Figure 71  
shows the contents of the input shift register during the  
software reset mode of operation.  
X
0
S
X
C2  
1
C1  
0
C0  
1
A2  
X
A1  
X
A0 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RST  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DAC ADDRESS  
(DON’T CARE)  
COMMAND  
DON’T CARE  
DON’T CARE  
Figure 71. Reset Command  
R
0
S
X
C2  
1
C1  
1
C0  
1
A2  
X
A1  
X
A0 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
REF  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DAC ADDRESS  
(DON’T CARE)  
COMMAND  
DON’T CARE  
DON’T CARE  
Figure 72. Reference Setup Command  
Rev. C | Page 31 of 36  
 
 
 
 
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
APPLICATIONS INFORMATION  
USING A REFERENCE AS A POWER SUPPLY FOR  
THE AD56x5R/AD56x5  
R2 = 10kΩ  
+5V  
R1 = 10kΩ  
Because the supply current required by the AD56x5R/AD56x5 is  
extremely low, an alternative option is to use a voltage reference  
to supply the required voltage to the part (see Figure 73). This is  
especially useful if the power supply is noisy or if the system  
supply voltages are at some value other than 5 V or 3 V, for  
example, 15 V. The voltage reference outputs a steady supply  
voltage for the AD56x5R/AD56x5. If the low dropout REF195 is  
used, it must supply 450 µA of current to the AD56x5R/AD56x5  
with no load on the output of the DAC. When the DAC output  
is loaded, the REF195 also must supply the current to the load.  
The total current required (with a 5 kΩ load on the DAC  
output) is  
V
±5V  
O
AD820/  
OP295  
V
V
+5V  
10µF  
DD  
OUT  
0.1µF  
AD5625R/  
AD5645R/  
AD5665R/  
AD5625/  
AD5665  
–5V  
GND SCL SDA  
2-WIRE  
SERIAL  
INTERFACE  
Figure 74. Bipolar Operation with the AD56x5R/AD56x5  
1 mA + (5 V/5 kΩ) = 2 mA  
POWER SUPPLY BYPASSING AND GROUNDING  
The load regulation of the REF195 is typically 2 ppm/mA,  
resulting in a 4 ppm (20 µV) error for the 2 mA current drawn  
from it. This corresponds to a 0.263 LSB error.  
15V  
When accuracy is important in a circuit, it is helpful to carefully  
consider the power supply and ground return layout on the board.  
The printed circuit board containing the AD56x5R/AD56x5  
should have separate analog and digital sections, each having its  
own area of the board. If the AD56x5R/AD56x5 are in a system  
where other devices require an AGND-to-DGND connection,  
the connection should be made at one point only. This ground  
point should be as close as possible to the AD56x5R/AD56x5.  
5V  
REF195  
V
DD  
SCL  
SDA  
AD5625R/  
AD5645R/  
AD5665R/  
AD5625/  
AD5665  
GND  
V
= 0V TO 5V  
OUT  
2-WIRE  
SERIAL  
INTERFACE  
The power supply to the AD56x5R/AD56x5 should be bypassed  
with 10 µF and 0.1 µF capacitors. The capacitors should be  
located as close as possible to the device, with the 0.1 µF capaci-  
tor ideally right up against the device. The 10 µF capacitor is  
the tantalum bead type. It is important that the 0.1 µF capacitor  
have low effective series resistance (ESR) and low effective  
series inductance (ESI), for example, common ceramic types of  
capacitors. This 0.1 µF capacitor provides a low impedance path  
to ground for high frequencies caused by transient currents due  
to internal logic switching.  
Figure 73. REF195 as Power Supply to the AD56x5R/AD56x5  
BIPOLAR OPERATION USING THE  
AD56x5R/AD56x5  
The AD56x5R/AD56x5 have been designed for single-supply  
operation, but a bipolar output range is also possible using the  
circuit shown in Figure 74. The circuit gives an output voltage  
range of 5 V. R ail-to-rail operation at the amplifier output is  
achievable using an AD820 or an OP295 as the output amplifier.  
The power supply line itself should have as large a trace as  
possible to provide a low impedance path and to reduce glitch  
effects on the supply line. Clocks and other fast switching  
digital signals should be shielded from other parts of the board  
by digital ground. Avoid crossover of digital and analog signals  
if possible. When traces cross on opposite sides of the board,  
ensure that they run at right angles to each other to reduce  
feedthrough effects through the board. The best board layout  
technique is the microstrip technique where the component  
side of the board is dedicated to the ground plane only, and the  
signal traces are placed on the solder side. However, this is not  
always possible with a 2-layer board.  
The output voltage for any input code can be calculated as follows:  
D
65,536  
R1+ R2  
R1  
R2  
R1  
V = V  
×
×
V  
×
DD  
O
DD  
where D represents the input code in decimal (0 to 65,535).  
If VDD = 5 V, R1 = R2 = 10 kΩ,  
10× D  
65,536  
V =  
5 V  
O
This is an output voltage range of 5 V, wit h 0x0000 corre-  
sponding to a −5 V output and 0xFFFF corresponding to a  
+5 V output.  
Rev. C | Page 32 of 36  
 
 
 
 
 
 
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
OUTLINE DIMENSIONS  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
10  
6
PIN 1 INDEX  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
AREA  
0.50  
0.40  
0.30  
0.20 MIN  
1
5
BOTTOM VIEW  
TOP VIEW  
PIN 1  
INDICATOR  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 75. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 76. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Rev. C | Page 33 of 36  
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Data Sheet  
1.705  
1.665  
1.625  
BOTTOM VIEW  
(BALL SIDE UP)  
3
2
1
A
BALL A1  
IDENTIFIER  
2.285  
2.245  
2.205  
1.50  
REF  
B
C
D
0.50  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
1.00  
REF  
0.380  
0.650  
0.595  
0.540  
0.355  
0.330  
END VIEW  
COPLANARITY  
0.05  
SEATING  
PLANE  
0.270  
0.240  
0.210  
0.340  
0.320  
0.300  
Figure 77. 12-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-12-9)  
Dimensions shown in millimeters  
Rev. C | Page 34 of 36  
Data Sheet  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
ORDERING GUIDE  
Temperature  
Range  
On-Chip  
Maximum  
Package  
Description  
Package  
Option  
Model1  
Accuracy  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±4 LSB INL  
±4 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
Reference I2C Speed  
Branding  
D±V  
D±V  
AD5625BCPZ-R2  
AD5625BCPZ-REEL7  
AD5625BRUZ  
AD5625BRUZ-REEL7  
AD5625RBCPZ-R2  
AD5625RBCPZ-REEL7  
AD5625RACPZ-REEL7  
AD5625RACPZ-1RL7  
AD5625RBRUZ-1  
AD5625RBRUZ-1REEL7  
AD5625RBRUZ-2  
AD5625RBRUZ-2REEL7  
AD5645RBCPZ-R2  
AD5645RBCPZ-REEL7  
AD5645RBRUZ  
AD5645RBRUZ-REEL7  
AD5665BCPZ-R2  
AD5665BCPZ-REEL7  
AD5665BRUZ  
AD5665BRUZ-REEL7  
AD5665RBCBZ-1-RL7  
AD5665RBCPZ-R2  
AD5665RBCPZ-REEL7  
AD5665RBRUZ-1  
AD5665RBRUZ-1REEL7  
AD5665RBRUZ-2  
AD5665RBRUZ-2REEL7  
EVAL-AD5665REBZ1  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
None  
None  
None  
None  
1.25 V  
1.25 V  
1.25 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
3.4 MHz  
3.4 MHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
3.4 MHz  
3.4 MHz  
10-Lead LFCSP_WD CP-10-9  
10-Lead LFCSP_WD CP-10-9  
14-Lead TSSOP  
14-Lead TSSOP  
RU-14  
RU-14  
10-Lead LFCSP_WD CP-10-9  
10-Lead LFCSP_WD CP-10-9  
10-Lead LFCSP_WD CP-10-9  
10-Lead LFCSP_WD CP-10-9  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
D±S  
D±S  
DEU  
DFW  
RU-14  
RU-14  
RU-14  
RU-14  
1.25 V  
1.25 V  
2.5 V  
10-Lead LFCSP_WD CP-10-9  
10-Lead LFCSP_WD CP-10-9  
14-Lead TSSOP  
14-Lead TSSOP  
D±9  
D±9  
RU-14  
RU-14  
2.5 V  
±16 LSB INL None  
±16 LSB INL None  
±16 LSB INL None  
±16 LSB INL None  
±16 LSB INL 1.25 V  
±16 LSB INL 1.25 V  
±16 LSB INL 1.25 V  
±16 LSB INL 2.5 V  
±16 LSB INL 2.5 V  
±16 LSB INL 2.5 V  
±16 LSB INL 2.5 V  
10-Lead LFCSP_WD CP-10-9  
10-Lead LFCSP_WD CP-10-9  
14-Lead TSSOP  
14-Lead TSSOP  
12-Ball WLCSP  
10-Lead LFCSP_WD CP-10-9  
10-Lead LFCSP_WD CP-10-9  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
D6U  
D6U  
RU-14  
RU-14  
CB-12-9  
DA2  
DA2  
RU-14  
RU-14  
RU-14  
RU-14  
TSSOP Evaluation  
Board  
EVAL-AD5665REBZ2  
1 Z = RoHS Compliant Part.  
LFCSP Evaluation  
Board  
Rev. C | Page 35 of 36  
 
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2007-2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06341-0-3/13(C)  
Rev. C | Page 36 of 36  
 

AD5625BCPZ-R2 CAD模型

  • 引脚图

  • 封装焊盘图

  • AD5625BCPZ-R2 替代型号

    型号 制造商 描述 替代类型 文档
    AD5625BCPZ-REEL7 ADI Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On 完全替代
    AD5625BRUZ ADI Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On 类似代替
    AD5625RBCPZ-R2 ADI Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/°C 类似代替

    AD5625BCPZ-R2 相关器件

    型号 制造商 描述 价格 文档
    AD5625BCPZ-REEL7 ADI Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface 获取价格
    AD5625BRUZ ADI Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface 获取价格
    AD5625BRUZ-REEL7 ADI Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface 获取价格
    AD5625R ADI Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface 获取价格
    AD5625RACPZ-1RL7 ADI Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/°C On-Chip Reference, I2C Interface 获取价格
    AD5625RACPZ-REEL7 ADI Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/°C On-Chip Reference, I2C Interface 获取价格
    AD5625RBCPZ-250RL7 ADI Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface 获取价格
    AD5625RBCPZ-R2 ADI Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/°C On-Chip Reference, I2C Interface 获取价格
    AD5625RBCPZ-REEL7 ADI Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface 获取价格
    AD5625RBRUZ-1 ADI Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface 获取价格

    AD5625BCPZ-R2 相关文章

  • 强制中企出售股权,英国半导体领域渐成中企投资禁区
    2024-11-08
    22
  • 台积电拟对大陆AI公司禁运7nm及以下工艺,引发业界关注
    2024-11-08
    15
  • 锐成芯微推出基于8nm工艺的PVT Sensor IP,引领芯片技术创新
    2024-11-08
    15
  • 苹果与富士康接洽,商讨在中国台湾生产AI服务器
    2024-11-08
    13