AD5721BRUZ-RL7 [ADI]

Multiple Range, 16-/12-Bit Bipolar/Unipolar, Voltage Output DACs;
AD5721BRUZ-RL7
型号: AD5721BRUZ-RL7
厂家: ADI    ADI
描述:

Multiple Range, 16-/12-Bit Bipolar/Unipolar, Voltage Output DACs

文件: 总31页 (文件大小:1447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiple Range, 16-/12-Bit,  
Bipolar/Unipolar, Voltage Output DACs  
Data Sheet  
AD5761/AD5721  
FEATURES  
GENERAꢀ DESCRIPTION  
8 software-programmable output ranges: 0 V to +5 V, 0 V to  
+10 V, 0 V to +16 V, 0 V to +20 V, 3 V, 5 V, 10 V, −2.5 V to  
+7.5 V; 5% overrange  
Total unadjusted error (TUE): 0.1% FSR maximum  
16-bit resolution: 2 ꢀSB maximum INꢀ  
Guaranteed monotonicity: 1 ꢀSB maximum  
Single channel, 16-/12-bit DACs  
Settling time: 7.5 μs typical  
Integrated reference buffers  
ꢀow noise: 35 nV/√Hz  
The AD5761/AD5721 are single channel, 16-/12-bit serial input,  
voltage output, digital-to-analog converters (DACs). They operate  
from single supply voltages from +4.75 V to +30 V or dual  
supply voltages from −16.5 V to 0 V VSS and +4.75 V to +16.5 V  
V
DD. The integrated output amplifier and reference buffer  
provide a very easy to use, universal solution.  
The devices offer guaranteed monotonicity, integral nonlinearity  
(INL) of 2 LSB maximum, 35 nV/√Hz noise, and 7.5 μs settling  
time on selected ranges.  
The AD5761/AD5721 use a serial interface that operates at  
clock rates of up to 50 MHz and are compatible with DSP and  
microcontroller interface standards. Double buffering allows  
the asynchronous updating of the DAC output. The input  
coding is user-selectable twos complement or straight binary.  
The asynchronous reset function resets all registers to their  
default state. The output range is user selectable, via the  
RA[2:0] bits in the control register.  
ꢀow glitch: 1 nV-sec  
1.8 V logic compatibility  
Asynchronous updating via ꢀDAC  
Asynchronous RESET to zero scale/midscale  
DSP/microcontroller-compatible serial interface  
Robust 4 kV HBM ESD rating  
Available in 16-lead TSSOP and 16-lead ꢀFCSP  
Operating temperature range: −40°C to +125°C  
The devices available in the 16-lead TSSOP and in the 16-lead  
LFCSP offer guaranteed specifications over the −40°C to +125°C  
industrial temperature range.  
APPꢀICATIONS  
Industrial automation  
Instrumentation, data acquisition  
Open-/closed-loop servo control, process control  
Programmable logic controllers  
Table 1. Pin-Compatible Devices  
Device  
Description  
AD5761R/AD5721R AD5761/AD5721 with internal reference  
FUNCTIONAꢀ BꢀOCK DIAGRAM  
V
V
REFIN  
DD  
AD5761/AD5721  
REFERENCE  
BUFFERS  
DV  
CC  
0V TO 5V  
0V TO 10V  
0V TO 16V  
0V TO 20V  
±3V  
ALERT  
SDI  
SCLK  
INPUT SHIFT  
REGISTER  
AND  
CONTROL  
LOGIC  
12/16  
12/16  
12-BIT/  
16-BIT  
DAC  
INPUT  
REG  
DAC  
REG  
V
OUT  
SYNC  
SDO  
±5V  
±10V  
2.5V TO +7.5V  
RESET  
CLEAR  
DNC  
DGND  
V
LDAC  
AGND  
SS  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
Figure 1.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5761/AD5721  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Register Details ............................................................................... 24  
Input Shift Register .................................................................... 24  
Control Register ......................................................................... 24  
Readback Control Register ....................................................... 26  
Update DAC Register from Input Register............................. 26  
Readback DAC Register ............................................................ 26  
Write and Update DAC Register .............................................. 27  
Readback Input Register............................................................ 27  
Disable Daisy-Chain Functionality.......................................... 27  
Software Data Reset ................................................................... 28  
Software Full Reset..................................................................... 28  
No Operation Registers ............................................................. 28  
Applications Information.............................................................. 29  
Typical Operating Circuit ......................................................... 29  
Power Supply Considerations................................................... 29  
Evaluation Board........................................................................ 29  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 31  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Performance Characteristics................................................ 5  
Timing Characteristics ................................................................ 6  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characterstics............................................. 10  
Terminology .................................................................................... 20  
Theory of Operation ...................................................................... 21  
Digital-to-Analog Converter .................................................... 21  
Transfer Function....................................................................... 21  
DAC Architecture....................................................................... 21  
Serial Interface ............................................................................ 22  
Hardware Control Pins.............................................................. 22  
REVISION HISTORY  
1/2018—Rev. B to Rev. C  
5/2015—Rev. 0 to Rev. A  
Changes to Transfer Function Section......................................... 21  
Change to DB[15:11] Column, Table 11 ..................................... 24  
Change to RA[2:0] Description, Table 12 ................................... 25  
Change to DB[15:13] Column, Table 15 ..................................... 26  
Updated Outline Dimensions....................................................... 31  
Changes to Ordering Guide .......................................................... 31  
Added 16-Lead LFCSP Package .......................................Universal  
Added Grade A Parameter, Table 2.................................................3  
Added Figure 5, Renumbered Sequentially ...................................9  
Changes to Table 6.............................................................................9  
Changes to Figure 49...................................................................... 17  
Changes to Power Supply Considerations Section .................... 30  
Updated Outline Dimensions....................................................... 32  
Changes to Ordering Guide.......................................................... 32  
4/2016—Rev. A to Rev. B  
Changes to Features Section............................................................ 1  
Changes to Typical Operating Circuit Section and Precision  
Voltage Reference Section ............................................................. 29  
1/2015—Revision 0: Initial Version  
Rev. C | Page 2 of 31  
 
Data Sheet  
AD5761/AD5721  
SPECIFICATIONS  
VDD1 = 4.75 V to 30 V, VSS1 = −16.5 V to 0 V, AGND = DGND = 0 V, VREFIN = 2.5 V external, DVCC = 1.7 V to 5.5 V, RLOAD = 1 kΩ for all  
ranges except 0 V to 16 V and 0 V to 20 V for which RLOAD = 2 kΩ, CLOAD = 200 pF, all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
External reference3, outputs unloaded  
STATIC PERFORMANCE  
Programmable Output Ranges  
0
0
0
0
−2.5  
−3  
−5  
−10  
5
10  
16  
20  
+7.5  
+3  
+5  
+10  
V
V
V
V
V
V
V
V
AD5761  
Resolution  
Relative Accuracy, INL  
A Grade  
16  
Bits  
−8  
−2  
+8  
+2  
LSB  
LSB  
External reference3  
All ranges except 0 V to 16 V and 0 V to 20 V, VREFIN  
2.5 V external reference  
B Grade4  
=
Differential Nonlinearity, DNL  
AD5721  
Resolution  
−1  
12  
+1  
LSB  
Bits  
Relative Accuracy, INL  
B Grade  
Differential Nonlinearity, DNL  
Zero-Scale Error  
−0.5  
−0.5  
−6  
+0.5  
+0.5  
+6  
LSB  
LSB  
mV  
External reference3  
All ranges except 10 V and 0 V to 20 V, external  
reference3  
−10  
+10  
mV  
µV/°C  
0 V to 20 V, 10 V ranges, external reference3  
Unipolar ranges, external reference3  
Zero-Scale Temperature  
Coefficient (TC)5  
5
15  
µV/°C  
mV  
mV  
µV/°C  
µV/°C  
mV  
Bipolar ranges, external reference3  
All bipolar ranges except 10 V  
10 V output range  
Bipolar Zero Error  
Bipolar Zero TC5  
Offset Error  
−5  
−7  
+5  
+7  
2
5
3 V range, external reference3  
All bipolar ranges except 3 V, external reference3  
−6  
+6  
All ranges except 10 V and 0 V to 20 V, external  
reference3  
−10  
+10  
mV  
0 V to 20 V, 10 V ranges; external reference3  
Unipolar ranges, external reference3  
Bipolar ranges, external reference3  
External reference3  
Offset Error TC5  
5
15  
µV/°C  
µV/°C  
% FSR  
Gain Error  
Gain Error TC5  
Total Unadjusted Error (TUE)  
REFERENCE INPUT5  
−0.1  
−0.1  
+0.1  
+0.1  
1.5  
ppm FSR/°C External reference3  
% FSR  
External reference3  
Reference Input Voltage (VREF  
Input Current  
Reference Range  
)
2.5  
0.5  
V
µA  
V
1% for specified performance  
−2  
2
+2  
3
OUTPUT CHARACTERISTICS5  
Output Voltage Range  
−VOUT  
+VOUT  
Refer to Table 7 for the different output voltage  
ranges available  
−10  
−10.5  
+10  
+10.5  
V
V
VDD/VSS = 11 V, 10 V output range  
VDD/VSS = 11 V, 10 V output range with 5%  
overrange  
Rev. C | Page 3 of 31  
 
AD5761/AD5721  
Data Sheet  
Parameter2  
Min  
Typ  
Max  
Unit  
nF  
V
Test Conditions/Comments  
Capacitive Load Stability  
Headroom  
1
1
0.5  
RLOAD = 1 kΩ for all ranges except 0 V to16 V and 0 V  
to 20 V ranges (RLOAD = 2 kΩ)  
Output Voltage TC  
Short-Circuit Current  
Resistive Load  
3
25  
ppm FSR/°C  
mA  
kΩ  
kΩ  
mV/mA  
Ω
10 V range, external reference  
Short on the VOUT pin  
All ranges except 0 V to16 V and 0 V to 20 V  
0 V to16 V, 0 V to 20 V ranges  
Outputs unloaded  
1
2
Load Regulation  
DC Output Impedance  
LOGIC INPUTS5  
Input Voltage  
High, VIH  
0.3  
0.5  
Outputs unloaded  
DVCC = 1.7 V to 5.5 V, JEDEC compliant  
0.7 × DVCC  
V
V
Low, VIL  
0.3 × DVCC  
Input Current  
Leakage Current  
−1  
+1  
+1  
µA  
µA  
µA  
pF  
SDI, SCLK, SYNC  
−1  
LDAC, CLEAR, RESET pins held high  
LDAC, CLEAR, RESET pins held low  
Per pin, outputs unloaded  
−55  
Pin Capacitance  
LOGIC OUTPUTS (SDO, ALERT)5  
5
5
Output Voltage  
Low, VOL  
High, VOH  
High Impedance, SDO Pin  
Leakage Current  
Pin Capacitance  
0.4  
+1  
V
V
DVCC = 1.7 V to 5.5 V, sinking 200 µA  
DVCC = 1.7 V to 5.5 V, sourcing 200 µA  
DVCC − 0.5  
−1  
µA  
pF  
POWER REQUIREMENTS  
VDD  
VSS  
DVCC  
IDD  
ISS  
DICC  
4.75  
−16.5  
1.7  
30  
0
5.5  
6.5  
3
V
V
V
5.1  
1
0.005  
67.1  
0.1  
mA  
mA  
µA  
mW  
mV/V  
Outputs unloaded, external reference  
Outputs unloaded  
VIH = DVCC, VIL = DGND  
11 V operation, outputs unloaded  
VDD 10%, VSS = −15 V  
1
Power Dissipation  
DC Power Supply Rejection  
Ratio (PSRR)5  
0.1  
80  
mV/V  
dB  
VSS 10%, VDD = +15 V  
VDD 200 mV, 50 Hz/60 Hz, VSS = −15 V; external  
reference; CLOAD = unloaded  
AC PSRR5  
80  
dB  
VSS 200 mV, 50 Hz/60 Hz, VDD = +15 V; external  
reference; CLOAD = unloaded  
1 For specified performance, headroom requirement is 1 V.  
2 Temperature range: −40°C to +125°C, typical at +25°C.  
3 External reference means 2 V to 2.85 V with overrange and 2 V to 3 V without overrange.  
4 Integral nonlinearity error is specified at 4 LSB (minimum/maximum) for 0 V to 16 V and 0 V to 20 V ranges with VREFIN = 2.5 V external reference, and for all ranges  
with VREFIN = 2 V to 2.85 V with overrange and 2 V to 3 V without overrange.  
5 Guaranteed by design and characterization, not production tested.  
Rev. C | Page 4 of 31  
Data Sheet  
AD5761/AD5721  
AC PERFORMANCE CHARACTERISTICS  
1
VDD1 = 4.75 V to 30 V, VSS = −16.5 V to 0 V, AGND = DGND = 0 V, VREFIN = 2.5 V external, DVCC = 1.7 V to 5.5 V, RLOAD = 1 kΩ for all  
ranges except 0 V to 16 V and 0 V to 20 V for which RLOAD = 2 kΩ, CLOAD = 200 pF, all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter2  
DYNAMIC PERFORMANCE3  
Min Typ Max Unit  
Test Conditions/Comments  
Output Voltage Settling Time  
9
7.5  
12.5 µs  
20 V step to 1 LSB at 16-bit resolution  
10 V step to 1 LSB at 16-bit resolution  
512 LSB step to 1 LSB at 16-bit resolution  
10 V range  
0 V to 5 V range  
10 V range  
8.5  
5
µs  
µs  
Digital-to-Analog Glitch Impulse  
Glitch Impulse Peak Amplitude  
8
1
15  
10  
100  
0.6  
nV-sec  
nV-sec  
mV  
mV  
mV p-p  
nV-sec  
0 V to 5 V range  
Power-On Glitch  
Digital Feedthrough  
Output Noise  
0.1 Hz to 10 Hz Bandwidth (BW)  
100 kHz BW  
15  
45  
35  
µV p-p  
µV rms  
µV rms  
0 V to 20 V and 0 V to 16 V ranges, 2.5 V external reference  
0 V to 10 V, 10 V, −2.5 V to +7.5 V ranges, 2.5 V external  
reference  
25  
15  
80  
35  
70  
µV rms  
µV rms  
nV/√Hz  
nV/√Hz  
nV/√Hz  
5 V range, 2.5 V external reference  
+5 V, 3 V ranges; 2.5 V external reference  
10 V range, 2.5 V external reference  
3 V range, 2.5 V external reference  
5 V, 0 V to 10 V, and −2.5 V to +7.5 V ranges; 2.5 V external  
reference  
Output Noise Spectral Density (at 10 kHz)  
110  
90  
45  
nV/√Hz 0 V to 20 V range, 2.5 V external reference  
nV/√Hz 0 V to 16 V range, 2.5 V external reference  
nV/√Hz 0 V to 5 V range, 2.5 V external reference  
Total Harmonic Distortion (THD)4  
Signal-to-Noise Ratio (SNR)  
Peak Harmonic or Spurious Noise (SFDR)  
Signal-to-Noise-and-Distortion  
(SINAD) Ratio  
−87  
92  
92  
dB  
dB  
dB  
dB  
2.5 V external reference, 1 kHz tone  
At ambient, 2.5 V external reference, BW = 20 kHz, fOUT = 1 kHz  
At ambient, 2.5 V external reference, BW = 20 kHz, fOUT = 1 kHz  
At ambient, 2.5 V external reference, BW = 20 kHz, fOUT = 1 kHz  
85  
1 For specified performance, headroom requirement is 1 V.  
2 Temperature range: −40°C to +125°C, typical at +25°C.  
3 Guaranteed by design and characterization; not production tested.  
4 Digitally generated sine wave at 1 kHz.  
Rev. C | Page 5 of 31  
 
 
 
 
AD5761/AD5721  
Data Sheet  
TIMING CHARACTERISTICS  
DVCC = 1.7 V to 5.5 V, all specifications TMIN to TMAX, unless otherwise noted.  
Table 4.  
Parameter Limit at TMIN to TMAX Unit  
Description  
1
t1  
20  
10  
10  
15  
10  
20  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
µs typ  
µs typ  
ns min  
ns typ  
ns min  
ns max  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC falling edge to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge time  
Minimum SYNC high time (write mode)  
Data setup time  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
5
Data hold time  
t9  
10  
20  
20  
9
LDAC falling edge to SYNC falling edge  
SYNC rising edge to LDAC falling edge  
LDAC pulse width low  
t10  
t11  
t12  
DAC output settling time, 20 V step to 1 LSB at 16-bit resolution (see Table 3)  
DAC output settling time, 10 V step to 1 LSB at 16-bit resolution  
CLEAR pulse width low  
7.5  
20  
200  
10  
40  
t13  
t14  
t15  
t16  
CLEAR pulse activation time  
SYNC rising edge to SCLK falling edge  
SCLK rising edge to SDO valid (CL_SDO = 15 pF, where CL_SDO is the capacitive load on the SDO  
output)  
t17  
50  
ns min  
Minimum SYNC high time (readback/daisy-chain mode)  
1 Maximum SCLK frequency is 50 MHz for write mode and 33 MHz for readback mode.  
Timing Diagrams  
t1  
SCLK  
1
2
24  
t3  
t2  
t6  
t5  
t4  
SYNC  
SDI  
t8  
t7  
DB23  
DB0  
t11  
t9  
t10  
LDAC  
t12  
V
OUT  
OUT  
t12  
V
t13  
CLEAR  
t14  
V
OUT  
Figure 2. Serial Interface Timing Diagram  
Rev. C | Page 6 of 31  
 
 
Data Sheet  
AD5761/AD5721  
t1  
SCLK  
24  
48  
t3  
t2  
t5  
t17  
t15  
t4  
SYNC  
SDI  
t8  
t7  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N – 1  
INPUT WORD FOR DAC N  
t16  
DB23  
DB0  
SDO  
t10  
UNDEFINED  
t11  
LDAC  
Figure 3. Daisy-Chain Timing Diagram  
SCLK  
1
24  
24  
1
t17  
SYNC  
SDI  
DB23  
DB0  
DB23  
DB0  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
DB23  
DB0  
DB23  
DB0  
SDO  
UNDEFINED  
SELECTED REGISTER DATA  
CLOCKED OUT  
Figure 4. Readback Timing Diagram  
Rev. C | Page 7 of 31  
 
AD5761/AD5721  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Transient currents of up to  
200 mA do not cause silicon controlled rectifier (SCR) latch-up.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 5.  
Parameter  
Rating  
VDD to AGND  
VSS to AGND  
VDD to VSS  
DVCC to DGND  
Digital Inputs1 to DGND  
−0.3 V to +34 V  
+0.3 V to −17 V  
−0.3 V to +34 V  
−0.3 V to +7 V  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
ESD CAUTION  
Digital Outputs2 to DGND  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
VREFIN to DGND  
VOUT to AGND  
AGND to DGND  
Operating Temperature Range,  
TA Industrial  
−0.3 V to +7 V  
VSS to VDD  
−0.3 V to +0.3 V  
−40°C to +125°C  
Storage Temperature Range  
Junction Temperature, TJ MAX  
Thermal Impedance  
16-Lead TSSOP  
θJA  
−65°C to +150°C  
150°C  
113°C/W3  
28°C/W  
θJC  
16-Lead LFCSP  
θJA  
θJC  
75°C/W3  
4.5°C/W4  
Power Dissipation  
Lead Temperature  
Soldering  
(TJ MAX − TA)/θJA  
JEDEC industry standard  
J-STD-020  
ESD (Human Body Model)  
4 kV  
1
CLEAR RESET  
, SCLK,  
SYNC LDAC  
, SDI, and .  
The digital inputs include  
The digital outputs include  
,
2
ALERT  
and SDO.  
3 JEDEC 2S2P test board, still air (0 m/sec airflow).  
4 Measured to exposed paddle, with infinite heat sink on package top surface.  
Rev. C | Page 8 of 31  
 
 
Data Sheet  
AD5761/AD5721  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
ALERT  
CLEAR  
RESET  
DGND  
DV  
CC  
SCLK  
SYNC  
SDI  
AD5761/  
AD5721  
V
RESET  
1
2
3
4
12 SCLK  
11 SYNC  
REFIN  
AD5761/  
TOP VIEW  
AGND  
V
REFIN  
(Not to Scale)  
AD5721  
TOP VIEW  
(Not to Scale)  
10  
9
AGND  
SDI  
V
LDAC  
SDO  
DNC  
SS  
V
LDAC  
V
SS  
OUT  
V
DD  
DNC = DO NOT CONNECT. DO NOT  
CONNECT TO THIS PIN.  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
2. EXPOSED PAD. ENSURE THAT THE EXPOSED PAD IS  
MECHANICALLY CONNECTED TO A PCB COPPER PLANE  
FOR OPTIMAL THERMAL PERFORMANCE. THE EXPOSED PAD  
CAN BE LEFT ELECTRICALLY FLOATING.  
Figure 5. LFCSP Pin Configuration  
Figure 6. TSSOP Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
LFCSP TSSOP Mnemonic Description  
1
3
RESET  
Active Low Reset Input. Asserting this pin returns the AD5761/AD5721 to their default power-on status  
where the output is clamped to ground and the output buffer is powered down. This pin can be left  
floating because there is an internal pull-up resistor.  
2
3
4
4
5
6
VREFIN  
AGND  
VSS  
External Reference Voltage Input. For specified performance, VREFIN = 2.5 V.  
Ground Reference for Analog Circuitry.  
Negative Analog Supply Connection. A voltage in the range of −16.5 V to 0 V can be connected to this pin.  
For unipolar output ranges, connect this pin to 0 V. VSS must be decoupled to AGND.  
5
6
7
8
VOUT  
VDD  
Analog Output Voltage of the DAC. The output amplifier is capable of directly driving a 2 kΩ, 1 nF load.  
Positive Analog Supply Connection. A voltage in the range of 4.75 V to 30 V can be connected to this pin  
for unipolar output ranges. Bipolar output ranges accept a voltage in the range of 4.75 V to 16.5 V. VDD  
must be decoupled to AGND.  
7
8
9
10  
DNC  
SDO  
Do Not Connect. Do not connect to this pin.  
Serial Data Output. This pin clocks data from the serial register in daisy-chain or readback mode. Data is  
clocked out on the rising edge of SCLK and is valid on the falling edge of SCLK.  
9
11  
LDAC  
Load DAC. This logic input updates the DAC register and, consequently, the analog output. When tied  
permanently low, the DAC register is updated when the input register is updated. If LDAC is held high  
during the write to the input register, the DAC output register is not updated, and the DAC output update is  
held off until the falling edge of LDAC. This pin can be left floating because there is an internal pull-up resistor.  
10  
11  
12  
13  
SDI  
SYNC  
Serial Data Input. Data must be valid on the falling edge of SCLK.  
Active Low Synchronization Input. This pin is the frame synchronization signal for the serial interface. While  
SYNC is low, data is transferred in on the falling edge of SCLK. Data is latched on the rising edge of SYNC.  
12  
13  
14  
15  
SCLK  
DVCC  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of SCLK. This pin  
operates at clock speeds of up to 50 MHz.  
Digital Supply. The voltage range is from 1.7 V to 5.5 V. The applied voltage sets the voltage at which the  
digital interface operates.  
14  
15  
16  
1
DGND  
ALERT  
Digital Ground.  
Active Low Alert. This pin is asserted low when the die temperature exceeds approximately 150°C, or  
when an output short circuit or a brownout occurs. This pin is also asserted low during power-up, a full  
software reset, or a hardware reset, for which a write to the control register asserts the pin high.  
16  
17  
2
CLEAR  
EPAD  
Falling Edge Clear Input. Asserting this pin sets the DAC register to zero-scale, midscale, or full-scale code  
(user selectable) and updates the DAC output. This pin can be left floating because there is an internal  
pull-up resistor.  
Exposed Pad. Ensure that the exposed pad is mechanically connected to a PCB copper plane for optimal  
thermal performance. The exposed pad can be left electrically floating.  
N/A1  
1 N/A means not applicable.  
Rev. C | Page 9 of 31  
 
AD5761/AD5721  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERSTICS  
2.0  
0.5  
0.4  
0V TO 5V SPAN  
±3V SPAN  
V
V
= +21V  
= –11V  
V
V
= +21V  
= –11V  
DD  
SS  
DD  
SS  
0V TO 10V SPAN  
0V TO 16V SPAN  
0V TO 20V SPAN  
±5V SPAN  
±10V SPAN  
–2.5V TO +7.5V SPAN  
1.5  
1.0  
0.3  
0.2  
0.5  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
0
10000  
20000  
30000  
40000  
50000  
60000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
DAC CODE  
DAC CODE  
Figure 7. AD5761 INL Error vs. DAC Code, Unipolar Output  
Figure 10. AD5721 INL Error vs. DAC Code, Bipolar Output  
1.0  
0.5  
0V TO 5V SPAN  
0V TO 10V SPAN  
0V TO 16V SPAN  
0V TO 20V SPAN  
V
V
= +21V  
= –11V  
0V TO 5V SPAN  
0V TO 10V SPAN  
0V TO 16V SPAN  
0V TO 20V SPAN  
V
V
= +21V  
= –11V  
DD  
SS  
DD  
SS  
0.8  
0.6  
0.4  
0.3  
0.4  
0.2  
0.2  
0.1  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
10000  
20000  
30000  
40000  
50000  
60000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
DAC CODE  
DAC CODE  
Figure 8. AD5721 INL Error vs. DAC Code, Unipolar Output  
Figure 11. AD5761 DNL Error vs. DAC Code, Unipolar Output  
2.0  
0.5  
0.4  
V
V
= +21V  
= –11V  
±3V SPAN  
DD  
SS  
0V TO 5V SPAN  
0V TO 10V SPAN  
0V TO 16V SPAN  
0V TO 20V SPAN  
V
V
= +21V  
= –11V  
DD  
SS  
±5V SPAN  
±10V SPAN  
–2.5V TO +7.5V SPAN  
1.5  
1.0  
0.3  
0.2  
0.5  
0.1  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
10000  
20000  
30000  
40000  
50000  
60000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
DAC CODE  
DAC CODE  
Figure 9. AD5761 INL Error vs. DAC Code, Bipolar Output  
Figure 12. AD5721 DNL Error vs. DAC Code, Unipolar Output  
Rev. C | Page 10 of 32  
 
 
 
Data Sheet  
AD5761/AD5721  
1.0  
1.0  
0.8  
MAXIMUM DNL, 0V TO 5V SPAN  
MAXIMUM DNL, ±10V SPAN  
MINIMUM DNL, 0V TO 5V SPAN  
MINIMUM DNL, ±10V SPAN  
±3V SPAN  
V
V
= +21V  
= –11V  
DD  
SS  
±5V SPAN  
0.8  
0.6  
±10V SPAN  
–2.5V TO +7.5V SPAN  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
V
= +21V  
= –11V  
DD  
SS  
0
10000  
20000  
30000  
40000  
50000  
60000  
–40  
–20  
0
25  
50  
85  
105  
125  
DAC CODE  
TEMPERATURE (°C)  
Figure 16. DNL Error vs. Temperature  
Figure 13. AD5761 DNL Error vs. DAC Code, Bipolar Output  
0.5  
0.4  
2.0  
1.5  
V
= +21V  
= –11V  
V
V
= +21V  
= –11V  
MAXIMUM INL, 0V TO 5V SPAN  
MAXIMUM INL, ±10V SPAN  
MINIMUM INL, 0V TO 5V SPAN  
MINIMUM INL, ±10V SPAN  
±3V SPAN  
DD  
SS  
DD  
SS  
V
T
±5V SPAN  
= 25°C  
±10V SPAN  
–2.5V TO +7.5V SPAN  
A
NO LOAD  
0.3  
1.0  
0.2  
0.5  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
+5V SPAN AVDD/AVSS = +6V/–1V  
AVDD/AVSS = +10V/–1V  
AVDD/AVSS = +13.5V/–13.5V  
AVDD/AVSS = +16.5V/–1V  
AVDD/AVSS = +16.5V/–16.5V  
0
500  
1000 1500 2000 2500 3000 3500 4000  
DAC CODE  
±10V SPAN AVDD/AVSS = +11V/–11V  
AVDD/AVSS = +7.5V/–1V  
AVDD/AVSS = +12.5V/–12.5V  
AVDD/AVSS = +12.5V/–1V  
AVDD/AVSS = +14.5V/–14.5V  
SUPPLY VOLTAGE (V)  
Figure 14. AD5721 DNL Error vs. DAC Code, Bipolar Output  
Figure 17. INL Error vs. Supply Voltage  
2.0  
1.5  
1.0  
0.8  
V
V
= +21V  
= –11V  
MAXIMUM INL, 0V TO 5V SPAN  
MAXIMUM INL, ±10V SPAN  
MINIMUM INL, 0V TO 5V SPAN  
MINIMUM INL, ±10V SPAN  
V
= +21V  
= –11V  
MAXIMUM DNL, 0V TO 5V SPAN  
MAXIMUM DNL, ±10V SPAN  
MINIMUM DNL, 0V TO 5V SPAN  
MINIMUM DNL, ±10V SPAN  
DD  
SS  
DD  
SS  
V
T
= 25°C  
A
NO LOAD  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
+5V SPAN AVDD/AVSS = +6V/–1V  
AVDD/AVSS = +10V/–1V  
AVDD/AVSS = +13.5V/–13.5V  
AVDD/AVSS = +16.5V/–1V  
AVDD/AVSS = +16.5V/–16.5V  
–40  
–20  
0
25  
50  
85  
105  
125  
±10V SPAN AVDD/AVSS = +11V/–11V  
TEMPERATURE (°C)  
AVDD/AVSS = +7.5V/–1V  
AVDD/AVSS = +12.5V/–12.5V  
AVDD/AVSS = +12.5V/–1V  
AVDD/AVSS = +14.5V/–14.5V  
SUPPLY VOLTAGE (V)  
Figure 18. DNL Error vs. Supply Voltage  
Figure 15. INL Error vs. Temperature  
Rev. C | Page 11 of 32  
AD5761/AD5721  
Data Sheet  
3
0.006  
0.004  
0.002  
0
MAXIMUM INL, 0V TO 5V SPAN  
V
V
= +21V  
= –11V  
0V TO 5V SPAN  
±10V SPAN  
V
V
= +21V  
= –11V  
DD  
SS  
DD  
SS  
MAXIMUM INL, ±10V SPAN  
MINIMUM INL, 0V TO 5V SPAN  
MINIMUM INL, ±10V SPAN  
2
1
0
–1  
–2  
–3  
–0.002  
–0.004  
–0.006  
2.00  
2.25  
2.50  
2.75  
3.00  
–40  
–20  
0
25  
50  
85  
105  
125  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 19. INL Error vs. Reference Voltage  
Figure 22. Midscale Error vs. Temperature  
1.0  
0.8  
0.006  
0.004  
0.002  
0
V
V
= +21V  
= –11V  
MAXIMUM DNL, 0V TO 5V SPAN  
MAXIMUM DNL, ±10V SPAN  
MINIMUM DNL, 0V TO 5V SPAN  
MINIMUM DNL, ±10V SPAN  
DD  
SS  
V
V
= +21V  
= –11V  
0V TO 5V SPAN  
±10V SPAN  
DD  
SS  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.002  
–0.004  
–0.006  
2.00  
2.25  
2.50  
2.75  
3.00  
–40  
–20  
0
25  
50  
85  
105  
125  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 20. DNL Error vs. Reference Voltage  
Figure 23. Full-Scale Error vs. Temperature  
0.010  
0.008  
0.006  
0.004  
0.002  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
0V TO 5V SPAN  
0V TO 10V SPAN  
V
V
= +21V  
= –11V  
V
V
= +21V  
= –11V  
0V TO 5V SPAN  
±10V SPAN  
DD  
SS  
DD  
SS  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–40  
–20  
0
25  
50  
85  
105  
125  
–40  
–20  
0
25  
50  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 24. Gain Error vs. Temperature  
Figure 21. Zero-Scale Error vs. Temperature  
Rev. C | Page 12 of 31  
 
 
Data Sheet  
AD5761/AD5721  
0.0010  
0.020  
0.015  
0.010  
0.005  
0
T
V
= 25°C  
T
V
= 25°C  
A
0V TO 5V SPAN  
±10V SPAN  
A
0V TO 5V SPAN  
±10V SPAN  
= 2.5V  
= 2.5V  
REF  
REF  
0.0005  
0
–0.0005  
–0.0010  
–0.0015  
–0.0020  
–0.0025  
–0.0030  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
–0.030  
+5V SPAN AVDD/AVSS = +6V/–1V  
±10V SPAN AVDD/AVSS = +11V/–11V  
AVDD/AVSS = +10V/–1V  
AVDD/AVSS = +13.5V/–13.5V  
AVDD/AVSS = +16.5V/–1V  
AVDD/AVSS = +16.5V/–16.5V  
+5V SPAN AVDD/AVSS = +6V/–1V  
±10V SPAN AVDD/AVSS = +11V/–11V  
AVDD/AVSS = +10V/–1V  
AVDD/AVSS = +13.5V/–13.5V  
AVDD/AVSS = +16.5V/–1V  
AVDD/AVSS = +16.5V/–16.5V  
AVDD/AVSS = +12.5V/–1V  
AVDD/AVSS = +14.5V/–14.5V  
AVDD/AVSS = +7.5V/–1V  
AVDD/AVSS = +12.5V/–12.5V  
AVDD/AVSS = +12.5V/–1V  
AVDD/AVSS = +14.5V/–14.5V  
AVDD/AVSS = +7.5V/–1V  
AVDD/AVSS = +12.5V/–12.5V  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 25. Zero-Scale Error vs. Supply Voltage  
Figure 28. Gain Error vs. Supply Voltage  
0.005  
0.003  
0.0005  
0.0003  
V
V
A
= +21V  
= –11V  
0V TO 5V SPAN  
±10V SPAN  
0V TO 5V SPAN  
±10V SPAN  
T
V
= 25°C  
DD  
SS  
A
= 2.5V  
REF  
T
= 25C  
0.0001  
–0.0001  
–0.0003  
–0.0005  
–0.0007  
–0.0009  
–0.0011  
–0.0013  
–0.0015  
0.001  
–0.001  
–0.003  
–0.005  
2.0  
2.5  
3.0  
+5V SPAN AVDD/AVSS = +6V/–1V  
AVDD/AVSS = +10V/–1V  
AVDD/AVSS = +16.5V/–1V  
AVDD/AVSS = +16.5V/–16.5V  
±10V SPAN AVDD/AVSS = +11V/–11V  
AVDD/AVSS = +13.5V/–13.5V  
REFERENCE VOLTAGE (V)  
AVDD/AVSS = +12.5V/–1V  
AVDD/AVSS = +14.5V/–14.5V  
AVDD/AVSS = +7.5V/–1V  
AVDD/AVSS = +12.5V/–12.5V  
SUPPLY VOLTAGE (V)  
Figure 26. Midscale Error vs. Supply Voltage  
Figure 29. Zero-Scale Error vs. Reference Voltage  
0.0010  
0.0005  
0
0.0010  
0.0008  
0.0006  
0.0004  
0.0002  
0
T
V
= 25  
°
C
0V TO 5V SPAN  
±10V SPAN  
V
V
A
= +21V  
= –11V  
0V TO 5V SPAN  
±10V SPAN  
A
DD  
SS  
= 2.5V  
REF  
T
= 25°C  
–0.0005  
–0.0010  
–0.0015  
–0.0020  
–0.0002  
–0.0004  
–0.0006  
–0.0008  
–0.0010  
+5V SPAN AVDD/AVSS = +6V/–1V  
±10V SPAN AVDD/AVSS = +11V/–11V  
AVDD/AVSS = +10V/–1V  
AVDD/AVSS = +13.5V/–13.5V  
AVDD/AVSS = +16.5V/–1V  
AVDD/AVSS = +16.5V/–16.5V  
2.0  
2.5  
REFERENCE VOLTAGE (V)  
3.0  
AVDD/AVSS = +12.5V/–1V  
AVDD/AVSS = +14.5V/–14.5V  
AVDD/AVSS = +7.5V/–1V  
AVDD/AVSS = +12.5V/–12.5V  
SUPPLY VOLTAGE (V)  
Figure 27. Full-Scale Error vs. Supply Voltage  
Figure 30. Midscale Error vs. Reference Voltage  
Rev. C | Page 13 of 32  
AD5761/AD5721  
Data Sheet  
0.05  
0.03  
0.005  
±5V SPAN  
0V TO 5V SPAN  
±10V SPAN  
V
V
A
= +21V  
= –11V  
DD  
SS  
±10V SPAN  
–2.5V TO +7.5V SPAN  
±3V SPAN  
T
= 25°C  
0.003  
0.001  
0.01  
–0.01  
–0.03  
–0.05  
–0.001  
–0.003  
T
= 25°C  
A
–0.005  
2.0  
2.5  
REFERENCE VOLTAGE (V)  
3.0  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000  
Figure 34. TUE vs. Code, Bipolar Output  
Figure 31. Full-Scale Error vs. Reference Voltage  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.05  
0.03  
V
V
= +21V  
= –11V  
0V TO 5V SPAN  
±10V SPAN  
0V TO 5V SPAN  
±10V SPAN  
DD  
SS  
V
V
A
= +21V  
= –11V  
DD  
SS  
T
= 25°C  
0.01  
–0.01  
–0.03  
–0.05  
–40  
–20  
0
25  
50  
85  
105  
125  
2.0  
2.5  
3.0  
TEMPERATURE (°C)  
REFERENCE VOLTAGE (V)  
Figure 32. Gain Error vs. Reference Voltage  
Figure 35. TUE vs. Temperature  
0.05  
0.03  
0.020  
0.018  
0.016  
0.014  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0
0V TO 5V SPAN  
0V TO 10V SPAN  
0V TO 16V SPAN  
0V TO 20V SPAN  
T = 25°C  
A
0V TO 5V SPAN  
±10V SPAN  
V
= 2.5V  
REF  
0.01  
–0.01  
–0.03  
–0.05  
T
= 25°C  
A
+5V SPAN AVDD/AVSS = +6V/–1V  
AVDD/AVSS = +10V/–1V  
AVDD/AVSS = +13.5V/–13.5V  
AVDD/AVSS = +16.5V/–1V  
AVDD/AVSS = +16.5V/–16.5V  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000  
±10V SPAN AVDD/AVSS = +11V/–11V  
AVDD/AVSS = +12.5V/–1V  
AVDD/AVSS = +14.5V/–14.5V  
AVDD/AVSS = +7.5V/–1V  
AVDD/AVSS = +12.5V/–12.5V  
SUPPLY VOLTAGE (V)  
Figure 36. TUE vs. Supply Voltage  
Figure 33. TUE vs. Code, Unipolar Output  
Rev. C | Page 14 of 31  
Data Sheet  
AD5761/AD5721  
30000  
6
4
V
V
A
= +21V  
= –11V  
DD  
SS  
25000  
20000  
15000  
10000  
5000  
T
= 25°C  
2
V
V
A
= +21V  
= –11V  
DD  
SS  
T
= 25°C  
LOAD = 2kΩ||200pF  
0
±10V  
0
–2  
–4  
–6  
0V TO 10V  
±5V  
–5000  
–10000  
–15000  
0V TO 5V  
–2.5V TO +7.5V  
±3V  
0V TO 16V  
0V TO 20V  
SYNC  
±5V, FULL SCALE  
TO ZERO SCALE  
–30  
–20  
–10  
0
10  
20  
30  
40  
–8.0 –6.0 –4.0 –2.0  
0
2.0 4.0 6.0 8.0 10.0 12.0 14.0  
TIME (µs)  
SOURCE/SINK CURRENT (mA)  
Figure 37. Source and Sink Capability of Output Amplifier with Positive Full  
Scale Loaded  
Figure 40. Full-Scale Settling Time (Falling Voltage Step), 5 V Range  
12  
15000  
SYNC  
±10V, ZERO SCALE  
TO FULL SCALE  
V
V
= +21V  
= –11V  
= 25°C  
DD  
SS  
10  
8
10000  
5000  
T
A
6
4
2
0
0
–5000  
–10000  
–15000  
–20000  
–2  
–4  
–6  
–8  
–10  
–12  
±10V  
0V TO 10V  
±5V  
0V TO 5V  
–2.5V TO +7.5V  
±3V  
0V TO 16V  
0V TO 20V  
V
V
T
= +21V  
= –11V  
= 25°C  
DD  
SS  
A
LOAD = 2kΩ||200pF  
–3 –2 –1  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
–30  
–20  
–10  
0
10  
20  
30  
TIME (µs)  
SOURCE/SINK CURRENT (mA)  
Figure 41. Full-Scale Settling Time (Rising Voltage Step), 10 V Range  
Figure 38. Source and Sink Capability of Output Amplifier  
with Negative Full Scale Loaded  
12  
6
4
SYNC  
±10V, FULL SCALE  
TO ZERO SCALE  
SYNC  
±5V, ZERO SCALE  
TO FULL SCALE  
10  
8
6
4
2
2
0
0
–2  
–4  
–6  
–8  
–10  
–12  
–2  
–4  
–6  
V
V
T
= +21V  
= –11V  
= 25°C  
DD  
SS  
V
V
T
= +21V  
= –11V  
DD  
SS  
A
= 25°C  
A
LOAD = 2kΩ||200pF  
LOAD = 2kΩ||200pF  
2.0 4.0 6.0 8.0 10.0 12.0 14.0  
TIME (µs)  
–3.0 –1.0 1.0 3.0  
5.0  
7.0  
9.0  
11.0 13.0 15.0  
–8.0 –6.0 –4.0 –2.0  
0
TIME (µs)  
Figure 42. Full-Scale Settling Time (Falling Voltage Step), 10 V Range  
Figure 39. Full-Scale Settling Time (Rising Voltage Step), 5 V Range  
Rev. C | Page 15 of 31  
 
 
 
AD5761/AD5721  
Data Sheet  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0nF  
1nF  
5nF  
7nF  
10nF  
SYNC  
500-CODE STEP, ±5V SPAN  
V
V
= +21V  
= –11V  
DD  
SS  
V
V
T
= +21V  
= –11V  
DD  
SS  
A
T
= 25°C  
A
= 25°C  
LOAD = 2kΩ||200pF  
LOAD = 2kΩ  
–0.01  
–2  
–1  
0
1
2
3
4
5
–3 –2 –1  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
TIME (µs)  
TIME (µs)  
Figure 43. 500-Code Step Settling Time, 5 V Range  
Figure 46. Settling Time vs. Capacitive Load, 0 V to 5 V Range  
0.20  
0.005  
SYNC  
0.19  
0.18  
0.17  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.004  
0.003  
500-CODE STEP, ±10V SPAN  
0.002  
0.001  
0
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
–0.006  
–0.007  
–0.008  
–0.009  
–0.010  
V
V
= +21V  
= –11V  
DD  
V
V
= +21V  
= –11V  
DD  
SS  
SS  
LOAD = 2kΩ||200pF  
T
= 25°C  
A
T
= 25°C  
LOAD = 2kΩ||200pF  
A
–0.01  
–2  
–1  
0
1
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5  
TIME (µs)  
TIME (µs)  
Figure 44. 500-Code Step Settling Time, 10 V Range  
Figure 47. Digital-to-Analog Glitch Energy, 0 V to 5 V Range  
12  
10  
8
0nF  
1nF  
5nF  
7nF  
10nF  
0.004  
0.002  
0
6
4
2
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
0
–2  
–4  
–6  
–8  
–10  
V
V
= +21V  
= –11V  
DD  
SS  
V
V
T
=+21V  
DD  
SS  
A
= –11V  
LOAD = 2k||200pF  
= 25°C  
T
= 25°C  
A
LOAD = 2kΩ  
–12  
–5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5  
0
5
10  
15  
20  
TIME (µs)  
TIME (µs)  
Figure 45. Settling Time vs. Capacitive Load, 10 V Range  
Figure 48. Digital-to-Analog Glitch Energy, 10 V Range  
Rev. C | Page 16 of 31  
 
 
Data Sheet  
AD5761/AD5721  
5V  
SCLK  
10V  
V
5V  
5V  
DD  
SYNC  
10V  
5V  
SDI  
V
SS  
V
REFIN  
200mV  
V
OUT  
20mV  
V
OUT  
2
20ms/DIV  
200µs/DIV  
Figure 49. Power-Up Glitch  
Figure 52. Software Full Reset Glitch from Zero Scale with Output Loaded,  
0 V to 5 V Range  
5V  
5V  
SCLK  
SDI  
SCLK  
SDI  
5V  
5V  
SYNC  
5V  
5V  
SYNC  
2V  
1V  
V
V
OUT  
OUT  
200µs/DIV  
200µs/DIV  
Figure 50. Software Full Reset Glitch from Full Scale with Output Loaded, 0 V  
to 5 V Range  
Figure 53. Software Full Reset Glitch from Full Scale with Output Loaded,  
10 V Range  
5V  
5V  
SCLK  
SCLK  
SYNC  
5V  
5V  
5V  
SYNC  
5V  
SDI  
SDI  
500mV  
500mV  
V
OUT  
V
OUT  
200µs/DIV  
200µs/DIV  
Figure 51. Software Full Reset Glitch from Midscale with Output Loaded,  
0 V to 5 V Range  
Figure 54. Software Full Reset Glitch from Midscale with Output Loaded,  
10 V Range  
Rev. C | Page 17 of 31  
AD5761/AD5721  
Data Sheet  
10  
8
V
V
V
T
= +21V  
= –11V  
DD  
SS  
5V  
SCLK  
SDI  
= 2.5V  
REFIN  
= 25°C  
5V  
A
SYNC  
6
5V  
2V  
4
2
0
–2  
–4  
V
OUT  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
200µs/DIV  
TIME (Seconds)  
Figure 55. Software Full Reset Glitch from Zero Scale with Output Loaded,  
±±0 V Range  
Figure 58. Peak-to-Peak Noise (Voltage Output Noise), 0.± Hz to ±0 Hz  
Bandwidth  
30  
5V  
SCLK  
20  
5V  
SYNC  
5V  
10  
SDI  
V
1V  
OUT  
0
–10  
–20  
V
V
= +21V  
= –11V  
DD  
SS  
T
= 25°C  
A
–30  
2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
200µs/DIV  
TIME (Seconds)  
Figure 59. Peak-to-Peak Noise (Voltage Output Noise), ±00 kHz Bandwidth  
Figure 56. Output Range Change Glitch, 0 V to 5 V Range  
V
V
T
= +21V  
= –11V  
DAC OUTPUT NSD (nV/Hz), EXT REF, ZS  
DAC OUTPUT NSD (nV/Hz), EXT REF, MS  
DAC OUTPUT NSD (nV/Hz), EXT REF, FS  
DD  
SS  
A
5V  
SCLK  
= 25°C  
5V  
SYNC  
5V  
SDI  
V
OUT  
200mV  
200µs/DIV  
FREQUENCY (Hz)  
Figure 57. Output Range Change Glitch, ±±0 V Range  
Figure 60. DAC Output Noise Spectral Density vs. Frequency, ±±0 V Range  
Rev. C | Page 18 of 32  
 
Data Sheet  
AD5761/AD5721  
0
0.0015  
0.0010  
0.0005  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
T
= 25°C  
A
AV = +21V  
DD  
–0.0005  
–0.0010  
AV = –11V  
SS  
DV  
= 5V  
CC  
2.5V EXT REF  
LOAD = 2k||200pF  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (kHz)  
TIME (µs)  
Figure 61. Total Harmonic Distortion at 1 kHz  
Figure 62. Digital Feedthrough  
Rev. C | Page 19 of 32  
AD5761/AD5721  
Data Sheet  
TERMINOLOGY  
Total Unadjusted Error (TUE)  
Gain Error Temperature Coefficient (TC)  
Total unadjusted error is a measure of the output error taking  
all the various errors into account, namely INL error, offset  
error, gain error, and output drift over supplies, temperature,  
and time. TUE is expressed in % FSR.  
Gain error TC is a measure of the change in gain error with  
changes in temperature. It is expressed in ppm FSR/°C.  
DC Power Supply Rejection Ratio (DC PSRR)  
DC power supply rejection ratio is a measure of the rejection of  
the output voltage to dc changes in the power supplies applied  
to the DAC. It is measured for a given dc change in power supply  
voltage and is expressed in mV / V.  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy, or integral nonlinearity, is a  
measure of the maximum deviation, in LSB, from a straight line  
passing through the endpoints of the DAC transfer function. A  
typical INL error vs. DAC code plot is shown in Figure 7.  
AC Power Supply Rejection Ratio (AC PSRR)  
AC power supply rejection ratio is a measure of the rejection of  
the output voltage to ac changes in the power supplies applied  
to the DAC. It is measured for a given amplitude and frequency  
change in power supply voltage and is expressed in decibels.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic. A  
typical DNL error vs. code plot is shown in Figure 11.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time it takes for  
the output to settle to a specified level for a full-scale input  
change. Full-scale settling time is shown in Figure 39 to Figure 42.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant for increasing digital input code. The AD5761/AD5721  
are monotonic over their full operating temperature range.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec  
and is measured when the digital input code is changed by 1 LSB at  
the major carry transition (see Figure 47 and Figure 48).  
Bipolar Zero Error  
Bipolar zero error is the deviation of the analog output from the  
ideal half-scale output of 0 V when the DAC register is loaded  
with 0x8000 (straight binary coding) or 0x0000 (twos complement  
coding) for the AD5761/AD5721.  
Glitch Impulse Peak Amplitude  
Glitch impulse peak amplitude is the peak amplitude of the  
impulse injected into the analog output when the input code in  
the DAC register changes state. It is specified as the amplitude  
of the glitch in mV and is measured when the digital input code  
is changed by 1 LSB at the major carry transition.  
Bipolar Zero Temperature Coefficient (TC)  
Bipolar zero TC is a measure of the change in the bipolar zero  
error with a change in temperature. It is expressed in µV/°C.  
Zero-Scale Error  
Zero-scale error is the error in the DAC output voltage when  
0x0000 (straight binary coding) or 0x8000 (twos complement  
coding) is loaded to the DAC register. Ideally, the output voltage  
is negative full scale. A plot of zero-scale error vs. temperature is  
shown in Figure 21.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into the  
analog output of the DAC from the digital inputs of the DAC but is  
measured when the DAC output is not updated. It is specified in  
nV-sec and measured with a full-scale code change on the data bus.  
Zero-Scale Error Temperature Coefficient (TC)  
Noise Spectral Density  
Zero-scale error TC is a measure of the change in zero-scale  
error with a change in temperature. It is expressed in µV/°C.  
Noise spectral density is a measurement of the internally generated  
random noise characterized as a spectral density (nV/√Hz). It is  
measured by loading the DAC to full scale and measuring noise  
at the output. It is measured in nV/√Hz. A plot of noise spectral  
density is shown in Figure 60.  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of harmonics to the fundamental.  
Offset Error Temperature Coefficient (TC)  
Offset error TC is a measurement of the change in offset error  
For the AD5761/AD5721, it is defined as  
with a change in temperature. It is expressed in µV/°C.  
V22 +V32 +V42 +V52 +V62  
THD (dB) = 20× log  
Gain Error  
V
1
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal expressed in % FSR. A plot of gain error vs. temperature is  
shown in Figure 24.  
where:  
V1 is the rms amplitude of the fundamental.  
V2, V3, V4, V5, and V6 are the rms amplitudes of the second  
through the sixth harmonics.  
Rev. C | Page 20 of 31  
 
Data Sheet  
AD5761/AD5721  
THEORY OF OPERATION  
V
REFIN  
DIGITAL-TO-ANALOG CONVERTER  
The AD5761/AD5721 are single channel 16-bit/12-bit voltage  
output DACs. The AD5761/AD5721 output ranges are software  
selectable and can be configured as follows:  
REFIN  
DAC REGISTER  
V
OUT  
Unipolar output voltage: 0 V to 5 V, 0 V to 10 V, 0 V to 16 V,  
0 V to 20 V  
CONFIGURABLE  
OUTPUT  
AMPLIFIER  
Bipolar output voltage: −2.5 V to +7.5 V, 3 V, 5 V, 10 V  
AGND  
Data is written to the AD5761/AD5721 in a 24-bit word format  
via a 4-wire digital interface that is serial peripheral interface  
(SPI) compatible. The devices also offer an SDO pin to facilitate  
daisy-chaining and readback.  
OUTPUT  
RANGE CONTROL  
Figure 63. DAC Architecture  
R-2R DAC  
The architecture of the AD5761/AD5721 consists of two  
matched DAC sections. A simplified circuit diagram is shown  
in Figure 64. The six MSBs of the 16-bit data-word are decoded  
to drive 63 switches, E0 to E62, whereas the remaining 10 bits of  
the data-word drive the S0 to S9 switches of a 10-bit voltage  
mode R-2R ladder network.  
TRANSFER FUNCTION  
The input coding to the DAC can be straight binary or twos  
complement (bipolar ranges case only). Therefore, the transfer  
function is given by  
D
VOUT =VREF  
×
M ×  
C  
2N  
The code loaded into the DAC register determines which arms  
of the ladder are switched between VREFIN and ground (AGND).  
The output voltage is taken from the end of the ladder and  
amplified afterwards to provide the selected output voltage.  
where:  
REF is 2.5 V.  
V
M is the slope for a given output range (see Table 7).  
D is the decimal equivalent of the code loaded to the DAC  
register as follows:  
R
R
R
V
OUT  
2R  
2R  
S0  
2R ...  
2R  
S9  
2R  
2R ... 2R  
...  
0 to 4095 for the 12-bit device.  
...  
S1  
E62  
E61  
E0  
0 to 65,535 for the 16-bit device.  
N is the number of bits. N is 12 for the AD5721 and 16 for the  
V
REFIN  
AGND  
AD5761.  
10-BIT R-2R LADDER  
SIX MSBs DECODED INTO  
63 EQUAL SEGMENTS  
C is the offset for a given output range (see Table 7).  
Figure 64. DAC Ladder Structure  
Table 7. M and C Values for Various Output Ranges  
Reference Buffer  
Range  
M
C
The AD5761/AD5721 operate with an external reference. The  
reference input has an input range of 2 V to 3 V with 2.5 V for  
specified performance. This input voltage is then buffered  
before it is applied to the DAC core.  
10 V  
5 V  
3 V  
−2.5 V to +7.5 V  
0 V to 20 V  
0 V to 16 V  
0 V to 10 V  
0 V to 5 V  
8
4
2.4  
4
8
6.4  
4
2
4
2
1.2  
1
0
0
0
0
DAC Output Amplifier  
The output amplifier is capable of generating both unipolar and  
bipolar output voltages. It is capable of driving a load of 2 kΩ in  
parallel with 1 nF to AGND. The source and sink capabilities of  
the output amplifier are shown in Figure 37.  
DAC ARCHITECTURE  
The DAC architecture consists of an R-2R DAC followed by an  
output buffer amplifier. Figure 63 shows a block diagram of the  
DAC architecture. Note that the reference input is buffered  
prior to being applied to the DAC.  
The output voltage range obtained from the configurable output  
amplifier is selected by writing to the 3 LSBs, (RA[2:0]), in the  
control register.  
Rev. C | Page 21 of 31  
 
 
 
 
 
 
 
AD5761/AD5721  
Data Sheet  
By connecting the SDO of the first device to the SDI input of  
the next device in the chain, a multidevice interface is constructed.  
Each device in the system requires 24 clock pulses. Therefore,  
the total number of clock cycles must equal 24 × N, where N is  
the total number of AD5761/AD5721 devices in the chain. When  
SERIAL INTERFACE  
SYNC  
The AD5761/AD5721 4-wire (  
, SCLK, SDI, and SDO)  
digital interface is SPI compatible. The write sequence begins  
SYNC  
after bringing the  
line low, maintaining this line low until  
the complete data-word is loaded from the SDI pin. Data is  
loaded in at the SCLK falling edge transition (see Figure 2).  
SYNC  
the serial transfer to all devices is complete,  
is taken high,  
which latches the input data in each device in the daisy chain  
and prevents any further data from being clocked into the input  
shift register.  
SYNC  
When  
is brought high again, the serial data-word is  
decoded according to the instructions in Table 10. The  
AD5761/AD5721 contain an SDO pin to allow the user to  
daisy-chain multiple devices together or to read back the  
contents of the registers.  
CONTROLLER  
AD5761/  
AD5721*  
SDI  
DATA OUT  
SERIAL CLOCK  
CONTROL OUT  
DATA IN  
Standalone Operation  
SCLK  
SYNC  
The serial interface works with both a continuous and noncontinu-  
ous serial clock. A continuous SCLK source can be used only when  
SDO  
SYNC  
is held low for the correct number of clock cycles.  
In gated clock mode, a burst clock containing the exact number  
SYNC  
SDI  
of clock cycles must be used, and  
must be taken high  
AD5761/  
AD5721*  
after the final clock to latch the data. The first falling edge of  
SYNC  
starts the write cycle. Exactly 24 falling clock edges must  
SCLK  
SYNC  
SYNC  
SYNC  
is  
be applied to SCLK before  
is brought high again. If  
SDO  
brought high before the 24th falling SCLK edge, the data written is  
invalid. If more than 24 falling SCLK edges are applied before  
SYNC  
is brought high, the input data is also invalid.  
The input shift register is updated on the rising edge of  
SYNC  
SDI  
SYNC  
must be brought  
.
AD5761/  
AD5721*  
For another serial transfer to take place,  
low again. After the end of the serial data transfer, data is  
automatically transferred from the input shift register to the  
addressed register. When the write cycle is complete, the output  
SCLK  
SYNC  
SDO  
LDAC  
SYNC  
can be updated by taking  
low while  
is high.  
*
ADDITIONAL PINS OMITTED FOR CLARITY.  
Readback Operation  
Figure 65. Daisy-Chain Block Diagram  
The contents of the input, DAC, and control registers can be  
read back via the SDO pin. Figure 4 shows how the registers are  
decoded. After a register has been addressed for a read, the next  
24 clock cycles clock the data out on the SDO pin. The clocks  
HARDWARE CONTROL PINS  
LDAC  
Load DAC Function (  
)
After data transfers into the input register of the DAC, there are  
two ways to update the DAC register and DAC output. Depend-  
SYNC  
SYNC  
must be applied while  
is low. When  
is returned high,  
the SDO pin is placed in tristate. For a read of a single register,  
the no operation (NOP) function clocks out the data. Alternatively,  
if more than one register is to be read, the data of the first register  
to be addressed clocks out at the same time that the second register  
to be read is being addressed. The SDO pin must be enabled to  
complete a readback operation. The SDO pin is enabled by default.  
SYNC  
LDAC  
ing on the status of both  
and  
, one of two update  
modes is selected: synchronous DAC update or asynchronous  
DAC update.  
Synchronous DAC Update  
LDAC  
In synchronous DAC update mode,  
data is being clocked into the input shift register. The DAC  
SYNC  
is held low while  
Daisy-Chain Operation  
output is updated on the rising edge of  
.
For systems that contain several devices, use the SDO pin to  
daisy-chain several devices together. Daisy-chain mode is useful  
in system diagnostics and in reducing the number of serial  
SYNC  
interface lines. The first falling edge of  
cycle. SCLK is continuously applied to the input shift register  
SYNC  
starts the write  
when  
is low. If more than 24 clock pulses are applied, the  
data ripples out of the shift register and appears on the SDO line.  
This data is clocked out on the rising edge of SCLK and is valid  
on the falling edge.  
Rev. C | Page 22 of 31  
 
 
Data Sheet  
AD5761/AD5721  
ALERT  
Alert Function (  
Asynchronous DAC Update  
)
ALERT  
pin is asserted low, a readback from the  
LDAC  
When the  
In asynchronous DAC update mode,  
is held high while  
control register is required to clarify whether a short-circuit  
or brownout condition occurred, depending on the values of  
Bit 12 and Bit 11, SC and BO bits, respectively (see Table 15  
and Table 16). If neither of these conditions occurred, the  
temperature exceeded approximately 150°C.  
data is being clocked into the input shift register. The DAC output  
LDAC SYNC  
is asynchronously updated by taking  
taken high. The update then occurs on the falling edge of  
RESET  
low after  
is  
LDAC  
.
Reset Function (  
The AD5761/AD5721 can be reset to its power-on state by two  
RESET  
)
ALERT  
The  
a hardware reset. After the first write to the control register to  
ALERT  
pin is low during power-up, a software full reset, or  
means: either by asserting the  
pin or by using the software  
full reset registers (see Table 26).  
configure the DAC, the  
In the event of the die temperature exceeding approximately 150°C,  
ALERT  
pin is asserted high.  
CLEAR  
Asynchronous Clear Function (  
)
CLEAR  
The  
pin is a falling edge active input that allows the output  
the  
pin is low and the value of the ETS bit determines the  
to be cleared to a user defined value. The clear code value is  
programmed by writing to Bit 10 and Bit 9 in the control register  
state of the digital supply of the device, whether the internal  
digital supply is powered on or powered down. If the ETS bit is  
set to 0, the internal digital supply is powered on when the internal  
die temperature exceeds approximately 150°C. If the ETS bit is  
set to 1, the internal digital supply is powered down when the  
internal die temperature exceeds approximately 150°C and the  
device becomes nonfunctional (see Table 11 and Table 12).  
CLEAR  
(see Table 11 and Table 12). It is necessary to maintain  
for a minimum amount of time to complete the operation (see  
CLEAR  
low  
Figure 2). When the  
signal is returned high, the output  
remains at the clear value until a new value is loaded to the  
DAC register.  
The AD5761/AD5721 temperature at power-up must be less  
than 150°C for proper operation of the devices.  
Rev. C | Page 23 of 31  
AD5761/AD5721  
Data Sheet  
REGISTER DETAILS  
INPUT SHIFT REGISTER  
The input shift register is 24 bits wide. Data is loaded into the device MSB first as a 24-bit word under the control of a serial clock input,  
SCLK, which can operate at rates of up to 50 MHz. The input shift register consists of three don’t care bits, one fixed value bit (DB20 = 0),  
four address bits, and a 16-bit or 12-bit data-word as shown in Table 8 and Table 9, respectively.  
Table 8. AD5761 16-Bit Input Shift Register Format  
MSB  
DB23  
X1  
LSB  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB16  
DB15 to DB0  
X1  
X1  
0
Register address  
Register data  
1 X means don’t care.  
Table 9. AD5721 12-Bit Input Shift Register Format  
MSB  
LSB  
DB23  
X1  
DB22  
X1  
DB21  
X1  
DB20  
DB19  
DB18  
DB17  
DB15 to DB4  
DB3 to DB0  
XXXX1  
0
Register address  
Register data  
1 X means don’t care.  
Table 10. Input Shift Register Commands  
Register Address  
DB19 DB18 DB17 DB16 Command  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No operation  
Write to input register (no update)  
Update DAC register from input register  
Write and update DAC register  
Write to control register  
No operation  
No operation  
Software data reset  
Reserved  
Disable daisy-chain functionality  
Readback input register  
Readback DAC register  
Readback control register  
No operation  
No operation  
Software full reset  
CONTROL REGISTER  
The control register controls the mode of operation of the AD5761/AD5721. The control register options are shown in Table 11 and Table 12.  
On power-up, after a full reset, or after a hardware reset, the output of the DAC is clamped to ground through a 1 kΩ resistor and the  
output buffer remains in power-down mode. A write to the control register is required to configure the device, remove the clamp to  
ground, and power up the output buffer.  
When the DAC output range is reconfigured during operation, a software full reset command (see Table 26) must be written to the device  
before writing to the control register.  
Table 11. Write to Control Register  
MSB  
LSB  
DB[23:21]  
XXX1  
XXX1  
DB20  
DB[19:16]  
Register address  
0100  
DB[15:11]  
DB[10:9]  
DB8  
DB7  
Register data  
B2C ETS  
DB6  
DB5  
DB[4:3]  
DB[2:0]  
0
0
XXXXX1  
CV[1:0]  
OVR  
0
PV[1:0]  
RA[2:0]  
1 X means don’t care.  
Rev. C | Page 24 of 31  
 
 
 
 
 
 
 
 
Data Sheet  
AD5761/AD5721  
Table 12. Control Register Functions  
Bit Name  
Description  
CV[1:0]  
CLEAR voltage selection.  
00: zero scale.  
01: midscale.  
10, 11: full scale.  
OVR  
B2C  
ETS  
5% overrange.  
0: 5% overrange disabled.  
1: 5% overrange enabled.  
Bipolar range.  
0: DAC input for bipolar output range is straight binary coded.  
1: DAC input for bipolar output range is twos complement coded.  
Thermal shutdown alert. The alert may not work correctly if the device powers on with temperature conditions >150°C  
(greater than the maximum rating of the device).  
0: internal digital supply does not power down if die temperature exceeds 150°C.  
1: internal digital supply powers down if die temperature exceeds 150°C.  
PV[1:0]  
RA[2:0]  
Power-up voltage.  
00: zero scale.  
01: midscale.  
10, 11: full scale.  
Output range. Before an output range configuration, the device must be reset.  
000: −10 V to +10 V.  
001: 0 V to +10 V.  
010: −5 V to +5 V.  
011: 0 V to 5 V.  
100: −2.5 V to +7.5 V.  
101: −3 V to +3 V.  
110: 0 V to 16 V.  
111: 0 V to 20 V.  
Table 13. Bipolar Output Range Possible Codes  
Straight Binary  
Decimal Code  
Twos Complement  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
+7  
+6  
+5  
+4  
+3  
+2  
+1  
0
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
Rev. C | Page 25 of 31  
 
AD5761/AD5721  
Data Sheet  
READBACK CONTROL REGISTER  
The readback control register operation provides the contents of the control register by setting the register address to 1100. Table 14  
outlines the 24-bit shift register for this command, where the last 16 bits are don’t care bits.  
During the next command, the control register contents are shifted out of the SDO pin with the MSB shifted out first. Table 15 outlines  
the 24-bit data read from the SDO pin, where DB23 is the first bit shifted out.  
Table 14. Readback Control Register, 24-Bit Shift Register to the SDI Pin  
MSB  
LSB  
DB[23:21]  
XXX1  
XXX1  
DB20  
DB[19:16]  
Register address  
1100  
DB[15:10]  
Register data  
Don’t care  
0
0
1 X means don’t care.  
Table 15. Readback Control Register, 24-Bit Data Read from the SDO Pin  
MSB  
LSB  
DB[23:21] DB20 DB[19:16]  
DB[15:13] DB12 DB11 DB[10:9] DB8 DB7 DB6 DB5 DB[4:3] DB[2:0]  
XXX1  
XXX1  
0
0
Register address  
1100  
Register data  
XXXXX1  
SC  
BO  
CV[1:0]  
OVR B2C  
ETS  
X1  
PV[1:0]  
RA[2:0]  
1 X means don’t care.  
Table 16. Readback Control Register Bit Descriptions  
Bit Name  
Description  
SC  
Short-circuit condition. The SC bit is reset at every control register write.  
0: no short-circuit condition detected.  
1: short-circuit condition detected.  
BO  
Brownout condition. The BO bit is reset at every control register write.  
0: no brownout condition detected.  
1: brownout condition detected.  
UPDATE DAC REGISTER FROM INPUT REGISTER  
The update DAC register function loads the DAC register with the data saved in the input register, and updates the DAC output voltage.  
LDAC  
This operation is equivalent to a software  
. Table 17 outlines how data is written to the DAC register.  
Table 17. Update DAC Register from Input Register  
MSB  
LSB  
DB23  
X1  
X1  
DB22  
X1  
X1  
DB21  
X1  
X1  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB0  
Register data  
Don’t care  
0
0
Register address  
0010  
1 X means don’t care.  
READBACK DAC REGISTER  
The readback DAC register operation provides the contents of the DAC register by setting the register address to 1011. Table 18 outlines  
the 24-bit shift register for this command. During the next command, the DAC register contents are shifted out of the SDO pin with the  
MSB shifted out first. Table 19 outlines the 24-bit data read from the SDO pin, where DB23 is the first bit shifted out.  
Table 18. Readback DAC Register, 24-Bit Shift Register to SDI Pin  
MSB  
DB23  
X1  
LSB  
DB22  
X1  
X1  
DB21  
X1  
X1  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB0  
Register data  
Don’t care  
0
0
Register address  
1011  
X1  
1 X means don’t care.  
Rev. C | Page 26 of 31  
 
 
 
 
 
 
 
 
Data Sheet  
AD5761/AD5721  
Table 19. Readback DAC Register, 24-Bit Data Read from SDO Pin  
MSB  
LSB  
DB23  
X1  
X1  
DB22  
X1  
X1  
DB21  
X1  
X1  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB0  
0
0
Register address  
1011  
Register data  
Data read from DAC register  
1 X means don’t care.  
WRITE AND UPDATE DAC REGISTER  
The write and update DAC register (Register Address 0011) updates the input register and the DAC register with the entered data-word  
LDAC  
from the input shift register, irrespective of the state of  
.
Setting the register address to 0001 writes the input register with the data from the input shift register, clocked in MSB first on the SDI  
pin.  
Table 20. Write and Update DAC Register  
MSB  
LSB  
DB23  
X1  
X1  
DB22  
X1  
X1  
DB21  
X1  
X1  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB0  
Register data  
Data loaded  
Data loaded  
0
0
0
Register address  
0001  
X1  
X1  
X1  
0011  
1 X means don’t care.  
READBACK INPUT REGISTER  
The readback input register operation provides the contents of the input register by setting the register address to 1010. Table 21 outlines  
the 24-bit shift register for this command. During the next command, the input register contents are shifted out of the SDO pin with MSB  
shifted out first. Table 22 outlines the 24-bit data read from the SDO pin, where DB23 is the first bit shifted out.  
Table 21. Read Back Input Register, 24-Bit Shift Register to the SDI Pin  
MSB  
DB23  
X1  
LSB  
DB22  
X1  
X1  
DB21  
X1  
X1  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB0  
Register data  
Don’t care  
0
0
Register address  
1010  
X1  
1 X means don’t care.  
Table 22. Readback Input Register, 24-Bit Data Read from the SDO Pin  
MSB  
LSB  
DB23  
X1  
X1  
DB22  
X1  
X1  
DB21  
X1  
X1  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB0  
0
0
Register address  
1010  
Register data  
Data read from input register  
1 X means don’t care.  
DISABLE DAISY-CHAIN FUNCTIONALITY  
The daisy-chain feature can be disabled to save the power consumed by the SDO buffer when this functionality is not required (see Table 23).  
When disabled, a readback request is not accepted because the SDO pin remains in tristate.  
Table 23. Disable Daisy-Chain Functionality Register  
MSB  
LSB  
DB23  
X1  
X1  
DB22  
X1  
X1  
DB21  
X1  
X1  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB1  
Register data  
Don’t care  
DB0  
0
0
Register address  
1001  
DDC  
1 X means don’t care.  
Rev. C | Page 27 of 31  
 
 
 
 
 
 
 
AD5761/AD5721  
Data Sheet  
Table 24. Disable Daisy-Chain Bit Description  
Bit Name Description  
DDC  
DDC decides whether daisy-chain functionality is enabled or disabled for the device. By default, daisy-chain functionality is  
enabled.  
0: daisy-chain functionality is enabled for the device.  
1: daisy-chain functionality is disabled for the device.  
SOFTWARE DATA RESET  
The AD5761/AD5721 can be reset via software to zero scale, midscale, or full scale (see Table 25). The value to which the device is reset is  
specified by the PV1 and PV0 bits, which are set in the write to control register command (see Table 11 and Table 12).  
Table 25. Software Data Reset Register  
MSB  
DB23  
X1  
LSB  
DB22  
X1  
X1  
DB21  
X1  
X1  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB0  
Register data  
Don’t care  
0
0
Register address  
0111  
X1  
1 X means don’t care.  
SOFTWARE FULL RESET  
The device can also be reset completely via software (see Table 26). When the register address is set to 1111, the device behaves in a  
power-up state, where the output is clamped to AGND and the output buffer is powered down. The user must write to the control register  
to configure the device, remove the 1 kΩ resistor clamp to ground, and power up the output buffer.  
The software full reset command is also issued when the DAC output range is reconfigured during normal operation.  
Table 26. Software Full Reset Register  
MSB  
DB23  
X1  
LSB  
DB22  
X1  
X1  
DB21  
X1  
X1  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB0  
Register data  
Don’t care  
0
0
Register address  
1111  
X1  
1 X means don’t care.  
NO OPERATION REGISTERS  
The no operation registers are ignored and do not vary the state of the device (see Table 27).  
Table 27. No Operation Registers  
MSB  
LSB  
DB23  
X1  
X1  
DB22  
X1  
X1  
DB21  
X1  
X1  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB0  
Register data  
Don’t care  
0
0
Register address  
0000/0101/0110/1101/1110  
1 X means don’t care.  
Rev. C | Page 28 of 31  
 
 
 
 
 
 
Data Sheet  
AD5761/AD5721  
APPLICATIONS INFORMATION  
AD5761/  
AD5721  
TYPICAL OPERATING CIRCUIT  
Figure 66 shows the typical operating circuit for the AD5761/  
AD5721. The only external components needed for these precision  
16-/12-bit DACs are decoupling capacitors, supply voltage, and an  
external reference. The integration of a reference buffer in the  
AD5761/AD5721 results in overall savings in both cost and board  
space.  
100nF  
16  
1
2
3
4
5
6
7
8
ALERT  
CLEAR  
RESET  
ALERT  
DGND  
+
10µF  
+5V  
15  
14  
13  
12  
11  
10  
9
CLEAR  
RESET  
DV  
CC  
SCLK  
SYNC  
SDI  
SCLK  
SYNC  
SDI  
V
V
REFIN  
REFIN  
AGND  
100nF  
100nF  
–15V  
V
LDAC  
SDO  
LDAC  
SDO  
SS  
10µF  
10µF  
In Figure 66, VDD is connected to 15 V and VSS is connected to  
−15 V, but VDD and VSS can operate with supplies from 4.75 V to  
30 V and from −16.5 V to 0 V, respectively.  
V
V
V
OUT  
OUT  
DD  
+15V  
DNC  
Precision Voltage Reference Selection  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
An external reference is required for the AD5761/AD5721. Take  
care in the selection of the same because any error in the voltage  
reference is reflected in the output of the device.  
Figure 66. Typical Operating Circuit  
POWER SUPPLY CONSIDERATIONS  
The AD5761/AD5721 must be powered by the following three  
supplies to provide any of the eight output voltage ranges available  
on the DAC: VDD = +21 V, V SS = −11 V, and DVCC = +5 V.  
There are four possible sources of error to consider when choosing  
a voltage reference for high accuracy applications: initial accuracy,  
temperature coefficient of the output voltage, long-term drift,  
and output voltage noise.  
For applications requiring optimal high power efficiency and  
low noise performance, it is recommended that the ADP5070  
switching regulator be used to convert the 5 V input rail into  
two intermediate rails (+23 V and −13 V). These intermediate  
rails are then postregulated by very low noise, low dropout (LDO)  
regulators (ADP7142 and ADP7182). Figure 67 shows the  
recommended method.  
Initial accuracy error on the output voltage of an external  
reference may lead to a full-scale error in the DAC. Therefore,  
to minimize these errors, a reference with low initial accuracy  
error specification is preferred. Choosing a reference with an  
output trim adjustment, such as the ADR421, allows a system  
designer to trim system errors out by setting the reference  
voltage to a voltage other than the nominal. The trim adjustment  
can also be used at ambient temperature to trim out any error.  
ADP5070  
+23V  
DC-TO-DC  
SWITCHING  
REGULATOR  
ADP7142  
LDO  
+21V: V  
DD  
5V INPUT  
Long-term drift is a measure of how much the reference output  
voltage drifts over time. A reference with a tight long-term drift  
specification ensures that the overall solution remains relatively  
stable over its entire lifetime.  
ADP7142  
LDO  
+5V: DV  
CC  
ADP5070  
DC-TO-DC  
SWITCHING  
REGULATOR  
–13V  
ADP7182  
LDO  
–11V: V  
SS  
5V INPUT  
The temperature coefficient of a reference output voltage affects  
gain error and TUE. Choose a reference with a tight temperature  
coefficient specification to reduce the dependence of the DAC  
output voltage on ambient conditions.  
Figure 67. Postregulation by ADP7142 and ADP7182  
EVALUATION BOARD  
In high accuracy applications, which have a relatively low noise  
budget, reference output voltage noise must be considered. It is  
important to choose a reference with as low an output noise  
voltage as practical for the system resolution that is required.  
Precision voltage references, such as the ADR4525, produce low  
output noise in the 0.1 Hz to 10 Hz region. However, as the circuit  
bandwidth increases, filtering the output of the reference may  
be required to minimize the output noise.  
An evaluation board is available for the AD5761R to aid designers  
in evaluating the high performance of the device with minimum  
effort. This evaluation board can be used to evaluate the AD5761/  
AD5721. The AD5761R evaluation kit includes a populated and  
tested AD5761R printed circuit board (PCB). The evaluation  
board interfaces to the USB port of a PC. Software is available  
with the evaluation board to allow the user to easily program  
the AD5761R. The EVAL-AD5761RSDZ user guide gives full  
details on the operation of the evaluation board.  
Rev. C | Page 29 of 31  
 
 
 
 
 
 
AD5761/AD5721  
Data Sheet  
Table 28. Precision References Recommended for Use with the AD5761/AD5721  
Initial Accuracy  
(mV Maximum)  
Long-Term Drift  
(ppm Typical)  
Temperature Drift  
(ppm/°C Maximum)  
0.1 Hz to 10 Hz Noise  
(μV p-p Typical)  
Part No.  
ADR03  
ADR421  
ADR431  
ADR441  
ADR4525  
2.5  
1
1
50  
50  
40  
50  
25  
3
3
3
3
2
6
1.75  
3.5  
1.2  
1.25  
1
1
Rev. C | Page 30 of 31  
Data Sheet  
AD5761/AD5721  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
13  
16  
TIONS  
INDICATOR AREA OP  
(SEE DETAIL A)  
0.50  
BSC  
12  
1
1.75  
1.60 SQ  
1.45  
EXPOSED  
PAD  
9
4
8
5
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TOJEDEC STANDARDS MO-220-WEED-6.  
Figure 68. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-16-22)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
4.50  
4.40  
4.30  
6.40  
BSC  
1
8
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 69. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD5721BCPZ-RL7 12  
AD5721BRUZ 12  
Resolution (Bits) Temperature Range INL (LSB) Package Description Package Option Marking Code  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
0.5  
0.5  
0.5  
8
2
8
8
2
2
16-Lead LFCSP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead LFCSP  
16-Lead LFCSP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
CP-16-22  
RU-16  
RU-16  
CP-16-22  
CP-16-22  
RU-16  
RU-16  
RU-16  
RU-16  
DHP  
AD5721BRUZ-RL7 12  
AD5761ACPZ-RL7 16  
AD5761BCPZ-RL7 16  
DN8  
DHQ  
AD5761ARUZ  
AD5761ARUZ-RL7 16  
AD5761BRUZ 16  
16  
AD5761BRUZ-RL7 16  
1 Z = RoHS Compliant Part.  
©2015–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12640-0-1/18(C)  
Rev. C | Page 31 of 31  
 
 

相关型号:

AD5721R

集成2 PPM/⁰C基准电压源的多范围、12位、单极性电压输出型DAC
ADI

AD5721RBCPZ-RL7

Multiple Range, 16-/12-Bit, Bipolar/Unipolar Multiple Range
ADI

AD5721RBRUZ

Multiple Range, 12-Bit, Unipolar Voltage Output DACs with 2 PPM/⁰C Reference
ADI

AD5721RBRUZ-RL7

Multiple Range, 16-/12-Bit, Bipolar/Unipolar Multiple Range
ADI

AD5722

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs
ADI

AD5722AREZ

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs
ADI

AD5722AREZ-REEL7

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs
ADI

AD5722BREZ

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO24, LEAD FREE, MO-153ADT, TSSOP-24, Digital to Analog Converter
ADI

AD5722BREZ-REEL7

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO24, LEAD FREE, MO-153ADT, TSSOP-24, Digital to Analog Converter
ADI

AD5722R

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5722RBREZ

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs
ADI

AD5722RBREZ-REEL7

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs
ADI