AD5700BCPZ-R5 [ADI]

Low Power HART Modem; 低功耗HART调制解调器
AD5700BCPZ-R5
型号: AD5700BCPZ-R5
厂家: ADI    ADI
描述:

Low Power HART Modem
低功耗HART调制解调器

调制解调器 模拟IC 信号电路 PC
文件: 总20页 (文件大小:490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power HART Modem  
AD5700/AD5700-1  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
HART-compliant fully integrated FSK modem  
1200 Hz and 2200 Hz sinusoidal shift frequencies  
115 μA maximum supply current in receive mode  
Suitable for intrinsically safe applications  
Integrated receive band-pass filter  
Minimal external components required  
Clocking optimized for various system configurations  
Ultralow power crystal oscillator (60 μA maximum)  
External CMOS clock source  
Precision internal oscillator (AD5700-1 only)  
Buffered HART output—extra drive capability  
8 kV HBM ESD rating  
2 V to 5.5 V power supply  
1.71 V to 5.5 V interface  
The AD5700/AD5700-1 are single-chip solutions, designed  
and specified to operate as a HART® FSK half-duplex modem,  
complying with the HART physical layer requirements. The  
AD5700/AD5700-1 integrate all of the necessary filtering, signal  
detection, modulating, demodulating and signal generation  
functions, thus requiring few external components. The 0.5%  
precision internal oscillator on the AD5700-1 greatly reduces  
the board space requirements, making it ideal for line-powered  
applications in both master and slave configurations. The maxi-  
mum supply current consumption is 115 μA, making the AD5700/  
AD5700-1 an optimal choice for low power loop-powered applica-  
tions. Transmit waveforms are phase continuous 1200 Hz and  
2200 Hz sinusoids. The AD5700/AD5700-1 contain accurate  
carrier detect circuitry and use a standard UART interface.  
−40°C to +125°C operation  
4 mm × 4 mm LFCSP package  
HART physical layer compliant  
UART interface  
Table 1. Related Products  
Part No.  
Description  
AD5755-1  
Quad-channel, 16-bit, serial input, 4 mA to 20 mA and  
voltage output DAC, dynamic power control, HART  
connectivity  
APPLICATIONS  
Field transmitters  
AD5421  
16-bit, serial input, loop powered, 4 mA to 20 mA DAC  
AD5410/  
AD5420  
AD5412/  
AD5422  
Single-channel, 12-bit/16-bit, serial input, 4 mA to 20 mA  
current source DACs  
Single-channel, 12-bit/16-bit, serial input, current  
source and voltage output DACs  
HART multiplexers  
PLC and DCS analog I/O modules  
HART network connectivity  
FUNCTIONAL BLOCK DIAGRAM  
CLKOUT XTAL1 XTAL2 XTAL_EN  
V
REG_CAP  
CC  
IOV  
CC  
OSC  
AD5700/AD5700-1  
DUPLEX  
CD  
BUFFER  
FSK  
DAC  
HART_OUT  
MODULATOR  
RXD  
TXD  
RTS  
ADC_IP  
BAND-PASS  
FILTER AND  
BIASING  
FSK  
DEMODULATOR  
ADC  
HART_IN  
CLK_CFG0  
CLK_CFG1  
VOLTAGE  
REFERENCE  
RESET  
DGND  
REF REF_EN  
AGND  
FILTER_SEL  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD5700/AD5700-1  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 13  
FSK Modulator ........................................................................... 13  
Connecting to HART_OUT ..................................................... 14  
FSK Demodulator ...................................................................... 14  
Connecting to HART_IN or ADC_IP .................................... 14  
Clock Configuration.................................................................. 15  
Power-Down Mode.................................................................... 16  
Full Duplex Operation............................................................... 16  
Applications Information.............................................................. 17  
Supply Decoupling ..................................................................... 17  
Typical Connection Diagrams.................................................. 17  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Terminology .................................................................................... 12  
REVISION HISTORY  
4/12—Rev. 0 to Rev. A  
RTS  
Change to Transmit Impedance Parameter,  
Low, Table 2 .. 4  
Changes to Figure 3, Figure 4, Figure 5, and Figure 7................. 9  
Changes to Figure 10 and Figure 11............................................. 10  
Changed AD5755 to AD5755-1 Throughout............................. 17  
Change to Figure 27 ....................................................................... 18  
2/12—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
Data Sheet  
AD5700/AD5700-1  
SPECIFICATIONS  
VCC = 2 V to 5.5 V, IOVCC = 1.71 V to 5.5 V, AGND = DGND, CLKOUT disabled, HART_OUT with 5 nF load, internal and external  
receive filter, internal reference, all specifications are from −40°C to +125°C and relate to both A and B models, unless otherwise noted.  
Table 2.  
Parameter1  
POWER REQUIREMENTS2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
VCC  
IOVCC  
2
1.71  
5.5  
5.5  
V
V
VCC and IOVCC Current Consumption  
Demodulator  
86  
69  
115  
179  
97  
μA  
μA  
μA  
B model, external clock, −40°C to +85°C  
B model, external clock, −40°C to +125°C  
B model, external clock, −40°C to +85°C,  
external reference  
157  
μA  
B model, external clock, −40°C to +125 °C,  
external reference  
260  
140  
193  
96  
μA  
μA  
μA  
μA  
A model, external clock, −40°C to +125°C  
B model, external clock, −40°C to +85°C  
B model, external clock, −40°C to +125°C  
B model, external clock, −40°C to +85°C,  
external reference  
Modulator  
124  
73  
153  
μA  
B model, external clock, −40°C to +125°C,  
external reference  
270  
60  
71  
μA  
μA  
μA  
μA  
A model, external clock, −40°C to +125°C  
External crystal, 16 pF at XTAL1 and XTAL2  
External crystal, 36 pF at XTAL1 and XTAL2  
AD5700-1 only, external crystal not required  
RESET = REF_EN = DGND  
Crystal Oscillator3  
33  
44  
218  
Internal Oscillator4  
Power-Down Mode  
285  
VCC and IOVCC Current Consumption  
16  
35  
75  
μA  
μA  
Internal reference disabled, −40°C to +85°C  
Internal reference disabled, −40°C to +125°C  
INTERNAL VOLTAGE REFERENCE  
Internal Reference Voltage  
1.47  
2.47  
1.5  
18  
1.52  
V
REF_EN = IOVCC to enable use of internal  
reference  
Tested with 50 μA load  
Load Regulation  
ppm/μA  
OPTIONAL EXTERNAL VOLTAGE  
REFERENCE  
External Reference Input Voltage  
2.5  
2.53  
V
REF_EN = DGND to enable use of external  
reference, VCC = 2.7 V minimum  
External Reference Input Current  
Demodulator  
16  
28  
21  
33  
7
μA  
μA  
μA  
μA  
Current required by external reference in  
receive mode  
Current required by external reference in  
transmit mode  
Current required by external reference if  
using internal oscillator  
Modulator  
Internal Oscillator  
5.5  
4.6  
Power-Down  
DIGITAL INPUTS  
8.6  
VIH, Input High Voltage  
VIL, Input Low Voltage  
Input Current  
0.7 × IOVCC  
−0.1  
V
V
μA  
pF  
0.3 × IOVCC  
+0.1  
Input Capacitance5  
5
Per pin  
Rev. A | Page 3 of 20  
 
 
AD5700/AD5700-1  
Data Sheet  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DIGITAL OUTPUTS  
VOH, Output High Voltage  
VOL, Output Low Voltage  
CD Assert6  
IOVCC − 0.5  
85  
V
V
0.4  
110  
100  
mV p-p  
HART_IN INPUT5  
Input Voltage Range  
0
0
REF  
1.5  
V
V
External reference source  
Internal reference enabled  
HART_OUT OUTPUT  
Output Voltage  
459  
493  
505  
mV p-p  
AC-coupled (2.2 μF), measured at HART_OUT  
pin with 160 Ω load (worst-case load), see  
Figure 15 and Figure 16 for HART_OUT  
voltage vs. load  
Mark Frequency7  
Space Frequency7  
Frequency Error  
1200  
2200  
Hz  
Hz  
%
%
Degrees  
Ω
Internal oscillator  
Internal oscillator  
Internal oscillator, −40°C to +85°C  
Internal oscillator, −40°C to +125°C  
−0.5  
−1  
+0.5  
+1  
0
Phase Continuity Error5  
Maximum Load Current5  
160  
Worst-case load is 160 Ω, ac-coupled with  
2.2 μF, see Figure 19 for recommended  
configuration if driving a resistive load  
Transmit Impedance  
7
Ω
RTS low, at the HART_OUT pin  
RTS high, at the HART_OUT pin  
70  
kΩ  
1 Temperature range: −40°C to +125°C; typical at 25°C.  
2 Current consumption specifications are based on mean current values.  
3 The demodulator and modulator currents are specified using an external clock. If using an external crystal oscillator, the crystal oscillator current specification must be  
added to the corresponding VCC and IOVCC demodulator/modulator current specification to obtain the total supply current required in this mode.  
4 The demodulator and modulator currents are specified using an external clock. If using the internal oscillator, the internal oscillator current specification must be  
added to the corresponding VCC and IOVCC demodulator/modulator current specification to obtain the total supply current required in this mode.  
5 Guaranteed by design and characterization, but not production tested.  
6 Specification set assuming a sinusoidal input signal containing preamble characters at the input and an ideal external filter (see Figure 21).  
7 If the internal oscillator is not used, frequency accuracy is dependent on the accuracy of the crystal or clock source used.  
Rev. A | Page 4 of 20  
Data Sheet  
AD5700/AD5700-1  
TIMING CHARACTERISTICS  
VCC = 2 V to 5.5 V, IOVCC = 1.71 V to 5.5 V, TMIN to TMAX, unless otherwise noted, 1 bit time = 1/1200 Hz = 833.333 μs.  
Table 3.  
Parameter1  
Limit at TMIN, TMAX Unit  
Description  
t1  
1
1
1
Bit time2 max  
Carrier start time. Time from RTS falling edge to carrier reaching its first peak. See  
Figure 3.  
Carrier stop time. Time from RTS rising edge to carrier amplitude dropping to ac  
zero. See Figure 4.  
Carrier decay time. Time from RTS rising edge to carrier amplitude dropping to ac  
zero. See Figure 4.  
t2  
t3  
Bit time2 max  
Bit time2 max  
t4  
t5  
t6  
6
6
10  
Bit times2 max  
Bit times2 max  
Bit times2 max  
Carrier detect on. Time from carrier on to CD rising edge. See Figure 5.  
Carrier detect off. Time from carrier off to CD falling edge. See Figure 6.  
Carrier detect on when switching from transmit mode to receive mode in the  
presence of a constant valid carrier. Time from RTS rising edge to CD rising edge.  
See Figure 7.  
t7  
2.1  
ms typ  
Crystal oscillator power-up time. On application of a valid power supply voltage at  
VCC or on enabling of the oscillator via the XTAL_EN pin. Crystal load capacitors =  
8 pF.  
t8  
t9  
6
25  
ms typ  
μs typ  
Crystal oscillator power-up time. Crystal load capacitors = 18 pF.  
Internal oscillator power-up time. On application of a valid power supply voltage  
at VCC or on enabling of the oscillator via the CLK_CFG0 and CLK_CFG1 pins.  
t10  
t11  
10  
30  
ms typ  
μs typ  
Reference power-up time.  
Transition time from power-down mode to normal operating mode (external  
clock source, external reference).  
1 Specifications apply to AD5700/AD5700-1 configured with internal or external receive filter.  
2 Bit time is the length of time to transfer one bit of data.  
Rev. A | Page 5 of 20  
 
 
 
 
 
 
 
 
AD5700/AD5700-1  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Transient currents of up to 100 mA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Rating  
VCC to GND  
IOVCC to GND  
−0.3 V to +7 V  
−0.3 V to +7 V  
Digital Inputs to DGND  
−0.3 V to IOVCC + 0.3 V or  
+7 V (whichever is less)  
THERMAL RESISTANCE  
Digital Output to DGND  
−0.3 V to IOVCC + 0.3 V or  
+7 V (whichever is less)  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
HART_OUT to AGND  
HART_IN to AGND  
−0.3 V to +2.5 V  
−0.3 V to VCC + 0.3 V or  
+7 V (whichever is less)  
Table 5. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
ADC_IP  
−0.3 V to VCC + 0.3 V or  
+7 V (whichever is less)  
−0.3 V to +0.3 V  
24-Lead LFCSP  
30  
3
°C/W  
AGND to DGND  
ESD CAUTION  
Operating Temperature Range (TA)  
Industrial  
Storage Temperature Range  
−40°C to +125°C  
−65°C to +150°C  
150°C  
(TJ MAX – TA)/θJA  
JEDEC industry standard  
J-STD-020  
Junction Temperature (TJ MAX  
Power Dissipation  
Lead Temperature,  
Soldering  
)
ESD  
Human Body Model  
8 kV  
(ANSI/ESDA/JEDEC JS-001-2010)  
Field Induced Charge Model  
(JEDEC JESD22_C101E)  
Machine Model  
1.5 kV  
400 V  
(ANSI/ESD S5.2-2009)  
Rev. A | Page 6 of 20  
 
 
 
 
 
Data Sheet  
AD5700/AD5700-1  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
18 V  
CC  
XTAL_EN  
CLKOUT 2  
LK_CFG0 3  
17  
ADC_IP  
AD5700/  
16 HART_IN  
15 REF  
C
AD5700-1  
TOP VIEW  
(Not to Scale)  
CLK_CFG1  
RESET  
4
5
14  
13  
HART_OUT  
REG_CAP  
CD 6  
NOTES  
1. THE EXPOSED PADDLE SHOULD BE CONNECTED  
N
TO AGND OR DGND, OR, ALTERNATIVELY, IT CA  
IT IS  
BE LEFT ELECTRICALLY UNCONNECTED.  
RECOMMENDED THAT THE PADDLE BE THERMALLY  
CONNECTED TO A COPPER PLANE FOR ENHANCED  
THERMAL PERFORMANCE.  
Figure 2. AD5700/AD5700-1 Pin Configuration  
Table 6. AD5700/AD5700-1 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
XTAL_EN  
Crystal Oscillator Circuit Enable. A low state enables the crystal oscillator circuit, and an external crystal is  
required. A high state disables the crystal oscillator circuit, and an external clock source or the internal oscillator  
(AD5700-1 only) provides the clock source. This pin is used in conjunction with the CLK_CFG0 and CLK_CFG1  
pins in configuring the required clock generation scheme.  
2
CLKOUT  
Clock Output. If using the crystal oscillator or the internal RC oscillator, a clock output can be configured at the  
CLKOUT pin. Enabling the clock output consumes extra current to drive the load on this pin. See the CLKOUT  
section for more details.  
3
4
5
CLK_CFG0  
CLK_CFG1  
RESET  
Clock Configuration Control. See Table 7.  
Clock Configuration Control. See Table 7.  
Active Low Digital Input. Holding RESET low places the AD5700/AD5700-1 in power-down mode. A high state on  
RESET returns the AD5700/AD5700-1 to their power-on state. If not using this pin, tie this pin to IOVCC.  
6
7
8
CD  
TXD  
RTS  
Carrier Detect—Digital Output. A high on CD indicates a valid carrier is detected.  
Transmit Data—Digital Input. Data input to the modulator.  
Request to Send—Digital Input. A high state enables the demodulator and disables the modulator. A low state  
enables the modulator and disables the demodulator.  
9
DUPLEX  
A high state on this pin enables full duplex operation. See the Theory of Operation section. A low state disables  
this feature.  
10  
11  
RXD  
IOVCC  
Receive Data—UART Interface Digital Data Output. Data output from the demodulator is accessed on this pin.  
Digital Interface Supply. Digital threshold levels are referenced to the voltage applied to this pin. The applied  
voltage can be in the range of 1.71 V to 5.5 V.  
12  
DGND  
Digital Circuitry Ground Reference Connection. For typical operation, it is recommended to connect this pin to  
AGND.  
13  
14  
15  
REG_CAP  
HART_OUT  
REF  
Capacitor Connection for Internal Voltage Regulator. Connect a 1 μF capacitor from this pin to ground.  
HART FSK Signal Output. See the FSK Modulator section and Figure 26 for typical connections.  
Internal Reference Voltage Output, or External 2.5 V Reference Voltage Input. Connect a 1 μF capacitor from this  
pin to ground. When supplying an external reference, the VCC supply requires a minimum voltage of 2.7 V.  
16  
17  
18  
19  
HART_IN  
ADC_IP  
VCC  
HART FSK Signal. When using the internal filter, couple the HART input signal into this pin using a 2.2 nF series  
capacitor. If using an external band-pass filter as shown in Figure 21, do not connect to this pin.  
If using the internal band-pass filter, connect 680 pF to this pin. Alternatively, this pin allows direct connection to  
the ADC input, in which case an external band-pass filter network must be used, as shown in Figure 21.  
Power Supply Input. 2 V to 5.5 V can be applied to this pin. VCC should be decoupled to ground with low ESR  
10 μF and 0.1 μF capacitors (see the Supply Decoupling section).  
Analog Circuitry Ground Reference Connection.  
AGND  
Rev. A | Page 7 of 20  
 
 
AD5700/AD5700-1  
Data Sheet  
Pin No. Mnemonic  
Description  
Connection for External 3.6864 MHz Crystal. Do not connect to this pin if using the internal RC oscillator  
(AD5700-1 only) or an external clock source.  
Connection for External 3.6864 MHz Crystal or External Clock Source Input. Tie this pin to ground if using the  
internal RC oscillator (AD5700-1 only).  
Digital Circuitry Ground Reference Connection. For typical operation, it is recommended to connect this pin to  
AGND.  
20  
21  
22  
23  
XTAL2  
XTAL1  
DGND  
REF_EN  
Reference Enable. A high state enables the internal 1.5 V reference and buffer. A low state disables the internal  
reference and input buffer, and a buffered external 2.5 V reference source must be applied at REF. If REF_EN is  
tied low, VCC must be greater than 2.7 V.  
24  
FILTER_SEL  
AGND  
Band-Pass Filter Select. A high state enables the internal filter and the HART signal should be applied to the  
HART_IN pin. A low state disables the internal filter and an external band-pass filter must then be connected at  
the ADC_IP input pin. In this case, the HART signal should be applied to the ADC_IP pin.  
EPAD  
Analog Ground Reference Connection. For typical operation, it is recommended to connect this pin to AGND.  
Rev. A | Page 8 of 20  
Data Sheet  
AD5700/AD5700-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.4  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C; V = IOV = 3.3V; INT V  
CC CC REF  
T
= 25°C; V = IOV = 3.3V; INT V  
CC CC REF  
A
A
RTS AND TXD DC LEVELS HAVE BEEN ADJUSTED FOR  
CLARITY. IN REALITY, BOTH OF THESE SIGNALS RANGE  
FROM 0V TO 3.3V.  
CD AND RXD DC LEVELS HAVE BEEN ADJUSTED FOR  
CLARITY. IN REALITY, BOTH OF THESE SIGNALS RANGE  
FROM 0V TO 3.3V.  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CD  
RTS  
TXD  
RXD  
HART SIGNAL  
HART_OUT  
–0.2  
–0.2  
–0.4  
–0.3  
–0.4  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
–5  
–4  
–3  
–2  
–1  
0
1
TIME (ms)  
TIME (ms)  
Figure 3. Carrier Start Time  
Figure 6. Carrier Detect Off Timing  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.50  
1.25  
1.00  
0.75  
T
= 25°C; V = IOV = 3.3V; INT V  
REF  
T
= 25°C; V = IOV = 3.3V; INT V  
CC CC REF  
A
CC  
CC  
A
RTS AND CD DC LEVELS HAVE BEEN ADJUSTED FOR  
CLARITY. IN REALITY, BOTH OF THESE SIGNALS RANGE  
FROM 0V TO 3.3V.  
RTS AND TXD DC LEVELS HAVE BEEN ADJUSTED FOR  
CLARITY. IN REALITY, BOTH OF THESE SIGNALS RANGE  
FROM 0V TO 3.3V.  
RTS  
RTS  
TXD  
CD  
0.50  
0.25  
0
HART SIGNAL HAS ALSO  
BEEN OFFSET BY –0.6V.  
HART_OUT  
HART_OUT  
–0.25  
–0.50  
–0.75  
–1.00  
–0.2  
–0.4  
HART SIGNAL  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
–10  
–7.5  
–5.0  
–2.5  
0
2.5  
TIME (ms)  
TIME (ms)  
Figure 4. Carrier Stop/Decay Time  
Figure 7. Carrier Detect on When Switching from Transmit Mode to Receive  
Mode in the Presence of a Constant Valid Carrier  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
T
V
= 25°C  
T
= 25°C; V = IOV = 3.3V; INT V  
REF  
A
A
CC  
CC  
= IOV = 2.7V TO 5.5V  
CC  
CC  
CD AND RXD DC LEVELS HAVE BEEN ADJUSTED FOR  
CLARITY. IN REALITY, BOTH OF THESE SIGNALS RANGE  
FROM 0V TO 3.3V.  
90  
80  
70  
60  
DEV 1 EXT REF  
MOD I AND IOI  
CC  
CC  
CD  
DEMOD I AND IOI  
CC  
CC  
RXD  
50  
40  
30  
20  
10  
0
MOD I  
REF  
DEMOD I  
REF  
HART SIGNAL  
–0.2  
–0.4  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
TIME (ms)  
V
= IOV (V)  
CC  
CC  
Figure 5. Carrier Detect On Timing  
Figure 8. Supply Currents vs. Supply Voltage—External Reference  
Rev. A | Page 9 of 20  
 
 
 
 
 
 
AD5700/AD5700-1  
Data Sheet  
200  
180  
160  
140  
120  
0
T
V
INT V  
= 25°C  
T
V
= 25°C  
A
A
–2  
= IOV = 2V TO 5.5V  
= IOV = 3.3V  
CC  
CC  
CC CC  
DEV 1 INT REF  
REF  
–4  
–6  
–8  
MOD I AND IOI  
CC  
CC  
100  
80  
–10  
–12  
–14  
–16  
DEMOD I  
AND IOI  
CC  
CC  
EXTERNAL FILTER  
INTERNAL FILTER  
60  
40  
20  
0
–18  
–20  
1.0  
1.5  
2.0  
2.5  
3.0  
V
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
100  
1k  
FREQUENCY (Hz)  
10k  
= IOV (V)  
CC  
CC  
Figure 12. Input Filter Frequency Response  
Figure 9. Supply Currents vs. Supply Voltage—Internal Reference  
700  
1.5012  
1.5010  
1.5008  
1.5006  
1.5004  
1.5002  
1.5000  
1.4998  
1.4996  
T
= 25°C; V = IOV = 3.3V; INT V  
CC CC REF  
A
T
= 25°C  
A
CLK CONFIG = XTAL OSCILLATOR  
IOI = 41µA  
V
= IOV = 2V TO 5.5V  
CC  
CC  
600  
500  
CC  
400  
TXD = 1  
TXD = 0  
300  
200  
100  
0
2.2µF  
HART_OUT  
200  
22nF  
R
LOAD  
0
400  
600  
800  
1000  
1200  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
6.0  
R
() WITH 22nF TO GND  
LOAD  
V
CC  
Figure 10. Current in Tx Mode vs. Resistive Load  
Figure 13. Reference Voltage vs. VCC  
1.5006  
1.5004  
1.5002  
1.5000  
1.4998  
250  
V
= IOV = 2.7V  
CC  
CC  
T
= 25°C; V = IOV = 3.3V; INT V  
CC CC REF  
A
TEMPERATURE = –40°C TO +125°C  
225 CLK CONFIG = XTAL OSCILLATOR  
CAPACITIVE LOAD ONLY  
IOI = 41µA  
200  
175  
150  
125  
100  
75  
CC  
1.4996  
1.4994  
TXD = 1  
TXD = 0  
50  
1.4992  
1.4990  
25  
0
0
10  
20  
30  
40  
50  
60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
C
(nF)  
TEMPERATURE (°C)  
LOAD  
Figure 14. Reference Voltage vs. Temperature  
Figure 11. Current in Tx Mode vs. Capacitive Load  
Rev. A | Page 10 of 20  
 
Data Sheet  
AD5700/AD5700-1  
500  
505  
504  
T
V
INT V  
= 25°C  
T
= 25°C  
A
A
= IOV = 3.3V  
V
= IOV = 3.3V  
CC  
CC  
CC  
CC  
495  
490  
INT V  
REF  
REF  
503  
CAPACITIVE LOAD ONLY  
502  
501  
500  
485  
1200Hz  
2200Hz  
480  
475  
470  
465  
499  
498  
497  
1200Hz  
2200Hz  
2.2µF  
HART_OUT  
22nF  
800  
R
LOAD  
496  
495  
0
200  
400  
600  
1000  
1200  
0
10  
20  
30  
40  
50  
60  
R
() || WITH 22nF TO GND  
C
(nF)  
LOAD  
LOAD  
Figure 15. HART_OUT Voltage vs. RLOAD  
Figure 16. HART_OUT Voltage vs. CLOAD  
Rev. A | Page 11 of 20  
 
 
AD5700/AD5700-1  
TERMINOLOGY  
Data Sheet  
HART_OUT Output Voltage  
VCC and IOVCC Current Consumption  
This is the peak-to-peak HART_OUT output voltage. The  
specification in Table 2 was set using a worst-case load of 160 Ω,  
ac-coupled with a 2.2 μF capacitor. Figure 15 and Figure 16 show  
HART_OUT output voltages for both resistive and purely  
capacitive loads.  
This specification gives a summation of the current consump-  
tion of both the VCC and the IOVCC supplies. Figure 11 shows  
separate measurements for VCC and IOVCC currents vs. varying  
capacitive loads, in transmit mode.  
Load Regulation  
Load regulation is the change in reference output voltage due to  
a specified change in load current. It is expressed in ppm/μA.  
Mark/Space Frequency  
A 1.2 kHz signal represents a digital 1, or mark, whereas a  
2.2 kHz signal represents a 0, or space.  
CD Assert  
Phase Continuity Error  
The minimum value at which the carrier detect signal asserts is  
85 mV p-p and the maximum value it asserts at is 110 mV p-p. CD  
is already high (asserted) for HART input signals greater than  
110 mV p-p. This specification was set assuming a sinusoidal  
input signal containing preamble characters at the input and an  
ideal external filter (see Figure 21).  
The DDS engine in this design inherently generates continuous  
phase signals, thus avoiding any output discontinuity when  
switching between frequencies. This attribute is desirable for  
signals that are to be transmitted over a band limited channel,  
because discontinuities in a signal introduce wideband fre-  
quency components. As the name suggests, for a signal to be  
continuous, the phase continuity error must be 0o.  
Rev. A | Page 12 of 20  
 
Data Sheet  
AD5700/AD5700-1  
THEORY OF OPERATION  
FSK MODULATOR  
Highway Addressable Remote Transducer (HART) Communica-  
tion is the global standard for sending and receiving digital  
information across analog wires between smart field devices  
and control systems. This is a digital two-way communication  
system, in which a 1 mA p-p frequency shift keyed (FSK) signal  
is modulated on top of a 4 mA to 20 mA analog current signal.  
The AD5700/AD5700-1 are designed and specified to operate  
as a single-chip, low power, HART FSK half-duplex modem,  
complying with the HART physical layer requirements  
(Revision 8.1).  
The modulator converts a bit stream of UART-encoded HART  
data at the TXD input to a sequence of 1200 Hz and 2200 Hz  
tones (see Figure 17). This sinusoidal signal is internally buff-  
ered and output on the HART_OUT pin. The modulator is  
RTS  
enabled by bringing the  
signal low.  
"1" = MARK  
1.2kHz  
"0" = SPACE  
2.2kHz  
A single-chip solution, the AD5700/AD5700-1 not only inte-  
grate the modulation and demodulation functions, but also  
contain an internal reference, an integrated receive band-pass  
filter (which has the flexibility of being bypassed if required),  
and an internally buffered HART output, giving a high output  
drive capability and removing the need for external buffering.  
The AD5700-1 option also contains a precision internal RC  
oscillator. The block diagram in Figure 1 shows a graphical  
illustration of how these circuit blocks are connected together.  
As a result of such extensive integration options, minimal  
external components are required. The AD5700/AD5700-1  
are suitable for use in both HART field instrument and master  
configurations.  
START  
TXD  
STOP  
HART_OUT  
8-BIT DATA + PARITY  
Figure 17. AD5700/AD5700-1 Modulator Waveform  
The modulator block contains a DDS engine that produces a  
1.2 kHz or 2.2 kHz sine wave in digital form and then performs  
a digital-to-analog conversion. This DDS engine inherently  
generates continuous phase signals, thus avoiding any output  
discontinuity when switching between frequencies. For more  
information on DDS fundamentals, see MT-085, Fundamentals  
of Direct Digital Synthesizers (DDS). Figure 18 demonstrates a  
simple implementation of this FSK encoding.  
The AD5700/AD5700-1 either transmit or receive 1.2 kHz and  
2.2 kHz carrier signals. A 1.2 kHz signal represents a digital 1,  
or mark, whereas a 2.2 kHz signal represents a 0, or space.  
There are three main clocking configurations supported by  
these parts, two of which are available on the AD5700 option,  
whereas all three are available on the AD5700-1 device:  
External crystal  
CMOS clock input  
Internal RC oscillator (AD5700-1 only)  
1
DATA  
0
1.2kHz  
WORD  
The device is controlled via a standard UART interface. The  
RTS  
more detail on individual pin descriptions).  
relevant signals are  
, CD, TXD, and RXD (see Table 6 for  
DAC  
FSK  
DDS  
2.2kHz  
WORD  
CLOCK  
Figure 18. DDS-Based FSK Encoder  
Rev. A | Page 13 of 20  
 
 
 
AD5700/AD5700-1  
Data Sheet  
CONNECTING TO HART_OUT  
FSK DEMODULATOR  
The HART_OUT pin is dc biased to 0.75 V and should be  
capacitively coupled to the load. The current consumption  
specifications in Table 2 are based on driving a 5 nF load. If  
the application requires a larger load value, more current is  
required. This value can be calculated from the following  
formula:  
HART_IN  
8-BIT DATA + PARITY  
RXD  
STOP  
START  
I
TOTAL IAD5700 ILOADRMS  
Figure 20. AD5700/AD5700-1 Demodulator Waveform  
(Preamble Message 0xFF)  
500 mV  
ILOAD RMS  
(1)  
2  
RTS  
When  
is logic high, the modulator is disabled and the  
1
2
4 2   
RLOAD  
demodulator is enabled, that is, the AD5700/AD5700-1 are in  
receive mode. A high on CD indicates a valid carrier is detected.  
The demodulator accepts an FSK signal at the HART_IN pin  
and restores the original modulated signal at the UART  
interface digital data output pin, RXD. The combination of the  
ADC, digital filtering and digital demodulation results in a  
highly accurate output on the RXD pin. The HART bit stream  
follows a standard UART frame with a start bit, 8-bit data, one  
parity, and a stop bit (see Figure 20).  
2f CLOAD  
where:  
AD5700 is the current drawn by the AD5700/AD5700-1 in  
transmit mode as per specifications (see Table 2). Note that the  
specifications in Table 2 assume a 5 nF CLOAD  
f is the output frequency (1.2 kHz or 2.2 kHz).  
LOAD is the capacitive load to ground on HART_OUT.  
LOAD is the resistive load on the loop.  
I
.
C
R
CONNECTING TO HART_IN OR ADC_IP  
When driving a purely capacitive load, the load should be in the  
range of 5 nF to 52 nF. See Figure 11 for a typical plot of supply  
current vs. capacitive load.  
The AD5700/AD5700-1 have two filter configuration options:  
an external filter (HART signal is applied to ACP_IP) and an  
internal filter (HART signal is applied to HART_IN).  
Example  
Assume use of an internal reference, and CLOAD = 52 nF.  
The external filter configuration is shown in Figure 21. In this  
case, the HART signal is applied to the ADC_IP pin through an  
external filter circuit. In safety critical applications, the AD5700/  
AD5700-1 must be isolated from the high voltage of the loop  
supply. The recommended external band-pass filter includes a  
150 kΩ resistor, which limits current to a sufficiently low level  
to adhere to intrinsic safety requirements. In this case, the input  
has higher transient voltage protection and should, therefore,  
not require additional protection circuitry, even in the most  
demanding of industrial environments. Assuming the use of a  
1% accurate resistor and 10% accurate capacitor components,  
the calculated variation in CD trip voltage levels vs. the ideal is  
3.5 mV.  
ICC + IOICC = 140 μA maximum (from Table 2  
specification)  
Note that this is incorporating a 5 nF load.  
Therefore, to calculate the load current required to drive the  
extra 47 nF, use the Equation 1.  
Substituting f = 1200 Hz, CLOAD = 47 nF, and RLOAD = 0 Ω into  
the formula results in ILOAD of 62.6 μA.  
If using the crystal oscillator, this adds 60 μA maximum (see  
Table 2 for conditions).  
Thus, the total worst-case current in this example is:  
140 μA + 62.6 μA + 60 μA = 262.6 μA  
HART_OUT  
If driving a load with a resistive element, it is recommended to  
place a 22 nF capacitor to ground at the HART_OUT pin. The  
load should be coupled with a 2.2 μF series capacitor. For low  
impedance devices, the RLOAD range is typically 230 Ω to 600 Ω.  
HART  
AD5700/  
REF  
NETWORK  
AD5700-1  
1µF  
1.2M  
150kΩ  
ADC_IP  
300pF  
1.2MΩ  
150pF  
2.2µF  
HART_OUT  
Figure 21. AD5700/AD5700-1 with External Filter on ADC_IP  
22nF  
R
LOAD  
Figure 19. AD5700/AD5700-1 with Resistive Load at HART_OUT  
Rev. A | Page 14 of 20  
 
 
 
 
 
Data Sheet  
AD5700/AD5700-1  
The internal filter configuration is shown in Figure 22. This  
option is beneficial where cost or board space is a large concern  
because it removes the need for multiple external components.  
This configuration achieves an 8 kV ESD HBM rating but  
requires extra external protection circuitry for EMC and surge  
protection purposes if used in harsh industrial environments.  
CMOS Clock Input  
A CMOS clock input can also be used to generate a clock for the  
AD5700/AD5700-1. To use this mode, connect an external clock  
source to the XTAL 1 pin, and leave XTAL2 open circuit (see  
Figure 24).  
HART_OUT  
HART  
NETWORK  
2.2nF  
AD5700/  
AD5700-1  
HART_IN  
ADC_IP  
680pF  
AD5700/AD5700-1  
Figure 22. AD5700/AD5700-1 Using Internal Filter on HART_IN  
CLOCK CONFIGURATION  
Figure 24. CMOS Clock Connection  
The AD5700/AD5700-1 support numerous clocking configura-  
tions to allow the optimal trade-off between cost and power:  
Internal Oscillator (AD5700-1 only)  
Consuming typically 218 μA, the low power, internal, 0.5 %  
precision RC oscillator, available only on the AD5700-1, has an  
oscillation frequency of 1.2288 MHz. To use this mode, tie the  
XTAL1 pin to ground and leave the XTAL2 pin open circuit  
(see Figure 25).  
External crystal  
CMOS clock input  
Internal RC oscillator (AD5700-1 only)  
XTAL_EN  
The CLK_CFG0, CLK_CFG1, and  
pins configure  
the clock generation as shown in Table 7. The AD5700/AD5700-1  
can also provide a clock output at CLKOUT (for more details,  
see the CLKOUT section).  
External Crystal  
AD5700-1  
The typical connection for an external crystal (ABLS-3.6864MHZ-  
L4Q-T) is shown in Figure 23. To ensure minimum current  
consumption and to minimize stray capacitances, connections  
between the crystal, capacitors, and ground should be made as  
close to the AD5700/AD5700-1 as possible. Consult individual  
crystal vendors for recommended load information and crystal  
performance specifications.  
Figure 25. Internal Oscillator Connection  
CLKOUT  
The AD5700/AD5700-1 can provide a clock output at CLKOUT  
(see Table 7).  
ABLS-3-6864MHZ-L4Q-T  
If using the crystal oscillator, this clock output can be  
configured as a 3.6864 MHz, 1.8432 MHz, or 1.2288 MHz  
buffer clock.  
18pF  
18pF  
If using a CMOS clock, no clock output can be configured  
at the CLKOUT pin.  
If using the internal RC oscillator, this clock output is only  
available as a 1.2288 MHz buffer clock.  
AD5700/AD5700-1  
The amplitude of the clock output depends on the IOVCC level;  
therefore, the clock output can be in the range of 1.71 V p-p to  
5.5 V p-p. Enabling the clock output of the AD5700/AD5700-1  
increases the current consumption of the device. This increase  
is due to the current required to drive any load at the CLKOUT  
pin, which should not be more than 30 pF.  
Figure 23. Crystal Oscillator Connection  
The ABLS-3.6864MHZ-L4Q-T crystal oscillator data sheet  
recommended two 18 pF capacitors. Because the crystal current  
consumption is dominated by the load capacitance, in an effort  
to reduce the crystal current consumption, two 8 pF capacitors  
were used on the XTAL1 and XTAL2 pins. The AD5700/AD5700-1  
still functioned as expected, even with the resulting reduction in  
frequency performance from the crystal due to the smaller  
capacitance values. Crystals are available that support 8 pF  
capacitors. It is recommended to consult the relevant crystal  
manufacturers for this information.  
This capacitance should be minimized to reduce current  
consumption and provide the clock with the cleanest edges.  
The additional current drawn from the IOVCC supply can be  
calculated using the following equation:  
I = C × V × f  
Rev. A | Page 15 of 20  
 
 
 
 
 
 
AD5700/AD5700-1  
Data Sheet  
Table 7. Clock Configuration Options  
XTAL_EN CLK_CFG1 CLK_CFG0 CLKOUT  
Description  
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No output  
No output  
No output  
1.2288 MHz output  
No output  
3.6864 MHz output  
1.8432 MHz output  
1.2288 MHz output  
3.6864 MHz CMOS clock connected at XTAL1 pin  
1.2288 MHz CMOS clock connected at XTAL1 pin  
Internal oscillator enabled (AD5700-1 only)  
Internal oscillator enabled, CLKOUT enabled (AD5700-1 only)  
Crystal oscillator enabled  
Crystal oscillator enabled, CLKOUT enabled  
Crystal oscillator enabled, CLKOUT enabled  
Crystal oscillator enabled, CLKOUT enabled  
POWER-DOWN MODE  
FULL DUPLEX OPERATION  
The AD5700/AD5700-1 can be placed into power-down mode  
RESET  
Full duplex operation means that the modulator and demodula-  
tor of the AD5700/AD5700-1 are enabled at the same time. This  
is a powerful feature, enabling a self-test procedure of not only  
the HART device but also the complete signal path between the  
HART device and the host controller. This provides verification  
that the local communications loop is functional. This increased  
level of system diagnostics is useful in production self-test and  
is advantageous in improving the application’s safety integrity  
level (SIL) rating. The full duplex mode of operation is enabled by  
connecting the DUPLEX pin to logic high.  
by holding the  
is recommended to tie the REF_EN pin to the  
that it is also powered down. If the reference is not powered  
RESET  
pin low. If using the internal reference, it  
RESET  
pin so  
down while  
approximately 1.7 V until  
is low, the output voltage on the REF pin is  
RESET  
is brought high again.  
In this mode, the receive, transmit, and oscillator circuits are all  
switched off, and the device consumes a typical current of 16 μA.  
Rev. A | Page 16 of 20  
 
 
 
Data Sheet  
AD5700/AD5700-1  
APPLICATIONS INFORMATION  
The AD5700/AD5700-1 are designed to interface easily with  
Analog Devices, Inc., innovative portfolio of industrial  
converters like the AD5421 loop-powered current-output DAC,  
the AD5410/AD5420 and AD5412/AD5422 family of line-  
powered current-output DACs, and the AD5755-1, a quad DAC  
with innovative dynamic power control technology. The  
combination of Analog Devices industrial converters and the  
AD5700/AD5700-1 greatly simplifies system design, enhancing  
reliability while reducing overall PCB size.  
SUPPLY DECOUPLING  
It is recommended to decouple the VCC and IOVCC supplies with  
10 ꢀF in parallel with 0.1 ꢀF capacitors to ground. For many  
applications, 1 ꢀF in parallel with 0.1 ꢀF ceramic capacitors to  
ground should be sufficient. The REG_CAP voltage of 1.8 V is  
used to supply the AD5700/AD5700-1 internal circuitry and is  
derived from the VCC supply using a high efficiency clocking  
LDO. Decouple this REG_CAP supply with a 1 μF ceramic  
capacitor to ground. It is also required to decouple the REF pin  
with a 1 μF ceramic capacitor to ground. Place decoupling  
capacitors as close to the relevant pins as possible.  
Figure 27 shows how the AD5700/AD5700-1 HART modem  
can be interfaced with the AD5421 (4 mA to 20 mA loop-powered  
DAC) and a microcontroller to construct a loop powered transmit-  
ter circuit. The HART signal from HART_OUT is introduced to  
the AD5421 via the CIN pin.  
For loop-powered applications, it is recommended to connect a  
resistance in series with the VCC supply to minimize the effect of  
any noise, which may, depending on the system configuration, be  
introduced onto the loop as a result of current draw variations  
from the AD5700/AD5700-1. For typical applications, 470 Ω of  
resistance has proven most effective. However, depending on the  
application conditions, alternative values may also be acceptable  
(see R1 in Figure 27).  
The HART enabled smart transmitter reference demo circuit  
(the block diagram shown in Figure 28) was developed by  
Analog Devices and uses the AD5421, a 16-bit, loop-powered,  
4 mA to 20 mA DAC, and the AD5700 modem. This circuit has  
been compliance tested, verified, and registered as an approved  
HART solution by the HART Communication Foundation.  
Contact your sales representative for further information about  
this demo circuit.  
TYPICAL CONNECTION DIAGRAMS  
Figure 26 shows a typical connection diagram for the AD5700/  
AD5700-1 using the external and internal options. See the  
Connecting to HART_IN or ADC_IP section for more details.  
In conclusion, the AD5700/AD5700-1 enable quick and easy  
deployment of a robust HART-compliant system.  
1.71V TO 5.5V  
+
2V TO 5.5V  
10µF  
1.71V TO 5.5V  
+
2V TO 5.5V  
10µF  
1µF  
1µF  
10µF  
0.1µF  
10µF  
0.1µF  
0.1µF  
0.1µF  
IOV  
CC  
V
IOV  
CC  
V
CC  
CC  
HART_OUT  
HART_OUT  
CD  
CD  
1µF  
REF  
REF  
RXD  
TXD  
RTS  
RXD  
TXD  
RTS  
1µF  
AD5700/AD5700-1  
AD5700/AD5700-1  
1.2M  
1.2MΩ  
300pF  
680pF  
150kΩ  
ADC_IP  
ADC_IP  
150pF  
2.2nF  
HART_IN  
HART_IN  
DGND AGND  
DGND AGND  
CONFIGURATION  
PINS  
CONFIGURATION  
PINS  
Figure 26. AD5700/AD5700-1 Typical Connection Diagram for External and Internal Filter Options  
Rev. A | Page 17 of 20  
 
 
 
 
AD5700/AD5700-1  
Data Sheet  
OPTIONAL  
EMC FILTER  
OPTIONAL  
MOSFET  
DN2540  
10µF  
T1  
BSP129  
4.7µF  
0.1µF  
200k  
IODV  
DV  
REG  
REG  
IN  
DD  
DD  
OUT  
V
LOOP  
RANGE0  
RANGE1  
DRIVE  
19MΩ  
1MΩ  
R
L
ALARM_CURRENT_DIRECTION  
/R  
V
LOOP  
R
INT EXT  
SYNC  
SCLK  
SDIN  
LOOP–  
AD5421  
V
= 4.7V  
Z
SDO  
R
R
EXT1  
EXT2  
FAULT  
LDAC  
R1  
MCU  
OPTIONAL  
RESISTOR  
COM  
REFOUT2  
C
REFOUT1 REFIN  
COM  
IN  
R1  
0.1µF  
1µF  
470Ω  
SETS REGULATOR  
VOLTAGE  
0.1µF  
47nF  
168nF  
V
CC  
AD5700/AD5700-1  
TXD  
HART_OUT  
RXD  
REF  
RTS  
1µF  
1.2MΩ  
1.2MΩ  
CD  
300pF  
150kΩ  
ADC_IP  
GND  
150pF  
Figure 27. Loop-Powered Transmitter Diagram  
Rev. A | Page 18 of 20  
 
Data Sheet  
AD5700/AD5700-1  
3.3V  
MCU  
AD5421  
V
DD  
3.3V  
REG  
IN  
+
PRESSURE  
SENSOR  
SIMULATION  
V-REGULATOR  
ADC 0  
MICRO-  
CONTROLLER  
V
LOOP  
SRAM  
FLASH  
ADC  
DAC  
LEXC  
CLOCK  
TEMPERATURE  
SENSOR  
SPI  
COM  
RESET  
WATCHDOG  
TEMPERATURE  
SENSOR  
PT100  
ADC 1  
COM  
WATCHDOG  
TIMER  
50  
TEST CONNECTOR  
T1: CD  
T2: RTS  
C
LOOP–  
IN  
T3: COM  
T4: TEST  
3.3V  
V
CC  
AD5700  
C_HART  
HART_OUT  
C_SLEW  
REF  
HART  
INPUT  
FILTER  
HART MODEM  
COM  
ADC_IP  
Figure 28. Block Diagram—Analog Devices HART-Enabled Smart Transmitter Reference Demo Circuit  
Rev. A | Page 19 of 20  
 
AD5700/AD5700-1  
Data Sheet  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
19  
24  
0.50  
BSC  
18  
1
6
EXPOSED  
PAD  
2.20  
2.10 SQ  
2.00  
13  
12  
7
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8.  
Figure 29. 24-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Receive Supply  
Package  
Option  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Oscillator Options  
External clock, crystal  
External clock, crystal  
External clock, crystal  
External clock, crystal  
or internal oscillator  
Current  
157 μA  
157 μA  
260 μA  
442 μA  
Package Description  
24-Lead LFCSP_WQ  
24-Lead LFCSP_WQ  
24-Lead LFCSP_WQ  
24-Lead LFCSP_WQ  
AD5700BCPZ-R5  
AD5700BCPZ-RL7  
AD5700ACPZ-RL7  
AD5700-1BCPZ-R5  
CP-24-10  
CP-24-10  
CP-24-10  
CP-24-10  
AD5700-1BCPZ-RL7  
AD5700-1ACPZ-RL7  
EVAL-AD5700-1EBZ  
−40°C to +125°C  
−40°C to +125°C  
External clock, crystal  
or internal oscillator  
External clock, crystal  
or internal oscillator  
442 μA  
540 μA  
24-Lead LFCSP_WQ  
24-Lead LFCSP_WQ  
CP-24-10  
CP-24-10  
Evaluation Board for  
AD5700 and AD5700-1  
1 Z = RoHS Compliant Part.  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10435-0-3/12(A)  
Rev. A | Page 20 of 20  
 
 
 

相关型号:

AD5700BCPZ-RL7

Low Power HART Modem
ADI

AD5700_13

Low Power HART Modem
ADI

AD570J

Complete 8-Bit A-to-D Converter
ADI

AD570JCHIPS

IC IC,A/D CONVERTER,SINGLE,8-BIT,BIPOLAR,DIE, Analog to Digital Converter
ADI

AD570JD

Complete 8-Bit A-to-D Converter
ADI

AD570JD/+

IC 1-CH 8-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP18, SIDE BRAZED, CERAMIC, DIP-18, Analog to Digital Converter
ADI

AD570S

Complete 8-Bit A-to-D Converter
ADI

AD570SCHIPS

IC 1-CH 8-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, UUC18, DIE-16, Analog to Digital Converter
ADI

AD570SD

Complete 8-Bit A-to-D Converter
ADI

AD570SD/883B

Analog-to-Digital Converter, 8-Bit
ETC

AD571

10-Bit A/D Converter
ADI

AD571*

10-Bit A/D Converter
ETC