AD5684RBCPZ-RL7 [ADI]

Quad, 16-/14-/12-Bit nanoDAC; 四, 16位/ 14位/ 12位属于nanoDAC
AD5684RBCPZ-RL7
型号: AD5684RBCPZ-RL7
厂家: ADI    ADI
描述:

Quad, 16-/14-/12-Bit nanoDAC
四, 16位/ 14位/ 12位属于nanoDAC

文件: 总32页 (文件大小:824K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 16-/14-/12-Bit nanoDAC+  
with 2 ppm/°C Reference, SPI Interface  
Data Sheet  
AD5686R/AD5685R/AD5684R  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
High relative accuracy (INL): 2 LSB maximum @ 16 bits  
Low drift 2.5 V reference: 2 ppm/°C typical  
V
GND  
V
REF  
DD  
Tiny package: 3 mm × 3 mm, 16-lead LFCSP  
2.5V  
REFERENCE  
AD5686R/AD5685R/AD5684R  
V
LOGIC  
Total unadjusted error (TUE): 0.1ꢀ of FSR maximum  
Offset error: 1.5 mV maximum  
STRING  
DAC A  
INPUT  
DAC  
V
V
V
V
A
B
C
D
OUT  
OUT  
OUT  
OUT  
REGISTER  
REGISTER  
SCLK  
SYNC  
SDIN  
SDO  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
Gain error: 0.1ꢀ of FSR maximum  
High drive capability: 20 mA, 0.5 V from supply rails  
User selectable gain of 1 or 2 (GAIN pin)  
Reset to zero scale or midscale (RSTSEL pin)  
1.8 V logic compatibility  
50 MHz SPI with readback or daisy chain  
Low glitch: 0.5 nV-sec  
Robust 4 kV HBM and 1.5 kV FICDM ESD rating  
Low power: 3.3 mW at 3 V  
STRING  
DAC B  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC C  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC D  
INPUT  
REGISTER  
DAC  
REGISTER  
POWER-ON  
RESET  
GAIN  
×1/×2  
POWER-  
DOWN  
LOGIC  
LDAC RESET  
RSTSEL  
GAIN  
2.7 V to 5.5 V power supply  
Figure 1.  
−40°C to +105°C temperature range  
APPLICATIONS  
Optical transceivers  
Base-station power amplifiers  
Process control (PLC I/O cards)  
Industrial automation  
Data acquisition systems  
Table 1. Quad nanoDAC+ Devices  
Interface Reference 16-Bit  
GENERAL DESCRIPTION  
14-Bit  
12-Bit  
The AD5686R/AD5685R/AD5684R, members of the  
nanoDAC+® family, are low power, quad, 16-/14-/12-bit  
buffered voltage output DACs. The devices include a 2.5 V,  
2 ppm/°C internal reference (enabled by default) and a gain  
select pin giving a full-scale output of 2.5 V (gain = 1) or 5 V  
(gain = 2). All devices operate from a single 2.7 V to 5.5 V  
supply, are guaranteed monotonic by design, and exhibit less  
than 0.1% FSR gain error and 1.5 mV offset error performance.  
The devices are available in a 3 mm × 3 mm LFCSP and a  
TSSOP package.  
SPI  
I2C  
Internal  
Internal  
AD5686R  
AD5696R  
AD5685R AD5684R  
AD5695R AD5694R  
PRODUCT HIGHLIGHTS  
1. High Relative Accuracy (INL).  
AD5686R (16-bit): 2 LSB maximum  
AD5685R (14-bit): 1 LSB maximum  
AD5684R (12-bit): 1 LSB maximum  
2. Low Drift 2.5 V On-Chip Reference.  
2 ppm/°C typical temperature coefficient  
5 ppm/°C maximum temperature coefficient  
3. Two Package Options.  
The AD5686R/AD5685R/AD5684R also incorporate a power-  
on reset circuit and a RSTSEL pin that ensures that the DAC  
outputs power up to zero scale or midscale and remains there  
until a valid write takes place. Each part contains a per-channel  
power-down feature that reduces the current consumption of  
the device to 4 μA at 3 V while in power-down mode.  
3 mm × 3 mm, 16-lead LFCSP  
16-lead TSSOP  
The AD5686R/AD5685R/AD5684R employ a versatile SPI  
interface that operates at clock rates up to 50 MHz, and all  
devices contain a VLOGIC pin intended for 1.8 V/3 V/5 V logic.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Write and Update Commands.................................................. 22  
Daisy-Chain Operation............................................................. 23  
Readback Operation .................................................................. 23  
Power-Down Operation............................................................ 24  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 5  
Timing Characteristics ................................................................ 6  
Daisy-Chain and Readback Timing Characteristics ............... 7  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
Terminology .................................................................................... 18  
Theory of Operation ...................................................................... 20  
Digital-to-Analog Converter .................................................... 20  
Transfer Function....................................................................... 20  
DAC Architecture....................................................................... 20  
Serial Interface ............................................................................ 21  
Standalone Operation................................................................ 22  
LDAC  
Load DAC (Hardware  
Pin)........................................... 25  
Mask Register ................................................................. 25  
Hardware Reset ( ) .......................................................... 26  
LDAC  
RESET  
Reset Select Pin (RSTSEL) ........................................................ 26  
Internal Reference Setup ........................................................... 26  
Solder Heat Reflow..................................................................... 26  
Long-Term Temperature Drift ................................................. 26  
Thermal Hysteresis .................................................................... 27  
Applications Information.............................................................. 28  
Microprocessor Interfacing....................................................... 28  
AD5686R/AD5685R/AD5684R to ADSP-BF531 Interface.. 28  
AD5686R/AD5685R/AD5684R to SPORT Interface............ 28  
Layout Guidelines....................................................................... 28  
Galvanically Isolated Interface ................................................. 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 31  
REVISION HISTORY  
4/12—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
SPECIFICATIONS  
VDD = 2.7 V to 5.5 V; 1.8 V ≤ VLOGIC ≤ 5.5 V; all specifications TMIN to TMAX, unless otherwise noted. RL = 2 kΩ; CL = 200 pF.  
Table 2.  
B Grade1  
Typ  
A Grade1  
Typ  
Parameter  
STATIC PERFORMANCE2  
Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
AD5686R  
Resolution  
Relative Accuracy  
16  
16  
Bits  
LSB  
2
2
8
8
1
1
1
2
3
1
Gain = 2  
Gain = 1  
Differential Nonlinearity  
AD5685R  
LSB  
Guaranteed monotonic by design  
Resolution  
14  
12  
14  
12  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5684R  
0.5  
4
1
0.5  
1
1
Guaranteed monotonic by design  
Resolution  
Bits  
LSB  
LSB  
mV  
mV  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
Offset Error  
0.12  
2
1
0.12  
1
1
1.5  
1.5  
0.1  
Guaranteed monotonic by design  
All zeros loaded to DAC register  
0.4  
+0.1  
+0.01  
4
0.4  
+0.1  
+0.01  
4
0.2  
Full-Scale Error  
% of  
FSR  
All ones loaded to DAC register  
Gain Error  
0.02  
0.01  
0.2  
0.02  
0.01  
0.1  
0.1  
0.2  
% of  
FSR  
% of  
FSR  
% of  
FSR  
Total Unadjusted Error  
0.25  
0.25  
External reference; gain = 2; TSSOP  
Internal reference; gain = 1; TSSOP  
Offset Error Drift3  
Gain Temperature  
Coefficient3  
1
1
1
1
µV/°C  
ppm  
Of FSR/°C  
DC Power Supply Rejection  
Ratio3  
0.15  
0.15  
mV/V  
DAC code = midscale; VDD = 5 V 10%  
DC Crosstalk3  
2
2
µV  
Due to single channel, full-scale  
output change  
3
2
3
2
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
0
VREF  
2 × VREF  
0
0
VREF  
2 × VREF  
V
V
nF  
Gain = 1  
Gain = 2, see Figure 34  
RL = ∞  
Capacitive Load Stability  
2
2
10  
10  
nF  
kΩ  
µV/mA  
RL = 1 kΩ  
Resistive Load4  
Load Regulation  
1
1
80  
80  
80  
80  
5 V 10%, DAC code = midscale;  
−30 mA ≤ IOUT ≤ 30 mA  
3 V 10%, DAC code = midscale;  
−20 mA ≤ IOUT ≤ 20 mA  
µV/mA  
Short-Circuit Current5  
Load Impedance at Rails6  
Power-Up Time  
40  
25  
2.5  
40  
25  
2.5  
mA  
µs  
See Figure 34  
Coming out of power-down mode;  
VDD = 5 V  
Rev. 0 | Page 3 of 32  
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
B Grade1  
Typ  
A Grade1  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
REFERENCE OUTPUT  
Output Voltage7  
Reference TC8, 9  
Output Impedance3  
Output Voltage Noise3  
Output Voltage Noise  
Density3  
2.4975  
2.5025  
20  
2.4975  
2.5025  
5
V
At ambient  
5
0.04  
12  
2
0.04  
12  
ppm/°C See the Terminology section  
0.1 Hz to 10 Hz  
µV p-p  
nV/√Hz  
240  
240  
At ambient; f = 10 kHz, CL = 10 nF  
Load Regulation Sourcing3  
At ambient  
At ambient  
VDD ≥ 3 V  
20  
40  
±5  
20  
40  
±5  
µV/mA  
µV/mA  
mA  
Load Regulation Sinking3  
Output Current Load  
Capability3  
Line Regulation3  
Long-Term Stability/Drift3  
Thermal Hysteresis3  
100  
12  
100  
12  
µV/V  
ppm  
ppm  
ppm  
At ambient  
After 1000 hours at 125°C  
First cycle  
125  
25  
125  
25  
Additional cycles  
LOGIC INPUTS3  
Input Current  
2
2
µA  
V
V
Per pin  
VINL, Input Low Voltage  
VINH, Input High Voltage  
Pin Capacitance  
LOGIC OUTPUTS (SDO)3  
Output Low Voltage, VOL  
Output High Voltage, VOH  
0.3 × VLOGIC  
0.3 × VLOGIC  
0.7 × VLOGIC  
0.7 × VLOGIC  
2
4
2
4
pF  
0.4  
0.4  
V
ISINK = 200 μA  
ISOURCE = 200 μA  
VLOGIC − 0.4  
VLOGIC − 0.4  
V
Floating State Output  
Capacitance  
pF  
POWER REQUIREMENTS  
VLOGIC  
ILOGIC  
1.8  
5.5  
3
1.8  
5.5  
3
V
µA  
V
V
VDD  
VDD  
2.7  
VREF + 1.5  
5.5  
5.5  
2.7  
VREF + 1.5  
5.5  
5.5  
Gain = 1  
Gain = 2  
IDD  
VIH = VDD, VIL = GND, VDD = 2.7 V to 5.5 V  
Internal reference off  
Internal reference on, at full scale  
−40°C to +85°C  
Normal Mode10  
0.59  
1.1  
1
0.7  
1.3  
4
0.59  
1.1  
1
0.7  
1.3  
4
mA  
mA  
µA  
All Power-Down  
Modes11  
6
6
µA  
−40°C to +105°C  
1 Temperature range: A and B grade: −40°C to +105°C.  
2 DC specifications tested with the outputs unloaded, unless otherwise noted. Upper dead band = 10 mV and exists only when VREF = VDD with gain = 1 or when VREF/2 =  
VDD with gain = 2. Linearity calculated using a reduced code range of 256 to 65,280 (AD5686R), 64 to 16,320 (AD5685R), and 12 to 4080 (AD5684R).  
3 Guaranteed by design and characterization; not production tested.  
4 Channel A and Channel B can have a combined output current of up to 30 mA. Similarly, Channel C and Channel D can have a combined output current of up to  
30 mA up to a junction temperature of 110°C.  
5 VDD = 5 V. The device includes current limiting that is intended to protect the device during temporary overload conditions. Junction temperature can be exceeded  
during current limit. Operation above the specified maximum operation junction temperature may impair device reliability.  
6 When drawing a load current at either rail, the output voltage headroom with respect to that rail is limited by the 25 Ω typical channel resistance of the output  
devices. For example, when sinking 1 mA, the minimum output voltage = 25 Ω × 1 mA = 25 mV (see Figure 34).  
7 Initial accuracy presolder reflow is 750 µV; output voltage includes the effects of preconditioning drift. See the Internal Reference Setup section.  
8 Reference is trimmed and tested at two temperatures and is characterized from −40°C to +105°C.  
9 Reference temperature coefficient calculated as per the box method. See the Terminology section for further information.  
10 Interface inactive. All DACs active. DAC outputs unloaded.  
11 All DACs powered down.  
Rev. 0 | Page 4 of 32  
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; 1.8 V ≤ VLOGIC ≤ 5.5 V; all specifications TMIN to TMAX, unless otherwise  
noted.1  
Table 3.  
Parameter2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments3  
Output Voltage Settling Time  
AD5686R  
AD5685R  
5
5
5
8
8
7
µs  
µs  
µs  
¼ to ¾ scale settling to 2 LSB  
¼ to ¾ scale settling to 2 LSB  
¼ to ¾ scale settling to 2 LSB  
AD5684R  
Slew Rate  
0.8  
0.5  
0.13  
0.1  
0.2  
0.3  
−80  
300  
6
V/µs  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
dB  
nV/√Hz  
µV p-p  
dB  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
Digital Crosstalk  
Analog Crosstalk  
DAC-to-DAC Crosstalk  
Total Harmonic Distortion4  
Output Noise Spectral Density  
Output Noise  
1 LSB change around major carry  
At ambient, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
DAC code = midscale, 10 kHz; gain = 2  
0.1 Hz to 10 Hz  
At ambient, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
At ambient, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
At ambient, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
SNR  
SFDR  
SINAD  
90  
83  
80  
dB  
dB  
1 Guaranteed by design and characterization, not production tested.  
2 See the Terminology section.  
3 Temperature range is −40°C to +105°C, typical @ 25°C.  
4 Digitally generated sine wave @ 1 kHz.  
Rev. 0 | Page 5 of 32  
 
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Figure 2.  
DD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V; VREFIN = 2.5 V. All specifications TMIN to TMAX, unless otherwise noted.  
V
Table 4.  
1.8 V ≤ VLOGIC < 2.7 V 2.7 V ≤ VLOGIC 5.5 V  
Parameter1  
Symbol Min  
Max  
Min  
20  
10  
10  
10  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
SCLK Cycle Time  
SCLK High Time  
SCLK Low Time  
SYNC to SCLK Falling Edge Setup Time  
Data Setup Time  
t1  
t2  
t3  
t4  
33  
16  
16  
15  
5
t5  
Data Hold Time  
t6  
t7  
5
5
SCLK Falling Edge to SYNC Rising Edge  
Minimum SYNC High Time (Single, Combined or All Channel Update)  
SYNC Falling Edge to SCLK Fall Ignore  
LDAC Pulse Width Low  
15  
20  
16  
25  
30  
20  
30  
30  
4.5  
10  
20  
10  
15  
20  
20  
30  
30  
4.5  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
SCLK Falling Edge to LDAC Rising Edge  
SCLK Falling Edge to LDAC Falling Edge  
RESET Minimum Pulse Width Low  
RESET Pulse Activation Time  
Power-Up Time2  
1 Maximum SCLK frequency is 50 MHz at VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ VDD. Guaranteed by design and characterization; not production tested.  
2 Time to exit power-down to normal mode of AD5686R/AD5685R/AD5684R operation, 32nd clock edge to 90% of DAC midscale value, with output unloaded.  
t9  
t1  
SCLK  
t2  
t8  
t7  
t3  
t4  
SYNC  
SDIN  
t6  
t5  
DB23  
DB0  
t12  
t10  
1
LDAC  
t11  
2
LDAC  
t13  
RESET  
t14  
V
OUT  
1
2
ASYNCHRONOUS LDAC UPDATE MODE.  
SYNCHRONOUS LDAC UPDATE MODE.  
Figure 2. Serial Write Operation  
Rev. 0 | Page 6 of 32  
 
 
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
DAISY-CHAIN AND READBACK TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Figure 4  
and Figure 5. VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V; VREF = 2.5 V. All specifications TMIN to TMAX, unless otherwise noted. VDD  
=
2.7 V to 5.5 V.  
Table 5.  
1.8 V VLOGIC < 2.7 V  
2.7 V VLOGIC 5.5 V  
Parameter1  
Symbol  
Min  
66  
33  
33  
33  
5
Max  
Min  
40  
20  
20  
20  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Cycle Time  
SCLK High Time  
SCLK Low Time  
SYNC to SCLK Falling Edge  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
Data Hold Time  
5
5
SCLK Falling Edge to SYNC Rising Edge  
Minimum SYNC High Time  
Minimum SYNC High Time  
SDO Data Valid from SCLK Rising Edge  
SCLK Falling Edge to SYNC Rising Edge  
15  
60  
60  
10  
30  
30  
36  
25  
5
t11  
15  
15  
10  
10  
5
SYNC Rising Edge to SCLK Rising Edge  
t12  
ns  
1 Maximum SCLK frequency is 25 MHz or 15 MHz at VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ VDD. Guaranteed by design and characterization; not production tested.  
Circuit and Timing Diagrams  
200µA  
I
OL  
TO OUTPUT  
PIN  
V
(MIN)  
OH  
C
L
20pF  
200µA  
I
OH  
Figure 3. Load Circuit for Digital Output (SDO) Timing Specifications  
SCLK  
24  
48  
t11  
t8  
t12  
t4  
SYNC  
SDIN  
t6  
t5  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N + 1  
INPUT WORD FOR DAC N  
t10  
DB23  
DB0  
SDO  
UNDEFINED  
Figure 4. Daisy-Chain Timing Diagram  
Rev. 0 | Page 7 of 32  
 
 
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
t1  
SCLK  
24  
24  
1
1
t3  
t7  
t9  
t4  
t2  
t8  
SYNC  
t6  
t5  
DB23  
DB23  
DB0  
DB23  
DB0  
SDIN  
SDO  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
t10  
DB0  
DB23  
DB0  
UNDEFINED  
SELECTED REGISTER DATA  
CLOCKED OUT  
Figure 5. Readback Timing Diagram  
Rev. 0 | Page 8 of 32  
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter  
Rating  
VDD to GND  
−0.3 V to +7 V  
VLOGIC to GND  
−0.3 V to +7 V  
VOUT to GND  
VREF to GND  
Digital Input Voltage to GND  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VLOGIC + 0.3 V  
−40°C to +105°C  
−65°C to +150°C  
125°C  
ESD CAUTION  
16-Lead TSSOP, θJA Thermal  
112.6°C/W  
Impedance, 0 Airflow (4-Layer Board)  
16-Lead LFCSP, θJA Thermal  
Impedance, 0 Airflow (4-Layer Board)  
Reflow Soldering Peak  
70°C/W  
260°C  
Temperature, Pb Free (J-STD-020)  
ESD1  
4 kV  
FICDM  
1.5 kV  
1 Human body model (HBM) classification.  
Rev. 0 | Page 9 of 32  
 
 
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD5686R/AD5685R/AD5684R  
V
V
A 1  
12 SDIN  
11 SYNC  
10 SCLK  
OUT  
GND 2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
RSTSEL  
RESET  
SDIN  
REF  
V
3
DD  
V
V
B
A
OUT  
9
V
LOGIC  
C 4  
AD5686R/  
AD5685R/  
AD5684R  
TOP VIEW  
(Not to Scale)  
OUT  
OUT  
GND  
SYNC  
SCLK  
V
DD  
V
V
C
D
V
LOGIC  
OUT  
OUT  
TOP VIEW  
(Not to Scale)  
GAIN  
LDAC  
SDO  
NOTES  
1. THE EXPOSED PAD MUST BE TIED TO GND.  
Figure 6. 16-Lead LFCSP Pin Configuration  
Figure 7. 16-Lead TSSOP Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
TSSOP  
LFCSP  
Mnemonic Description  
1
2
3
3
4
5
VOUT  
GND  
VDD  
A
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
Power Supply Input. These parts can be operated from 2.7 V to 5.5 V, and the supply should be  
decoupled with a 10 µF capacitor in parallel with a 0.1 µF capacitor to GND.  
4
5
6
6
7
8
VOUT  
VOUT  
SDO  
C
D
Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
Serial Data Output. Can be used to daisy-chain a number of AD5686R/AD5685R/AD5684R devices  
together or can be used for readback. The serial data is transferred on the rising edge of SCLK and is  
valid on the falling edge of the clock.  
7
8
9
LDAC  
GAIN  
LDAC can be operated in two modes, asynchronously and synchronously. Pulsing this pin low allows  
any or all DAC registers to be updated if the input registers have new data. This allows all DAC outputs  
to simultaneously update. This pin can also be tied permanently low.  
10  
Span Set Pin. When this pin is tied to GND, all four DAC outputs have a span from 0 V to VREF. If this  
pin is tied to VDD, all four DACs output a span of 0 V to 2 × VREF  
.
9
10  
11  
12  
VLOGIC  
SCLK  
Digital Power Supply. Voltage ranges from 1.8 V to 5.5 V.  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock  
input. Data can be transferred at rates of up to 50 MHz.  
11  
12  
13  
13  
14  
15  
SYNC  
SDIN  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC  
goes low, data is transferred in on the falling edges of the next 24 clocks.  
Serial Data Input. This device has a 24-bit input shift register. Data is clocked into the register on the  
falling edge of the serial clock input.  
Asynchronous Reset Input. The RESET input is falling edge sensitive. When RESET is low, all LDAC  
pulses are ignored. When RESET is activated, the input register and the DAC register are updated with  
zero scale or midscale, depending on the state of the RSTSEL pin.  
RESET  
Power-On Reset Pin. Tying this pin to GND powers up all four DACs to zero scale. Tying this pin to  
VDD powers up all four DACs to midscale.  
Reference Voltage. The AD5686R/AD5685R/AD5684R have a common reference pin. When using  
the internal reference, this is the reference output pin. When using an external reference, this is the  
reference input pin. The default for this pin is as a reference output.  
14  
15  
16  
1
RSTSEL  
VREF  
16  
17  
2
N/A  
VOUT  
EPAD  
B
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Exposed Pad. The exposed pad must be tied to GND.  
Rev. 0 | Page 10 of 32  
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5020  
V
= 5.5V  
0 HOUR  
DD  
DEVICE 1  
DEVICE 2  
DEVICE 3  
DEVICE 4  
DEVICE 5  
V
= 5V  
DD  
168 HOURS  
500 HOURS  
1000 HOURS  
60  
50  
40  
30  
20  
10  
0
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
2.4980  
2.498  
2.499  
2.500  
(V)  
2.501  
2.502  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
V
TEMPERATURE (°C)  
REF  
Figure 8. Internal Reference Voltage vs. Temperature (Grade B)  
Figure 11. Reference Long-Term Stability/Drift  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
2.5020  
V
= 5V  
= 25°C  
DD  
DEVICE 1  
DEVICE 2  
DEVICE 3  
DEVICE 4  
T
A
2.5015  
DEVICE 5  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
V
= 5V  
120  
DD  
2.4980  
–40  
10  
100  
1k  
10k  
100k  
1M  
–20  
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 9. Internal Reference Voltage vs. Temperature (Grade A)  
Figure 12. Internal Reference Noise Spectral Density vs. Frequency  
90  
V
= 5V  
DD  
V
= 5V  
= 25°C  
T
DD  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
A
1
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
CH1 10µV  
M1.0s  
A
CH1  
160mV  
TEMPERATURE DRIFT (ppm/°C)  
Figure 13. Internal Reference Noise, 0.1 Hz to 10 Hz  
Figure 10. Reference Output Temperature Drift Histogram  
Rev. 0 | Page 11 of 32  
 
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
2.5000  
10  
8
V
= 5V  
= 25°C  
DD  
T
A
2.4999  
2.4998  
2.4997  
2.4996  
2.4995  
2.4994  
2.4993  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
V
= 5V  
= 25°C  
DD  
T
A
INTERNAL REFERENCE = 2.5V  
2500 5000 7500  
CODE  
–0.005  
–0.003  
–0.001  
I
0.001  
(A)  
0.003  
0.005  
0
10000  
12500  
15000 16348  
LOAD  
Figure 17. AD5685R INL  
Figure 14. Internal Reference Voltage vs. Load Current  
2.5002  
10  
8
T
= 25°C  
A
D1  
D3  
2.5000  
2.4998  
2.4996  
2.4994  
2.4992  
2.4990  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
D2  
(V)  
V
= 5V  
DD  
T
= 25°C  
A
INTERNAL REFERENCE = 2.5V  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
625  
1250  
1875  
CODE  
2500  
3125  
3750 4096  
V
DD  
Figure 18. AD5684R INL  
Figure 15. Internal Reference Voltage vs. Supply Voltage  
1.0  
0.8  
10  
8
6
0.6  
0.4  
4
0.2  
2
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
–10  
V
T
= 5V  
= 25°C  
V
T
= 5V  
= 25°C  
DD  
DD  
A
A
INTERNAL REFERENCE = 2.5V  
10000 20000 30000  
CODE  
INTERNAL REFERENCE = 2.5V  
10000 20000 30000  
CODE  
0
40000  
50000  
60000  
0
40000  
50000  
60000  
Figure 19. AD5686R DNL  
Figure 16. AD5686R INL  
Rev. 0 | Page 12 of 32  
 
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
10  
8
1.0  
0.8  
6
0.6  
4
0.4  
2
0.2  
INL  
0
0
DNL  
–2  
–4  
–6  
–8  
–10  
–0.2  
–0.4  
–0.6  
V = 5V  
DD  
V
= 5V  
= 25°C  
DD  
–0.8  
–1.0  
T = 25°C  
T
A
A
INTERNAL REFERENCE = 2.5V  
INTERNAL REFERENCE = 2.5V  
2500 5000 7500  
CODE  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
10000  
12500  
15000 16383  
3750 4096  
110  
V
(V)  
REF  
Figure 20. AD5685R DNL  
Figure 23. INL Error and DNL Error vs. VREF  
10  
8
1.0  
0.8  
6
0.6  
4
0.4  
2
0.2  
INL  
0
0
DNL  
–2  
–4  
–6  
–8  
–10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
T
= 5V  
= 25°C  
V
T
= 5V  
= 25°C  
DD  
DD  
A
A
INTERNAL REFERENCE = 2.5V  
2.7 3.2 3.7  
SUPPLY VOLTAGE (V)  
INTERNAL REFERENCE = 2.5V  
4.2  
4.7  
5.2  
0
625  
1250  
1875  
CODE  
2500  
3125  
Figure 24. INL Error and DNL Error vs. Supply Voltage  
Figure 21. AD5684R DNL  
10  
8
0.10  
0.08  
0.06  
0.04  
0.02  
0
6
4
FULL-SCALE ERROR  
GAIN ERROR  
2
INL  
0
DNL  
–2  
–4  
–6  
–8  
–10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= 5V  
= 25°C  
V
= 5V  
DD  
DD  
T
T = 25°C  
A
A
INTERNAL REFERENCE = 2.5V  
INTERNAL REFERENCE = 2.5V  
–40 –20 20 40  
TEMPERATURE (°C)  
–40 10  
60  
0
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 22. INL Error and DNL Error vs. Temperature  
Figure 25. Gain Error and Full-Scale Error vs. Temperature  
Rev. 0 | Page 13 of 32  
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
T
= 5V  
= 25°C  
V
T
= 5V  
= 25°C  
DD  
DD  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
A
A
INTERNAL REFERENCE = 2.5V  
INTERNAL REFERENCE = 2.5V  
ZERO-CODE ERROR  
OFFSET ERROR  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 26. Zero-Code Error and Offset Error vs. Temperature  
Figure 29. TUE vs. Temperature  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
GAIN ERROR  
FULL-SCALE ERROR  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= 5V  
= 25°C  
V
= 5V  
DD  
DD  
T
T = 25°C  
A
A
INTERNAL REFERENCE = 2.5V  
2.7 3.2 3.7  
SUPPLY VOLTAGE (V)  
INTERNAL REFERENCE = 2.5V  
2.7 3.2 3.7  
SUPPLY VOLTAGE (V)  
4.2  
4.7  
5.2  
4.2  
4.7  
5.2  
Figure 27. Gain Error and Full-Scale Error vs. Supply  
Figure 30. TUE vs. Supply, Gain = 1  
1.5  
1.0  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
–0.08  
–0.09  
–0.10  
0.5  
ZERO-CODE ERROR  
OFFSET ERROR  
0
–0.5  
–1.0  
–1.5  
V
= 5V  
= 25°C  
DD  
T
A
V
= 5V  
DD  
INTERNAL REFERENCE = 2.5V  
T
= 25°C  
A
INTERNAL REFERENCE = 2.5V  
10000 20000 30000  
CODE  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
0
40000  
50000  
60000 65535  
SUPPLY VOLTAGE (V)  
Figure 28. Zero-Code Error and Offset Error vs. Supply  
Figure 31. TUE vs. Code  
Rev. 0 | Page 14 of 32  
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
7
6
V
T
= 5V  
V
T
= 5V  
= 25°C  
DD  
= 25°C  
DD  
25  
20  
15  
10  
5
A
A
EXTERNAL  
REFERENCE = 2.5V  
GAIN = 2  
INTERNAL  
REFERENCE = 2.5V  
0xFFFF  
5
4
0xC000  
0x8000  
0x4000  
0x0000  
3
2
1
0
–1  
0
–2  
–0.06  
540  
560  
580  
600  
620  
640  
–0.04  
–0.02  
0
0.02  
0.04  
0.06  
I
(V)  
DD  
LOAD CURRENT (A)  
Figure 32. IDD Histogram with External Reference, 5 V  
Figure 35. Source and Sink Capability at 5 V  
5
4
V
= 5V  
= 25°C  
DD  
V
= 5V  
DD  
30  
T
A
T = 25°C  
A
INTERNAL  
REFERENCE = 2.5V  
EXTERNAL REFERENCE = 2.5V  
GAIN = 1  
25  
20  
15  
10  
5
0xFFFF  
3
0xC000  
0x8000  
2
1
0x4000  
0x0000  
0
–1  
–2  
0
1000  
1020  
1040  
1060  
1080  
1100  
1120  
1140  
–0.06  
–0.04  
–0.02  
0
0.02  
0.04  
0.06  
I
FULLSCALE (V)  
DD  
LOAD CURRENT (A)  
Figure 33. IDD Histogram with Internal Reference, VREFOUT = 2.5 V, Gain = 2  
Figure 36. Source and Sink Capability at 3 V  
1.0  
0.8  
0.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
FULL-SCALE  
ZERO CODE  
0.4  
SINKING 2.7V  
0.2  
SINKING 5V  
0
EXTERNAL REFERENCE, FULL-SCALE  
–0.2  
SOURCING 5V  
–0.4  
–0.6  
–0.8  
–1.0  
SOURCING 2.7V  
15  
–40  
10  
60  
110  
0
5
10  
20  
25  
30  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 34. Headroom/Footroom vs. Load Current  
Figure 37. Supply Current vs. Temperature  
Rev. 0 | Page 15 of 32  
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
2.5008  
2.5003  
2.4998  
2.4993  
2.4988  
4.0  
DAC A  
DAC B  
DAC C  
3.5  
DAC D  
3.0  
2.5  
2.0  
1.5  
1.0  
CHANNEL B  
T
= 25°C  
A
V
= 5.25V  
V
T
= 5V  
= 25°C  
DD  
DD  
INTERNAL REFERENCE  
CODE = 7FFF TO 8000  
ENERGY = 0.227206nV-sec  
0.5  
0
A
INTERNAL REFERENCE = 2.5V  
¼ TO ¾ SCALE  
0
2
4
6
8
10  
12  
10  
20  
40  
80  
160  
320  
TIME (µs)  
TIME (µs)  
Figure 38. Settling Time, 5.25 V  
Figure 41. Digital-to-Analog Glitch Impulse  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
6
0.003  
0.002  
0.001  
0
CH A  
CH B  
CH C  
CH D  
CH B  
CH C  
CH D  
5
V
DD  
4
3
2
1
–0.001  
–0.002  
0
T
= 25°C  
A
INTERNAL REFERENCE = 2.5V  
–0.01  
–1  
15  
–10  
–5  
0
5
10  
0
5
10  
15  
20  
25  
TIME (µs)  
TIME (µs)  
Figure 39. Power-On Reset to 0 V  
Figure 42. Analog Crosstalk, Channel A  
3
2
1
0
CH A  
CH B  
CH C  
CH D  
SYNC  
T
GAIN = 2  
GAIN = 1  
1
V
= 5V  
= 25°C  
DD  
V
= 5V  
DD  
= 25°C  
T
A
T
A
INTERNAL REFERENCE = 2.5V  
EXTERNAL REFERENCE = 2.5V  
–5  
0
5
10  
TIME (µs)  
CH1 10µV M1.0s  
A
CH1  
802mV  
Figure 40. Exiting Power-Down to Midscale  
Figure 43. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
Rev. 0 | Page 16 of 32  
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
0nF  
V
= 5V  
= 25°C  
DD  
0.1nF  
10nF  
0.22nF  
4.7nF  
T
A
T
INTERNAL REFERENCE = 2.5V  
1
V
= 5V  
= 25°C  
DD  
T
A
INTERNAL REFERENCE = 2.5V  
1.590 1.595 1.600 1.605 1.610 1.615 1.620 1.625 1.630  
TIME (ms)  
CH1 10µV M1.0s  
A
CH1  
802mV  
Figure 47. Settling Time vs. Capacitive Load  
Figure 44. 0.1 Hz to 10 Hz Output Noise Plot, 2.5 V Internal Reference  
0
1600  
V
= 5V  
= 25°C  
DD  
FULL-SCALE  
MIDSCALE  
ZERO-SCALE  
T
A
1400  
1200  
1000  
800  
600  
400  
200  
0
–10  
INTERNAL REFERENCE = 2.5V  
–20  
–30  
–40  
–50  
–60  
V
T
= 5V  
= 25°C  
DD  
A
EXTERNAL REFERENCE = 2.5V, ±0.1V p-p  
10k 100k 1M  
FREQUENCY (Hz)  
10M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 48. Multiplying Bandwidth, External Reference = 2.5 V, 0.1 V p-p,  
10 kHz to 10 MHz  
Figure 45. Noise Spectral Density  
20  
0
V
= 5V  
= 25°C  
DD  
T
A
INTERNAL REFERENCE = 2.5V  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000  
FREQUENCY (Hz)  
Figure 46. Total Harmonic Distortion @ 1 kHz  
Rev. 0 | Page 17 of 32  
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a  
straight line passing through the endpoints of the DAC transfer  
function. A typical INL vs. code plot is shown in Figure 16.  
Output Voltage Settling Time  
This is the amount of time it takes for the output of a DAC to  
settle to a specified level for a ¼ to ¾ full-scale input change  
and is measured from the rising edge of SYNC.  
Digital-to-Analog Glitch Impulse  
Differential Nonlinearity (DNL)  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec,  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000) (see  
Figure 41).  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic by  
design. A typical DNL vs. code plot can be seen in Figure 19.  
Zero-Code Error  
Digital Feedthrough  
Zero-code error is a measurement of the output error when  
zero code (0x0000) is loaded to the DAC register. Ideally, the  
output should be 0 V. The zero-code error is always positive in  
the AD5686R because the output of the DAC cannot go below  
0 V due to a combination of the offset errors in the DAC and  
the output amplifier. Zero-code error is expressed in mV. A plot  
of zero-code error vs. temperature can be seen in Figure 26.  
Digital feedthrough is a measure of the impulse injected into the  
analog output of the DAC from the digital inputs of the DAC,  
but is measured when the DAC output is not updated. It is  
specified in nV-sec, and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s and vice versa.  
Reference Feedthrough  
Reference feedthrough is the ratio of the amplitude of the signal  
at the DAC output to the reference input when the DAC output  
is not being updated. It is expressed in dB.  
Full-Scale Error  
Full-scale error is a measurement of the output error when full-  
scale code (0xFFFF) is loaded to the DAC register. Ideally, the  
output should be VDD − 1 LSB. Full-scale error is expressed in  
percent of full-scale range (% of FSR). A plot of full-scale error  
vs. temperature can be seen in Figure 25.  
Noise Spectral Density  
This is a measurement of the internally generated random  
noise. Random noise is characterized as a spectral density  
(nV/√Hz). It is measured by loading the DAC to midscale and  
measuring noise at the output. It is measured in nV/√Hz. A plot  
of noise spectral density is shown in Figure 45.  
Gain Error  
This is a measure of the span error of the DAC. It is the deviation  
in slope of the DAC transfer characteristic from the ideal  
expressed as % of FSR.  
DC Crosstalk  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is  
measured with a full-scale output change on one DAC (or soft  
power-down and power-up) while monitoring another DAC kept  
at midscale. It is expressed in μV.  
Offset Error Drift  
This is a measurement of the change in offset error with a  
change in temperature. It is expressed in µV/°C.  
Gain Temperature Coefficient  
This is a measurement of the change in gain error with changes  
in temperature. It is expressed in ppm of FSR/°C.  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has to  
another DAC kept at midscale. It is expressed in μV/mA.  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function. Offset error is measured on the AD5686R  
with Code 512 loaded in the DAC register. It can be negative  
or positive.  
Digital Crosstalk  
This is the glitch impulse transferred to the output of one DAC  
at midscale in response to a full-scale code change (all 0s to all  
1s and vice versa) in the input register of another DAC. It is  
measured in standalone mode and is expressed in nV-sec.  
DC Power Supply Rejection Ratio (PSRR)  
This indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
a change in VDD for full-scale output of the DAC. It is measured  
in mV/V. VREF is held at 2 V, and VDD is varied by 10%.  
Rev. 0 | Page 18 of 32  
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
Analog Crosstalk  
Total Harmonic Distortion (THD)  
This is the glitch impulse transferred to the output of one DAC  
due to a change in the output of another DAC. It is measured by  
loading one of the input registers with a full-scale code change  
(all 0s to all 1s and vice versa). Then execute a software LDAC  
and monitor the output of the DAC whose digital code was not  
changed. The area of the glitch is expressed in nV-sec.  
This is the difference between an ideal sine wave and its  
attenuated version using the DAC. The sine wave is used as the  
reference for the DAC, and the THD is a measurement of the  
harmonics present on the DAC output. It is measured in dB.  
Voltage Reference TC  
Voltage reference TC is a measure of the change in the reference  
output voltage with a change in temperature. The reference TC  
is calculated using the box method, which defines the TC as the  
maximum change in the reference output over a given tempera-  
ture range expressed in ppm/°C, as follows;  
DAC-to-DAC Crosstalk  
This is the glitch impulse transferred to the output of one DAC  
due to a digital code change and subsequent analog output  
change of another DAC. It is measured by loading the attack  
channel with a full-scale code change (all 0s to all 1s and vice  
versa), using the write to and update commands while monitor-  
ing the output of the victim channel that is at midscale. The  
energy of the glitch is expressed in nV-sec.  
V
REFmax VREFmin  
TC =  
×106  
V
×TempRange  
REFnom  
where:  
REFmax is the maximum reference output measured over the  
total temperature range.  
REFmin is the minimum reference output measured over the total  
temperature range.  
REFnom is the nominal reference output voltage, 2.5 V.  
Multiplying Bandwidth  
V
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The multiplying bandwidth is the frequency at  
which the output amplitude falls to 3 dB below the input.  
V
V
TempRange is the specified temperature range of −40°C to  
+105°C.  
Rev. 0 | Page 19 of 32  
AD5686R/AD5685R/AD5684R  
Data Sheet  
THEORY OF OPERATION  
V
REF  
DIGITAL-TO-ANALOG CONVERTER  
The AD5686R/AD5685R/AD5684R are quad 16-/14-/12-bit,  
serial input, voltage output DACs with an internal reference.  
The parts operate from supply voltages of 2.7 V to 5.5 V. Data is  
written to the AD5686R/AD5685R/AD5684R in a 24-bit word  
format via a 3-wire serial interface. The AD5686R/AD5685R/  
AD5684R incorporate a power-on reset circuit to ensure that the  
DAC output powers up to a known output state. The devices also  
have a software power-down mode that reduces the typical  
current consumption to typically 4 µA.  
R
R
R
TO OUTPUT  
AMPLIFIER  
TRANSFER FUNCTION  
R
R
The internal reference is on by default. To use an external  
reference, only a nonreference option is available. Because the  
input coding to the DAC is straight binary, the ideal output  
voltage when using an external reference is given by  
Figure 50. Resistor String Structure  
D
2
VOUT =VREF ×Gain  
N
Internal Reference  
The AD5686R/AD5685R/AD5684R on-chip reference is on at  
power-up but can be disabled via a write to a control register.  
See the Internal Reference Setup section for details.  
where:  
D is the decimal equivalent of the binary code that is loaded to  
the DAC register as follows:  
0 to 4,095 for the 12-bit device.  
0 to 16,383 for the 14-bit device.  
0 to 65,535 for the 16-bit device.  
The AD5686R/AD5685R/AD5684R have a 2.5 V, 2 ppm/°C  
reference, giving a full-scale output of 2.5 V or 5 V, depending  
on the state of the GAIN pin. The internal reference associated  
with the device is available at the VREF pin. This buffered  
reference is capable of driving external loads of up to 10 mA.  
N is the DAC resolution.  
Gain is the gain of the output amplifier and is set to 1 by default.  
This can be set to ×1 or ×2 using the gain select pin. When this  
pin is tied to GND, all four DAC outputs have a span from 0 V  
to VREF. If this pin is tied to VDD, all four DACs output a span of  
Output Amplifiers  
The output buffer amplifier can generate rail-to-rail voltages on  
its output, which gives an output range of 0 V to VDD. The actual  
range depends on the value of VREF, the GAIN pin, offset error,  
and gain error. The GAIN pin selects the gain of the output.  
0 V to 2 × VREF  
.
DAC ARCHITECTURE  
The DAC architecture consists of a string DAC followed by an  
output amplifier. Figure 49 shows a block diagram of the DAC  
architecture.  
If this pin is tied to GND, all four outputs have a gain of 1  
and the output range is 0 V to VREF  
If this pin is tied to VLOGIC, all four outputs have a gain of 2  
and the output range is 0 V to 2 × VREF  
.
V
REF  
.
2.5V  
REF  
These amplifiers are capable of driving a load of 1 kΩ in parallel  
with 2 nF to GND. The slew rate is 0.8 V/µs with a ¼ to ¾ scale  
settling time of 5 µs.  
REF (+)  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
X
OUT  
REF (–)  
GAIN  
(GAIN = 1 OR 2)  
GND  
Figure 49. Single DAC Channel Architecture Block Diagram  
The resistor string structure is shown in Figure 50. It is a string  
of resistors, each of Value R. The code loaded to the DAC register  
determines the node on the string where the voltage is to be  
tapped off and fed into the output amplifier. The voltage is  
tapped off by closing one of the switches connecting the  
string to the amplifier. Because it is a string of resistors, it is  
guaranteed monotonic.  
Rev. 0 | Page 20 of 32  
 
 
 
 
 
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
Table 7. Command Definitions  
SERIAL INTERFACE  
Command  
The AD5686R/AD5685R/AD5684R have a 3-wire serial  
C3  
0
0
C2 C1 C0 Description  
SYNC  
interface (  
, SCLK, and SDIN) that is compatible with  
0
0
0
0
0
1
0
1
0
No operation  
SPI, QSPI, and MICROWIRE interface standards as well as  
most DSPs. See Figure 2 for a timing diagram of a typical  
write sequence. The AD5686R/AD5685R/AD5684R contain  
an SDO pin to allow the user to daisy-chain multiple devices  
together (see the Daisy-Chain Operation section) or for  
readback.  
LDAC  
)
Write to Input Register n (dependent on  
0
Update DAC Register n with contents of Input  
Register n  
0
0
0
0
0
1
1
1
1
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
Write to and update DAC Channel n  
Power down/power up DAC  
LDAC  
Hardware  
mask register  
Software reset (power-on reset)  
Internal reference setup register  
Set up DCEN register (daisy-chain enable)  
Set up readback register (readback enable)  
Reserved  
Input Shift Register  
The input shift register of the AD5686R/AD5685R/AD5684R is  
24 bits wide. Data is loaded MSB first (DB23) and the first four  
bits are the command bits, C3 to C0 (see Table 7), followed by  
the 4-bit DAC address bits, DAC A, DAC B, DAC C, DAC D  
(see Table 8), and finally the bit data-word.  
Reserved  
Reserved  
The data-word comprises 16-bit, 14-bit, or 12-bit input code,  
followed by zero, two or four don’t care bits for the AD5686R,  
AD5685R, and AD5684R, respectively (see Figure 51, Figure 52,  
and Figure 53). These data bits are transferred to the input  
register on the 24 falling edges of SCLK and are updated on the  
Table 8. Address Commands  
Address (n)  
DAC D DAC C DAC B DAC A Selected DAC Channel1  
0
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
1
1
0
0
0
1
1
DAC A  
DAC B  
DAC C  
DAC D  
DAC A and DAC B  
All DACs  
SYNC  
rising edge of  
.
Commands can be executed on individual DAC channels,  
combined DAC channels, or on all DACs, depending on the  
address bits selected.  
1 Any combination of DAC channels can be selected using the address bits.  
DB23 (MSB)  
DB0 (LSB)  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
DAC DAC DAC DAC  
C3 C2 C1 C0  
D
C
B
A
COMMAND BITS  
ADDRESS BITS  
Figure 51. AD5686R Input Shift Register Content  
DB23 (MSB)  
DB0 (LSB)  
DAC DAC DAC DAC  
C3 C2 C1 C0  
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
X
X
D
C
B
A
COMMAND BITS  
ADDRESS BITS  
Figure 52. AD5685R Input Shift Register Content  
DB23 (MSB)  
DB0 (LSB)  
DAC DAC DAC DAC  
C3 C2 C1 C0  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
X
X
X
X
D
C
B
A
COMMAND BITS  
ADDRESS BITS  
Figure 53. AD5684R Input Shift Register Content  
Rev. 0 | Page 21 of 32  
 
 
 
 
 
 
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
STANDALONE OPERATION  
WRITE AND UPDATE COMMANDS  
Write to Input Register n (Dependent on  
)
LDAC  
SYNC  
The write sequence begins by bringing the  
line low. Data  
from the SDIN line is clocked into the 24-bit input shift register  
on the falling edge of SCLK. After the last of 24 data bits is  
Command 0001 allows the user to write to each DACs  
LDAC  
dedicated input register individually. When  
the input register is transparent (if not controlled by the  
LDAC  
is low,  
SYNC  
clocked in,  
function is then executed, that is, an  
in DAC register contents and/or a change in the mode of  
should be brought high. The programmed  
LDAC  
-dependent change  
mask register).  
Update DAC Register n with Contents of Input Register n  
th  
SYNC  
operation. If  
it is considered a valid frame and invalid data may be loaded to  
SYNC  
is taken high at a clock before the 24 clock,  
Command 0010 loads the DAC registers/outputs with the  
contents of the input registers selected and updates the DAC  
outputs directly.  
the DAC.  
20 ns (single channel, see t8 in Figure 2) before the next write  
SYNC  
must be brought high for a minimum of  
Write to and Update DAC Channel n (Independent of  
sequence so that a falling edge of  
can initiate the next  
should be idled at rails between write  
sequences for even lower power operation of the part.  
SYNC  
)
LDAC  
SYNC  
write sequence.  
Command 0011 allows the user to write to the DAC registers  
and update the DAC outputs directly.  
The  
line is kept low for 24 falling edges of SCLK, and the  
SYNC  
DAC is updated on the rising edge of  
.
When the data has been transferred into the input register of  
the addressed DAC, all DAC registers and outputs can be  
LDAC  
SYNC  
updated by taking  
low while the  
line is high.  
Rev. 0 | Page 22 of 32  
 
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
SYNC  
DAC. When the serial transfer to all devices is complete,  
DAISY-CHAIN OPERATION  
is taken high. This latches the input data in each device in the  
daisy chain and prevents any further data from being clocked  
into the input shift register. The serial clock can be continuous or  
a gated clock. A continuous SCLK source can be used only  
For systems that contain several DACs, the SDO pin can be  
used to daisy-chain several devices together and is enabled  
through a software executable daisy-chain enable (DCEN)  
command. Command 1000 is reserved for this DCEN function  
(see Table 7). The daisy-chain mode is enabled by setting  
Bit DB0 in the DCEN register. The default setting is standalone  
mode, where DB0 = 0. Table 9 shows how the state of the bit  
corresponds to the mode of operation of the device.  
SYNC  
if  
can be held low for the correct number of clock cycles.  
In gated clock mode, a burst clock containing the exact number  
SYNC  
of clock cycles must be used, and  
the final clock to latch the data.  
must be taken high after  
READBACK OPERATION  
Table 9. Daisy-Chain Enable (DCEN) Register  
Readback mode is invoked through a software executable  
readback command. If the SDO output is disabled via the daisy-  
chain mode disable bit in the control register, it is automatically  
enabled for the duration of the read operation, after which it is  
disabled again. Command 1001 is reserved for the readback  
function. This command, in association with selecting one of  
address bits, DAC A to DAC D, selects the register to read. Note  
that only one DAC register can be selected during readback.  
The remaining three address bits must be set to Logic 0. The  
remaining data bits in the write sequence are don’t care bits. If  
more than one or no bits are selected, DAC Channel A is read  
back by default. During the next SPI write, the data appearing  
on the SDO output contains the data from the previously  
addressed register.  
DB0  
Description  
0
1
Standalone mode (default)  
DCEN mode  
AD5686R/  
AD5685R/  
AD5684R  
68HC11*  
SDIN  
MOSI  
SCK  
PC7  
SCLK  
SYNC  
LDAC  
PC6  
SDO  
MISO  
SDIN  
AD5686R/  
AD5685R/  
AD5684R  
For example, to read back the DAC register for Channel A, the  
following sequence should be implemented:  
SCLK  
SYNC  
LDAC  
1. Write 0x900000 to the AD5686R/AD5685R/AD5684R  
input register. This configures the part for read mode with  
the DAC register of Channel A selected. Note that all data  
bits, DB15 to DB0, are don’t care bits.  
SDO  
2. Follow this with a second write, a NOP condition,  
0x000000. During this write, the data from the register is  
clocked out on the SDO line. DB23 to DB20 contain  
undefined data, and the last 16 bits contain the DB19 to  
DB4 DAC register contents.  
SDIN  
AD5686R/  
AD5685R/  
AD5684R  
SCLK  
SYNC  
LDAC  
SDO  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 54. Daisy-Chaining the AD5686R/AD5685R/AD5684R  
The SCLK pin is continuously applied to the input shift register  
SYNC  
when  
is low. If more than 24 clock pulses are applied, the  
data ripples out of the input shift register and appears on the  
SDO line. This data is clocked out on the rising edge of SCLK  
and is valid on the falling edge. By connecting this line to the  
SDIN input on the next DAC in the chain, a daisy-chain interface  
is constructed. Each DAC in the system requires 24 clock pulses.  
Therefore, the total number of clock cycles must equal 24 × N,  
where N is the total number of devices that are updated.  
SYNC  
If  
is taken high at a clock that is not a multiple of 24, it is  
considered a valid frame and invalid data may be loaded to the  
Rev. 0 | Page 23 of 32  
 
 
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
output stage is also internally switched from the output of the  
amplifier to a resistor network of known values. This has the  
advantage that the output impedance of the part is known while  
the part is in power-down mode. There are three different  
power-down options. The output is connected internally to  
GND through either a 1 kΩ or a 100 kΩ resistor, or it is left  
open-circuited (three-state). The output stage is illustrated in  
Figure 55.  
POWER-DOWN OPERATION  
The AD5686R/AD5685R/AD5684R contain three separate  
power-down modes. Command 0100 is designated for the power-  
down function (see Table 7). These power-down modes are  
software-programmable by setting eight bits, Bit DB7 to Bit DB0,  
in the input shift register. There are two bits associated with each  
DAC channel. Table 10 shows how the state of the two bits  
corresponds to the mode of operation of the device.  
Table 10. Modes of Operation  
AMPLIFIER  
V
X
DAC  
OUT  
Operating Mode  
Normal Operation  
Power-Down Modes  
1 kΩ to GND  
100 kΩ to GND  
Three-State  
PDx1  
PDx0  
0
0
0
1
1
1
0
1
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Figure 55. Output Stage During Power-Down  
Any or all DACs (DAC A to DAC D) can be powered down to  
the selected mode by setting the corresponding bits. See  
Table 11 for the contents of the input shift register during the  
power-down/power-up operation.  
The bias generator, output amplifier, resistor string, and other  
associated linear circuitry are shut down when the power-down  
mode is activated. However, the contents of the DAC register  
are unaffected when in power-down. The DAC register can be  
updated while the device is in power-down mode. The time  
required to exit power-down is typically 4.5 µs for VDD = 5 V.  
When both Bit PDx1 and Bit PDx0 (where x is the channel  
selected) in the input shift register are set to 0, the parts work  
normally with its normal power consumption of 4 mA at 5 V.  
However, for the three power-down modes, the supply current  
falls to 4 μA at 5 V. Not only does the supply current fall, but the  
To reduce the current consumption further, the on-chip reference  
can be powered off. See the Internal Reference Setup section.  
Table 11. 24-Bit Input Shift Register Contents of Power-Down/Power-Up Operation1  
DB15  
to  
DB8  
DB0  
(LSB)  
DB23 DB22  
DB21  
DB20  
DB19 to DB16  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
0
1
0
0
X
X
PDD1  
PDD0  
PDC1  
PDC0  
PDB1  
PDB0 PDA1  
PDA0  
Command bits (C3 to C0)  
Address bits  
Don’t care  
Power-Down  
Select DAC D  
Power-Down  
Select DAC C  
Power-Down  
Select DAC B  
Power-Down  
Select DAC A  
1 X = don’t care.  
Rev. 0 | Page 24 of 32  
 
 
 
 
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
LOAD DAC (HARDWARE LDAC PIN)  
LDAC MASK REGISTER  
The AD5686R/AD5685R/AD5684R DACs have double  
buffered interfaces consisting of two banks of registers:  
input registers and DAC registers. The user can write to  
any combination of the input registers. Updates to the DAC  
LDAC  
function.  
Command 0101 is reserved for this software  
Address bits are ignored. Writing to the DAC, using Command  
LDAC  
0101, loads the 4-bit  
for each channel is 0; that is, the  
Setting the bits to 1 forces this DAC channel to ignore transitions  
LDAC LDAC  
register (DB3 to DB0). The default  
LDAC  
pin works normally.  
LDAC  
register are controlled by the  
pin.  
OUTPUT  
AMPLIFIER  
on the  
pin. This flexibility is useful in applications where the user  
LDAC  
pin, regardless of the state of the hardware  
V
16-/14-/12-BIT  
REF  
V
X
OUT  
DAC  
wishes to select which channels respond to the  
LDAC  
pin.  
Table 12.  
Load LDAC Register  
LDAC Bits  
Overwrite Definition  
DAC  
REGISTER  
LDAC  
LDAC Pin LDAC Operation  
(DB3 to DB0)  
INPUT  
REGISTER  
0
1
1 or 0  
X1  
Determined by the LDAC pin.  
DAC channels update and  
override the LDAC pin. DAC  
channels see LDAC as 1.  
SCLK  
SYNC  
SDIN  
INTERFACE  
LOGIC  
SDO  
1 X = don’t care.  
Figure 56. Simplified Diagram of Input Loading Circuitry for a Single DAC  
LDAC  
The  
over the hardware  
bits (DB0 to DB3) to 0 for a DAC channel means that this  
LDAC  
register gives the user extra flexibility and control  
LDAC  
Instantaneous DAC Updating (  
Held Low)  
is held low while data is clocked into the input register  
using Command 0001. Both the addressed input register and  
LDAC LDAC  
pin (see Table 12). Setting the  
LDAC  
channel’s update is controlled by the hardware  
pin.  
SYNC  
the DAC register are updated on the rising edge of  
the output begins to change (see Table 13).  
and  
LDAC  
Deferred DAC Updating (  
is Pulsed Low)  
is held high while data is clocked into the input register  
using Command 0001. All DAC outputs are asynchronously  
LDAC SYNC  
LDAC  
updated by taking  
The update now occurs on the falling edge of  
low after  
has been taken high.  
LDAC  
.
1
LDAC  
Table 13. Write Commands and  
Pin Truth Table  
Hardware LDAC  
Pin State  
Input Register  
Contents  
Commands Description  
DAC Register Contents  
No change (no update)  
Data update  
0001  
Write to Input Register n (dependent on LDAC)  
VLOGIC  
GND2  
Data update  
Data update  
No change  
0010  
Update DAC Register n with contents of Input  
Register n  
VLOGIC  
Updated with input register  
contents  
GND  
No change  
Updated with input register  
contents  
0011  
Write to and update DAC Channel n  
VLOGIC  
GND  
Data update  
Data update  
Data update  
Data update  
1
LDAC  
A high to low hardware  
pin transition always updates the contents of the contents of the DAC register with the contents of the input register on channels that  
LDAC  
are not masked (blocked) by the  
mask register.  
2 When LDAC is permanently tied low, the LDAC mask bits are ignored.  
Rev. 0 | Page 25 of 32  
 
 
 
 
 
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
HARDWARE RESET (  
)
RESET  
SOLDER HEAT REFLOW  
RESET  
is an active low reset that allows the outputs to be  
cleared to either zero scale or midscale. The clear code value is  
RESET  
As with all IC reference voltage circuits, the reference value  
experiences a shift induced by the soldering process. Analog  
Devices, Inc., performs a reliability test called precondition to  
mimic the effect of soldering a device to a board. The output  
voltage specification quoted previously includes the effect of  
this reliability test.  
user selectable via the  
RESET  
operation (see Figure 2). When the  
high, the output remains at the cleared value until a new value is  
programmed. The outputs cannot be updated with a new value  
select pin. It is necessary to keep  
low for a minimum amount of time to complete the  
RESET  
signal is returned  
Figure 57 shows the effect of solder heat reflow (SHR) as  
measured through the reliability test (precondition).  
RESET  
while the  
pin is low. There is also a software executable  
reset function that resets the DAC to the power-on reset code.  
Command 0110 is designated for this software reset function  
POSTSOLDER  
HEAT REFLOW  
60  
50  
40  
30  
20  
10  
0
LDAC RESET  
(see Table 7). Any events on  
reset are ignored.  
or  
during power-on  
PRESOLDER  
HEAT REFLOW  
RESET SELECT PIN (RSTSEL)  
The AD5686R/AD5685R/AD5684R contain a power-on reset  
circuit that controls the output voltage during power-up. By  
connecting the RSTSEL pin low, the output powers up to zero  
scale. Note that this is outside the linear region of the DAC; by  
connecting the RSTSEL pin high, VOUT powers up to midscale.  
The output remains powered up at this level until a valid write  
sequence is made to the DAC.  
2.498  
2.499  
2.500  
(V)  
2.501  
2.502  
V
REF  
INTERNAL REFERENCE SETUP  
Figure 57. SHR Reference Voltage Shift  
The on-chip reference is on at power-up by default. To reduce the  
supply current, this reference can be turned off by setting  
software programmable bit, DB0, in the control register.  
Table 14 shows how the state of the bit corresponds to the mode  
of operation. Command 0111 is reserved for setting up the  
internal reference (see Figure 9). Table 14 shows how the state  
of the bits in the input shift register corresponds to the mode of  
operation of the device during internal reference setup.  
LONG-TERM TEMPERATURE DRIFT  
Figure 58 shows the change in VREF value after 1000 hours in life  
test at 150°C.  
0 HOUR  
168 HOURS  
500 HOURS  
1000 HOURS  
60  
50  
40  
30  
20  
10  
0
Table 14. Reference Setup Register  
Internal Reference  
Setup Register (DB0) Action  
0
1
Reference on (default)  
Reference off  
2.498  
2.499  
2.500  
(V)  
2.501  
2.502  
V
REF  
Figure 58. Reference Drift Through to 1000 Hours  
Rev. 0 | Page 26 of 32  
 
 
 
 
 
 
 
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
9
8
7
6
5
4
3
2
1
THERMAL HYSTERESIS  
FIRST TEMPERATURE SWEEP  
SUBSEQUENT TEMPERATURE SWEEPS  
Thermal hysteresis is the voltage difference induced on the  
reference voltage by sweeping the temperature from ambient  
to cold, to hot, and then back to ambient.  
Thermal hysteresis data is shown in Figure 59. It is measured  
by sweeping the temperature from ambient to −40°C, then  
to +105°C, and returning to ambient. The VREF delta is then  
measured between the two ambient measurements and  
shown in blue in Figure 59. The same temperature sweep  
and measurements were immediately repeated and the  
results are shown in red in Figure 59.  
0
–200  
–150  
–100  
–50  
0
50  
DISTORTION (ppm)  
Figure 59. Thermal Hysteresis  
Table 15. 24-Bit Input Shift Register Contents for Internal Reference Setup Command1  
DB23  
(MSB)  
DB22 DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB1  
X
DB0 (LSB)  
0
1
1
1
X
X
X
X
1/0  
Command bits (C3 to C0)  
Address bits (A2 to A0)  
Don’t care  
Reference setup register  
1 X = don’t care.  
Rev. 0 | Page 27 of 32  
 
 
 
AD5686R/AD5685R/AD5684R  
Data Sheet  
APPLICATIONS INFORMATION  
MICROPROCESSOR INTERFACING  
LAYOUT GUIDELINES  
Microprocessor interfacing to the AD5686R/AD5685R/  
AD5684R is via a serial bus that uses a standard protocol that  
is compatible with DSP processors and microcontrollers.  
The communications channel requires a 3- or 4-wire interface  
consisting of a clock signal, a data signal, and a synchronization  
signal. The devices require a 24-bit data-word with data valid  
In any circuit where accuracy is important, careful consider-  
ation of the power supply and ground return layout helps to  
ensure the rated performance. The PCB on which the AD5686R/  
AD5685R/AD5684R are mounted should be designed so that  
the AD5686R/AD5685R/AD5684R lie on the analog plane.  
The AD5686R/AD5685R/AD5684R should have ample  
supply bypassing of 10 µF in parallel with 0.1 µF on each  
supply, located as close to the package as possible, ideally right  
up against the device. The 10 µF capacitors are the tantalum  
bead type. The 0.1 µF capacitor should have low effective series  
resistance (ESR) and low effective series inductance (ESI) such  
as the common ceramic types, which provide a low impedance  
path to ground at high frequencies to handle transient currents  
due to internal logic switching.  
SYNC  
on the rising edge of  
.
AD5686R/AD5685R/AD5684R TO ADSP-BF531  
INTERFACE  
The SPI interface of the AD5686R/AD5685R/AD5684R is  
designed to be easily connected to industry-standard DSPs and  
microcontrollers. Figure 60 shows the AD5686R/AD5685R/  
AD5684R connected to the Analog Devices Blackfin® DSP. The  
Blackfin has an integrated SPI port that can be connected  
directly to the SPI pins of the AD5686R/AD5685R/AD5684R.  
In systems where there are many devices on one board, it is  
often useful to provide some heat sinking capability to allow  
the power to dissipate easily.  
AD5686R/  
AD5685R/  
AD5684R  
The AD5686R/AD5685R/AD5684R have an exposed paddle  
beneath the device. Connect this paddle to the GND supply for  
the part. For optimum performance, use special considerations  
to design the motherboard and to mount the package. For  
enhanced thermal, electrical, and board level performance,  
solder the exposed paddle on the bottom of the package to the  
corresponding thermal land paddle on the PCB. Design thermal  
vias into the PCB land paddle area to further improve heat  
dissipation.  
ADSP-BF531  
SPISELx  
SCK  
SYNC  
SCLK  
SDIN  
MOSI  
PF9  
PF8  
LDAC  
RESET  
Figure 60. ADSP-BF531 Interface  
AD5686R/AD5685R/AD5684R TO SPORT  
INTERFACE  
The GND plane on the device can be increased (as shown in  
Figure 62) to provide a natural heat sinking effect.  
The Analog Devices ADSP-BF527 has one SPORT serial port.  
Figure 61 shows how one SPORT interface can be used to  
control the AD5686R/AD5685R/AD5684R.  
AD5686R/  
AD5685R/  
AD5684R  
AD5686R/  
AD5685R/  
AD5684R  
ADSP-BF527  
GND  
PLANE  
SPORT_TFS  
SPORT_TSCK  
SPORT_DTO  
SYNC  
SCLK  
SDIN  
BOARD  
GPIO0  
GPIO1  
LDAC  
RESET  
Figure 62. Paddle Connection to Board  
Figure 61. SPORT Interface  
Rev. 0 | Page 28 of 32  
 
 
 
 
 
 
 
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
ADuM14001  
CONTROLLER  
GALVANICALLY ISOLATED INTERFACE  
V
V
V
V
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
TO  
SERIAL  
In many process control applications, it is necessary to  
provide an isolation barrier between the controller and  
the unit being controlled to protect and isolate the controlling  
circuitry from any hazardous common-mode voltages that  
may occur. iCoupler® products from Analog Devices provide  
voltage isolation in excess of 2.5 kV. The serial loading struc-  
ture of the AD5686R/AD5685R/AD5684R makes the part  
ideal for isolated interfaces because the number of interface  
lines is kept to a minimum. Figure 63 shows a 4-channel  
isolated interface to the AD5686R/AD5685R/AD5684R  
using an ADuM1400. For further information, visit  
http://www.analog.com/icouplers.  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
SCLK  
CLOCK IN  
TO  
SDIN  
SERIAL  
DATA OUT  
TO  
SYNC  
SYNC OUT  
LOAD DAC  
OUT  
TO  
LDAC  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 63. Isolated Interface  
Rev. 0 | Page 29 of 32  
 
 
AD5686R/AD5685R/AD5684R  
OUTLINE DIMENSIONS  
Data Sheet  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.75  
1.60 SQ  
1.45  
9
8
5
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 64. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3 mm × 3 mm Body, Very Very Thin Quad  
(CP-16-22)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 65. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Rev. 0 | Page 30 of 32  
 
Data Sheet  
AD5686R/AD5685R/AD5684R  
ORDERING GUIDE  
Reference  
Tempco  
(ppm/°C)  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model1  
Resolution  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
14 Bits  
14 Bits  
14 Bits  
14 Bits  
14 Bits  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
Accuracy  
8 LSB INL  
2 LSB INL  
8 LSB INL  
8 LSB INL  
2 LSB INL  
2 LSB INL  
1 LSB INL  
4 LSB INL  
4 LSB INL  
1 LSB INL  
1 LSB INL  
1 LSB INL  
2 LSB INL  
2 LSB INL  
1 LSB INL  
1 LSB INL  
Branding  
DJM  
DJN  
AD5686RACPZ-RL7  
AD5686RBCPZ-RL7  
AD5686RARUZ  
AD5686RARUZ-RL7  
AD5686RBRUZ  
AD5686RBRUZ-RL7  
AD5685RBCPZ-RL7  
AD5685RARUZ  
AD5685RARUZ-RL7  
AD5685RBRUZ  
AD5685RBRUZ-RL7  
AD5684RBCPZ-RL7  
AD5684RARUZ  
AD5684RARUZ-RL7  
AD5684RBRUZ  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
5 (typ)  
5 (max)  
5 (typ)  
5 (typ)  
5 (max)  
5 (max)  
5 (max)  
5 (typ)  
5 (typ)  
5 (max)  
5 (max)  
5 (max)  
5 (typ)  
5 (typ)  
5 (max)  
5 (max)  
16-Lead LFCSP_WQ CP-16-22  
16-Lead LFCSP_WQ CP-16-22  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
RU-16  
RU-16  
RU-16  
RU-16  
16-Lead LFCSP_WQ CP-16-22  
DJK  
DJG  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
RU-16  
RU-16  
RU-16  
RU-16  
16-Lead LFCSP_WQ CP-16-22  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
RU-16  
RU-16  
RU-16  
RU-16  
AD5684RBRUZ-RL7  
EVAL-AD5686RSDZ  
AD5686R TSSOP  
Evaluation Board  
EVAL-AD5684RSDZ  
AD5684R TSSOP  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 31 of 32  
 
 
AD5686R/AD5685R/AD5684R  
NOTES  
Data Sheet  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10485-0-4/12(0)  
Rev. 0 | Page 32 of 32  

相关型号:

AD5684RBRUZ

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5684RBRUZ-RL7

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5685R

Quad 16-/14-/12-Bit nanoDAC
ADI

AD5685RARUZ

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5685RARUZ-RL7

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5685RBCPZ-RL7

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5685RBRUZ

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5685RBRUZ-RL7

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5686

Full-featured evaluation board
ADI

AD5686ACPZ-RL7

Quad, 16-Bit nanoDAC+ with SPI Interface
ADI

AD5686ARUZ

Quad, 16-Bit nanoDAC+ with SPI Interface
ADI

AD5686ARUZ-RL7

Quad, 16-Bit nanoDAC+ with SPI Interface
ADI