AD5645RBRUZ [ADI]

Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface; 四, 12位/ 14位/ 16位nanoDACs用5ppm的/ ΣC片上参考, I2C接口
AD5645RBRUZ
型号: AD5645RBRUZ
厂家: ADI    ADI
描述:

Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface
四, 12位/ 14位/ 16位nanoDACs用5ppm的/ ΣC片上参考, I2C接口

文件: 总32页 (文件大小:819K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 12-/14-/16-Bit nanoDACs® with  
5ppm/°C On-chip Ref, I2C Interface  
AD5625R/AD5645R/AD5665R  
AD5625/AD5665  
Preliminary Technical Data  
V
/V  
REFIN REFOUT  
V
GND  
DD  
FEATURES  
AD5625R/AD5645R/AD5665R  
1.25V/2.5V REF  
Low power, smallest pin-compatible, quad nanoDACs  
AD5625R/AD5645R/AD5665R  
12-/14-/16 bits  
On-chip 1.25 V/2.5 V, 5 ppm/°C reference.  
AD5625/AD5665  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC A  
V
BUFFER  
BUFFER  
BUFFER  
BUFFER  
OUTA  
ADDR1  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC B  
V
V
V
ADDR2  
SCL  
OUTB  
OUTC  
OUTD  
INTERFACE  
LOGIC  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC C  
12-/16 bits  
External reference only  
SDA  
DAC  
REGISTER  
INPUT  
REGISTER  
STRING  
DAC D  
3 mm x 3 mm LFCSP and 14-lead TSSOP  
2.7 V to 5.5 V power supply  
Guaranteed monotonic by design  
Power-on reset to zero scale/midscale  
Per channel power-down  
POWER-ON  
RESET  
POWER-DOWN  
LOGIC  
LDAC CLR  
NOTE. THE FOLLOWING PINS ARE AVAILABLE ONLY ON 14-PIN PACKAGE - ADDR2, LDAC, CLR, POR.  
POR  
V
V
GND  
REFIN  
DD  
AD5625/AD5665  
I2C-compatible serial interface supports standard (100 kHz),  
fast (400 kHz), and high speed (3.4 MHz) modes  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC A  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
V
OUTA  
ADDR1  
STRING  
DAC B  
INPUT  
REGISTER  
DAC  
REGISTER  
V
V
V
ADDR2  
SCL  
OUTB  
OUTC  
OUTD  
APPLICATIONS  
Process control  
Data acquisition systems  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
INTERFACE  
LOGIC  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC C  
SDA  
DAC  
REGISTER  
INPUT  
REGISTER  
STRING  
DAC D  
POWER-ON  
RESET  
POWER-DOWN  
LOGIC  
LDAC CLR  
POR  
NOTE. THE FOLLOWING PINS ARE AVAILABLE ONLY ON 14-PIN PACKAGE - ADDR2, LDAC, CLR, POR.  
Figure 1. Functional Block Diagrams  
GENERAL DESCRIPTION  
until a valid write takes place. The part contains a per-channel  
power-down feature that reduces the current consumption of  
the device to 480 nA at 5 V and provides software-selectable  
output loads while in power-down mode. The low power  
consumption of this part in normal operation makes it ideally  
suited to portable battery-operated equipment. The on-chip  
precision output amplifier enables rail-to-rail output swing.  
The AD5625R/AD5645R/AD5665R, AD5625/AD5665  
members of the nanoDAC family, are low power, quad, 12-, 14-,  
16-bit buffered voltage-out DACs with/without an on-chip  
reference. All devices operate from a single 2.7 V to 5.5 V  
supply, are guaranteed monotonic by design and have an I2C-  
compatible serial interface .  
The AD5625R/AD5645R/AD5665R have an on-chip reference. The  
AD56x5RBCPZ have a 1.25 V, 5 ppm/°C reference, giving a full-scale  
output range of 2.5 V; the AD56x5RBRUZ have a 2.5 V, 5 ppm/°C  
reference giving a full-scale output range of 5 V. The on-chip  
reference is off at power-up, allowing the use of an external reference.  
The internal reference is enabled via a software write. The AD5665  
and AD5625 require an external reference voltage to set the  
output range of the DAC.  
The AD5625R/AD5645R/AD5665R, AD5625/AD5665 use a 2-  
wire I2C-compatible serial interface that operates in standard  
(100 kHz), fast (400 kHz), and high speed (3.4 MHz) modes.  
Table 1. Related Devices  
Part No.  
AD5624R/AD5644R/AD5664R Quad SPI 12-, 14-, 16-bit DACs,  
AD5624/AD5664 with/without internal reference.  
AD5627R/AD5647R/AD5667R Dual I2C 12-, 14-,16-bit DACs,  
Description  
AD5627/5667,  
AD5666  
with/without internal reference.  
2.7 V to 5.5 V, Quad 16-bit DAC,  
internal reference, SPI interface  
The part incorporates a power-on reset circuit that ensures the  
DAC output powers up to 0 V or midscale and remains there  
Rev. PrA  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features...................................................................................1  
Applications ...........................................................................1  
General Description .............................................................1  
Product Highlights................................................................1  
Table1. Related Devices ........................................................2  
TABLE OF CONTENTS ......................................................2  
Specifications .........................................................................3  
AC Characteristics ................................................................4  
I2C Timing Specifications.....................................................5  
Absolute Maximum Ratings ................................................7  
Pin Configuration and Function Descriptions..................8  
Typical Performance Characteristics ..................................9  
Terminology...........................................................................17  
Theory of Operation.............................................................19  
D/A Section............................................................................19  
Resistor String........................................................................19  
Output Amplifier...................................................................19  
Internal Reference .................................................................19  
External Reference ................................................................19  
Serial Interface.......................................................................19  
Write Operation.....................................................................21  
Read Operation......................................................................21  
High Speed Mode ..................................................................22  
Multiple Byte Write ...............................................................23  
Broadcast Mode.....................................................................23  
Input Shift Register................................................................23  
Write Commands and LDAC...............................................24  
LDAC Setup............................................................................24  
Pin.................................................................................25  
LDAC  
Power-Down Modes..............................................................25  
Power-on Reset and Software Reset....................................26  
Internal Reference Setup.......................................................26  
Clear Pin (  
) .....................................................................26  
CLR  
Applications............................................................................27  
Using A Reference as Power Supply....................................27  
Bipolar Operation..................................................................27  
Power Supply Bypassing and Grounding ...........................27  
Outline Dimensions..............................................................28  
Ordering Information...........................................................29  
REVISION HISTORY  
4/06—Revision 0: Initial Version  
Rev. PrA. | Page 2 of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Specifications: AD5625R/AD5645R/AD5665R, AD5625/AD5665  
VDD = 2.7 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
B Grade1  
Parameter  
Min  
Typ  
±±  
Max  
Unit  
Conditions/Comments  
STATIC PERFORMANCE2  
AD5665R/AD5665  
Resolution  
16  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5645R  
±16  
±1  
Guaranteed monotonic by design  
Guaranteed monotonic by design  
Resolution  
14  
12  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5625R/AD5625  
Resolution  
±2  
±4  
±ꢀ.5  
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
Offset Error  
Full-Scale Error  
Gain Error  
Zero-Code Error Drift  
Gain Temperature  
DC Power Supply Rejection  
DC Crosstalk (External  
Reference)  
±ꢀ.5  
±1  
±ꢀ.25  
1ꢀ  
±1ꢀ  
±1  
±1.5  
LSB  
LSB  
mV  
mV  
% of FSR  
% of FSR  
µV/°C  
ppm  
dB  
Guaranteed monotonic by design  
All zeroes loaded to DAC register  
2
±1  
−ꢀ.1  
All ones loaded to DAC register  
±2  
±2.5  
−1ꢀꢀ  
1ꢀ  
Of FSR/°C  
DAC code = midscale ; VDD = 5V ± 1ꢀ%  
Due to full-scale output change,  
µV  
1ꢀ  
5
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
DC Crosstalk (Internal  
Reference)  
25  
µV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
2ꢀ  
1ꢀ  
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
VDD  
V
Capacitive Load Stability  
2
nF  
nF  
mA  
µs  
RL = ∞  
RL = 2 kΩ  
1ꢀ  
ꢀ.5  
3ꢀ  
4
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 5 V  
Coming out of power-down mode; VDD = +5 V  
REFERENCE INPUTS  
Reference Current  
Reference Input Range  
Reference Input Impedance  
17ꢀ  
26  
2ꢀꢀ  
VDD  
µA  
V
kΩ  
VREF = VDD = 5.5 V  
ꢀ.75  
REFERENCE OUTPUT (LFCSP  
PACKAGE)  
Output Voltage  
Reference TC3  
Output Impedance  
1.247  
1.253  
V
At ambient  
±1ꢀ  
7.5  
ppm/°C  
kΩ  
REFERENCE OUTPUT (TSSOP  
PACKAGE)  
Output Voltage  
Reference TC3  
Output Impedance  
2.495  
2.5ꢀ5  
±1ꢀ  
V
At ambient  
±5  
7.5  
ppm/°C  
kΩ  
Rev. PrA. | Page 3 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
B Grade1  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
LOGIC INPUTS (SDA, SCL)  
IIN, Input Current  
VINL, Input Low Voltage  
VINH, Input High Voltage  
CIN, Pin Capacitance  
±1  
ꢀ.3 × VDD  
µA  
V
V
ꢀ.7 × VDD  
ꢀ.1 × VDD  
2
pF  
VHYST, Input Hysteresis  
LOGIC OUTPUTS (OPEN DRAIN)  
VOL, Output Low Voltage  
V
ꢀ.4  
ꢀ.6  
±1  
V
V
µA  
pF  
ISINK = 3 mA  
ISINK = 6 mA  
Floating-State Leakage Current  
Floating-State Output  
2
POWER REQUIREMENTS  
VDD  
2.7  
5.5  
V
IDD (Normal Mode)4  
VDD = 4.5 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 4.5 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
IDD (All Power-Down Modes)5  
VIH = VDD, VIL = GND  
Internal reference off  
Internal reference off  
Internal reference on  
Internal reference on  
VIH = VDD, VIL = GND  
ꢀ.45  
ꢀ.44  
ꢀ.95  
ꢀ.95  
ꢀ.4±  
ꢀ.55  
ꢀ.5  
1.2  
1.15  
1
mA  
mA  
mA  
mA  
µA  
1 Temperature range: B grade: −4ꢀ°C to +1ꢀ5°C.  
2 Linearity calculated using a reduced code range: AD5665 (Code 512 to Code 65,ꢀ24); AD5645 (Code 12± to Code 16,256); AD5625 (Code 32 to Code 4ꢀ64). Output  
unloaded.  
3 Guaranteed by design and characterization, not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 All DACs powered down.  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.1  
Table 4.  
Parameter2  
Min  
Typ  
Max  
Unit  
Conditions/Comments3  
Output Voltage Settling Time  
AD5625R/AD5625  
AD5645R  
AD5665R/AD5665  
Slew Rate  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
Reference Feedthrough  
Digital Crosstalk  
3
3.5  
4
1.±  
1ꢀ  
ꢀ.1  
−9ꢀ  
ꢀ.1  
1
4
1
4
34ꢀ  
−±ꢀ  
12ꢀ  
1ꢀꢀ  
15  
4.5  
5
7
µs  
µs  
µs  
¼ to ¾ scale settling to ±ꢀ.5 LSB  
¼ to ¾ scale settling to ±ꢀ.5 LSB  
¼ to ¾ scale settling to ±2 LSB  
V/µs  
nV-s  
nV-s  
dBs  
nV-s  
nV-s  
nV-s  
nV-s  
nV-s  
kHz  
1 LSB change around major carry  
VREF = 2 V ± ꢀ.1 V p-p, frequency 1ꢀ Hz to 2ꢀ MHz  
Analog Crosstalk  
External reference  
Internal reference  
External reference  
Internal reference  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
Output Noise Spectral Density  
VREF = 2 V ± ꢀ.1 V p-p  
dB  
VREF = 2 V ± ꢀ.1 V p-p, frequency = 1ꢀ kHz  
DAC code = midscale, 1 kHz  
DAC code = midscale, 1ꢀ kHz  
ꢀ.1 Hz to 1ꢀ Hz  
nV/√Hz  
nV/√Hz  
µV p-p  
Output Noise  
1 Guaranteed by design and characterization, not production tested.  
2 See the Terminology section.  
Rev. PrA. | Page 4 of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
3 Temperature range is −4ꢀ°C to +1ꢀ5°C, typical at 25°C.  
Rev. PrA. | Page 5 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
I2C TIMING SPECIFICATIONS  
V
DD = 2.7 V to 5.5 V; all specifications TMIN to TMAX, fSCL = 3.4 MHz, unless otherwise noted.  
1
Table 5.  
Limit at TMIN, TMAX  
Parameter  
Conditions2  
Min  
Max  
1ꢀꢀ  
4ꢀꢀ  
3.4  
Unit  
KHz  
KHz  
MHz  
MHz  
μs  
Description  
fSCL3  
Standard mode  
Fast mode  
High speed mode, CB = 1ꢀꢀ pF  
High speed mode, CB = 4ꢀꢀ pF  
Standard mode  
Serial clock frequency  
1.7  
t1  
t2  
4
tHIGH, SCL high time  
Fast mode  
ꢀ.6  
6ꢀ  
12ꢀ  
4.7  
1.3  
16ꢀ  
32ꢀ  
25ꢀ  
1ꢀꢀ  
1ꢀ  
4.7  
ꢀ.6  
16ꢀ  
4
ꢀ.6  
16ꢀ  
4.7  
μs  
High speed mode, CB = 1ꢀꢀ pF  
High speed mode, CB = 4ꢀꢀ pF  
Standard mode  
ns  
ns  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
ns  
ns  
μs  
μs  
ns  
μs  
μs  
ns  
μs  
tLOW, SCL low time  
Fast mode  
High speed mode, CB = 1ꢀꢀ pF  
High speed mode, CB = 4ꢀꢀ pF  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
t3  
t4  
tSU;DAT, data setup time  
tHD;DAT, data hold time  
3.45  
ꢀ.9  
7ꢀ  
Fast mode  
High speed mode, CB = 1ꢀꢀ pF  
High speed mode, CB = 4ꢀꢀ pF  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
15ꢀ  
t5  
t6  
tSU;STA, set-up time for a repeated start condition  
tHD;STA, hold time (repeated) start condition  
t7  
t±  
tBUF, bus free time between a stop and a start  
condition  
Fast mode  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
1.3  
4
ꢀ.6  
16ꢀ  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU;STO, setup time for a stop condition  
tRDA, rise time of SDA signal  
t9  
1ꢀꢀꢀ  
3ꢀꢀ  
±ꢀ  
16ꢀ  
3ꢀꢀ  
3ꢀꢀ  
±ꢀ  
16ꢀ  
1ꢀꢀꢀ  
3ꢀꢀ  
4ꢀ  
Fast mode  
High speed mode, CB = 1ꢀꢀ pF  
High speed mode, CB = 4ꢀꢀ pF  
Standard mode  
1ꢀ  
2ꢀ  
t1ꢀ  
t11  
t11A  
tFDA, fall time of SDA signal  
tRCL, rise time of SCL signal  
Fast mode  
High speed mode, CB = 1ꢀꢀ pF  
High speed mode, CB = 4ꢀꢀ pF  
Standard mode  
1ꢀ  
2ꢀ  
Fast mode  
High speed mode, CB = 1ꢀꢀ pF  
High speed mode, CB = 4ꢀꢀ pF  
Standard mode  
1ꢀ  
2ꢀ  
±ꢀ  
1ꢀꢀꢀ  
tRCL1, rise time of SCL signal after a repeated  
start condition and after an acknowledge bit  
Fast mode  
High speed mode, CB = 1ꢀꢀ pF  
High speed mode, CB = 4ꢀꢀ pF  
3ꢀꢀ  
±ꢀ  
16ꢀ  
ns  
ns  
ns  
1ꢀ  
2ꢀ  
Rev. PrA. | Page 6 of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Limit at TMIN, TMAX  
Parameter  
Conditions2  
Min  
Max  
3ꢀꢀ  
3ꢀꢀ  
4ꢀ  
±ꢀ  
5ꢀ  
Unit  
ns  
ns  
ns  
ns  
Description  
t12  
Standard mode  
Fast mode  
High speed mode, CB = 1ꢀꢀ pF  
High speed mode, CB = 4ꢀꢀ pF  
Fast mode  
tFCL, fall time of SCL signal  
1ꢀ  
2ꢀ  
tSP4  
ns  
Pulse width of spike suppressed  
High speed mode  
1ꢀ  
ns  
1See Figure 2. High speed mode timing specification applies only to the AD5625BRUZ-2 and AD5665BRUZ-2.  
2CB refers to the capacitance on the bus line.  
3The SDA and SCL timing is measured with the input filters enabled. Switching off the input filters improves the transfer rate but has a negative effect on EMC behavior  
of the part.  
4 Input filtering on the SCL and SDA inputs suppress noise spikes that are less than 5ꢀ ns for fast mode or 1ꢀ ns for high speed mode.  
Figure 2. 2-Wire Serial Interface Timing Diagram  
Rev. PrA. | Page 7 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 6.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
−ꢀ.3 V to +7 V  
VOUT to GND  
−ꢀ.3 V to VDD + ꢀ.3 V  
−ꢀ.3 V to VDD + ꢀ.3 V  
−ꢀ.3 V to VDD + ꢀ.3 V  
VREFIN/VREFOUT to GND  
Digital Input Voltage to GND  
Operating Temperature Range  
Industrial  
Storage Temperature Range  
Junction Temperature (TJ max)  
Power Dissipation  
−4ꢀ°C to +1ꢀ5°C  
−65°C to +15ꢀ°C  
15ꢀ°C  
(TJ max − TA)/θJA  
LFCSP_WD Package (4-Layer Board)  
θJA Thermal Impedance  
TSSOP Package  
61°C/W  
θJA Thermal Impedance  
Reflow Soldering Peak Temperature  
Pb-Free  
15ꢀ.4°C/W  
26ꢀ°C ± 5°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4ꢀꢀꢀ V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. PrA. | Page ± of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
LDAC  
1
2
3
4
5
6
7
14 SCL  
VOUT  
A
1
2
3
4
5
VREFIN/VREFOUT  
10  
9
AD5625(R)  
AD5645R  
ADDR1  
SDA  
GND  
13  
12  
11  
10  
9
V
OUTB  
GND  
VDD  
AD5625(R)  
AD5645R  
V
DD  
8
SDA  
AD5665(R)  
V
B
D
V
V
A
C
OUT  
OUT  
OUT  
AD5665(R)  
VOUT  
C
7
SCL  
TOP VIEW  
(Not to Scale)  
V
TOP VIEW  
(Not to Scale)  
OUT  
6
ADDR  
V
OUTD  
CLR  
POR  
NOTE: VREFOUT ONLY ON -R VERSIONS  
V
V
ADDR2  
8
REFIN/ REFOUT  
NOTE: V  
ONLY ON -R VERSIONS  
REFOUT  
Pin Configuration (14-pin)  
Pin Configuration (10-pin)  
Figure 3. Pin Configurations  
Table 7. Pin Function Descriptions  
Pin No. Pin No. Mnemonic Description  
(14-pin) (10-pin)  
1
2
n/a  
n/a  
Active low load DAC pin.  
LDAC  
ADDR1  
Three-state address input. Sets the two least significant bits (Bit A1, Bit Aꢀ) of the 7-bit slave address  
(see Table 6).  
3
9
VDD  
Power supply input. These parts can be operated from 2.7 V to 5.5 V, and the supply should be  
decoupled with a 1ꢀ μF capacitor in parallel with a ꢀ.1 μF capacitor to GND.  
4
5
6
7
1
VOUTA  
VOUTC  
POR  
Analog output voltage from DAC C. The output amplifier has rail-to-rail operation.  
Analog output voltage from DAC D. The output amplifier has rail-to-rail operation.  
Power-on reset.  
4
n/a  
1ꢀ  
VREFIN/VREFOUT The AD5625R/AD5645R/AD5665R, AD5625/AD5665 have a common pin for reference input and  
reference output. The internal reference and reference output are only available on suffix --R  
versions. When using the internal reference, this is the reference output pin. When using an external  
reference, this is the reference input pin. The default for this pin is as a reference input.  
±
9
n/a  
n/a  
ADDR2  
CLR  
Three-state address input. Sets bits A3 and A2 of the 7-bit slave address (see Table 6).  
Asynchronous clear input. The input is falling edge sensitive. . While is low, all LDAC  
CLR  
CLR  
pulses are ignored. When  
is activated, zero scale is loaded to all input and DAC registers. This  
CLR  
clears the output to ꢀ V. The part exits clear code mode on the 24th falling edge of the next write to  
the part. If is activated during a write sequence, the write is aborted.  
CLR  
1ꢀ  
11  
12  
13  
5
2
3
±
VOUTD  
VOUTB  
GND  
SDA  
Analog output voltage from DAC A. The output amplifier has rail-to-rail operation.  
Analog output voltage from DAC B. The output amplifier has rail-to-rail operation.  
Ground reference point for all circuitry on the part.  
Serial data line. This is used in conjunction with the SCL line to clock data into or out of the 16-bit  
input register. It is a bidirectional, open-drain data line that should be pulled to the supply with an  
external pull-up resistor.  
14  
7
6
SCL  
Serial clock line. This is used in conjunction with the SDA line to clock data into or out of the 16-bit  
input register.  
n/a  
ADDR  
Three-state address input. Sets the two least significant bits (Bit A1, Bit Aꢀ) of the 7-bit slave address.  
Rev. PrA. | Page 9 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
10  
V
T
= V  
REF  
= 5V  
V
= V = 5V  
DD  
= 25°C  
DD  
= 25°C  
REF  
0.8  
0.6  
0.4  
0.2  
8
T
A
A
6
4
2
0
–2  
–4  
0
–0.2  
–0.4  
–0.6  
–6  
–8  
–0.8  
–1.0  
–10  
0
0
0
10k  
20k  
30k  
CODE  
40k  
50k  
60k  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k  
CODE  
Figure 7. DNL AD5665, External Reference  
Figure 4. INL AD5665, External Reference  
0.5  
4
V
= V = 5V  
REF  
V
T
= V = 5V  
REF  
DD  
= 25°C  
DD  
= 25°C  
T
0.4  
0.3  
0.2  
0.1  
A
A
3
2
1
0
0
–0.1  
–1  
–2  
–3  
–4  
–0.2  
–0.3  
–0.4  
–0.5  
0
2500  
5000  
7500  
CODE  
10000  
12500  
15000  
2500  
5000  
7500  
CODE  
10000  
12500  
15000  
Figure 8. DNL AD5645, External Reference  
Figure 5. INL AD5645, External Reference  
0.20  
0.15  
0.10  
0.05  
0
1.0  
0.8  
V
T
= V = 5V  
REF  
V
T
= V = 5V  
REF  
DD  
= 25°C  
DD  
= 25°C  
A
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.05  
–0.10  
–0.15  
–0.20  
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
0
500  
1000  
1500 2000  
CODE  
2500 3000 3500 4000  
Figure 9. DNL AD5625, External Reference  
Figure 6. INL AD5625, External Reference  
Rev. PrA. | Page 1ꢀ of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
1.0  
10  
V
V
= 5V  
V
V
= 5V  
= 2.5V  
= 25°C  
DD  
DD  
REFOUT  
0.8  
0.6  
0.4  
0.2  
= 2.5V  
8
6
4
2
REFOUT  
TA = 25°C  
T
A
0
0
–0.2  
–2  
–0.4  
–0.6  
–4  
–6  
–0.8  
–1.0  
–8  
–10  
CODE  
CODE  
Figure 13. DNL AD5665R, 2.5V Internal Reference  
Figure 10. INL AD5665R, 2.5V Internal Reference  
0.5  
0.4  
0.3  
0.2  
0.1  
4
V
V
= 5V  
V
V
= 5V  
DD  
DD  
= 2.5V  
= 2.5V  
REFOUT  
REFOUT  
3
2
TA = 25°C  
TA = 25°C  
1
0
0
–0.1  
–1  
–2  
–0.2  
–0.3  
–3  
–4  
–0.4  
–0.5  
CODE  
CODE  
Figure 14. DNL AD5645R, 2.5V Internal Reference  
Figure 11. INL AD5645R, 2.5V Internal Reference  
0.20  
0.15  
0.10  
0.05  
1.0  
V
V
= 5V  
V
V
= 5V  
DD  
DD  
REFOUT  
= 25°C  
= 2.5V  
= 2.5V  
0.8  
0.6  
0.4  
0.2  
REFOUT  
TA = 25°C  
T
A
0
0
–0.2  
–0.4  
–0.6  
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
500  
1000  
1500 2000 2500 3000  
CODE  
3500 4000  
0
500  
1000  
1500 2000 2500 3000  
CODE  
3500 4000  
Figure 15. DNL AD5625R, 2.5V Internal Reference  
Figure 12. INL AD5625R, 2.V5 Internal Reference  
Rev. PrA. | Page 11 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
10  
1.0  
V
V
= 3V  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
DD  
REFOUT  
= 25°C  
8
6
0.8  
0.6  
= 1.25V  
= 1.25V  
T
T
A
A
4
0.4  
2
0.2  
0
0
–2  
–4  
–6  
–0.2  
–0.4  
–0.6  
–8  
–0.8  
–1.0  
–10  
CODE  
CODE  
Figure 16. INL AD5665R,1.25V Internal Reference  
Figure 19. DNL AD5665R,1.25V Internal Reference  
4
3
0.5  
0.4  
V
V
= 3V  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
DD  
REFOUT  
= 25°C  
= 1.25V  
= 1.25V  
T
T
A
A
0.3  
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–1  
–2  
–3  
–4  
–0.4  
–0.5  
CODE  
CODE  
Figure 17. INL AD5645R, 1.25V Internal Reference  
Figure 20. DNL AD5645R,1.25V Internal Reference  
1.0  
0.8  
0.20  
0.15  
0.10  
0.05  
0
V
V
= 3V  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
DD  
REFOUT  
= 25°C  
= 1.25V  
= 1.25V  
T
T
A
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
Figure 18. INL AD5625R,1.25V Internal Reference  
Figure 21. DNL AD5625R, 1.25V Internal Reference  
Rev. PrA. | Page 12 of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
8
0
V
= 5V  
DD  
–0.02  
–0.04  
–0.06  
–0.08  
6
MAX INL  
V
= V = 5V  
REF  
DD  
GAIN ERROR  
4
2
MAX DNL  
MIN DNL  
0
–0.10  
–0.12  
–2  
–4  
–6  
–8  
–0.14  
–0.16  
FULL-SCALE ERROR  
MIN INL  
80  
–0.18  
–0.20  
–40  
–20  
0
20  
40  
60  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22. INL Error and DNL Error vs. Temperature  
Figure 25. Gain Error and Full-Scale Error vs. Temperature  
10  
8
1.5  
MAX INL  
1.0  
ZERO-SCALE ERROR  
6
0.5  
0
V
= 5V  
DD  
= 25°C  
4
T
A
2
MAX DNL  
MIN DNL  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0
–2  
–4  
–6  
OFFSET ERROR  
MIN INL  
4.25  
–8  
–10  
0.75 1.25  
1.75  
2.25  
2.75  
3.25  
(V)  
3.75  
4.75  
–40  
–20  
0
20  
40  
60  
80  
100  
V
TEMPERATURE (°C)  
REF  
Figure 23. INL and DNL Error vs. VREF  
Figure 26. Zero-Scale Error and Offset Error vs. Temperature  
8
6
1.0  
MAX INL  
T
= 25°C  
A
0.5  
4
2
GAIN ERROR  
0
MAX DNL  
MIN DNL  
0
FULL-SCALE ERROR  
–0.5  
–2  
–4  
–6  
–8  
–1.0  
MIN INL  
–1.5  
–2.0  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
V
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
DD  
V
DD  
Figure 24. INL and DNL Error vs. Supply  
Figure 27. Gain Error and Full-Scale Error vs. Supply  
Rev. PrA. | Page 13 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
1.0  
8
7
6
5
4
3
2
1
0
V
= 3.6V  
DD  
= 25°C  
T
= 25°C  
A
T
A
0.5  
0
ZERO-SCALE ERROR  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
OFFSET ERROR  
0.39  
0.40  
0.41  
0.42  
0.43  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
I
(mA)  
DD  
V
DD  
Figure 28. Zero-Scale Error and Offset Error vs. Supply  
Figure 31. IDD Histogram with External Reference, 3.6 V  
V
T
= 5.5V  
8
7
6
5
4
3
2
1
0
V
T
= 3.6V  
DD  
= 25°C  
DD  
= 25°C  
6
A
A
5
4
3
2
1
0
0.41  
0.42  
0.43  
(mA)  
0.44  
0.45  
0.92  
0.94  
(mA)  
0.96  
0.90  
I
I
DD  
DD  
Figure 29. IDD Histogram with External Reference, 5.5 V  
Figure 32. IDD Histogram with Internal Reference, VREFOUT = 1.25 V  
0.5  
6
5
4
3
2
1
0
V
= 5.5V  
DD  
= 25°C  
DAC LOADED WITH  
FULL-SCALE  
DAC LOADED WITH  
ZERO-SCALE  
T
A
0.4  
0.3  
SOURCING CURRENT  
SINKING CURRENT  
0.2  
V
V
= 3V  
0.1  
DD  
REFOUT  
= 1.25V  
0
–0.1  
–0.2  
–0.3  
V
V
= 5V  
DD  
= 2.5V  
–2  
REFOUT  
–0.4  
–0.5  
0.92  
0.94  
0.96  
(mA)  
0.98  
–10  
–8  
–6  
–4  
0
2
4
6
8
10  
I
DD  
CURRENT (mA)  
Figure 30. IDD Histogram with Internal Reference, VREFOUT = 2.5 V  
Figure 33. Headroom at Rails vs. Source and Sink  
Rev. PrA. | Page 14 of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
6
V
V
= 5V  
DD  
REFOUT  
= 25°C  
FULL SCALE  
= 2.5V  
5
4
3
T
A
3/4 SCALE  
V
= V = 5V  
REF  
DD  
= 25°C  
T
A
FULL-SCALE CODE CHANGE  
0x0000 TO 0xFFFF  
OUTPUT LOADED WITH 2k  
AND 200pF TO GND  
MIDSCALE  
1/4 SCALE  
2
1
V
= 909mV/DIV  
OUT  
0
ZERO SCALE  
1
–1  
–30  
–20  
–10  
0
10  
20  
30  
TIME BASE = 4µs/DIV  
CURRENT (mA)  
Figure 37. Full-Scale Settling Time, 5 V  
Figure 34. AD56x5R with 2.5V Reference, Source and Sink Capability  
4
V
T
= V = 5V  
REF  
V
V
= 3V  
DD  
= 25°C  
DD  
REFOUT  
= 25°C  
= 1.25V  
A
T
A
3
2
1
FULL SCALE  
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
V
DD  
1
2
MAX(C2)  
420.0mV  
0
ZERO SCALE  
V
OUT  
CH2 500mV  
–1  
–30  
CH1 2.0V  
M100µs 125MS/s  
A CH1 1.28V  
8.0ns/pt  
–20  
–10  
0
10  
20  
30  
CURRENT (mA)  
Figure 35. AD56x5R with 1.25V Reference, Source and Sink Capability  
Figure 38. Power-On Reset to 0 V  
0.50  
SYNC  
V
= V  
REFIN  
= 5V  
DD  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1
3
SLCK  
V
= V  
REFIN  
= 3V  
DD  
V
OUT  
V
= 5V  
DD  
2
T
= 25°C  
–20  
A
CH1 5.0V  
CH3 5.0V  
CH2 500mV  
M400ns  
A CH1  
1.4V  
–40  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 39. Exiting Power-Down to Midscale  
Figure 36. Supply Current vs. Temperature  
Rev. PrA. | Page 15 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
2.538  
V
T
= V = 5V  
REF  
V
T
= V = 5V  
REF  
DD  
= 25°C  
DD  
= 25°C  
2.537  
2.536  
2.535  
2.534  
2.533  
2.532  
2.531  
2.530  
2.529  
2.528  
2.527  
2.526  
2.525  
2.524  
2.523  
2.522  
2.521  
A
A
DAC LOADED WITH MIDSCALE  
5ns/SAMPLE NUMBER  
GLITCH IMPULSE = 9.494nV  
1LSB CHANGE AROUND  
MIDSCALE (0x8000 TO 0x7FFF)  
1
Y AXIS = 2µV/DIV  
X AXIS = 4s/DIV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
Figure 43. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
Figure 40. Digital-to-Analog Glitch Impulse (Negative)  
2.498  
2.497  
2.496  
2.495  
2.494  
2.493  
2.492  
2.491  
V
V
= 5V  
DD  
REFOUT  
= 25°C  
V
= V = 5V  
REF  
DD  
= 25°C  
= 2.5V  
T
A
T
A
5ns/SAMPLE NUMBER  
ANALOG CROSSTALK = 0.424nV  
DAC LOADED WITH MIDSCALE  
1
5s/DIV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
Figure 41. Analog Crosstalk, External Reference  
Figure 44. 0.1 Hz to 10 Hz Output Noise Plot, 2.5 V Internal Reference  
2.496  
2.494  
2.492  
2.490  
2.488  
2.486  
2.484  
2.482  
2.480  
2.478  
2.476  
2.474  
2.472  
2.470  
2.468  
2.466  
2.464  
2.462  
2.460  
2.458  
2.456  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
= 1.25V  
T
A
DAC LOADED WITH MIDSCALE  
1
V
V
= 5V  
DD  
REFOUT  
= 25°C  
= 2.5V  
T
A
5ns/SAMPLE NUMBER  
ANALOG CROSSTALK = 4.462nV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
4s/DIV  
Figure 42. Analog Crosstalk, Internal Reference  
Figure 45. 0.1 Hz to 10 Hz Output Noise Plot,1.25 V Internal Reference  
Rev. PrA. | Page 16 of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
800  
16  
T
= 25°C  
A
V
T
= V  
DD  
REF  
= 25°C  
MIDSCALE LOADED  
700  
600  
500  
400  
300  
200  
A
14  
12  
10  
8
V
= 3V  
DD  
V
= 5V  
DD  
V
V
= 5V  
DD  
REFOUT  
= 2.5V  
6
4
100  
0
V
V
= 3V  
DD  
REFOUT  
= 1.25V  
1k  
100  
10k  
FREQUENCY (Hz)  
100k  
1M  
0
1
2
3
4
5
6
7
8
9
10  
CAPACITANCE (nF)  
Figure 48. Settling Time vs. Capacitive Load  
Figure 46. Noise Spectral Density, Internal Reference  
–20  
–30  
–40  
5
0
V
A
= 5V  
DD  
V
T
= 5V  
DD  
= 25°C  
T
= 25°C  
A
DAC LOADED WITH FULL SCALE  
= 2V ± 0.3V p-p  
V
REF  
5  
10  
15  
20  
25  
30  
35  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
2k  
4k  
6k  
8k  
10k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
Figure 47. Total Harmonic Distortion  
Figure 49. Multiplying Bandwidth  
Rev. PrA. | Page 17 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
TERMINOLOGY  
Preliminary Technical Data  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a  
straight line passing through the endpoints of the DAC transfer  
function.  
Output Voltage Settling Time  
This is the amount of time it takes for the output of a DAC to  
settle to a specified level for a ¼ to ¾ full-scale input change  
and is measured from the rising edge of the STOP condition.  
Digital-to-Analog Glitch Impulse  
Differential Nonlinearity (DNL)  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-s,  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000) (see  
Figure).  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic by  
design.  
Zero-Code Error  
Digital Feedthrough  
Zero-code error is a measurement of the output error when  
zero scale (0x0000) is loaded to the DAC register. Ideally, the  
output should be 0 V. The zero-code error is always positive in  
the AD5665R because the output of the DAC cannot go below  
0 V due to a combination of the offset errors in the DAC and  
the output amplifier. Zero-code error is expressed in mV.  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but is measured when the DAC output is not updated. It  
is specified in nV-s, and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s and vice versa.  
Reference Feedthrough  
Full-Scale Error  
Reference feedthrough is the ratio of the amplitude of the signal  
at the DAC output to the reference input when the DAC output  
is not being updated. It is expressed in dB.  
Full-scale error is a measurement of the output error when full-  
scale code (0xFFFF) is loaded to the DAC register. Ideally, the  
output should be VDD 1 LSB. Full-scale error is expressed in  
percent of full-scale range.  
Noise Spectral Density  
This is a measurement of the internally generated random  
noise. Random noise is characterized as a spectral density  
(nV/Hz). It is measured by loading the DAC to midscale and  
measuring noise at the output. It is measured in nV/Hz. A plot  
of noise spectral density can be seen in Figure .  
Gain Error  
This is a measure of the span error of the DAC. It is the deviation  
in slope of the DAC transfer characteristic from ideal expressed  
as % of FSR.  
Zero-Code Error Drift  
DC Crosstalk  
This is a measurement of the change in zero-code error with a  
change in temperature. It is expressed in µV/°C.  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is  
measured with a full-scale output change on one DAC (or soft  
power-down and power-up) while monitoring another DAC kept  
at midscale. It is expressed in μV.  
Gain Temperature Coefficient  
This is a measurement of the change in gain error with changes  
in temperature. It is expressed in ppm of FSR/°C.  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has to  
another DAC kept at midscale. It is expressed in μV/mA.  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function. Offset error is measured on the AD5665R  
with code 512 loaded in the DAC register. It can be negative or  
positive.  
Digital Crosstalk  
This is the glitch impulse transferred to the output of one DAC  
at midscale in response to a full-scale code change (all 0s to all  
1s and vice versa) in the input register of another DAC. It is  
measured in standalone mode and is expressed in nV-s.  
DC Power Supply Rejection Ratio (PSRR)  
This indicates how the output of the DAC is affected by  
changes in the supply voltage. PSRR is the ratio of the change in  
VOUT to a change in VDD for full-scale output of the DAC. It is  
measured in dB. VREF is held at 2 V, and VDD is varied by 10%.  
Rev. PrA. | Page 1± of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Analog Crosstalk  
Multiplying Bandwidth  
This is the glitch impulse transferred to the output of one DAC  
due to a change in the output of another DAC. It is measured by  
loading one of the input registers with a full-scale code change  
(all 0s to all 1s and vice versa). Then execute a software LDAC  
and monitor the output of the DAC whose digital code was not  
changed. The area of the glitch is expressed in nV-s.  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The multiplying bandwidth is the frequency at  
which the output amplitude falls to 3 dB below the input.  
Total Harmonic Distortion (THD)  
DAC-to-DAC Crosstalk  
This is the difference between an ideal sine wave and its  
attenuated version using the DAC. The sine wave is used as the  
reference for the DAC, and the THD is a measurement of the  
harmonics present on the DAC output. It is measured in dB.  
This is the glitch impulse transferred to the output of one DAC  
due to a digital code change and subsequent analog output  
change of another DAC. It is measured by loading the attack  
channel with a full-scale code change (all 0s to all 1s and vice  
versa) using the command write to and update while  
monitoring the output of the victim channel that is at midscale.  
The energy of the glitch is expressed in nV-s.  
Rev. PrA. | Page 19 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
THEORY OF OPERATION  
D/A SECTION  
R
The AD5625R/AD5645R/AD5665R, AD5625/AD5665 DACs  
are fabricated on a CMOS process. The architecture consists of  
a string DAC followed by an output buffer amplifier. Figure 50  
shows a block diagram of the DAC architecture.  
R
R
TO OUTPUT  
AMPLIFIER  
V
DD  
OUTPUT  
AMPLIFIER  
GAIN = +2  
REF (+)  
DAC  
REGISTER  
RESISTOR  
STRING  
V
OUT  
REF (-)  
R
R
GND  
Figure 50. DAC Architecture  
Because the input coding to the DAC is straight binary, the ideal  
output voltage when using an external reference is given by  
Figure 51. Resistor String  
D
VOUT =VREFIN  
×
2N  
INTERNAL REFERENCE  
The AD5625R/AD5645R/AD5665R feature an on-chip  
reference. Versions without the –R suffix require an external  
reference. The on-chip reference is off at power-up and is  
enabled via a write to a control register. See the Internal  
Reference Setup section for details.  
The ideal output voltage when using the internal reference is  
given by  
D
VOUT = 2×VREFOUT  
where:  
×
2N  
Versions packaged in 10-lead LFCSP package have a 1.25 V  
reference, giving a full scale output of 2.5 V. These parts can be  
operated with a Vdd supply of 2.7V to 5.5V. Versions packaged  
in 14-lead TSSOP package have a 2.5 V reference, giving a full-  
scale output of 5 V. Parts are functional with a Vdd supply of  
2.7V to 5.5V but for Vdd supply of less than 5V, the output will  
be clamped to Vdd. See the Ordering Information on the back  
page for a full list of models. The internal reference associated  
with each part is available at the VREFOUT pin.  
D is the decimal equivalent of the binary code that is loaded to  
the DAC register:  
0 to 4095 for AD5625R/AD5625 (12 bit).  
0 to 16,383 for AD5645R (14 bit).  
0 to 65,535 for AD5665R/AD5665 (16 bit).  
N is the DAC resolution.  
A buffer is required if the reference output is used to drive  
external loads. When using the internal reference, it is  
recommended that a 100 nF capacitor is placed between  
reference output and GND for reference stability.  
RESISTOR STRING  
The resistor string is shown in Figure 51. It is simply a string of  
resistors, each of value R. The code loaded to the DAC register  
determines at which node on the string the voltage is tapped off  
to be fed into the output amplifier. The voltage is tapped off by  
closing one of the switches connecting the string to the  
amplifier. Because it is a string of resistors, it is guaranteed  
monotonic.  
EXTERNAL REFERENCE  
The VREFIN pin on the AD56x5R allows the use of an external  
reference if the application requires it. The default condition of  
the on-chip reference is off at power-up. All devices can be  
operated from a single 2.7 V to 5.5 V supply.  
OUTPUT AMPLIFIER  
SERIAL INTERFACE  
The output buffer amplifier can generate rail-to-rail voltages on  
its output, which gives an output range of 0 V to VDD. It can drive  
a load of 2 kΩ in parallel with 1000 pF to GND. The source and  
sink capabilities of the output amplifier can be seen in Figure and  
Figure. The slew rate is 1.8 V/µs with a ¼ to ¾ full-scale settling  
time of 7 µs.  
The AD5625R/AD5645R/AD5665R, AD5625/AD5665 have 2-  
wire I2C-compatible serial interfaces (refer to I2C-Bus  
Specification, Version 2.1, January 2000, available from Philips  
Semiconductor). The AD5625R/AD5645R/AD5665R,  
AD5625/AD5665 can be connected to an I2C bus as a slave  
device, under the control of a master device. See Figure 2 for a  
timing diagram of a typical write sequence.  
Rev. PrA. | Page 2ꢀ of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
The AD5625R/AD5645R/AD5665R, AD5625/AD5665 support  
standard (100 kHz), fast (400 kHz), and high speed (3.4 MHz)  
data transfer modes. High-speed operation is only available on  
selected models. See the Ordering Information on the back  
page for a full list of models. Support is not provided for 10-bit  
addressing and general call addressing.  
The 2-wire serial bus protocol operates as follows:  
1. The master initiates data transfer by establishing a start  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high. The following byte is the  
address byte, which consists of the 7-bit slave address. The  
slave address corresponding to the transmitted address  
responds by pulling SDA low during the ninth clock pulse  
(this is termed the acknowledge bit). At this stage, all other  
devices on the bus remain idle while the selected device  
waits for data to be written to, or read from, its shift  
register.  
The AD5625R/AD5645R/AD5665R, AD5625/AD5665 each  
have a 7-bit slave address. 10-pin versions of the part have a  
slave address whose five MSBs are 00011, and the two LSBs are  
set by the state of the ADDR address pin, which determines the  
state of the A0 and A1 address bits. 14-pin versions of the part  
have a slave address whose three MSBs are 001, and the four  
LSBs are set by the ADDR1 and ADDR2 address pins, which  
determine the state of the A0 and A1, A2 and A3 address bits  
respectively.  
2. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge  
bit). The transitions on the SDA line must occur during the  
low period of SCL and remain stable during the high period  
of SCL.  
3. When all data bits have been read or written, a stop  
condition is established. In write mode, the master pulls the  
SDA line high during the 10th clock pulse to establish a  
stop condition. In read mode, the master issues a no  
acknowledge for the ninth clock pulse (that is, the SDA line  
remains high). The master then brings the SDA line low  
before the 10th clock pulse, and then high during the 10th  
clock pulse to establish a stop condition.  
The ADDR pin is three-state, and can be set as shown in Table  
8 to give three different addresses.  
Table 8. ADDR Pin Settings (10-pin package)  
ADDR PIN CONNECTION  
A1  
A0  
VDD  
No Connection  
GND  
1
1
1
The ADDR1 and ADDR2 pins are also three-state, and can be  
set as shown in Table 9 to give a total of 9 different addresses.  
Table 9. ADDR1, ADDR2 Pin Setting (14-pin Package)  
ADDR2  
VDD  
VDD  
VDD  
NC  
ADDR1  
VDD  
NC  
A3  
A2  
A1  
A0  
1
GND  
VDD  
1
1
1
NC  
NC  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
NC  
GND  
VDD  
NC  
GND  
GND  
GND  
GND  
Rev. PrA. | Page 21 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
1
9
1
9
SCL  
0
0
0
1
1
A1  
A0  
R/W  
DB23 DB22  
DB20 DB19 DB18 DB17 DB16  
DB21  
SDA  
START BY  
MASTER  
ACK. BY  
AD56x5  
ACK. BY  
AD56x5  
FRAME 2  
FRAME 1  
SLAVE ADDRESS  
COMMAND BYTE  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB12 DB11 DB10 DB9  
DB6  
DB1  
DB0  
DB15 DB14 DB13  
DB8  
DB7  
DB5 DB4  
DB3 DB2  
STOP BY  
MASTER  
ACK. BY  
AD56x5  
ACK. BY  
AD56x5  
FRAME 4  
LEAST SIGNIFICANT  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
DATA BYTE  
Figure 52. I2C Write Operation (10-Pin Package)  
1
9
1
9
SCL  
SDA  
A3  
DB23  
DB18  
DB22 DB21 DB20 DB19 DB17 DB16  
0
0
1
A2  
A1  
A0  
R/W  
START BY  
MASTER  
ACK. BY  
AD56x5  
ACK. BY  
AD56x5  
FRAME 2  
COMMAND BYTE  
FRAME 1  
SLAVE ADDRESS  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB10  
DB15 DB14  
DB12 DB11  
FRAME 3  
DB9  
DB6 DB5  
DB3  
DB2  
DB1  
DB0  
DB13  
DB8  
DB7  
DB4  
ACK. BY  
AD56x5  
STOP BY  
MASTER  
ACK. BY  
AD56x5  
FRAME 4  
MOST SIGNIFICANT  
DATA BYTE  
LEAST SIGNIFICANT  
DATA BYTE  
Figure 53. I2C Write Operation (14-Pin Package)  
WRITE OPERATION  
READ OPERATION  
When reading data back from the  
When writing to the AD5625R/AD5645R/AD5665R,  
AD5625/AD5665, the user must begin with a start command  
followed by an address byte (R/W = 0), after which the DAC  
acknowledges that it is prepared to receive data by pulling SDA  
low. The AD5665 requires two bytes of data for the DAC and a  
command byte that controls various DAC functions. Three  
bytes of data must therefore written to the DAC, the command  
byte followed by the most significant data byte and the least  
significant data byte, as shown in Figures 52 and 53. All these  
data bytes are acknowledged by the  
AD5625R/AD5645R/AD5665R, AD5625/AD5665, the user  
begins with a start command followed by an address byte (R/W  
= 1), after which the DAC acknowledges that it is prepared to  
transmit data by pulling SDA low. Two bytes of data are then  
read from the DAC, which are both acknowledged by the  
master as shown in Figures 54 and 55. A stop condition follows.  
Note that the only data that can be read back from the AD56x5  
is the contents of the input shift register (see section on Control  
Register).  
AD5625R/AD5645R/AD5665R, AD5625/AD5665. A stop  
condition follows.  
Rev. PrA. | Page 22 of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
9
1
9
1
SCL  
0
DB21 DB20  
DB19 DB18 DB17 DB16  
SDA  
START BY  
0
0
1
1
A1  
A0  
R/W  
DB23 DB22  
ACK. BY  
AD56x5  
ACK. BY  
MASTER  
MASTER  
FRAME 2  
COMMAND BYTE  
FRAME 1  
SLAVE ADDRESS  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB15 DB14 DB13  
DB11  
DB7  
DB6 DB5  
DB12  
DB10 DB9  
DB8  
DB4 DB3  
DB2 DB1  
DB0  
ACK. BY  
MASTER  
STOP BY  
MASTER  
NO ACK.  
FRAME 4  
LEAST SIGNIFICANT  
DATA BYTE  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
Figure 54. I2C Read Operation(10-Pin Package)  
9
1
9
1
SCL  
SDA  
0
1
A3  
A2  
R/W  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
0
A1  
A0  
START BY  
MASTER  
ACK. BY  
AD56x5  
ACK. BY  
MASTER  
FRAME 2  
COMMAND BYTE  
FRAME 1  
SLAVE ADDRESS  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB13  
DB8  
DB7  
DB 6 DB5  
DB3  
DB0  
DB15 DB14  
DB12 DB11 DB10 DB9  
DB4  
DB2  
DB1  
ACK. BY  
MASTER  
STOP BY  
MASTER  
NO ACK.  
FRAME 4  
LEAST SIGNIFICANT  
DATA BYTE  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
Figure 55. I2C Read Operation(14-Pin Package)  
HIGH SPEED MODE  
Some models offer high-speed serial communication with a  
clock frequency of 3.4 MHz. See the Ordering Information on  
the back page for a full list of models.  
acknowledge the high speed master code, therefore, the code is  
followed by a no acknowledge. The master must then issue a  
repeated start followed by the device address. The selected  
device then acknowledges its address. All devices continue to  
operate in high speed mode until the master issues a stop  
condition. When the stop condition is issued, the devices  
return to standard/fast mode. The part will also exit high speed  
High speed mode communication commences after the master  
addresses all devices connected to the bus with the Master Code  
00001XXX to indicate that a high speed mode transfer is to  
begin. No device connected to the bus is permitted to  
mode if  
is activated while part is in high speed mode..  
CLR  
HIGH-SPEED MODE  
FAST MODE  
1
9
1
9
SCL  
0
X
SDA  
START BY  
0
0
0
1
X
X
0
0
0
1
1
A1  
A0  
R/W  
NACK SR  
ACK. BY  
AD56x5  
MASTER  
SERIAL BUS ADDRESS BYTE*  
HS-MODE MASTER CODE  
*NOTE: ADDRESS SHOWN IS FOR 10-PIN DEVICE. ADDRESS FOR 14-PIN DEVICE IS 001(A3)(A2)(A1)(A0)  
Figure 56. Placing the AD56x5 in High-Speed Mode  
Rev. PrA. | Page 23 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
MULTIPLE BYTE WRITE  
Once an AD56x5 has been addressed, one or more three-byte  
blocks of command and data can be sent to the device, until a  
stop condition is received. The device must then be re-  
addressed. For this type of operation, the “S” bit in the  
command byte is set to zero.  
parameters for all subsequent data. Thereafter, multiple two-  
byte blocks of data high byte and data low byte can be sent,  
without sending a further command byte, until a stop condition  
is received.  
The “S” bit is only active in the first command byte following  
the device slave address. Therefore, even if the “S” bit is 0 and  
three-byte blocks of command and data are being sent, it is not  
possible to alter the multi-byte mode by changing the “S” bit to  
1 “on-the-fly” during any subsequent command byte.  
For some types of application such as waveform generation, it  
may be required to update a DAC or DACs as fast as possible  
without changing the command byte. In this case the “S” bit in  
the initial command byte is set to 1. This sets the command  
BLOCK 1  
BLOCK 2  
BLOCK n  
S=0  
COMMAND MOST SIGNIFICANT LEAST SIGNIFICANT COMMAND MOST SIGNIFICANT LEAST SIGNIFICANT  
BYTE DATA BYTE DATA BYTE BYTE DATA BYTE DATA BYTE  
S=0  
S=0  
SLAVE  
ADDRESS  
COMMAND MOST SIGNIFICANT LEAST SIGNIFICANT  
BYTE  
STOP  
DATA BYTE  
DATA BYTE  
Figure 57. Multiple Block Write With Command Byte in Each Block (S=0)  
BLOCK 1  
BLOCK 2  
BLOCK n  
S=1  
COMMAND MOST SIGNIFICANT LEAST SIGNIFICANT MOST SIGNIFICANT LEAST SIGNIFICANT  
BYTE DATA BYTE DATA BYTE DATA BYTE DATA BYTE  
S=1  
S=1  
SLAVE  
ADDRESS  
MOST SIGNIFICANT LEAST SIGNIFICANT  
STOP  
DATA BYTE  
DATA BYTE  
Figure 58. Multiple Block Write With Initial Command Byte Only (S=1)  
BROADCAST MODE  
In addition to the unique slave address for each device, which is  
set by the address pin(s), The AD56x5 has a broadcast address  
to which any AD56x5 will respond, irrespective of the state of  
the address pin(s). This address is 0001000(Write). Where  
several AD56x5 devices are connected to a bus, they can all be  
sent the same data using the broadcast address. The broadcast  
address only works for write operations. It is not possible to  
read back data from several devices at the same time, due to bus  
contention.  
- a three-bit address that tells the device to which DAC or  
DACs the command applies.  
- 16 bits of data, which, depending on the command may be  
written to a DAC or used to define the parameters of a  
command operation.  
Bit 23 of the input shift register is reserved, and should always  
be set to 0 when writing to the device.  
The command and address are contained in the command byte,  
the 8 MSBs of the input register. The middle 8 bits are the high  
byte of the DAC data, while the 8 least significant bits are the  
low byte of the DAC data or command data. DAC data is left  
justified, so the two LSBs are unused for the 14 bit AD5645R,  
and the four LSBs are unused for the 12-bit AD5625R (but they  
are still used for command data in these devices.  
INPUT SHIFT REGISTER  
The input shift register is 24 bits wide to store the 3 data bytes  
written to the device of the serial interface. Data written to the  
device is split into four sections:  
- One bit to select multiple byte operation.  
- a three bit command that tells the device what operation to  
perform.  
The AD56x5 has seven different commands that can be written  
to it.  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
D8  
DB7 DB6  
D7 D6  
DB5  
D5  
DB4  
D4  
DB3  
D3  
DB2  
D2  
DB1  
D1  
DB0  
D0  
R
S
C2  
C1  
C0  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC OR COMMAND DATA  
DATA LOW BYTE  
DATA HIGH BYTE  
COMMAND BYTE  
Figure 59. AD5665R/AD5665 Input Shift Register (16-Bit DAC)  
Rev. PrA. | Page 24 of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
D6  
DB7 DB6  
D5 D4  
DB5  
D3  
DB4  
D2  
DB3  
D1  
DB2  
D0  
DB1  
X
DB0  
X
R
S
C2  
C1  
C0  
A2  
A1  
A0  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC OR COMMAND DATA  
DATA LOW BYTE  
DATA HIGH BYTE  
COMMAND BYTE  
Figure 60. AD5645R Input Shift Register (14-Bit DAC)  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
D4  
DB7 DB6  
D3 D2  
DB5  
D1  
DB4  
D0  
DB3  
X
DB2  
X
DB1  
X
DB0  
X
R
S
C2  
C1  
C0  
A2  
A1  
A0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC OR COMMAND DATA  
DATA LOW BYTE  
DATA HIGH BYTE  
COMMAND BYTE  
Figure 61. AD5625R/AD5625 Input Shift Register (12-Bit DAC)  
WRITE COMMANDS AND LDAC  
Table 10.  
Command Definition  
The double-buffered interface is useful if the user requires  
simultaneous updating of all DAC outputs. For example, the  
user could write to three of the input registers individually and  
then write to the remaining input register and, updating all  
DAC registers, the outputs will update simultaneously.  
The AD56x5 has a powerful set of commands for writing to and  
updating the DACs. The 14-pin version also has a hardware  
C2 C1 C0  
Command  
1
1
Write to input register n  
Update DAC register n  
Write to input register n, update all (software  
LDAC)  
1
1
1
1
1
1
1
1
1
1
Write to and update DAC channel n  
Power up/power down  
Reset  
LDAC register setup  
Internal reference setup (on/off )  
load DAC (  
) pin. It is important to understand how these  
LDAC  
commands and the  
pin operate and interact with each  
LDAC  
other, in order to ensure that the desired result is obtained.  
The first four commands are used for writing to and updating  
the DACs.  
Command 000 writes to input register n, without updating the  
DAC registers, where n is the input register defined by the A2 --  
A0 bits in the command byte. Depending on the value of A2 --  
A0, this can be any one of the input registers or all four input  
registers, as defined b y the DAC address.  
Command 001 does not write to the input registers, but  
(depending on the value of A2 -- A0) updates a DAC register or  
all four DAC registers.  
Command 010 writes to input register n, and updates all DAC  
registers.  
Table 10 is the truth table for the command bits. The DAC or  
DACs on which a command is performed is/are defined by n,  
which is the DAC address shown in table 11. Some commands  
required additional data which is defined in the low data byte.  
Table 11. DAC Address Command  
A2 A1 A0 ADDRESS (n)  
1
1
1
1
1
1
1
DAC A  
DAC B  
DAC C  
DAC D  
All DACs  
Command 011 writes to input register n and updates DAC  
register n. Since n can be all DACs (A2 -- A0 = 111) commands  
010 and 011 are equivalent if A2 -- A0 = 111.  
The AD5625R/AD5645R/AD5665R, AD5625/AD5665 DACs  
have double-buffered interfaces consisting of two banks of  
registers: input registers and DAC registers. The input registers  
are connected directly to the input shift register and the digital  
code is transferred to the relevant input register on completion  
of a valid write sequence. The DAC registers contain the digital  
code used by the resistor strings.  
LDAC SETUP  
In addition to the write commands, the LDAC setup command  
(110) can also determine which DACs are updated at the end of  
a write operation (this command does not update the DACs  
when it is implemented). It also affects the operation of the  
Rev. PrA. | Page 25 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
pin on the 14-pin device (see below). When this  
As far as DAC updating is concerned, the write command and  
the LDAC setup command are combined (OR’d together).  
For example, if the LDAC setup command is set to update  
DACs B and D, and command 011 is sent to write to and  
update DAC A, then DAC A will be written to, but DACs A, B  
and D will be updated.  
LDAC  
command is sent to the device, data bits DB3 to DB0 determine  
which of DAC registers D through A are updated at the end of  
write. If a bit is set to 1, the corresponding DAC is updated.  
Note that, during the LDAC setup command, the DAC address  
bits A2 – A0 are ignored. It is only DB3 to DB0 that determine  
which DAC will be updated.  
S
X
C2  
1
C1  
1
C0  
0
A2  
A2  
A1  
A1  
A0  
A0  
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7 DB6  
DB5  
X
DB4 DB3  
DB2  
DB1  
DB0  
R
0
X
X
X
X
X
X
X
X
X
X
X
DACD DACC DACB DACA  
DON’T  
CARE  
DAC ADDRESS  
(DON’T CARE)  
DAC SELECT  
(0 = LDAC PIN ENABLED)  
RES  
DON’T CARE  
COMMAND  
DON’T CARE  
Figure 62. LDAC Setup Command  
PIN  
LDAC  
In the case of the 14-pin device, updating of the DAC registers  
may also be controlled by the pin. This can operate  
This is because those DACs whose bits are 0 in  
LDAC setup will be updated due to the pin being low,  
and those DACs whose bits are 1 will be updated due to the  
LDAC setup command.  
LDAC  
either synchronously or asynchronously. Whenever  
LDAC  
is  
LDAC  
brought low, the DAC registers are updated with the contents  
of the input registers. If is held low, update takes place  
If DAC update is to be controlled solely by the write and LDAC  
LDAC  
synchronously at the end of every write operation.  
Which DAC registers are updated when is brought low  
setup commands, the  
pin must be tied high (or use the  
LDAC  
10-pin device which does not have this pin). If DAC update is  
to be controlled solely by the pin, then use only  
LDAC  
LDAC  
is determined by the LDAC setup command. It is the inverse of  
those registers that are set to update at the end of write. If one  
of bits DB3 to DB0 is a 0, then the corresponding DAC is  
command 000 and set DB3 to DB0 to 0 in the LDAC setup  
command.  
updated when  
is taken low. If it is a 1, the DAC is  
LDAC  
These parts each contain an extra feature whereby a DAC  
register is not updated unless its input register has been  
updated at the end of a write operation. This allows some DACs  
to be updated automatically at the end of write, and some to be  
updated asynchronously using the  
updated since the last time  
was brought low. Normally,  
LDAC  
pin.  
LDAC  
when  
is brought low, the DAC registers are filled with  
LDAC  
If  
is permanently held low for synchronous update, then  
LDAC  
the contents of the input registers. In the case of the AD56X5,  
the DAC register updates only if the input register has changed  
since the last time the DAC register was updated, thereby  
removing unnecessary digital crosstalk.  
all DACs will be updated irrespective of the DAC address in the  
write command or the bit settings in the LDAC setup  
command.  
POWER-DOWN MODES  
S
X
C2  
1
C1  
0
C0  
0
A2  
A2  
A1  
A1  
A0  
A0  
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7  
X
DB6  
X
DB5  
PD1  
DB4 DB3  
DB2  
DB1  
DB0  
R
0
X
X
X
X
X
X
X
X
PD0 DACD DACC DACB DACA  
DAC SELECT  
(1 = DAC SELECTED)  
DAC ADDRESS  
(DON’T CARE)  
POWER  
DOWN MODE  
DON’T  
CARE  
DON’T CARE  
RES  
COMMAND  
DON’T CARE  
Figure 63. Power Up/down Command  
Command 100 is the power up/down function. The parameters  
of the power up/down function are programmed by bits DB5  
and DB4. This defines the output state of the DAC amplifier, as  
shown in Table 12. Bits DB3 to DB0 determine to which DAC  
or DACs the power up/down command is applied. Setting the  
one of these bits to 1 applies the power up/down state defined  
by DB5 and DB4 to the corresponding DAC. If a bit is 0, the  
state of the DAC is unchanged.  
In power-down mode, the amplifier is disconnected from the  
output pin, and the output pin is either open-circuit or  
connected ground via a 10kor 100kresistor, depending on  
the setting of DB5 and DB4.  
Table 12. Modes of Operation for the  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
DB5 DB4 Operating Mode  
Normal operation  
Rev. PrA. | Page 26 of 32  
Preliminary Technical Data  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Power-down modes  
1 kΩ pulldown to GND  
1ꢀꢀ kΩ pulldown to GND  
Three-state, high impedance  
Any events on  
ignored.  
or during power-on reset are  
LDAC CLR  
1
1
1
1
There is also a software reset function. Command 101 is the  
software reset command. The software reset command contains  
two reset modes that are software programmable by setting bit  
DB0 in the input shift register.  
RESISTOR  
STRING DAC  
Table 13 shows how the state of the bit corresponds to the  
software reset modes of operation of the devices. Figure 64  
shows the contents of the input shift register during the  
software reset mode of operation.  
AMPLIFIER  
V
OUT  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Table 13. Software Reset Modes for the  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Figure 64. Output Stage During Power-Down  
DB0  
Registers reset to zero  
DAC register  
The bias generator, the output amplifier, the resistor string, and  
other associated linear circuitry are shutdown when power-  
down mode is activated. However, the contents of the DAC  
register are unaffected when in power-down. The time to exit  
power-down is typically 4 µs for VDD = 5 V and for VDD = 3 V.  
Figure 63 shows the format of the power up/down command.  
Note that, during the power up/down command, the DAC  
address bits A2 – A0 are ignored.  
Input shift register  
DAC register  
1 (Power-On Reset)  
Input shift register  
LDAC register  
Power-down register  
Internal reference setup register  
CLEAR PIN (  
)
CLR  
POWER-ON-RESET AND SOFTWARE RESET  
The 14-pin version of the AD56x5 has an asynchronous clear  
input. The input is falling edge sensitive. While is  
The AD56x5 contains a power-on reset circuit that controls the  
output voltage during power-up. The 10-pin version of the  
device powers up to 0V. The 14-pin version has a Power On  
Reset (POR) pin that allows the output voltage to be selected. By  
connecting the POR pin low, the AD56x5 output powers up to 0  
V; by connecting the POR pin high, the AD56x5 output powers  
up to midscale. The output remains powered up at this level  
until a valid write sequence is made to the DAC. This is useful  
in applications where it is important to know the state of the  
output of the DAC while it is in the process of powering up.  
CLR  
pulses are ignored. When  
CLR  
is activated, zero  
CLR  
low, all  
LDAC  
scale is loaded to all input and DAC registers. This clears the  
output to 0 V. The part exits clear code mode on the 24th  
falling edge of the next write to the part. If  
is activated  
CLR  
during a write sequence, the write is aborted. If  
is  
CLR  
activated during high speed mode the part will exit high speed  
mode to fast mode.  
Figure 65. Reset Command  
INTERNAL REFERENCE SETUP (-R VERSIONS)  
Table 14. Reference Setup Command  
The on-chip reference is off at power-up by default. It can be  
turned on by sending the reference setup command (111) and  
setting DB0 in the input shift register. Table 14 shows how the  
state of the bit corresponds to the mode of operation.  
(DB0)  
Action  
1
Internal reference off (default)  
Internal reference on  
Rev. PrA. | Page 27 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
Figure 66. Reference Setup Command  
Rev. PrA. | Page 2± of 32  
Preliminary Technical Data  
APPLICATIONS  
USING A REFERENCE AS A POWER SUPPLY FOR  
THE AD5625R/AD5645R/AD5665R,  
AD5625/AD5665  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
This is an output voltage range of 5 V, with 0x0000 corre-  
sponding to a −5 V output, and 0xFFFF corresponding to a  
+5 V output.  
Because the supply current required by the  
R2 = 10kΩ  
AD5625R/AD5645R/AD5665R, AD5625/AD5665is extremely  
low, an alternative option is to use a voltage reference to supply  
the required voltage to the part (see Figure). This is especially  
useful if the power supply is quite noisy, or if the system supply  
voltages are at some value other than 5 V or 3 V, for example,  
15 V. The voltage reference outputs a steady supply voltage for  
the AD5625R/AD5645R/AD5665R, AD5625/AD5665. If the low  
dropout REF195 is used, it must supply 450 µA of current to the  
AD5625R/AD5645R/AD5665R, AD5625/AD5665 with no load  
on the output of the DAC. When the DAC output is loaded, the  
REF195 also needs to supply the current to the load. The total  
current required (with a 5 kΩ load on the DAC output) is  
+5V  
R1 = 10kΩ  
AD820/  
±5V  
VDD  
VOUT  
OP295  
+5V  
10µF  
AD5625(R)/  
AD5645R/  
AD5665(R)  
-5V  
0.1µF  
GND  
SCL  
SDA  
2-WIRE  
SERIAL  
INTERFACE  
Figure 68. Bipolar Operation with the AD5625R/AD5645R/AD5665R,  
AD5625/AD5665  
POWER SUPPLY BYPASSING AND GROUNDING  
450 µA + (5 V/5 kΩ) = 1.45 mA  
When accuracy is important in a circuit, it is helpful to carefully  
consider the power supply and ground return layout on the  
board. The printed circuit board containing the  
AD5625R/AD5645R/AD5665R, AD5625/AD5665 should have  
separate analog and digital sections, each having its own area of  
the board. If the AD5625R/AD5645R/AD5665R,  
AD5625/AD5665 are in a system where other devices require an  
AGND-to-DGND connection, the connection should be made at  
one point only. This ground point should be as close as possible  
to the AD5625R/AD5645R/AD5665R, AD5625/AD5665.  
The load regulation of the REF195 is typically 2 ppm/mA,  
resulting in a 2.9 ppm (14.5 µV) error for the 1.45 mA current  
drawn from it. This corresponds to a 0.191 LSB error.  
15V  
5V  
REF195  
V
DD  
AD5625(R)/  
AD5645R/  
AD5665(R)  
2-WIRE  
SERIAL  
INTERFACE  
SCL  
SDA  
V
= 0V TO 5V  
OUT  
GND  
The power supply to the AD5625R/AD5645R/AD5665R,  
AD5625/AD5665 should be bypassed with 10 µF and 0.1 µF  
capacitors. The capacitors should be located as close as possible  
to the device, with the 0.1 µF capacitor ideally right up against  
the device. The 10 µF capacitor is the tantalum bead type. It is  
important that the 0.1 µF capacitor have low effective series  
resistance (ESR) and effective series inductance (ESI), for  
example, common ceramic types of capacitors. This 0.1 µF  
capacitor provides a low impedance path to ground for high  
frequencies caused by transient currents due to internal logic  
switching.  
Figure 67. REF195 as Power Supply to the AD5625R/AD5645R/AD5665R,  
AD5625/AD5665  
BIPOLAR OPERATION USING THE  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
The AD5625R/AD5645R/AD5665R, AD5625/AD5665 has been  
designed for single-supply operation, but a bipolar output range  
is also possible using the circuit in Figure 67. The circuit gives  
an output voltage range of 5 V. Rail-to-rail operation at the  
amplifier output is achievable using an AD820 or an OP295 as  
the output amplifier.  
The power supply line itself should have as large a trace as  
possible to provide a low impedance path and to reduce glitch  
effects on the supply line. Clocks and other fast switching  
digital signals should be shielded from other parts of the board  
by digital ground. Avoid crossover of digital and analog signals  
if possible. When traces cross on opposite sides of the board,  
ensure that they run at right angles to each other to reduce  
feedthrough effects through the board. The best board layout  
technique is the microstrip technique where the component  
side of the board is dedicated to the ground plane only and the  
signal traces are placed on the solder side. However, this is not  
always possible with a 2-layer board.  
The output voltage for any input code can be calculated as  
follows:  
D
65,536  
R1+ R2  
R1  
R2  
R1  
VO = V  
×
×
V  
×
DD  
DD  
where D represents the input code in decimal (0 to 65535).  
With VDD = 5 V, R1 = R2 = 10 kΩ,  
10×D  
65,536  
V =  
5 V  
O
Rev. PrA. | Page 29 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
Rev. PrA. | Page 3ꢀ of 32  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
INDEX  
AREA  
PIN 1  
INDICATOR  
3.00  
BSC SQ  
10  
1
1.50  
BCS SQ  
0.50  
BSC  
2.48  
2.38  
2.23  
EXPOSED  
PAD  
TOP VIEW  
(BOTTOM VIEW)  
6
5
0.50  
0.40  
0.30  
1.74  
1.64  
1.49  
0.80 MAX  
0.55 TYP  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SIDE VIEW  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
Figure 69. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm x 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 70. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Rev. PrA. | Page 31 of 32  
AD5625R/AD5645R/AD5665R, AD5625/AD5665  
Preliminary Technical Data  
ORDERING GUIDE  
Temperature  
Range  
On-Chip  
Reference Speed  
Max I2C  
Package  
Description  
Package  
Option  
Model  
Accuracy  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
Branding  
D±V  
D±V  
None  
None  
D±S  
AD5625BCPZ-25ꢀRL71  
AD5625BCPZ-REEL71  
AD5625BRUZ1  
−4ꢀ°C to +1ꢀ5°C  
−4ꢀ°C to +1ꢀ5°C  
−4ꢀ°C to +1ꢀ5°C  
−4ꢀ°C to +1ꢀ5°C  
None  
None  
None  
None  
1.25 V  
1.25 V  
2.5 V  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
3.4 MHz  
3.4 MHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
4ꢀꢀ kHz  
3.4 MHz  
3.4 MHz  
1ꢀ-Lead LFCSP_WD CP-1ꢀ -9  
1ꢀ-Lead LFCSP_WD CP-1ꢀ-9  
14-Lead TSSOP  
14-Lead TSSOP  
1ꢀ-Lead LFCSP_WD CP-1ꢀ-9  
1ꢀ-Lead LFCSP_WD CP-1ꢀ-9  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
RU-14  
RU-14  
AD5625BRUZ-REEL71  
AD5625RBCPZ-25ꢀRL71 −4ꢀ°C to +1ꢀ5°C  
AD5625RBCPZ-REEL71  
AD5625RBRUZ-11  
AD5625RBRUZ-1REEL71 −4ꢀ°C to +1ꢀ5°C  
AD5625RBRUZ-21  
−4ꢀ°C to +1ꢀ5°C  
AD5625RBRUZ-2REEL71 −4ꢀ°C to +1ꢀ5°C  
AD5645RBCPZ-25ꢀRL71 −4ꢀ°C to +1ꢀ5°C  
AD5645RBCPZ-REEL71  
AD5645RBRUZ1  
AD5645RBRUZ-REEL71  
AD5665BCPZ-25ꢀRL71  
AD5665BCPZ-REEL71  
AD5665BRUZ1  
−4ꢀ°C to +1ꢀ5°C  
−4ꢀ°C to +1ꢀ5°C  
D±S  
RU-14  
RU-14  
RU-14  
RU-14  
None  
None  
None  
None  
D±9  
2.5 V  
2.5 V  
2.5 V  
1.25 V  
1.25 V  
2.5 V  
1ꢀ-Lead LFCSP_WD RU-14  
1ꢀ-Lead LFCSP_WD RU-14  
14-Lead TSSOP  
14-Lead TSSOP  
−4ꢀ°C to +1ꢀ5°C  
−4ꢀ°C to +1ꢀ5°C  
−4ꢀ°C to +1ꢀ5°C  
−4ꢀ°C to +1ꢀ5°C  
−4ꢀ°C to +1ꢀ5°C  
−4ꢀ°C to +1ꢀ5°C  
−4ꢀ°C to +1ꢀ5°C  
D±9  
RU-14  
RU-14  
None  
None  
D6U  
2.5 V  
±16 LSB INL None  
±16 LSB INL None  
±16 LSB INL None  
±16 LSB INL None  
±16 LSB INL 1.25 V  
±16 LSB INL 1.25 V  
±16 LSB INL 2.5 V  
±16 LSB INL 2.5 V  
±16 LSB INL 2.5 V  
±16 LSB INL 2.5 V  
1ꢀ-Lead LFCSP_WD CP-1ꢀ-9  
1ꢀ-Lead LFCSP_WD CP-1ꢀ-9  
14-Lead TSSOP  
14-Lead TSSOP  
1ꢀ-Lead LFCSP_WD CP-1ꢀ-9  
1ꢀ-Lead LFCSP_WD CP-1ꢀ-9  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
D6U  
RU-14  
RU-14  
None  
None  
DA2  
AD5665BRUZ-REEL71  
AD5665RBCPZ-25ꢀRL71 −4ꢀ°C to +1ꢀ5°C  
AD5665RBCPZ-REEL71  
AD5665RBRUZ-11  
−4ꢀ°C to +1ꢀ5°C  
−4ꢀ°C to +1ꢀ5°C  
DA2  
RU-14  
RU-14  
RU-14  
RU-14  
None  
None  
None  
None  
AD5665RBRUZ-1REEL71 −4ꢀ°C to +1ꢀ5°C  
AD5665-RBRUZ-21  
−4ꢀ°C to +1ꢀ5°C  
AD5665RBRUZ-2REEL71 −4ꢀ°C to +1ꢀ5°C  
1 Z = Pb-free part.  
Rev. PrA. | Page 32 of 32  

相关型号:

AD5645RBRUZ-REEL7

Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface
ADI

AD5647R

Dual, 12-/14-/16-Bit nanoDACs with 5ppm/C On-Chip Ref, I2C Interface
ADI

AD5647RBCPZ-250RL7

Dual, 12-/14-/16-Bit nanoDACs with 5ppm/C On-Chip Ref, I2C Interface
ADI

AD5647RBCPZ-R2

Dual, 12-/14-/16-Bit nanoDACs® with 5 ppm/°C On-Chip Reference, I2C® Interface
ADI

AD5647RBCPZ-R2

SERIAL INPUT LOADING, 3.5 us SETTLING TIME, 14-BIT DAC, DSO10, 3 X 3 MM, LEAD FREE, LFCSP-10
ROCHESTER

AD5647RBCPZ-REEL7

Dual, 12-/14-/16-Bit nanoDACs with 5ppm/C On-Chip Ref, I2C Interface
ADI

AD5647RBCPZ-REEL7

SERIAL INPUT LOADING, 3.5 us SETTLING TIME, 14-BIT DAC, DSO10, 3 X 3 MM, LEAD FREE, LFCSP-10
ROCHESTER

AD5647RBRMZ

Dual, 12-/14-/16-Bit nanoDACs with 5ppm/C On-Chip Ref, I2C Interface
ADI

AD5647RBRMZ

SERIAL INPUT LOADING, 3.5 us SETTLING TIME, 14-BIT DAC, PDSO10, LEAD FREE, MO-187BA, MSOP-10
ROCHESTER

AD5647RBRMZ-REEL7

Dual, 12-/14-/16-Bit nanoDACs with 5ppm/C On-Chip Ref, I2C Interface
ADI

AD5648

Octal, 12-14-16 Bit Dac with 10ppm/∑C Max On-Chip Reference in 14-Lead TSSOP
ADI

AD5648ARUZ-2

Octal, 12-14-16 Bit Dac with 10ppm/∑C Max On-Chip Reference in 14-Lead TSSOP
ADI