AD5725ARSZ-REEL [ADI]

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC;
AD5725ARSZ-REEL
型号: AD5725ARSZ-REEL
厂家: ADI    ADI
描述:

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC

光电二极管 转换器
文件: 总21页 (文件大小:525K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 12-Bit, Parallel Input,  
Unipolar/Bipolar, Voltage Output DAC  
Data Sheet  
AD5725  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AV  
AV  
V
REFP  
+5 V to 15 V operation  
SS  
DD  
Unipolar or bipolar operation  
0.5 LSB max INL error, 1 LSB max DNL error  
Settling time: 10 µs max (10 V step)  
Double-buffered inputs  
V
L
12  
12  
12  
12  
12  
INPUT  
REG A  
DAC  
DAC A  
DAC B  
DAC C  
DAC D  
V
V
V
V
A0  
A1  
OUTA  
OUTB  
OUTC  
OUTD  
REG A  
I/O  
REGISTER  
AND  
R/W  
CS  
CONTROL  
LOGIC  
INPUT  
REG B  
DAC  
REG B  
LDAC  
Simultaneous updating via  
CLR  
Asynchronous  
Readback  
to zero/mid scale  
INPUT  
REG C  
DAC  
REG C  
12  
DB0  
TO  
DB11  
Operating temperature range: −40°C to +85°C  
iCMOS® process technology  
INPUT  
REG D  
DAC  
REG D  
AD5725  
APPLICATIONS  
V
DGND  
CLR  
LDAC  
REFN  
Industrial automation  
Figure 1.  
Closed-loop servo control, process control  
Automotive test and measurement  
Programmable logic controllers  
GENERAL DESCRIPTION  
The AD5725 is a quad, 12-bit, parallel input, voltage output  
digital-to-analog converter that offers guaranteed monotonicity,  
integral nonlinearity (INL) of 0.5 LSB maximum and 10 µs  
maximum settling time.  
Digital controls allow the user to load or read back data from  
any DAC, load any DAC, and transfer data to all DACs at  
one time.  
The AD5725 is available in a 28-lead SSOP package. It can be  
operated from a wide variety of supply and reference voltages,  
with supplies ranging from single +5 V to 15 V, and references  
from +2.5 V to 10 V. Power dissipation is less than 270 mW  
with 15 V supplies and only 40 mW with a +5 V supply.  
Operation is specified over the temperature range of −40°C  
to +85°C.  
Output voltage swing is set by two reference inputs, VREFP and  
V
REFN. By setting the VREFN input to 0 V and the VREFP to a  
positive voltage, the DAC provides a unipolar positive output  
range. A similar configuration with VREFP at 0 V and VREFN at a  
negative voltage provides a unipolar negative output range.  
Bipolar outputs are configured by connecting both VREFP and  
V
REFN to nonzero voltages. This method of setting output voltage  
ranges has advantages over the bipolar offsetting methods  
because it is not dependent on internal and external resistors  
with different temperature coefficients.  
iCMOS® Process Technology  
For analog systems designers within industrial/instrumentation equipment OEMs who need high performance ICs at higher-voltage levels, iCMOS is a technology  
platform that enables the development of analog ICs capable of 30 V and operating at 15 V supplies while allowing dramatic reductions in power consumption and  
package size, and increased ac and dc performance.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2007–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5725* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DISCUSSIONS  
View all AD5725 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AD5725: Quad, 12-Bit, Parallel Input, Unipolar/Bipolar,  
Voltage Output DAC Data Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
REFERENCE MATERIALS  
Solutions Bulletins & Brochures  
DOCUMENT FEEDBACK  
Digital to Analog Converters ICs Solutions Bulletin  
Submit feedback for this data sheet.  
DESIGN RESOURCES  
AD5725 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD5725  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 15  
DAC Architecture....................................................................... 15  
Output Amplifiers ...................................................................... 15  
Reference Inputs......................................................................... 15  
Parallel Interface......................................................................... 15  
Data Coding................................................................................ 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Performance Characteristics ................................................ 5  
Timing Characteristics, ............................................................... 6  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 14  
CLR  
............................................................................................... 15  
Power Supplies............................................................................ 17  
Reference Configuration ........................................................... 17  
Single +5 V Supply Operation.................................................. 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
REVISION HISTORY  
8/13—Rev. B to Rev. C  
Change Junction Temperature from 105°C to 150°C; Changed  
Power Dissipation Package Condition from Derate 10 mW/°C  
Above 70°C to Derate 10 mW/°C Above 60°C; Table 5 .............. 8  
4/13—Rev. A to Rev. B  
Changes to VREFN Input Current Parameter, Table 1.................... 3  
Changes to Figure 27 and Figure 28............................................. 17  
Changes to Figure 29 and Figure 30............................................. 18  
12/08—Rev. 0 to Rev. A  
Changes to Figure 26...................................................................... 13  
7/07—Revision 0: Initial Version  
Power Dissipation Package (Derate 10 mW/°C Above 60°C)  
Rev. C | Page 2 of 20  
 
Data Sheet  
AD5725  
SPECIFICATIONS  
AVDD = +15 V, AVSS = −15 V, DGND = 0 V; VREFP = +10 V; VREFN = −10 V, VL = 5 V. All specifications TMIN to TMAX, unless otherwise noted.1  
Table 1.  
Parameter  
Value  
Unit  
Test Conditions/Comments  
ACCURACY  
Outputs unloaded  
Resolution  
Relative Accuracy (INL)  
12  
0.5  
1
Bits  
LSB max  
LSB max  
B grade  
A grade  
Differential Nonlinearity (DNL)  
Zero-Scale Error  
Zero-Scale TC2  
Full-Scale Error  
Full-Scale TC2  
1
2
15  
2
20  
LSB max  
LSB max  
ppm FSR/°C typ  
LSB max  
ppm FSR/°C typ  
Guaranteed monotonic  
RL = 2 kΩ  
RL = 2 kΩ  
RL = 2 kΩ  
RL = 2 kΩ  
REFERENCE INPUT  
VREFP  
Reference Input Range3  
VREFN + 2.5  
AVDD − 2.5  
2.75  
V min  
V max  
mA max  
Input Current  
VREFN  
Reference Input Range3  
Typically 1.5 mA  
−10  
V min  
VREFP − 2.5  
0
−2.75  
160  
V max  
Input Current2  
mA max  
mA min  
kHz typ  
Typically −2 mA  
Large Signal Bandwidth2  
OUTPUT CHARACTERISTICS2  
Output Current  
−3 dB, VREFP = 0 V to 10 V p-p  
5
mA max  
RL = 2 kΩ, CL = 100 pF  
VL = 2.7 V to 5.5 V, JEDEC compliant  
TA = 25°C  
DIGITAL INPUTS  
VIH, Input High Voltage  
VIL, Input Low Voltage  
Input Current2  
2.4  
0.8  
1
V min  
V max  
µA max  
pF typ  
TA = 25°C  
Input Capacitance2  
DIGITAL OUTPUTS (SDO)  
VOH, Output High Voltage  
VOL, Output Low Voltage  
POWER SUPPLY CHARACTERISTICS  
Power Supply Sensitivity2  
AIDD  
8
4
0.4  
V min  
V max  
IOH = 0.4 mA  
IOL = −1.6 mA  
30  
3
2.5  
270  
ppm FSR/V max  
mA/channel max  
mA/channel max  
mW max  
14.25 V ≤ AVDD ≤ 15.75 V  
Outputs unloaded, VREFP = 2.5 V, typically 2.125 mA  
Outputs unloaded, typically 1.625 mA  
AISS  
Power Dissipation  
1 All supplies can be varied 5%, and operation is guaranteed. Device is tested with nominal supplies.  
2 Guaranteed by design and characterization, not production tested.  
3 Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.  
Rev. C | Page 3 of 20  
 
 
AD5725  
Data Sheet  
AVDD = +5 V, AVSS = −5 V/0 V, DGND = 0 V; VREFP = +2.5 V; VREFN = −2.5 V/0 V, VL = 5 V. All specifications TMIN to TMAX, unless  
otherwise noted.  
Table 2.  
Parameter  
Value  
Unit  
Test Conditions/Comments  
ACCURACY  
Outputs unloaded  
Resolution  
Relative Accuracy (INL)  
12  
0.5  
1
Bits  
LSB max  
LSB max  
LSB max  
LSB max  
LSB max  
LSB max  
LSB max  
ppm FSR/°C typ  
LSB max  
LSB max  
ppm FSR/°C typ  
B grade  
A grade  
B grade, AVSS = 0 V1  
A grade, AVSS = 0 V1  
Guaranteed monotonic  
AVSS = −5 V  
1
2
1
5
10  
100  
5
10  
100  
Differential Nonlinearity (DNL)  
Zero-Scale Error  
AVSS = 0 V  
Zero-Scale TC2  
Full-Scale Error  
AVSS = −5 V  
AVSS = 0 V  
Full-Scale TC2  
REFERENCE INPUT  
VREFP  
Reference Input Range3  
VREFN + 2.5  
AVDD − 2.5  
0.5  
V min  
V max  
mA max  
Input Current2  
VREFN  
Reference Input Range3  
Code 0x0000  
−2.5  
V min  
V min  
V max  
kHz typ  
AVSS = −5 V  
AVSS = 0 V  
0
VREFP − 2.5  
450  
Large Signal Bandwidth2  
OUTPUT CHARACTERISTICS2  
Output Current  
−3 dB, VREFP = 0 V to 2.5 V p-p  
1.25  
mA max  
RL = 2 kΩ, CL = 100 pF  
VL = 2.7 V to 5.5 V, JEDEC compliant  
TA = 25°C  
DIGITAL INPUTS  
VIH, Input High Voltage  
VIL, Input Low Voltage  
Input Current2  
2.4  
0.8  
1
V min  
V max  
µA max  
pF typ  
TA = 25°C  
Input Capacitance2  
DIGITAL OUTPUTS (SDO)  
VOH, Output High Voltage  
VOL, Output Low Voltage  
POWER SUPPLY CHARACTERISTICS  
Power Supply Sensitivity2  
AIDD  
8
4
V min  
V max  
IOH = 0.4 mA  
IOL = −1.6 mA  
0.4  
100  
2
1.5  
70  
40  
ppm FSR/V typ  
mA/channel max  
mA/channel max  
mW max  
Outputs unloaded.  
Outputs unloaded, AVSS = −5 V  
AVSS = −5 V  
AISS  
Power Dissipation  
mW max  
AVSS = 0 V  
1 For single supply operation only (VREFN = 0 V, AVSS = 0 V): Due to internal offset errors, INL and DNL are measured beginning at code 0x005.  
2 Guaranteed by design and characterization, not production tested.  
3 Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.  
Rev. C | Page 4 of 20  
 
Data Sheet  
AD5725  
AC PERFORMANCE CHARACTERISTICS1  
AVDD = +15 V/+5 V, AVSS = −15 V/−5 V/0 V, DGND = 0 V; VREFP = +10 V/+2.5 V; VREFN = −10 V/−2.5 V/0 V, VL = 5 V. All specifications  
MIN to TMAX, unless otherwise noted.  
T
Table 3.  
Parameter  
A Grade  
B Grade  
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
10  
7
2.2  
72  
5
10  
7
2.2  
72  
5
µs typ  
µs typ  
V/µs typ  
dB typ  
nV-s typ  
To 0.01%, 10 V step, RL = 1 kΩ  
To 0.01%, 2.5 V step, RL = 1 kΩ  
10% to 90%  
Slew Rate  
Analog Crosstalk  
Digital Feedthrough  
1 Guaranteed by design and characterization, not production tested.  
Rev. C | Page 5 of 20  
 
 
AD5725  
Data Sheet  
TIMING CHARACTERISTICS1, 2  
AVDD = +5 V/+15 V, AVSS = −5 V/0 V/−15 V, DGND = 0 V; VREFP = +2.5 V/+10 V; VREFN = −2.5 V/0 V/−10 V, VL = 5 V. All specifications  
MIN to TMAX, unless otherwise noted.  
T
Table 4.  
Parameter  
tWCS  
tWS  
tWH  
tAS  
tAH  
tLS  
tLH  
tWDS  
tWDH  
tLDW  
tRESET  
tRCS  
tRDH  
tRDS  
tDZ  
tCSD  
Limit at TMIN, TMAX  
Unit  
Description  
10  
0
0
0
0
5
5
5
0
10  
10  
30  
0
0
15  
35  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
Chip Select Write Pulse Width  
Write Setup, tWCS = 10 ns  
Write Hold, tWCS = 10 ns  
Address Setup  
Address Hold  
Load Setup  
Load Hold  
Write Data Setup, tWCS = 10 ns  
Write Data Hold, tWCS = 10 ns  
Load Data Pulse Width  
Reset Pulse Width  
Chip Select Read Pulse Width  
Read Data Hold, tRCS = 30 ns  
Read Data Setup, tRCS = 30 ns  
Data to High-Z, CL = 10 pF  
Chip Select to Data, CL = 100 pF  
1 All input control signals are specified with tr = tf = 5 ns (10% to 90% of +5 V) and timed from a voltage level of 1.6 V.  
2 Guaranteed by design and characterization, not production tested.  
Rev. C | Page 6 of 20  
 
 
Data Sheet  
AD5725  
Timing Diagrams  
10ns  
CS  
tRCS  
tWH  
CS  
tWS  
tRDS  
tRDH  
R/W  
R/W  
tAS  
ADDRESS  
ONE  
ADDRESS  
TWO  
ADDRESS  
THREE  
ADDRESS  
FOUR  
tAS  
tAH  
ADDRESS  
A0/A1  
tLH  
tLS  
tDZ  
DATA VALID  
LDAC  
HIGH-Z  
tCSD  
HIGH-Z  
DATA  
OUT  
tWDS  
tWDH  
DATA1  
VALID  
DATA2  
VALID  
DATA3  
VALID  
DATA4  
VALID  
DATA IN  
Figure 2. Data Read Timing  
Figure 4. Single Buffer Mode Timing  
10ns  
tWCS  
CS  
CS  
tWH  
tWS  
tWH  
tWS  
R/W  
R/W  
tAH  
tAS  
tAS  
A0/A1  
ADDRESS  
ONE  
ADDRESS  
TWO  
ADDRESS  
THREE  
ADDRESS  
FOUR  
ADDRESS  
tLS tLH  
tLH  
tLDW  
tLS  
LDAC  
LDAC  
tWDS  
tWDH  
tLDW  
tWDS  
tWDH  
DATA IN  
RESET  
DATA1  
VALID  
DATA2  
VALID  
DATA3  
VALID  
DATA4  
VALID  
DATA IN  
tRESET  
Figure 3. Data Write Timing  
Figure 5. Double Buffer Mode Timing  
Rev. C | Page 7 of 20  
AD5725  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C unless otherwise noted. Transient currents of up to  
100 mA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter  
Rating  
AVSS to DGND  
AVDD to DGND  
AVSS to AVDD  
VL to DGND  
Current into Any Pin  
Digital Pin Voltage to DGND  
Operating Temperature Range  
Industrial  
Storage Temperature Range  
Junction Temperature (TJ max)  
28-Lead SSOP Package  
θJA Thermal Impedance  
θJC Thermal Impedance  
+0.3 V to −16.5 V  
−0.3 V to +16.5 V  
+0.3 V to −33 V  
−0.3 V to +7 V  
15 mA  
ESD CAUTION  
−0.3 V to +7 V  
−40°C to +85°C  
−65°C to +150°C  
150°C  
100°C/W  
39°C/W  
900 mW  
Power Dissipation Package  
(Derate 10 mW/°C Above 60°C)  
Reflow Soldering  
Time at Peak Temperature  
Lead Temperature (Soldering, 60 sec)  
10 sec to 40 sec  
300°C  
Rev. C | Page 8 of 20  
 
 
Data Sheet  
AD5725  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
V
1
2
3
4
5
6
7
8
9
28  
27  
26  
V
V
V
REFP  
REFN  
OUTC  
OUTD  
OUTB  
OUTA  
V
AV  
25 AV  
SS  
DD  
DGND  
CLR  
24  
V
L
AD5725  
23 CS  
22 A0  
21 A1  
TOP VIEW  
LDAC  
(Not to Scale)  
DB0 (LSB)  
DB1  
20 R/W  
DB2 10  
DB3 11  
DB4 12  
DB5 13  
DB6 14  
19 DB11 (MSB)  
18 DB10  
17 DB9  
16 DB8  
15 DB7  
Figure 6. Pin Configuration Diagram  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VREFP  
Positive DAC Reference Input. The voltage applied to this pin defines the full-scale output voltage.  
Allowable range is AVDD − 2.5 V to VREFN + 2.5 V.  
2
3
4
5
6
VOUTB  
VOUTA  
AVSS  
DGND  
CLR  
Buffered Analog Output Voltage of DAC B.  
Buffered Analog Output Voltage of DAC A.  
Negative Analog Supply Pin. Voltage ranges from 0 V to −15 V.  
Digital Ground Pin.  
Active Low Input. Sets input registers and DAC registers to zero scale (0x000) for the AD5725-1 or midscale  
(0x800) for the AD5725.  
7
LDAC  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
DB9  
DB10  
DB11  
R/W  
Active Low Load DAC Input.  
Data Bit 0 (LSB).  
Data Bit 1.  
Data Bit 2.  
Data Bit 3.  
Data Bit 4.  
Data Bit 5.  
Data Bit 6.  
Data Bit 7.  
Data Bit 8.  
Data Bit 9.  
Data Bit 10.  
Data Bit 11 (MSB).  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Read/Write Pin. Active low to write data to DAC; Active high to read back previous data at data bit pins with  
VL connected to +5 V.  
21  
22  
23  
24  
25  
26  
27  
28  
A1  
A0  
CS  
Address Bit 1.  
Address Bit 0.  
Active Low Chip Select Pin.  
VL  
Voltage Supply for Readback Function. Can be left open circuit if not used.  
Positive Analog Supply Pin. Voltage ranges from +5 V to +15 V.  
Buffered Analog Output Voltage of DAC D.  
Buffered Analog Output Voltage of DAC C.  
Negative DAC Reference Input. The voltage applied to this pin defines the zero-scale output voltage.  
Allowable range is AVSS to VREFP − 2.5 V.  
AVDD  
VOUTD  
VOUTC  
VREFN  
Rev. C | Page 9 of 20  
 
AD5725  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.5  
0.4  
AV  
= +15V  
AV  
= 5V  
DD  
AV = –15V  
DD  
AV = 0V  
SS  
0.8  
0.6  
SS  
V
T
= –10V  
V
T
= 0V  
= 25°C  
REFN  
REFN  
= 25°C  
A
A
0.3  
0.4  
0.2  
0.2  
0.1  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
6
7
8
9
10  
11  
12  
3.0  
12  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
80  
80  
V
(V)  
V
(V)  
REFP  
REFP  
Figure 7. DNL vs. VREFP (VSUPPLY  
=
15 V)  
Figure 10. INL vs. VREFP (VSUPPLY = +5 V)  
0.05  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
AV  
= +15V  
DD  
AV = –15V  
SS  
V
V
= +10V  
= –10V  
REFP  
REFN  
2kΩ LOAD  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
DAC D  
DAC C  
DAC B  
AV  
AV = 0V  
= 5V  
DD  
SS  
DAC A  
20  
V
= 0V  
REFN  
= 25°C  
T
A
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
–40  
–20  
0
40  
60  
V
(V)  
TEMPERATURE (°C)  
REFP  
Figure 8. DNL vs. VREFP (VSUPPLY = +5 V)  
Figure 11. Full-Scale Error vs. Temperature  
1.0  
0.8  
0.3  
0.2  
AV  
= +15V  
AV  
= +15V  
DD  
AV = –15V  
DD  
AV = –15V  
SS  
SS  
V
T
= –10V  
V
V
= +10V  
= –10V  
REFN  
= 25°C  
REFP  
0.6  
A
REFN  
2kΩ LOAD  
0.4  
0.1  
0.2  
0
0
DAC A  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
DAC D  
DAC C  
DAC B  
6
7
8
9
10  
11  
–40  
–20  
0
20  
40  
60  
V
(V)  
TEMPERATURE (°C)  
REFP  
Figure 9. INL vs. VREFP (VSUPPLY  
=
15 V)  
Figure 12. Zero-Scale Error vs. Temperature  
Rev. C | Page 10 of 20  
 
 
 
Data Sheet  
AD5725  
0.3  
0.2  
0.1  
0
0.4  
0.3  
DAC A  
DAC B  
DAC C  
DAC D  
+85°C  
+25°C  
–40°C  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.1  
AV  
= +15V  
DD  
AV = –15V  
AV  
= +15V  
SS  
DD  
AV = –15V  
–0.2  
–0.3  
V
V
T
= +10V  
= –10V  
= 25°C  
REFP  
REFN  
SS  
V
V
= +10V  
= –10V  
REFP  
REFN  
A
0
500  
1000 1500 2000 2500 3000 3500 4000  
DAC (Code)  
0
500  
1000 1500 2000 2500 3000 3500  
DAC (Code)  
4000  
Figure 13. Channel-to-Channel Matching (VSUPPLY  
=
15 V)  
Figure 16. INL vs. DAC Code  
0.3  
0.20  
0.15  
0.10  
0.05  
0
+85°C  
+25°C  
–40°C  
0.2  
0.1  
DAC A  
DAC B  
DAC C  
DAC D  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.05  
–0.10  
–0.15  
–0.20  
AV  
= 5V  
DD  
AV = 0V  
AV  
= +15V  
SS  
DD  
AV = –15V  
V
V
= 2.5V  
= 0V  
= 25°C  
REFP  
SS  
V
V
= +10V  
= –10V  
REFN  
REFP  
REFN  
T
A
0
500  
1000 1500 2000 2500 3000 3500 4000  
DAC (Code)  
0
500  
1000 1500 2000 2500 3000 3500  
4000  
DAC (Code)  
Figure 14. Channel-to-Channel Matching (VSUPPLY = +5 V)  
Figure 17. DNL vs. DAC Code  
16  
1.7995  
1.5995  
1.3995  
1.1995  
0.9995  
0.7995  
0.5995  
0.3995  
0.1995  
–0.0005  
AV  
= +15V  
V
= +10V  
V
= –10V  
T = 25°C  
A
DD  
REFP  
REFN  
AV = –15V  
SS  
14  
12  
10  
8
6
4
AV  
= +15V  
DD  
AV = –15V  
SS  
V
= –10V  
REFN  
DIGITAL INPUTS HIGH  
2
T
= 25°C  
A
0
–7  
–5  
–3  
–1  
1
3
5
7
9
11  
13  
0
500  
1000 1500 2000 2500 3000 3500 4000  
DAC (Code)  
V
(V)  
REFP  
Figure 18. IVREFP vs. DAC Code  
Figure 15. IDD vs. VREFP  
Rev. C | Page 11 of 20  
 
 
AD5725  
Data Sheet  
12  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
AV  
= +15V  
AV  
= +15V  
DD  
DD  
AV = –15V  
AV = –15V  
SS  
SS  
V
V
= +10V  
= –10V  
= 25°C  
V
V
= +10V  
= –10V  
REFP  
REFP  
10  
8
REFN  
REFN  
T
T = 25°C  
A
A
6
4
2
0
0.01  
–0.1  
0.1  
1
10  
100  
1
10  
100  
1k  
10k  
100k  
LOAD RESISTANCE (kΩ)  
NOISE FREQUENCY (Hz)  
Figure 19. Output Voltage Swing vs. Resistive Load  
Figure 22. Output Noise Spectral Density vs. Frequency  
2
0
20  
AV  
= +15V  
DD  
AV = –15V  
SS  
15  
10  
V
V
T
= +10V  
= –10V  
= 25°C  
REFP  
REFN  
–2  
A
DATA = 0x000  
–4  
5
–6  
0
–8  
–5  
–10  
–12  
–14  
–16  
AV  
= +15V  
DD  
AV = –15V  
–10  
–15  
–20  
SS  
V
V
= 0V ± 100mV  
= –10V  
REFP  
REFN  
DATA BITS = +5V  
= 25°C  
T
A
10  
100  
1k  
10k  
100k  
1M  
10M  
–15  
–10  
–5  
0
5
10  
15  
FREQUENCY (Hz)  
V
(V)  
OUT  
Figure 20. Small Signal Response  
Figure 23. IOUT vs. VOUT (VSUPPLY  
=
15 V)  
8
25  
20  
15  
10  
5
AV  
= 15V  
DD  
I
DD  
AV = 0V  
SS  
6
4
V
V
T
= 10V  
= 0V  
REFP  
REFN  
= 25°C  
AV  
= +15V  
DD  
AV = –15V  
A
SS  
DATA = 0x800  
2
0
–2  
–4  
–6  
–8  
0
I
SS  
–5  
–10  
–35  
–15  
5
25  
45  
65  
85  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
V
(V)  
OUT  
Figure 21. Power Supply Current vs. Temperature  
Figure 24. IOUT vs. VOUT (VSUPPLY = +15 V)  
Rev. C | Page 12 of 20  
 
 
Data Sheet  
AD5725  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0x800 0x7FF (±15V SUPPLY)  
AV  
= +15V  
V
V
= +10V  
= –10V  
T = 25°C  
A
BW = 100kHz  
DD  
AV = –15V  
REFP  
REFN  
0x7FF 0x800 (±15V SUPPLY)  
0x800 0x7FF (±5V SUPPLY)  
0x7FF 0x800 (±5V SUPPLY)  
SS  
1
–0.2  
–0.4  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (ns)  
CH1 50µV  
M 2s  
A
CH1  
0V  
Figure 25. Broadband Noise  
Figure 26. Output Glitch  
Rev. C | Page 13 of 20  
AD5725  
Data Sheet  
TERMINOLOGY  
Zero-Scale Error TC  
Relative Accuracy or Integral Nonlinearity (INL)  
Zero-scale error TC is a measure of the change in zero-scale  
error with a change in temperature. Zero-scale error TC is  
expressed in ppm FSR/°C.  
For the DAC, relative accuracy or integral nonlinearity is a  
measure of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer  
function. A typical INL vs. code plot can be seen in Figure 16.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time it takes for  
the output to settle to a specified level for a full-scale input  
change.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic by  
design. A typical DNL vs. code plot can be seen in Figure 17.  
Slew Rate  
The slew rate of a device is a limitation in the rate of change of  
the output voltage. The output slewing speed of a voltage-  
output DAC is usually limited by the slew rate of the amplifier  
used at its output. Slew rate is measured from 10% to 90% of the  
output signal and is given in V/µs.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant for increasing digital input code. The AD5725 is  
monotonic over its full operating temperature range.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but it is measured when the DAC output is not updated.  
It is specified in nV-sec and measured with a full-scale code  
change on the data bus.  
Full-Scale Error  
Full-scale error is a measure of the output error when full-scale  
code is loaded to the DAC register. Ideally, the output should be  
V
REFP − 1 LSB. Full-scale error is expressed in LSBs. A plot of  
full-scale error vs. temperature can be seen in Figure 11.  
Power Supply Sensitivity  
Power supply sensitivity indicates how the output of the DAC is  
affected by changes in the power supply voltage.  
Full-Scale Error TC  
Full-scale error TC is a measure of the change in full-scale error  
with a change in temperature. Full-scale error TC is expressed  
in ppm FSR/°C.  
Analog Crosstalk  
Analog crosstalk is the dc change in the output level of one  
DAC in response to a change in the output of another DAC. It is  
measured with a full-scale output change on one DAC while  
monitoring another DAC. It is expressed in dB.  
Zero-Scale Error  
Zero-scale error is the error in the DAC output voltage when  
0x0000 (straight binary coding) is loaded to the DAC register.  
Ideally, the output voltage should be VREFN. A plot of zero-scale  
error vs. temperature can be seen in Figure 12.  
Rev. C | Page 14 of 20  
 
Data Sheet  
AD5725  
THEORY OF OPERATION  
PARALLEL INTERFACE  
The AD5725 is a quad voltage output, 12-bit parallel input DAC  
featuring a 12-bit data bus with readback capability. The AD5725  
operates from single or dual supplies ranging from +5 V up to  
15 V. The output voltage range is set by the reference voltages  
applied at the VREFP and VREFN pins.  
See Table 7 for the digital control logic truth table. The parallel  
interface consists of a 12-bit bidirectional data bus, two register  
select inputs, A0 and A1, a R/ input, a chip select ( ), and a  
W
CS  
LDAC  
load DAC ( ) input. Control of the DACs and bus  
direction is determined by these inputs as shown in Table 7.  
Digital data bits are labeled with the MSB defined as Data Bit 11  
and the LSB as Data Bit 0. All digital pins are TTL/CMOS  
compatible.  
DAC ARCHITECTURE  
Each of the four DACs is a voltage switched, high impedance  
(50 kΩ), R-2R ladder configuration. Each 2R resistor is driven  
by a pair of switches that connect the resistor to either VREFH  
or VREFL  
.
The register select inputs A0 and A1 select individual DAC  
Register A (Binary Code 00) through Register D (Binary Code 11).  
OUTPUT AMPLIFIERS  
CS  
CS  
Decoding of the registers is enabled by the  
input. When  
The output amplifiers are capable of generating both unipolar  
and bipolar output voltages. They are capable of driving a load  
of 2 kΩ in parallel with 500 pF to DGND. The source and sink  
capabilities of the output amplifiers can be seen in Figure 23  
and Figure 24. The slew rate is 2.2 V/µs with a full-scale settling  
time of 10 µs. The amplifiers are short-circuit protected.  
is high, no decoding takes place, and neither the writing nor the  
reading of the input registers is enabled. The loading of the  
second bank of registers is controlled by the asynchronous  
LDAC  
LDAC  
CS  
input. By taking  
low while is high, all output  
registers can be updated simultaneously. Note that the tLDW  
required pulse width for updating all DACs is a minimum of  
Careful attention to grounding is important for accurate  
operation of the AD5725. With four outputs and two references  
there is potential for ground loops. Since the AD5725 has no  
analog ground, the ground must be specified with respect to the  
reference.  
W
CS  
10 ns. The R/ input, when enabled by , controls the writing  
to and reading from the input register.  
DATA CODING  
The AD5725 uses binary coding. The output voltage can be  
calculated as follows:  
REFERENCE INPUTS  
(
VREFP VREFN  
)
× D  
All four DACs share common positive reference (VREFP) and  
negative reference (VREFN) inputs. The voltages applied to these  
reference inputs set the output high and low voltage limits on all  
four of the DACs. Each reference input has voltage restrictions  
with respect to the other reference and to the power supplies.  
VOUT = VREFN  
+
4096  
where D is the digital code in decimal.  
CLR  
CLR  
The  
function can be used either at power-up or at any time  
CLR  
V
V
V
REFN can be any voltage between AVSS and VREFP − 2.5 V and  
REFP can be any value between AVDD – 2.5 V and  
REFN + 2.5 V. Note that because of these restrictions, the  
during the DACs operation. The  
function is independent  
CS  
of . This pin is active low and sets the DAC registers to either  
midscale code (0x800) for the AD5725 or zero code (0x000) for  
the AD5725-1. The  
AD5725 references cannot be inverted (VREFN cannot be  
greater than VREFP).  
CLR  
to midscale code is most useful when  
the DAC is configured for bipolar references and an output of  
0 V is desired.  
It is important to note that the AD5725 VREFP input both sinks  
and sources current. Also, the input current of both VREFP and  
V
REFN are code dependent. Many references have limited current  
sinking capability and must be buffered with an amplifier to  
drive VREFP. The VREFN reference input has no such special  
requirements.  
It is recommended that the reference inputs be bypassed with  
0.2 µF capacitors when operating with 10 V references. This  
limits the reference bandwidth.  
Rev. C | Page 15 of 20  
 
 
 
 
 
 
 
AD5725  
Data Sheet  
Table 7. AD5725 Logic Truth Table  
A1  
A0  
R/  
INPUT REG  
DAC REG  
MODE  
DAC  
W
CS  
CLR  
LDAC  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
X
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
X
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
X
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
X
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
High  
X
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Read  
Read  
Read  
Read  
Hold  
Hold  
Write  
Write  
Write  
Write  
Hold  
Hold  
Hold  
Hold  
Hold  
Hold  
Hold  
Hold  
Transparent  
Transparent  
Transparent  
Transparent  
Write Input  
Write Input  
Write Input  
Write Input  
Read Input  
Read Input  
Read Input  
Read Input  
A
B
C
D
A
B
C
D
A
B
C
D
All  
All  
All  
All  
Update all DAC registers  
Hold Hold  
X
X
X
X
X
X
X
X
X
All Registers set to mid/zero scale  
All Registers latched to mid/zero scale  
High  
X
Rev. C | Page 16 of 20  
 
Data Sheet  
AD5725  
Figure 28 (Symmetrical Bipolar Operation) shows the AD5725  
configured for 10 V operation. See the AD688 data sheet for a  
full explanation of reference operation. Adjustments may not be  
required for many applications since the AD688 is a very high  
accuracy reference. However, if additional adjustments are  
required, adjust the AD5725 full scale first. Begin by loading the  
digital full-scale code (0xFFF). Then, adjust the gain adjust  
potentiometer to attain a DAC output voltage of 9.9976 V.  
Then, adjust the balance adjust to set the mid-scale output  
voltage to 0.000 V.  
POWER SUPPLIES  
Power supplies required are AVSS, AVDD, and VL. The AVSS  
supply can be set between −15 V and 0 V. AV DD is the positive  
supply; its operating range is between +5 V and +15 V.  
VL is the digital output supply voltage for the readback function.  
It is normally connected to +5 V. This pin is a logic reference  
input only. It does not supply current to the device. If the readback  
function is not used, VL can be left open-circuit. While VL does  
not supply current to the AD5725, it does supply current to the  
digital outputs when the readback function is used.  
The 0.2 µF bypass capacitors shown at the reference inputs in  
Figure 28 should be used whenever 10 V references are used.  
Applications with single references or references to 5 V may  
not require the 0.2 µF bypassing. The 6.2 Ω resistor in series  
with the output of the reference amplifier is to keep the amplifier  
from oscillating with the capacitive load. We have found that  
this is large enough to stabilize this circuit. Larger resistor  
values are acceptable, provided that the drop across the resistor  
does not exceed a VBE. Assuming a minimum VBE of 0.6 V and a  
maximum current of 2.75 mA, the resistor should be under  
200 Ω for the loading of a single AD5725.  
REFERENCE CONFIGURATION  
Output voltage ranges can be configured as either unipolar or  
bipolar, and within these choices, a wide variety of options  
exists. The unipolar configuration can be either a positive or a  
negative voltage output, and the bipolar configuration can be  
either symmetrical or nonsymmetrical.  
+15V  
+15V  
+
0.1µF  
V
AV  
REFP  
DD  
INPUT  
10µF  
Using two separate references is not recommended. Having two  
references can cause different drifts with time and temperature,  
whereas with a single reference, most drifts will track.  
OP1177  
OUTPUT  
TRIM  
0.2µF  
AD5725  
ADR01  
10kΩ  
Unipolar positive full-scale operation can usually be set with a  
reference with the correct output voltage. This is preferable to  
using a reference and dividing down to the required value. For a  
10 V full-scale output, the circuit can be configured as shown in  
Figure 29. In this configuration, the full-scale value is set first by  
adjusting the 10 kΩ resistor for a full-scale output of 9.9976 V.  
V
REFN  
AV  
SS  
+10V OPERATION  
0.1µF  
10µF  
–15V  
Figure 27. Unipolar +10 V Operation  
+15V  
39kΩ  
+15V  
6
4
0.1µF  
10µF  
3
1
AV  
DD  
6.2Ω  
V
BALANCE  
REFP  
12  
5
100kΩ  
0.2µF  
AD688 FOR ±10V  
AD588 FOR ±5V  
AD5725  
14  
15  
GAIN  
100kΩ  
6.2Ω  
V
REFN  
0.2µF  
AV  
SS  
8
13  
7
1µF  
0.1µF  
10µF  
–15V  
±5 OR ±10V OPERATION  
Figure 28. Symmetrical Bipolar Operation  
Rev. C | Page 17 of 20  
 
 
 
AD5725  
Data Sheet  
Figure 29 shows the AD5725 configured for −10 V to 0 V  
operation. An ADR01 and OP1177 are configured to produce a  
−10 V output, which is connected directly to VREFP for the  
reference voltage.  
SINGLE +5 V SUPPLY OPERATION  
For operation with a +5 V supply, the reference voltage should  
be set between +1.0 V and +2.5 V for optimum linearity. Figure 30  
shows an ADR03 used to supply a +2.5 V reference voltage. The  
headroom of the reference and DAC are both sufficient to support  
a +5 V supply with 5 V tolerance. AVDD and VL should be  
connected to the same supply. Separate bypassing to each pin  
should be used.  
+15V  
U1  
V
V
OUT  
+15V  
IN  
0.1µF  
10µF  
ADR01  
AV  
DD  
TEMP  
TRIM  
V
REFP  
+5V  
+15V  
GND  
AD5725  
U2  
10µF  
0.01µF  
+15V  
V+  
OP1177  
V–  
V
REFN  
AV  
SS  
0.2µF  
INPUT  
0.1µF  
10µF  
AV  
DD  
V
OUTPUT  
TRIM  
REFP  
0.1µF  
10µF  
0.2µF  
ADR03  
–15V  
–15V  
0V TO –10V OPERATION  
AD5725  
10kΩ  
GND  
Figure 29. Unipolar −10 V Operation  
V
REFN  
AV  
SS  
0V TO 2.5V OPERATION  
SINGLE 5V SUPPLY  
0.1µF  
10µF  
–15V  
Figure 30. +5 V Single-Supply Operation  
Rev. C | Page 18 of 20  
 
 
 
Data Sheet  
AD5725  
OUTLINE DIMENSIONS  
10.50  
10.20  
9.90  
15  
28  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
14  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
0.05 MIN  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AH  
Figure 31. 28-Lead Shrink Small Outline Package [SSOP]  
(RS-28)  
Dimensions shown in millimeters  
ORDERING GUIDE  
INL  
Package  
Option  
Model1  
Temperature Range (LSB) Clear Action  
Package Description  
AD5725ARSZ-1500RL7  
AD5725ARSZ-1REEL  
AD5725ARSZ-500RL7  
AD5725ARSZ-REEL  
AD5725BRSZ-1500RL7  
AD5725BRSZ-1REEL  
AD5725BRSZ-500RL7  
AD5725BRSZ-REEL  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
1
1
1
1
0.5  
0.5  
0.5  
0.5  
Clear to zero scale 28-Lead Shrink Small Outline Package [SSOP]  
Clear to zero scale 28-Lead Shrink Small Outline Package [SSOP]  
RS-28  
RS-28  
RS-28  
RS-28  
RS-28  
RS-28  
RS-28  
RS-28  
Clear to midscale  
Clear to midscale  
28-Lead Shrink Small Outline Package [SSOP]  
28-Lead Shrink Small Outline Package [SSOP]  
Clear to zero scale 28-Lead Shrink Small Outline Package [SSOP]  
Clear to zero scale 28-Lead Shrink Small Outline Package [SSOP]  
Clear to midscale  
Clear to midscale  
28-Lead Shrink Small Outline Package [SSOP]  
28-Lead Shrink Small Outline Package [SSOP]  
1
Z = RoHS Compliant Part.  
Rev. C | Page 19 of 20  
 
 
 
AD5725  
NOTES  
Data Sheet  
©2007–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06442-0-8/13(C)  
Rev. C | Page 20 of 20  

相关型号:

AD5725BRSZ-1500RL7

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI

AD5725BRSZ-1REEL

PARALLEL, WORD INPUT LOADING, 10us SETTLING TIME, 12-BIT DAC, PDSO28, ROHS COMPLIANT, MO-150AH, SSOP-28
ADI

AD5725BRSZ-500RL7

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI

AD5725BRSZ-REEL

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI

AD5726

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5726YRSZ-500RL7

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5726YRSZ-REEL

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5726YRWZ-REEL

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5726YRWZ-REEL7

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD572AD

12-BIT SUCCESSIVE APPROXIMATION INTEGRATED CIRCUIT A/D CONVERTER
ADI

AD572B

12-BIT SUCCESSIVE APPROXIMATION INTEGRATED CIRCUIT A/D CONVERTER
ADI

AD572BD

12-BIT SUCCESSIVE APPROXIMATION INTEGRATED CIRCUIT A/D CONVERTER
ADI