AD5675ARUZ-REEL7 [ADI]

Octal, 16-Bit nanoDAC+ with I<sup>2</sup>C Interface;
AD5675ARUZ-REEL7
型号: AD5675ARUZ-REEL7
厂家: ADI    ADI
描述:

Octal, 16-Bit nanoDAC+ with I<sup>2</sup>C Interface

光电二极管 转换器
文件: 总27页 (文件大小:804K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Octal, 16-Bit nanoDAC+  
with I2C Interface  
AD5675  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
High performance  
The AD5675 is a low power, octal, 16-bit buffered voltageoutput  
digital-to-analog converter (DAC). The device includes a gain  
select pin, giving a full-scale output of VREF (gain = 1) or 2 ×  
VREF (gain = 2). The device operates from a single 2.7 V to 5.5 V  
supply and is guaranteed monotonic bydesign. The AD5675is  
available in 20-lead TSSOP and LFCSP packages. The power-on  
reset circuit and a RSTSEL pin ensure that the output DACs power  
up to zero scale or midscale and remain there untila valid write  
takes place. The AD5675 containsa power-down mode, reducing  
the current consumption to 1 µA typical while in power-down  
mode. The AD5675 uses a versatile 2-wire serial interface that  
operates at clock rates up to 400 kHz, and includes a VLOGIC pin  
intended for 1.8 V to 5.5 V logic.  
High relative accuracy (INL): 3 LSB maximum at 16 bits  
Total unadjusted error (TUE): 0.14% of FSR maximum  
Offset error: 1.5 mV maximum  
Gain error: 0.06% of FSR maximum  
Wide operating ranges  
−40°C to +125°C temperature range  
2.7 V to 5.5 V power supply  
Easy implementation  
User selectable gain of 1 or 2 (GAIN pin/bit)  
1.8 V logic compatibility  
I2C-compatible serial interface  
Robust 2 kV HBM and 1.5 kV FICDM ESD rating  
20-lead TSSOP and LFCSP RoHS-compliant packages  
Table 1. Octal nanoDAC+® Devices  
APPLICATIONS  
Optical transceivers  
Base station power amplifiers  
Process control (PLC input/output cards)  
Industrial automation  
Interface  
Reference  
Internal  
External  
Internal  
16-Bit  
12-Bit  
SPI  
AD5676R  
AD5676  
AD5675R  
AD5672R  
Not applicable  
AD5671R  
I2C  
Data acquisition systems  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
REF  
LOGIC  
DD  
AD5675  
2.5V  
REF  
BUFFER  
DAC  
STRING  
DAC 0  
INPUT  
V
V
V
V
V
V
V
V
0
1
2
3
4
5
6
7
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
REGISTER  
REGISTER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
DAC  
REGISTER  
STRING  
DAC 1  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 2  
INPUT  
REGISTER  
SCL  
DAC  
REGISTER  
STRING  
DAC 3  
INPUT  
REGISTER  
SDA  
A1  
DAC  
REGISTER  
STRING  
DAC 4  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 5  
INPUT  
REGISTER  
A0  
DAC  
REGISTER  
STRING  
DAC 6  
INPUT  
REGISTER  
LDAC  
DAC  
REGISTER  
STRING  
DAC 7  
INPUT  
REGISTER  
RESET  
GAIN POWER-DOWN  
POWER-ON  
RESET  
×1/×2  
LOGIC  
RSTSEL  
GAIN  
GND  
Figure 1.  
Rev. B  
Document Feedback  
Info rm at ion f urn i sh ed b y An alo g De v ice s i s b e li e ve d to b e accu ra te and r el i ab le . How e ve r, no  
re sp on si bi l it y i s a s sum ed by A na log De v ic es fo r i t s u s e, nor fo r any in fr ing em en t s of pa te nt s o r o th er  
rig ht sof th ird p arties that m ayresu lt fro m it su se. Sp ec if ic ation s subjec tto c hang ewithout notice.No  
lic en se i s gr an te d by imp l ica t ion or ot he r wi se und er an y pa ten t or p at ent rig ht s of An a log D ev ic e s.  
Trademarks and register ed trademarks are the property of their respective owners.  
One Tech no lo gy Way , P . O. Box 9106, Norwood, MA 02062-9106 , U.S .A.  
Tel: 781.329.4700  
Technica l Support  
©2015–2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
AD5675* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD5675 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
AD5675 and AD5676R Evaluation Board  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all AD5675 EngineerZone Discussions.  
AD5675: Octal, 16-Bit nanoDAC+ with I2C Interface Data  
Sheet  
SAMPLE AND BUY  
User Guides  
Visit the product page to see pricing options.  
UG-815: Evaluating the AD5675/AD5675R Octal, 16-Bit  
nanoDAC+  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
TOOLS AND SIMULATIONS  
AD5675/AD5675R IBIS Model  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD5675  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
I2C Slave Address........................................................................ 20  
Serial Operation ......................................................................... 20  
Write Operation.......................................................................... 20  
Read Operation........................................................................... 21  
Multiple DAC Readback Sequence.......................................... 21  
Power-Down Operation............................................................ 22  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 5  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 16  
Theory of Operation ...................................................................... 18  
Digital-to-Analog Converter .................................................... 18  
Transfer Function....................................................................... 18  
DAC Architecture....................................................................... 18  
Serial Interface ............................................................................ 19  
Write and Update Commands.................................................. 20  
LDAC  
Load DAC (Hardware  
Pin)........................................... 22  
LDAC  
Mask Register ................................................................. 23  
RESET  
Hardware Reset (  
) .......................................................... 24  
Reset Select Pin (RSTSEL) ........................................................ 24  
Amplifier Gain Selection on LFCSP Package......................... 24  
Applications Information.............................................................. 25  
Power Supply Recommendations............................................. 25  
Microprocessor Interfacing....................................................... 25  
AD5675 to ADSP-BF531 Interface........................................... 25  
Layout Guidelines....................................................................... 25  
Galvanically Isolated Interface ................................................. 25  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
REVISION HISTORY  
8/2016—Rev. A to Rev. B  
Change to Output Noise Spectral Density Parameter; Table 3... 5  
Change to Figure 33 ....................................................................... 14  
Change to Table 8 ........................................................................... 19  
Change to Read Operation Section.............................................. 21  
10/2015—Rev. 0 to Rev. A  
LDAC  
Changes to  
Mask Register Section and Table 13 ............... 23  
Added 20-Lead LFCSP.......................................................Universal  
Changes to Features Section and General Description Section ...1  
Changes to Table 2............................................................................ 3  
Change to Table 5 ............................................................................. 7  
Added Table 6; Renumbered Sequentially .................................... 9  
Change to Figure 4 Caption and Table 6 Title.............................. 8  
Added Figure 5; Renumbered Sequentially and Table 7 ............. 9  
Change to Figure 19 Caption ........................................................ 12  
Added Amplifier Gain Selection on LFCSP Package Section,  
Table 15, and Table 16.................................................................... 24  
Added Figure 52, Outline Dimensions........................................ 26  
Changes to Ordering Guide.......................................................... 26  
1/2015—Revision 0: Initial Version  
Rev. B | Page 2 of 26  
 
Data Sheet  
AD5675  
SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, RL = 2 kΩ, CL = 200 pF, all specifications TA = −40°C to +125°C, unless otherwise noted.  
Table 2.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE1  
Resolution  
Relative Accuracy/Integral  
Nonlinearity (INL)2  
16  
16  
Bits  
LSB  
1.8  
8
1.8  
3
Gain = 1  
1.7  
0.7  
8
1
1.7  
0.7  
3
1
LSB  
LSB  
Gain = 2  
Gain = 1  
Differential Nonlinearity  
(DNL)2  
0.5  
0.8  
1
4
0.5  
0.8  
1
1.6  
2
1.5  
0.14  
0.07  
0.12  
0.06  
0.18  
0.14  
LSB  
mV  
mV  
mV  
Gain = 2  
Gain = 1 or gain = 2  
Gain = 1  
Zero Code Error2  
Offset Error2  
−0.75  
−0.1  
−0.018  
−0.013  
+0.04  
−0.02  
0.03  
6
4
0.28  
0.14  
0.24  
0.12  
0.3  
−0.75  
−0.1  
−0.018  
−0.013  
+0.04  
−0.02  
0.03  
Gain = 2  
Full-Scale Error2  
Gain Error2  
% of FSR Gain = 1  
% of FSR Gain = 2  
% of FSR Gain = 1  
% of FSR Gain = 2  
% of FSR Gain = 1  
% of FSR Gain = 2  
µV/°C  
TUE  
0.006  
1
0.25  
0.006  
1
Offset Error Drift2, 3  
DC Power Supply Rejection  
Ratio (PSRR)2, 3  
0.25  
0.25  
mV/V  
DAC code = midscale, VDD = 5 V 10%  
DC Crosstalk2, 3  
2
2
µV  
Due to single channel, full-scale  
output change  
3
2
3
2
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
0
VREF  
2 × VREF  
15  
0
0
VREF  
2 × VREF  
15  
V
V
mA  
nF  
Gain = 1  
Gain = 2  
Output Current Drive  
Capacitive Load Stability  
2
2
RL = ∞  
10  
10  
nF  
kΩ  
µV/mA  
RL = 1 kΩ  
Resistive Load4  
Load Regulation  
1
1
VDD = 5 V 10%, DAC code =  
midscale, −30 mA ≤ IOUT ≤ +30 mA  
VDD = 3 V 10%, DAC code =  
183  
177  
183  
177  
µV/mA  
midscale, −20 mA ≤ IOUT ≤ +20 mA  
Short-Circuit Current5  
Load Impedance at Rails6  
Power-Up Time  
40  
25  
2.5  
40  
25  
2.5  
mA  
µs  
Exiting power-down mode, VDD = 5 V  
REFERENCE INPUT  
Reference Input Current  
398  
789  
398  
789  
µA  
µA  
V
V
kΩ  
kΩ  
VREF = VDD = VLOGIC = 5.5 V, gain = 1  
VREF = VDD = VLOGIC = 5.5 V, gain = 2  
Gain = 1  
Gain = 2  
Gain = 1  
Gain = 2  
Reference Input Range  
1
1
VDD  
VDD/2  
1
1
VDD  
VDD/2  
Reference Input Impedance  
14  
7
14  
7
Rev. B | Page 3 of 26  
 
AD5675  
Data Sheet  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
LOGIC INPUTS3  
Input Current  
Input Voltage  
Low, VINL  
1
1
µA  
Per pin  
0.3 ×  
VLOGIC  
0.3 ×  
VLOGIC  
V
0.7 ×  
0.7 ×  
High, VINH  
V
VLOGIC  
VLOGIC  
Pin Capacitance  
LOGIC OUTPUTS (SDA)3  
Output Voltage  
Low, VOL  
3
4
3
4
pF  
0.4  
0.4  
V
V
ISINK = 200 μA  
ISOU RCE = 200 μA  
VLOGIC  
0.4  
VLOGIC  
0.4  
High, VOH  
Floating State Output  
Capacitance  
pF  
POWER REQUIREMENTS  
VLOGIC  
ILOGIC  
1.8  
5.5  
3
3
3
3
1.8  
5.5  
3
3
3
3
V
µA  
µA  
µA  
µA  
V
Power-on, −40°C to +105°C  
Power-on, −40°C to +125°C  
Power-down, −40°C to +105°C  
Power-down, −40°C to +125°C  
Gain = 1  
VDD  
2.7  
VREF  
1.5  
5.5  
5.5  
2.7  
VREF  
1.5  
5.5  
5.5  
+
+
V
Gain = 2  
IDD  
VIH = VDD, VIL = GND, VDD = 2.7V to 5.5V  
−40°C to +85°C  
−40°C to +125°C  
Normal Mode 7  
1.1  
1.1  
1
1
1
1.26  
1.3  
1.7  
1.7  
2.5  
2.5  
1.1  
1.1  
1
1
1
1.26  
1.3  
1.7  
1.7  
2.5  
2.5  
mA  
mA  
µA  
µA  
µA  
µA  
All Power-Down Modes8  
Tristate to 1 kΩ, −40°C to +85°C  
Power down to 1 kΩ, −40°C to +85°C  
Tristate to 1 kΩ, −40°C to +105°C  
Power down to 1 kΩ, −40°C to  
+105°C  
1
1
1
1
5.5  
5.5  
1
1
5.5  
5.5  
µA  
µA  
Tristate to 1 kΩ, −40°C to +125°C  
Power down to 1 kΩ, −40°C to  
+125°C  
1 DC specifications tested with the outputs unloaded, unless otherwise noted. Upper dead band = 10 mV and exists only when VREF = VDD with gain = 1, or when VREF/2 =  
V
DD with gain = 2. Linearity calculated using a reduced code range of 256 to 65,280.  
2 See the Terminology section.  
3 Guaranteed by design and characterization; not production tested.  
4 Together, Channel 0, Channel 1, Channel 2, and Channel 3 can source or sink 40 mA. Similarly, together, Channel 4, Channel 5, Channel 6, and Channel 7 can source or  
sink 40 mA up to a junction temperature of 125°C.  
5 VDD = 5 V. The AD5675 includes current limiting to protect the device during temporary overload conditions. Junction temperature can be exceeded during current  
limit. Operation above the specified maximum operation junction temperature may impair device reliability.  
6 When drawing a load current at either rail, the output voltage headroom with respect to that rail is limited by the 25 Ω typical channel resistance of the output  
devices. For example, when sinking 1 mA, the minimum output voltage = 25 Ω × 1 mA = 25 mV.  
7 Interface inactive. All DACs active. DAC outputs unloaded.  
8 All DACs powered down.  
Rev. B | Page 4 of 26  
 
 
 
Data Sheet  
AD5675  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, 1.8 VVLOGIC ≤ 5.5 V, all specifications TA = −40°C to +125°C, unless  
otherwise noted. Guaranteed by design and characterization; not production tested.  
Table 3.  
Parameter  
Output Voltage Settling Time 1  
Min Typ  
Max  
Unit  
µs  
Test Conditions/Comments  
5
8
¼ to ¾ scale settling to 2 LSB  
Slew Rate  
0.8  
1.4  
0.13  
0.1  
V/µs  
Digital-to-Analog Glitch Impulse1  
Digital Feedthrough1  
Digital Crosstalk1  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
dB  
nV/√Hz  
µV p-p  
dB  
1 LSB change around major carry (gain = 1)  
Analog Crosstalk1  
−0.25  
Gain = 1  
Gain = 2  
−1.3  
−2.0  
−80  
80  
DAC-to-DAC Crosstalk1  
Gain = 2  
Total Harmonic Distortion (THD)1, 2  
Output Noise Spectral Density (NSD)1  
Output Noise  
TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
DAC code = midscale, bandwidth = 10 kHz, gain = 1 and 2  
0.1 Hz to 10 Hz, gain = 1  
6
Signal-to-Noise Ratio (SNR)  
90  
TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
Spurious-Free Dynamic Range (SFDR)  
Signal-to-Noise-and-Distortion Ratio  
(SINAD)  
83  
80  
dB  
dB  
1 See the Terminology section.  
2 Digitally generated sine wave at 1 kHz.  
TIMING CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, all specifications −40°C to +125°C, unless otherwise noted.  
Table 4.  
Parameter1, 2 Min  
Max  
Unit  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
Description  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
0.92  
0.11  
0.44  
SCL cycle time  
tHIGH, SCL high time  
tLOW, SCL low time  
0.04  
40  
−0.04  
−0.045  
0.195  
0.12  
tHD,STA, start/repeated start hold time  
tSU ,DAT, data setup time  
tHD,DAT, data hold time  
tSU ,STA, repeated start setup time  
tSU ,STO, stop condition setup time  
tBUF, bus free time between a stop condition and a start condition  
tR, rise time of SCL and SDA when receiving  
tF, fall time of SCL and SDA when transmitting/receiving  
3
4
t10  
t11  
t12  
0
4, 5  
20 + 0.1 CB  
20  
pulse width  
LDAC  
SCL rising edge to  
t13  
t14  
0.4  
4.8  
6.2  
132  
80  
0
ns  
ns  
ns  
ns  
ns  
ns  
pF  
rising edge  
LDAC  
minimum pulse width low, 1.8 V ≤ VLOGIC ≤ 2.7 V  
minimum pulse width low, 2.7 V ≤ VLOGIC ≤ 5.5 V  
activation time, 1.8 V ≤ VLOGIC ≤ 2.7 V  
RESET  
RESET  
RESET  
RESET  
t15  
activation time, 2.7 V ≤ VLOGIC ≤ 5.5 V  
6
tSP  
Pulse width of suppressed spike  
Capacitive load for each bus line  
5
CB  
400  
1 See Figure 2 and Figure 3.  
2 Guaranteed by design and characterization; not production tested.  
3 A master device must provide a hold time of at least 300 ns for the SDA signal (referred to the minimum VIH of the SCL signal) to bridge the undefined region of the  
SCL falling edge.  
4 tR and tF are measured from 0.3 × VDD to 0.7 × VDD  
.
5 CB is the total capacitance of one bus line in picofarads.  
6 Input filtering on the SCL and SDA inputs suppresses noise spikes that are less than 50 ns.  
Rev. B | Page 5 of 26  
 
 
AD5675  
Data Sheet  
Timing Diagrams  
START  
REPEATED START  
CONDITION  
STOP  
CONDITION  
CONDITION  
SDA  
t9  
t10  
t11  
t4  
t3  
SCL  
t4  
t2  
t1  
t6  
t5  
t7  
t8  
t12  
1
2
t13  
LDAC  
LDAC  
t12  
NOTES  
1
ASYNCHRONOUS LDAC UPDATE MODE.  
SYNCHRONOUS LDAC UPDATE MODE.  
2
Figure 2. Two-Wire Serial Interface Timing Diagram  
t14  
RESET  
t15  
V
x
OUT  
RESET  
Figure 3.  
Timing Diagram  
Rev. B | Page 6 of 26  
 
 
Data Sheet  
AD5675  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
The design of the thermal board requires close attention. Thermal  
resistance is highly impacted by the printed circuit board (PCB)  
being used, layout, and environmental conditions.  
Table 5.  
Parameter  
Rating  
VDD to GND  
VLOGIC to GND  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VLOGIC + 0.3 V  
−40°C to +125°C  
−65°C to +150°C  
125°C  
Table 6. Thermal Resistance  
VOUTx to GND  
VREF to GND  
Digital Input Voltage to GND  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
Reflow Soldering Peak Temperature,  
Pb-Free (J-STD-020)  
Package Type  
θJA  
θJB  
θJC  
ΨJT  
ΨJB  
Unit  
20-Lead TSSOP  
(RU-20)1  
98.65 44.39 17.58 1.77 43.9  
°C/W  
20-Lead LFCSP  
(CP-20-8)2  
82  
16.67 32.5  
0.43 22  
°C/W  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board. See JEDEC JESD51  
2 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board with nine thermal vias. See JEDEC JESD51.  
260°C  
ESD Ratings  
Human Body Model (HBM)  
Field Induced Charged Device Model  
(FICDM)  
2 kV  
1.5 kV  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 7 of 26  
 
 
 
AD5675  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
1
V
2
OUT  
OUT  
2
V
0
V
3
OUT  
OUT  
REF  
3
V
V
DD  
4
V
RESET  
SDA  
LOGIC  
SCL  
A0  
AD5675  
TOP VIEW  
(Not to Scale)  
5
6
LDAC  
RSTSEL  
GND  
7
A1  
8
GAIN  
9
V
7
6
V
V
4
5
OUT  
OUT  
OUT  
OUT  
10  
V
Figure 4. TSSOP Pin Configuration  
Table 7. TSSOP Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
VOUT  
VOUT0  
VDD  
1
Analog Output Voltage from DAC 1. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 0. The output amplifier has rail-to-rail operation.  
Power Supply Input. The AD5675 operates from 2.7 V to 5.5 V. Decouple the VDD supply with a 10 µF capacitor in  
parallel with a 0.1 µF capacitor to GND.  
4
5
VLOGIC  
SCL  
Digital Power Supply. The voltage on this pin ranges from 1.8 V to 5.5 V.  
Serial Clock Line. This pin is used in conjunction with the SDA line to clock data into or out of the 24-bit input shift  
register.  
6
7
8
A0  
A1  
GAIN  
Address Input. This pin sets the first LSB of the 7-bit slave address.  
Address Input. This pin sets the second LSB of the 7-bit slave address.  
Span Set. When this pin is tied to GND, all eight DAC outputs have a span from 0 V to VREF. If this pin is tied to VLOGIC  
,
all eight DACs output a span of 0 V to 2 × VREF  
.
9
VOUT  
VOUT  
VOUT  
VOUT  
GND  
RSTSEL  
7
6
5
Analog Output Voltage from DAC 7. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 6. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 5. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 4. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Device.  
Power-On Reset. Tie this pin to GND to power up all eight DACs to zero scale. Tie this pin to VLOGIC to power up all  
eight DACs to midscale.  
10  
11  
12  
13  
14  
4
15  
Load DAC.  
operates in two modes, asynchronously and synchronously. Pulsing this pin low allows any or all  
LDAC  
LDAC  
DAC registers to be updated if the input registers have new data, which allows all DAC outputs to simultaneously  
update. This pin can also be tied permanently low.  
Serial Data Input. This pin is used in conjunction with the SCL line to clock data into or out of the 24-bit input shift  
register. SDA is a bidirectional, open-drain data line that must be pulled to the supply with an external pull-up resistor.  
16  
17  
SDA  
Asynchronous Reset Input. The  
input is falling edge sensitive. When  
is low, all pulses are ignored.  
LDAC  
RESET  
RESET  
RESET  
When  
is activated, the input register and the DAC register are updated with zero scale or midscale, depending  
RESET  
on the state of the RSTSEL pin.  
18  
19  
20  
VREF  
VOUT  
VOUT  
Reference Input Voltage.  
Analog Output Voltage from DAC 3. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 2. The output amplifier has rail-to-rail operation.  
3
2
Rev. B | Page 8 of 26  
 
Data Sheet  
AD5675  
15  
V
REF  
V
1
2
3
4
5
DD  
14 RESET  
13 SDA  
V
AD5675  
LOGIC  
SCL  
TOP VIEW  
(Not to Scale)  
12 LDAC  
11 GND  
A0  
A1  
NOTES  
1. NIC = NO INTERNAL CONNECTION.  
2. EXPOSED PAD. THE EXPOSED PAD  
MUST BE TIED TO GND.  
Figure 5. LFCSP Pin Configuration  
Table 8. LFCSP Function Descriptions  
Pin No. Mnemonic  
Description  
Power Supply Input. The AD5675 operates from 2.7 V to 5.5 V. Decouple the VDD supply with a 10 µF capacitor in  
parallel with a 0.1 µF capacitor to GND.  
1
VDD  
2
3
VLOGIC  
SCL  
Digital Power Supply. The voltage on this pin ranges from 1.8 V to 5.5 V.  
Serial Clock Line. This pin is used in conjunction with the SDA line to clock data into or out of the 24-bit input shift  
register.  
4
5
6
7
A0  
A1  
VOUT  
VOUT  
VOUT  
VOUT  
NIC  
GND  
LDAC  
Address Input. Sets the first LSB of the 7-bit slave address.  
Address Input. Sets the second LSB of the 7-bit slave address.  
Analog Output Voltage from DAC 7. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 6. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 5. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 4. The output amplifier has rail-to-rail operation.  
No Internal Connection.  
7
6
5
8
9
4
10, 16  
11  
12  
Ground Reference Point for All Circuitry on the Device.  
Load DAC.  
operates in two modes, asynchronously and synchronously. Pulsing this pin low allows any or all  
LDAC  
DAC registers to be updated if the input registers have new data, which allows all DAC outputs to simultaneously  
update. This pin can also be tied permanently low.  
Serial Data Input. This pin is used in conjunction with the SCL line to clock data into or out of the 24-bit input shift  
register. SDA is a bidirectional, open-drain data line that must be pulled to the supply with an external pull-up resistor.  
13  
14  
SDA  
Asynchronous Reset Input. The  
input is falling edge sensitive. When  
is low, all pulses are ignored.  
LDAC  
RESET  
RESET  
RESET  
When  
is activated, the input register and the DAC register are updated with zero scale or midscale, depending  
RESET  
on the state of the RSTSEL pin.  
15  
17  
18  
19  
20  
VREF  
Reference Input Voltage.  
VOUT  
VOUT  
VOUT  
VOUT  
EPAD  
3
2
1
0
Analog Output Voltage from DAC 3. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 2. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 1. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 0. The output amplifier has rail-to-rail operation.  
Exposed Pad. The exposed pad must be tied to GND.  
Rev. B | Page 9 of 26  
AD5675  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
10  
8
1.5  
6
1.0  
4
0.5  
2
0
0
–2  
–4  
–6  
–8  
–10  
–0.5  
–1.0  
–1.5  
–2.0  
V
= 5V  
= 25°C  
DD  
T
A
–40  
–20  
0
20  
40  
60  
80  
100  
100  
100  
120  
120  
120  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
CODE  
TEMPERATURE (°C)  
Figure 6. INL Error vs. Code  
Figure 9. INL Error vs. Temperature  
1.0  
0.8  
10  
8
0.6  
6
0.4  
4
0.2  
2
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
–10  
V
= 5V  
DD  
T
= 25°C  
A
–40  
–20  
0
20  
40  
60  
80  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
CODE  
TEMPERATURE (°C)  
Figure 7. DNL Error vs. Code  
Figure 10. DNL Error vs. Temperature  
0.04  
0.03  
0.02  
0.01  
0
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
T
= 5V  
DD  
= 25°C  
A
–0.01  
–0.02  
–40  
–20  
0
20  
40  
60  
80  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
CODE  
TEMPERATURE (°C)  
Figure 8. TUE vs. Code  
Figure 11. TUE vs. Temperature  
Rev. B | Page 10 of 26  
 
Data Sheet  
AD5675  
10  
8
0.10  
0.08  
0.06  
0.04  
0.02  
0
6
4
2
FULL-SCALE ERROR  
GAIN ERROR  
0
–2  
–4  
–6  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= 5V  
DD  
V
= 5V  
= 25°C  
DD  
–8  
T = 25°C  
A
T
A
–10  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 12. INL Error vs. Supply Voltage  
Figure 15. Gain Error and Full-Scale Error vs. Temperature  
10  
8
0.10  
0.08  
0.06  
0.04  
0.02  
0
6
4
2
GAIN ERROR  
0
–2  
–4  
–6  
–8  
–10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
FULL-SCALE ERROR  
V
= 5V  
= 25°C  
DD  
T
A
V
= 5V  
= 25°C  
DD  
T
A
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 13. DNL Error vs. Supply Voltage  
Figure 16. Gain Error and Full-Scale Error vs. Supply Voltage  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
V
T
= 5V  
= 25°C  
DD  
A
ZERO CODE ERROR  
OFFSET ERROR  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= 5V  
= 25°C  
DD  
T
A
–0.3  
–0.6  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 14. TUE vs. Supply Voltage  
Figure 17. Zero Code Error and Offset Error vs. Temperature  
Rev. B | Page 11 of 26  
AD5675  
Data Sheet  
1.5  
1.0  
0.5  
0
6
5
0xFFFF  
0xC000  
0x8000  
ZERO CODE ERROR  
OFFSET ERROR  
4
3
2
0x4000  
0x0000  
1
–0.5  
0
–1.0  
–1.5  
V
= 5V  
DD  
= 25°C  
–1  
–2  
T
A
–0.06  
–0.04  
–0.02  
0
0.02  
0.04  
0.06  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (A)  
Figure 18. Zero Code Error and Offset Error vs. Supply Voltage  
Figure 21. Source and Sink Capability at 5 V  
120  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
= 25°C  
DD  
T
A
REFERENCE = 2.5V  
100  
80  
60  
40  
20  
0
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0000  
–0.5  
–1.0  
0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99 1.01  
–0.06  
–0.04  
–0.02  
0
0.02  
0.04  
0.06  
LOAD CURRENT (A)  
I
FULL SCALE (mA)  
DD  
Figure 19. Supply Current (IDD) Histogram  
Figure 22. Source and Sink Capability at 3 V  
1.4  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
DEVICE 1  
DEVICE 2  
DEVICE 3  
1.0  
0.6  
SINKING, V = –2.7V  
DD  
SINKING, V = –3.0V  
DD  
SINKING, V = –5.0V  
DD  
SOURCING, V = –5.0V  
DD  
SOURCING, V = –3.0V  
DD  
SOURCING, V = –2.7V  
DD  
0.2  
–0.2  
–0.6  
–1.0  
–1.4  
0
0.005  
0.010  
0.015  
0.020  
0.025  
0.030  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
LOAD CURRENT (A)  
CODE  
Figure 20. Headroom/Footroom (ΔVOUT) vs. Load Current  
Figure 23. Supply Current (IDD) vs. Code  
Rev. B | Page 12 of 26  
Data Sheet  
AD5675  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
FULL SCALE  
DAC 0  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 5  
DAC 6  
DAC 7  
ZERO CODE  
EXTERNAL REFERENCE, FULL SCALE  
V
= 5.5V  
DD  
GAIN = 1  
1/4 TO 3/4 SCALE  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
80  
100  
120  
140  
160  
180  
200  
TIME (µs)  
TEMPERATURE (°C)  
Figure 27. Full-Scale Settling Time  
Figure 24. Supply Current (IDD) vs. Temperature  
6
5
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
V
V
(V)  
DD  
0 (V)  
1 (V)  
2 (V)  
3 (V)  
4 (V)  
5 (V)  
6 (V)  
7 (V)  
OUT  
4
FULL SCALE  
V
OUT  
V
V
OUT  
3
OUT  
V
OUT  
ZERO CODE  
V
OUT  
2
V
V
OUT  
EXTERNAL REFERENCE, FULL SCALE  
OUT  
1
0
–1  
–0.001  
10  
0
2
4
6
8
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
TIME (ms)  
SUPPLY VOLTAGE (V)  
Figure 28. Power-On Reset to 0 V and Midscale  
Figure 25. Supply Current (IDD) vs. Supply Voltage  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MIDSCALE, GAIN = 2  
FULL SCALE  
RESET  
ZERO CODE  
MIDSCALE, GAIN = 1  
EXTERNAL REFERENCE, FULL SCALE  
V
= 5V  
DD  
T
= 25°C  
A
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
–5  
0
5
10  
INPUT LOGIC VOLTAGE (V)  
TIME (µs)  
Figure 29. Exiting Power-Down to Midscale  
Figure 26. Supply Current (IDD) vs. Input Logic Voltage  
Rev. B | Page 13 of 26  
AD5675  
Data Sheet  
0.004  
0.003  
0.002  
0.001  
0
1
–0.001  
–0.002  
–0.003  
V
= 5V  
DD  
GAIN = 1  
= 25°C  
T
A
REFERENCE = 2.5V  
CODE = 7FFF TO 8000  
ENERGY = 1.209376nV-sec  
2
–0.004  
15  
CH1 5µV  
M1.00s  
A
CH1  
401mV  
16  
17  
18  
19  
20  
21  
22  
TIME (µs)  
Figure 33. 0.1 Hz to 10 Hz Output Noise Plot  
Figure 30. Digital-to-Analog Glitch Impulse  
0.003  
0.002  
0.001  
0
1200  
1000  
800  
600  
400  
200  
0
V
= 5V  
= 25°C  
FULL SCALE  
MIDSCALE  
DD  
T
A
ZERO SCALE  
GAIN = 1  
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
CHANNEL 6  
CHANNEL 7  
–0.006  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
TIME (µs)  
Figure 31. Analog Crosstalk  
Figure 34. Noise Spectral Density (NSD)  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0
0
–20  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
CHANNEL 6  
CHANNEL 7  
V
= 5V  
= 25°C  
DD  
T
A
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (µs)  
FREQUENCY (kHz)  
Figure 35. Total Harmonic Distortion (THD) at 1 kHz  
Figure 32. DAC-to-DAC Crosstalk  
Rev. B | Page 14 of 26  
Data Sheet  
AD5675  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
3
2
1
0.3  
C
C
C
C
C
= 0nF  
= 0.1nF  
= 1nF  
= 4.7nF  
= 10nF  
L
L
L
L
L
0.2  
0.1  
RESET  
MIDSCALE, GAIN = 1  
ZERO SCALE, GAIN = 1  
0
0
–20  
0
20  
40  
60  
0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20  
TIME (ms)  
TIME (µs)  
Figure 36. Settling Time vs. Capacitive Load  
Figure 38. Hardware Reset  
2.0  
4.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DAC 0  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 5  
DAC 6  
DAC 7  
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0000  
–0.5  
–1.0  
80  
100  
120  
140  
160  
180  
200  
–0.06  
–0.04  
–0.02  
0
0.02  
0.04  
0.06  
LOAD CURRENT (A)  
TIME (µs)  
Figure 37. Settling Time, 5.5 V  
Figure 39. Multiplying Bandwidth  
Rev. B | Page 15 of 26  
AD5675  
Data Sheet  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
For a DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a  
straight line passing through the endpoints of the DAC transfer  
function.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected intothe  
analog output of the DAC from the digital inputsof the DAC,  
but is measured when the DAC output is not updated. It is  
specified in nV-sec, and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s and vice versa.  
Differential Nonlinearity(DNL)  
DNL is the difference between the measured change and the  
ideal 1 LSB change between any two adjacent codes. A specified  
DNL of 1 LSB maximum ensures monotonicity. ThisDAC is  
guaranteed monotonic by design.  
Noise Spectral Density (NSD)  
NSD is a measurement of the internally generated random  
noise. Random noise is characterized as spectral density  
(nV/√Hz). To measure NSD, load the DAC to midscale and  
measure the noise at the output. It is measured in nV/√Hz.  
Zero Code Error  
Zero code error is a measurement of the output error when zero  
code (0x0000) is loaded to the DAC register. The ideal output is  
0 V. The zero code error is always positive because the output of  
the DAC cannot go below 0 V due to a combination of the offset  
errors in the DAC and the output amplifier. Zero code error is  
expressed in mV.  
DC Crosstalk  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the outputofanother DAC.Itis measured  
with a full-scale output change on one DAC (or soft power-down  
and power-up) while monitoring anotherDAC kept at midscale.  
It is expressed in μV.  
Full-Scale Error  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has on  
another DAC kept at midscale. It is expressed in μV/mA.  
Full-scale error is a measurement of the output error when full-  
scale code (0xFFFF) is loaded to the DAC register. The ideal  
output is VDD − 1 LSB. Full-scale error is expressed in percent of  
full-scale range (% of FSR).  
Digital Crosstalk  
Digital crosstalk is the glitch impulse transferred to the output  
of one DAC at midscale in response to a full-scale code change  
(all 0s to all 1s and vice versa) in the input register of another  
DAC. It is measured in standalone mode and is expressed in  
nV-sec.  
Gain Error  
Gain error is a measure of the span error of a DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal expressed as % of FSR.  
Offset Error Drift  
Analog Crosstalk  
Offset error drift is a measurement of the change in offset error  
with a change in temperature. It is expressed in µV/°C.  
Analog crosstalk is the glitchimpulse transferred to the output  
of one DAC due to a change in the output of another DAC. To  
measure analog crosstalk, first load one of the input registers  
with a full-scale code change (all 0s to all 1s and vice versa).  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function. Offset error is measured with Code 256  
loaded in the DAC register. It can be negative or positive.  
Then, execute a software  
and monitorthe output of the  
LDAC  
DAC whose digital code was not changed. The area of the glitch  
is expressed in nV-sec.  
DAC-to-DAC Crosstalk  
DC Power Supply Rejection Ratio (PSRR)  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
analog output change of another DAC. It is measured by  
loading the attack channel with a full-scale code change (all 0s  
to all 1s and vice versa), using the write to and updatecommands  
while monitoring the output of the victim channel that is at  
midscale. The energy of the glitch is expressed in nV-sec.  
The dc PSRR indicates how the output of the DAC is affected by  
changes in the supply voltage. PSRR is the ratio of the change in  
VOUT to the change in VDD for the full-scale output of the DAC.  
It is measured in mV/V. VREF is held at 2 V, a n d V DD is varied by  
10%.  
Output Voltage Settling Time  
The output voltage settling time isthe amount of time it takes  
for the output of a DAC to settle to a specified level for a ¼ to ¾  
full-scale input change.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec,  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000).  
Rev. B | Page 16 of 26  
 
Data Sheet  
AD5675  
Multiplying Bandwidth  
Total Harmonic Distortion (THD)  
The multiplying bandwidth is a measure of the finite bandwidth  
of the amplifiers within the DAC. A sine wave on the reference  
(with full-scale code loaded to the DAC) appears on the output.  
The multiplying bandwidth is the frequency at which the output  
amplitude falls to 3 dB below the input.  
THD is the difference between an ideal sine wave and its  
attenuated version using the DAC. The sine wave is used as the  
reference for the DAC, and the THD is a measurement of the  
harmonics present on the DAC output. THD is measured in dB.  
Rev. B | Page 17 of 26  
AD5675  
Data Sheet  
THEORY OF OPERATION  
V
REF  
DIGITAL-TO-ANALOG CONVERTER  
The AD5675 is an octal, 16-bit, serial input, voltage output DAC.  
The AD5675 operatesfrom a supply voltage of 2.7 Vto 5.5 V.  
Data is written to the AD5675 in a 24-bit word format via a  
2-wire serial interface. The AD5675 incorporatesa power-on  
reset circuit to ensure thatthe DAC outputpowersup to a known  
output state. The device also has a software power-down mode  
that reduces the typical current consumption to1 µA.  
R
R
R
TO OUTPUT  
AMPLIFIER  
TRANSFER FUNCTION  
The gain of the output amplifier is set to ×1 or ×2 using the gain  
select pin (GAIN). When the gain select pin is tied to GND, all  
eight DAC outputs have a span from 0 V to VREF. When the gain  
select pin is tied to VLOGIC,all eightDACs output a span of 0 V to 2  
R
R
× VREF  
.
DAC ARCHITECTURE  
Figure 41. Resistor String Structure  
The AD5675 implementsa segmented string DAC architecture  
with an internal output buffer. Figure 40 shows the internal  
block diagram.  
Output Amplifier  
The output buffer amplifier generates rail-to-rail voltages on its  
output, which givesan output range of 0 V to VDD. The actual  
range depends on the value of VREF, the GAIN pin, the offset  
error, and the gain error. The GAIN pin selects the gain of the  
output. If the GAIN pin is tied to GND, all eight outputs have a  
gain of 1, and the output range is 0 V to VREF. If the GAIN pin is  
tied to VLOGIC, all eight outputshave a gain of 2, and the output  
V
REF  
REF (+)  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
x
OUT  
REF (–)  
GAIN  
(GAIN = 1 OR 2)  
GND  
range is 0 V to 2 × VREF  
.
Figure 40. Single DAC Channel Architecture Block Diagram  
This amplifier can drive a load of 1 kΩ in parallel with10 nF  
to GND. The slew rate is 0.8 V/µs with a typical ¼ to ¾ scale  
settling time of 5 µs.  
The simplified segmented resistor string DAC structure is  
shown in Figure 41. The code loaded to the DAC register  
determines the node on the string where the voltage is tapped  
off and fed into the output amplifier. The voltage is tapped off  
by closing one of the switches and connecting the string to the  
amplifier. Because each resistance in the string has the same  
value, R, the string DAC is guaranteed monotonic.  
Rev. B | Page 18 of 26  
 
 
 
 
 
 
Data Sheet  
AD5675  
Table 9. Command Definitions  
SERIAL INTERFACE  
Command  
The AD5675 usesa 2-wire, I2C-compatible serial interface. The  
device can be connected to an I2C bus as a slave device under  
the control of the master devices. The AD5675 supports  
standard (100 kHz) and fast (400 kHz) data transfer modes.  
Support is not provided for 10-bit addressing and general call  
addressing.  
C3 C2 C1 C0 Description  
0
0
0
0
0
0
0
1
No operation  
Write to Input Register n (where n = 0 to 7,  
depending on the DAC selected from the  
address bits in Tabl e 10, dependent  
on  
)
LDAC  
Input Shift Register  
Update DAC Register n with the contents  
of Input Register n  
0
0
1
0
The input shift register of the AD5675 is 24 bits wide. Data  
is loaded MSB first (DB23), and the first four bits are the  
command bits, C3 to C0 (see Table 9), followed by the 4-bit  
DAC address bits, A3 to A0 (see Table 10), and finally, the 16-  
bit data-word.  
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
Write to and update DAC Channel n  
Power down/power up the DAC  
Hardware  
mask register  
LDAC  
Software reset (power-on reset)  
Gain setup register (LFCSP package only)  
Reserved  
The data-word comprises a 16-bit input code (see Figure 42).  
These data bits are transferred to the input register on the  
24 falling edges of SCL.  
Reserved  
Update all channels of the input register  
simultaneously with the input data  
Update all channels of the DAC register  
and input register simultaneously with  
the input data  
Commands execute onindividualDACchannels, combined DAC  
channels, or on all DACs, depending onthe address bits selected.  
1
0
1
1
1
1
0
0
Reserved  
1
1
1
1
Reserved  
Table 10. Address Commands  
Channel Address, Bits[3:0]  
A3  
0
0
A2  
0
0
A1  
0
0
A0  
0
1
Selected DAC Channel  
DAC 0  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 5  
DAC 6  
DAC 7  
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3 C2 C1 C0 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC DATA  
COMMAND BYTE  
DATA HIGH BYTE  
DATA LOW BYTE  
Figure 42. Input Shift Register Content  
Rev. B | Page 19 of 26  
 
 
 
 
AD5675  
Data Sheet  
WRITE AND UPDATE COMMANDS  
Write to Input Register n (Dependent on  
SERIAL OPERATION  
The 2-wire I2C serial bus protocol operates as follows:  
LDAC  
)
Command 0001 allows the user to write to the dedicated input  
LDAC  
1. The master initiates a data transfer by establishing a start  
condition when a high to low transition on the SDA line  
occurs while SCL is high. The following byte is the address  
byte, which consists of the 7-bit slave address.  
register of each DAC individually. When  
register is transparent, if not controlled by the  
is low, the input  
LDAC  
mask register.  
Update DAC Register n with Contents of Input Register n  
2. The slave device with the transmitted address responds by  
pulling SDA low during the ninth clock pulse (this is called  
the acknowledge bit, or ACK). At this stage, all other  
devices on the bus remain idle while the selected device waits  
for data to be written to or read from its input shift register.  
3. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge bit).  
Transitions on the SDA line must occur during the low period  
of SCL; SDA must remain stable during the high period of SCL.  
4. After all data bits are read or written, a stop condition is  
established. In write mode, the master pulls the SDA line high  
during the 10th clock pulse to establish a stop condition. In  
read mode, the master issues a no acknowledge (NACK)  
for the ninth clock pulse (that is, the SDA line remains  
high). The master then brings the SDA line low before the  
10th clock pulse, and then high again during the 10th clock  
pulse to establish a stop condition.  
Command 0010 loads the DAC registers and outputs with the  
contents of the selected input registers and updates the DAC  
outputs directly.  
LDAC  
Write to and Update DAC Channel n (Independent of  
)
Command 0011 allows the user to write to the DAC registers  
and updates the DAC outputs directly.  
I2C SLAVE ADDRESS  
The AD5675 has a 7-bit I2C slave address. The five MSBs are  
00011, and the two LSBs (A1 and A0) are set by the state of the  
A1 and A0 address pins. The ability to make hardwired changes to  
A1 and A0 allows the user to incorporate up to four AD5675  
devices on one bus (see Table 11).  
Table 11. Device Address Selection  
A1 Pin Connection  
A0 Pin Connection  
A1  
0
0
1
1
A0  
0
1
0
1
GND  
GND  
VLOGIC  
VLOGIC  
GND  
VLOGIC  
GND  
VLOGIC  
WRITE OPERATION  
When writing to the AD5675, begin with a start command  
W
followed by an address byte (R/ = 0), after which the DAC  
acknowledges that it is prepared to receive data by pulling SDA  
low. The AD5675 require two bytes of data for the DAC, and a  
command byte that controls various DAC functions. Three bytes  
of data must, therefore, be written to the DAC with the command  
byte followed by the most significant data byte and the least  
significant data byte, as shown in Figure 43. All these data bytes  
are acknowledged by the AD5675. A stop condition follows.  
1
9
1
9
SCL  
0
0
0
1
1
A1  
A0  
R/W  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
ACK BY  
SDA  
ACK BY  
AD5675  
START BY  
MASTER  
AD5675  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB7  
DB6 DB5 DB4  
DB3  
DB2  
DB1  
DB0  
DB8  
ACK BY  
AD5675  
ACK BY  
AD5675  
STOP BY  
MASTER  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
FRAME 4  
LEAST SIGNIFICANT  
DATA BYTE  
Figure 43. I2C Write Operation  
Rev. B | Page 20 of 26  
 
 
 
 
 
 
Data Sheet  
AD5675  
READ OPERATION  
MULTIPLE DAC READBACK SEQUENCE  
When reading data back from the AD5675, begin with a start  
When reading data back from multiple AD5675DACs, the user  
command followed by an address byte (R/ = 0), after which  
begins with an address byte (R/ = 0), after which the DAC  
W
W
the DAC acknowledges that it is prepared to receive data by  
pulling SDA low. The address byte must be followed by the  
command byte, which determines both the read command that  
is to follow and the pointer address to read from; the command  
byte is also acknowledged by the DAC. The user configures the  
channel to read back the contents of one or more DAC input  
registers and sets the readback command to activeusing the  
command byte.  
acknowledges that it is prepared to receive data by pulling SDA  
low. The address byte must be followed by the command byte,  
which is also acknowledged by the DAC. The user selects the  
first channel to read back using the command byte.  
Following this sequence, the master establishes a repeated start  
condition, and the address is resent with R/ = 1. This byte is  
W
acknowledged by the DAC, indicating that it isprepared to  
transmit data. The first two bytesof data are then read from  
DAC Input Register n (selected using the command byte), MSB  
first, as shown in Figure 44. The next two bytes read back are the  
contentsof DAC Input Register n + 1, and the next bytes read  
back are the contents of DAC Input Register n + 2. Data is read  
from the DAC input registers in this auto-incremented fashion  
until a NACK followed by a stop condition follows. If the  
contents of DAC Input Register 7 are read out, the next two  
bytes of data read are the contents of DAC Input Register 0.  
Then, the master establishes a repeated start condition, and the  
address is resent with R/ = 1. This byte is acknowledged by the  
W
DAC, indicating that it is prepared to transmit data. Two bytes  
of data are then read from the DAC, as shown in Figure 44. A  
NACK conditionfromthe master, followed bya stop condition,  
completes the read sequence. If more than one DAC is selected,  
DAC 0 is read back by default.  
1
9
1
9
SCL  
SDA  
0
0
0
1
1
A1  
A0  
R/W  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
ACK BY  
ACK BY  
AD5675  
START BY  
MASTER  
AD5675  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
SDA  
0
0
0
1
1
A1  
A0  
R/W  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
REPEATED START BY  
MASTER  
ACK BY  
AD5675  
ACK BY  
MASTER  
FRAME 3  
SLAVE ADDRESS  
FRAME 4  
MOST SIGNIFICANT  
DATA BYTE n  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
DB7 DB6  
DB5 DB4  
DB3 DB2  
DB1  
DB0  
ACK BY  
MASTER  
NACK BY  
MASTER  
STOP BY  
MASTER  
FRAME 5  
LEAST SIGNIFICANT  
DATA BYTE n  
FRAME 6  
MOST SIGNIFICANT  
DATA BYTE n + 1  
Figure 44. I2C Read Operation  
Rev. B | Page 21 of 26  
 
 
 
AD5675  
Data Sheet  
The bias generator, output amplifier, resistor string, and other  
associated linear circuitry shut down when power-down mode  
is activated. However, the contents of the DAC registers are  
unaffected when in power-down mode. The DAC registers can  
be updated while the device is in power-down mode. The time  
required to exit power-down is typically 2.5 μs for VDD = 5 V.  
POWER-DOWN OPERATION  
The AD5675 contains two separate power-down modes.  
Command 0100 is designated for the power-down function (see  
Table 9). These power-down modes are software programmable  
by setting 16 bits, Bit DB15 to Bit DB0, in the input shift  
register. There are two bits associated with each DAC channel.  
Table 12 shows how the state of the two bits corresponds to the  
mode of operation of the device.  
LOAD DAC (HARDWARE LDAC PIN)  
The AD5675 DACs have a double buffered interface consisting  
of two banks of registers: input registers and DAC registers.  
The user can write to any combination of the input registers.  
Any or all DACs (DAC 0 to DAC 7) power down to the selected  
mode by setting the corresponding bits. See Table 13 for the  
contents of the input shift register during the power-down/  
power-up operation.  
LDAC  
Updates to the DAC registers are controlled by the  
pin.  
LDAC  
Instantaneous DAC Updating (  
Held Low)  
Table 12. Modes of Operation  
LDAC  
For instantaneous updating of the DACs,  
is held low while  
Operating Mode  
Normal Operation  
Power-Down Modes  
1 kΩ to GND  
PD1  
PD0  
data is clocked into the input register using Command 0001. Both  
the addressed input register and the DAC register are updated on  
the 24th clock, and the output changes immediately.  
0
0
0
1
1
1
LDAC  
Deferred DAC Updating (  
is Pulsed Low)  
LDAC  
Tristate  
For deferred updating of the DACs,  
is held high while data  
When both Bit PD1 and Bit PD0 in the input shift register are  
set to 0, the device works normally with its normal power  
consumption of typically 1 mA at 5 V. However, for the two  
power-down modes, the supply current falls to typically 1 μA.  
In addition to this fall, the output stage switches internally from  
the amplifier output to a resistor network of known values. This  
has the advantage that the output impedance of the device is  
known while the device is in power-down mode. There are two  
different power-down options. The output is connected  
internally to GND through either a 1 kΩ resistor, or it is left  
open-circuited (tristate). The output stage is shown in Figure 45.  
is clocked into the input register using Command 0001. All DAC  
LDAC  
outputs are asynchronously updated by pulling  
low after the  
th  
LDAC  
24 clock. The update occurs on the falling edge of  
.
AMPLIFIER  
16-BIT  
DAC  
V
V
x
REF  
OUT  
DAC  
REGISTER  
LDAC  
INPUT  
REGISTER  
AMPLIFIER  
V
x
DAC  
OUT  
SCL  
SDA  
INTERFACE  
LOGIC  
Figure 46. Simplified Diagram of Input Loading Circuitry for a Single DAC  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Figure 45. Output Stage During Power-Down  
Table 13. 24-Bit Input Shift Register Contents of Power-Down/Power-Up Operation  
DAC 7  
DAC 6  
DAC 5  
DAC 4  
DAC 3  
DAC 2  
DAC 1  
DAC 0  
[DB23:DB20]  
DB19 [DB18:DB16]  
XXX1  
[DB15:DB14] [DB13:DB12] [DB11:DB10] [DB9:DB8] [DB7:DB6] [DB5:DB4] [DB3:DB2] [DB1:DB0]  
0100  
0
[PD1:PD0]  
[PD1:PD0]  
[PD1:PD0]  
[PD1:PD0]  
[PD1:PD0]  
[PD1:PD0]  
[PD1:PD0]  
[PD1:PD0]  
1 X means don’t care.  
Rev. B | Page 22 of 26  
 
 
 
 
 
Data Sheet  
AD5675  
The  
register gives the user extra flexibility and control  
MASK REGISTER  
LDAC  
over the hardware  
LDAC  
pin (see Table 15). Settingthe  
bits  
LDAC  
LDAC  
(DB0 to DB7) to 0 for a DAC channel means that the update for  
this channel is controlled by the hardware pin.  
Command 0101 is reserved for this hardware  
function.  
LDAC  
The address bits are ignored. Writing to the DAC using  
Command 0101 loads the 8-bit register (DB7 to DB0).  
LDAC  
LDAC  
The default for each channel is 0, that is, the  
pin works  
LDAC  
normally. Settingthe bitsto 1 forces this DAC channel to ignore  
transitions on the pin, regardless of thestate of the  
LDAC  
pin. This flexibility is useful in applications  
hardware  
LDAC  
where the user wants to select which channels respond to  
the  
pin.  
LDAC  
Table 14.  
Overwrite Definition  
LDAC  
Load  
Register  
LDAC  
Bits (DB7 to DB0)  
Pin  
Operation  
LDAC  
LDAC  
LDAC  
00000000  
11111111  
1 or 0  
X1  
Determined by the  
pin.  
LDAC  
DAC channels update and override the  
pin. DAC channels see  
as 1.  
LDAC  
LDAC  
1 X means don’t care.  
Table 15. Write Commands and  
Pin TruthTable1  
LDAC  
Hardware  
Pin State  
Command Description  
LDAC  
Input Register Contents  
DAC Register Contents  
Write to Input Register n  
(dependent on  
0001  
VLOGIC  
GND2  
VLOGIC  
Data update  
Data update  
No change  
No change (no update)  
Data update  
)
LDAC  
Update DAC Register n  
with the contents of  
Input Register n  
0010  
Updated with input register contents  
Updated with input register contents  
GND  
No change  
Write to and update DAC  
Channel n  
0011  
VLOGIC  
GND  
Data update  
Data update  
Data update  
Data update  
1 A high to low hardware LDAC pin transition always updates the contents of the DAC register with the contents of the input register on channels that are not masked  
(blocked) by the LDAC mask register.  
2 When LDAC is permanently tied low, the LDAC mask bits are ignored.  
Rev. B | Page 23 of 26  
 
 
AD5675  
Data Sheet  
low, the output powers up to zero scale. Note that this power-up  
is outside the linear region of the DAC; by connecting the  
RSTSEL pin high, the VOUTx pins power up to midscale. The  
output remains powered up at this level until a valid write  
sequence is made to the DAC.  
HARDWARE RESET (  
)
RESET  
The  
pin is an active low reset that allows the outputs to  
RESET  
be cleared to either zero scale or midscale. The clear code value  
is user selectable via the RSTSEL pin. Keep low for a  
RESET  
minimum of 2 µs to complete the operation (see Figure 2).  
When the signal is returned high, the output remains at  
AMPLIFIER GAIN SELECTION ON LFCSP PACKAGE  
RESET  
the cleared value until a new value is programmed. While  
the pin is low, the outputs cannot be updated with a new  
The output amplifier gain setting for the LFCSP package is  
determined by the state of Bit DB2 in the gain setup register  
(see Table 16 and Table 17).  
RESET  
value. A software executable reset function is also available that  
resets the DAC to the power-on reset code. Command 0110 is  
designated for this software reset function (see Table 9). Any  
Table 16. Gain Setup Register  
Bit  
Description  
events on  
or during power-on reset are ignored.  
LDAC RESET  
DB2  
Amplifier gain setting  
DB2 = 0; amplifier gain = 1 (default)  
DB2 = 1; amplifier gain = 2  
RESET SELECT PIN (RSTSEL)  
The AD5675 containsa power-on reset circuit that controlsthe  
output voltage during power-up. By connecting the RSTSELpin  
Table 17. 24-Bit Input Shift Register Contents for Gain SetupCommand  
DB23 (MSB)  
DB22  
DB21  
DB20  
DB19 to DB3  
DB2  
DB1  
DB0 (LSB)  
Reserved; set to 0  
0
1
1
1
Don’t care  
Gain  
Reserved; set to 0  
Rev. B | Page 24 of 26  
 
 
 
 
 
Data Sheet  
AD5675  
APPLICATIONS INFORMATION  
which provide a low impedance path to ground at high  
frequencies to handle transient currents due to internal logic  
switching.  
POWER SUPPLY RECOMMENDATIONS  
The AD5675 is typically powered by the following supplies: VDD  
= 3.3 V and VLOGIC = 1.8 V.  
In systems where many devices are on one board, it is often  
useful to provide some heat sinking capability to allow the  
power to dissipate easily.  
The ADP7118 can be used to power the VDD pin. The ADP160  
can be used to power the VLOGIC pin. This setup is shown in  
Figure 47. The ADP7118 can operate from input voltages up to  
20 V. The ADP160 can operate from input voltagesup to 5.5 V.  
The GND plane on the device can be increased (as shown in  
Figure 49) to provide a natural heat sinking effect.  
5V  
ADP7118  
LDO  
3.3V: V  
DD  
INPUT  
AD5675  
ADP160  
LDO  
1.8V: V  
LOGIC  
Figure 47. Low Noise Power Solution for the AD5675  
MICROPROCESSOR INTERFACING  
GND  
PLANE  
Microprocessor interfacing to the AD5675 is performed via a  
serial bus that uses a standard protocol that is compatible with  
DSP processors and microcontrollers. The communications  
channel requires a 2-wire interface consisting of a clock signal  
and a data signal.  
BOARD  
Figure 49. Pad Connection to Board  
AD5675 TO ADSP-BF531INTERFACE  
GALVANICALLY ISOLATED INTERFACE  
The I2C interface of the AD5675 is designed for easy connection  
to industry-standard DSPs and microcontrollers. Figure 48  
shows the AD5675 connected to the Analog Devices, Inc.,  
Blackfin® processor. The Blackfin processor has an integrated  
I2C port that can be connected directly to the I2C pins of the  
AD5675.  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltagesthat may occur.iCoupler®  
products from Analog Devices provide voltage isolation in  
excess of 2.5 kV. The serial loading structure of the AD5675  
makes the device ideal for isolated interfaces because the  
number of interface lines is kept to a minimum. Figure 50  
shows a 4-channel isolated interface to the AD5675 using  
an ADuM1251. For further information, visit  
AD5675  
ADSP-BF531  
GPIO1  
GPIO2  
SCL  
SDA  
www.analog.com/icoupler.  
ADuM12511  
CONTROLLER  
PF9  
PF8  
LDAC  
RESET  
DECODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
Figure 48. AD5675 to ADSP-BF531 Interface  
SDA  
SCL  
TO SDA  
TO SCL  
LAYOUT GUIDELINES  
In any circuit where accuracy is important, careful considera-  
tion of the power supply and ground return layout helps to  
ensure the rated performance. Design the printed circuit board  
(PCB) on which the AD5675is mounted so that the device lies  
on the analog plane.  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 50. Isolated Interface  
The AD5675 must have ample supply bypassing of 10 µF in  
parallel with 0.1 µF on each supply, located as close tothe package  
as possible, ideally right up against the device. The 10 µF  
capacitors are the tantalum bead type. The 0.1 µF capacitor  
must have low effective series resistance (ESR) and low effective  
series inductance (ESI), such as the common ceramic types,  
Rev. B | Page 25 of 26  
 
 
 
 
 
 
 
 
 
 
AD5675  
Data Sheet  
OUTLINE DIMENSIONS  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
Figure 51. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.75  
2.60 SQ  
2.35  
11  
5
6
10  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 52. 20-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-20-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Resolution  
(Bits)  
Temperature  
Range  
Package  
Option  
Model 1  
Accuracy  
8 LSB INL  
8 LSB INL  
3 LSB INL  
3 LSB INL  
8 LSB INL  
3 LSB INL  
Package Description  
AD5675ARUZ  
AD5675ARUZ-REEL7  
AD5675BRUZ  
16  
16  
16  
16  
16  
16  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Lead Frame Chip Scale Package [LFCSP]  
20-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
RU-20  
RU-20  
RU-20  
RU-20  
CP-20-8  
CP-20-8  
AD5675BRUZ-REEL7  
AD5675ACPZ-REEL7  
AD5675BCPZ-REEL7  
EVAL-AD5675SDZ  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2 01 5–2016 Analog Device s, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12550-0-8/16(B)  
Rev. B | Page 26 of 26  
 
 

相关型号:

AD5675BCPZ-REEL7

Octal, 16-Bit nanoDAC+ with I<sup>2</sup>C Interface
ADI

AD5675BCPZ-RL

Octal, 16-Bit nanoDAC
ADI

AD5675BRUZ

Octal, 16-Bit nanoDAC+ with I<sup>2</sup>C Interface
ADI

AD5675BRUZ-REEL7

Octal, 16-Bit nanoDAC+ with I<sup>2</sup>C Interface
ADI

AD5675R

Easy implementation
ADI

AD5675RACPZ-REEL7

Base station power amplifiers
ADI

AD5675RACPZ-RL

Base station power amplifiers
ADI

AD5675RARUZ

Octal, 16-Bit nanoDAC+ with 2 ppm/&deg;C Reference, I2C Interface
ADI

AD5675RARUZ-REEL7

Base station power amplifiers
ADI

AD5675RBCPZ-REEL7

Base station power amplifiers
ADI

AD5675RBRUZ

Octal, 16-Bit nanoDAC+ with 2 ppm/&deg;C Reference, I2C Interface
ADI

AD5675RBRUZ-REEL7

Base station power amplifiers
ADI