AD5753BCPZ-RL7 [ADI]

Single-Channel, 16-Bit Current and Voltage DAC;
AD5753BCPZ-RL7
型号: AD5753BCPZ-RL7
厂家: ADI    ADI
描述:

Single-Channel, 16-Bit Current and Voltage DAC

文件: 总72页 (文件大小:2646K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-Channel, 16-Bit Current and Voltage DAC with  
Dynamic Power Control and HART Connectivity  
Data Sheet  
FEATURES  
AD5753  
GENERAL DESCRIPTION  
16-bit resolution and monotonicity  
The AD5753 is a single-channel, voltage and current output  
Positive and negative DPC for thermal management  
Current or voltage output available on a single terminal  
Current output ranges: 0 mA to 20 mA, 4 mA to 20 mA,  
0 mA to 24 mA, 20 mA, 24 mA, and −1 mA to +22 mA  
Voltage output ranges (with 20% overrange): 0 V to 5 V,  
0 V to 10 V, 5 V, and 10 V  
User programmable offset and gain  
Advanced on-chip diagnostics, including a 12-bit ADC  
2 external ADC input pins  
digital-to-analog converter (DAC) that operates with a power  
supply range from a minimum of −33 V on AVSS to a maximum of  
+33 V on AVDD1 with a maximum operating voltage of 60 V  
between the two rails. On-chip dynamic power control (DPC)  
minimizes package power dissipation. This minimization is  
achieved by using buck dc-to-dc converters optimized for  
minimum on-chip power dissipation to regulate the voltage  
(VDPC+ and VDPC−) that is sent to the VIOUT output driver circuitry  
from the ±5 V to ±±7 V supply voltage. The CHART pin enables a  
Highway Addressable Remote Transducer® (HART) signal to be  
coupled on the current output.  
On-chip reference  
Robust architecture, including output fault protection  
−40°C to +115°C temperature range  
The AD5753 uses a versatile, 4-wire, serial peripheral interface  
(SPI) that operates at clock rates of up to 50 MHz and is  
compatible with standard SPI, QSPI™, MICROWIRE™, digital  
signal processor (DSP), and microcontroller interface standards.  
The interface features an optional SPI cyclic redundancy check  
(CRC) and a watchdog timer (WDT). The AD5753 offers  
improved diagnostic features from earlier versions of similar  
DACs, such as output current monitoring and an integrated, 1±-bit  
diagnostic analog-to-digital converter (ADC). The inclusion of  
a line protector on the VIOUT, +VSENSE, and −VSENSE pins provides  
additional robustness.  
40-lead, 6 mm × 6 mm LFCSP package  
APPLICATIONS  
Process control  
Actuator control  
Channel isolated analog outputs  
Programmable logic controller (PLC) and distributed control  
systems (DCS) applications  
HART network connectivity  
PRODUCT HIGHLIGHTS  
1. Range of advanced diagnostic features, including  
integrated ADC with two external input pins.  
±. DPC, using integrated buck dc-to-dc converters for  
thermal management, which enables higher channel count  
in small size module housing.  
3. Programmable power control (PPC) mode to enable faster  
than DPC settling time (15 μs typical).  
4. Highly robust with output protection from miswire events  
(±3ꢀ V).  
5. HART compliant.  
COMPANION PRODUCTS  
Product Family: AD5758, AD5755-1, AD5422  
HART Modems: AD5700, AD5700-1  
External References: ADR431, ADR3425, ADR4525  
Digital Isolators: ADuM142D, ADuM141D  
Power: LT8300, ADP2360, ADM6339, ADP1031  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
AD5753  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Voltage Output............................................................................ 37  
Fault Protection .......................................................................... 37  
Current Output........................................................................... 38  
HART Connectivity ................................................................... 38  
Digital Slew Rate Control.......................................................... 38  
Address Pins................................................................................ 39  
WDT ............................................................................................ 40  
User Digital Offset and Gain Control...................................... 40  
DAC Output Update and Data Integrity Diagnostics ........... 41  
GPIO Pins .................................................................................... 42  
Use of Key Codes........................................................................ 42  
Software Reset............................................................................. 42  
Calibration Memory CRC......................................................... 42  
Internal Oscillator Diagnostics................................................. 43  
Sticky Diagnostic Results Bits................................................... 43  
Background Supply and Temperature Monitoring................ 43  
Output Fault................................................................................ 43  
ADC Monitoring........................................................................ 44  
Register Map ................................................................................... 49  
Writing to Registers ................................................................... 49  
Reading from Registers ............................................................. 50  
Programming Sequence to Enable the Output ...................... 53  
Register Details........................................................................... 55  
Applications Information.............................................................. 71  
Example Module Power Calculation ....................................... 71  
Outline Dimensions....................................................................... 73  
Ordering Guide .......................................................................... 73  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Companion Products....................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
AC Performance Characteristics.............................................. 10  
Timing Characteristics .............................................................. 11  
Absolute Maximum Ratings.......................................................... 15  
Thermal Resistance .................................................................... 15  
ESD Caution................................................................................ 15  
Pin Configuration and Function Descriptions........................... 16  
Typical Performance Characteristics ........................................... 18  
Voltage Output............................................................................ 18  
Current Outputs ......................................................................... 22  
DC-to-DC Block......................................................................... 27  
Reference ..................................................................................... 28  
General......................................................................................... 29  
Terminology .................................................................................... 30  
Theory of Operation ...................................................................... 32  
DAC Architecture....................................................................... 32  
Serial Interface ............................................................................ 32  
Power-On State of the AD5753 ................................................ 33  
Power Supply Considerations................................................... 33  
Device Features and Diagnostics.................................................. 35  
Power Dissipation Control........................................................ 35  
Interdie 3-Wire Interface........................................................... 36  
REVISION HISTORY  
5/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 73  
 
Data Sheet  
AD5753  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DD2  
AGND  
NIC  
AV  
DD1  
VDPC+  
PGND1  
SW+  
MCLK  
10MHz  
POWER  
MANAGEMENT  
BLOCK  
POWER-ON  
RESET  
CALIBRATION  
MEMORY  
V
LDO  
DC-TO-DC  
V
LOGIC  
CONVERTER  
DGND  
DIGITAL  
BLOCK  
CLKOUT  
AD0  
3-WIRE INTERFACE  
V
DPC+  
AD1  
R
B
R
A
DATA AND  
CONTROL  
REGISTERS  
16  
16  
RESET  
LDAC  
SCLK  
SDI  
16-BIT  
DAC  
I
OUT  
RANGE  
SCALING  
DAC  
REG  
-
I
R
SET  
OUT  
V
X
USER GAIN  
WATCHDOG  
TIMER  
V
DPC–  
SYNC  
SDO  
USER OFFSET  
C
HART  
HART_EN  
FAULT  
V
DPC+  
STATUS  
REGISTER  
AD5753  
+V  
SENSE  
V
OUT  
VOUT  
RANGE  
SCALING  
REFERENCE  
BUFFERS  
VI  
–V  
OUT  
REFIN  
SENSE  
REFOUT  
REFGND  
VREF  
V
DPC–  
C
COMP  
TEMPERATURE  
SENSOR  
GPIO_0  
GPIO_1  
GPIO_2  
ANALOG  
DIAGNOSTICS  
12-BIT  
ADC  
DC-TO-DC  
CONVERTER  
SW–  
ADC1 ADC2  
AV  
V
DPC–  
PGND2  
SS  
Figure 1.  
Rev. 0 | Page 3 of 72  
 
AD5753  
Data Sheet  
SPECIFICATIONS  
AVDD1 = VDPC+ = 15 V, dc-to-dc converter disabled, AVDD2 = 5 V, AVSS = VDPC− = −15 V, VLOGIC = 1.71 V to 5.5 V, AGND = DGND =  
REFGND = PGND1 = 0 V, REFIN = 2.5 V external, voltage output: load resistance (RLOAD) = 1 kΩ, load capacitor (CLOAD) = 220 pF,  
current output: RLOAD = 300 Ω. All specifications at TA = −40°C to +115°C, TJ (junction temperature) < 125°C, unless otherwise noted.  
Table 1.  
Parameter  
Min  
0
Typ  
Max  
5
Unit  
V
Test Conditions/Comments  
OUTPUT VOLTAGE (VOUT  
)
Trimmed VOUT ranges  
0
10  
V
−5  
−10  
0
+5  
+10  
6
12  
+6  
+12  
+5.7  
+11.6  
V
V
V
V
V
V
V
V
Output Voltage Overranges  
Output Voltage Offset Ranges  
Untrimmed overranges  
0
−6  
−12  
−0.3  
−0.4  
16  
Untrimmed negatively offset ranges  
Resolution  
Bits  
VOLTAGE OUTPUT ACCURACY  
Loaded and unloaded, accuracy specifications  
refer to trimmed VOUT ranges only, unless  
otherwise noted  
Total Unadjusted Error (TUE)  
−0.05  
−0.01  
+0.05  
+0.01  
% FSR  
% FSR  
TA = 25°C  
Drift after 1000 hours, TJ = 150°C  
ppm FSR/°C Output drift  
TUE Long-Term Stability1  
Output Drift  
15  
0.35  
ppm FSR  
1.5  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Zero-Scale Error  
−0.006  
−1  
−0.02  
+0.006  
+1  
+0.02  
% FSR  
LSB  
% FSR  
All ranges  
Guaranteed monotonic, all ranges  
0.002  
Zero-Scale Error Temperature  
Coefficient (TC)2  
0.3  
ppm FSR/°C  
Bipolar Zero Error  
Bipolar Zero Error TC2  
Offset Error  
−0.017  
−0.022  
−0.022  
−0.022  
+0.001  
0.4  
0.002  
0.3  
0.001  
0.6  
0.001  
0.5  
+0.017  
+0.022  
+0.022  
+0.022  
% FSR  
ppm FSR/°C  
% FSR  
ppm FSR/°C  
% FSR  
ppm FSR/°C  
% FSR  
5 V, 10 V  
5 V, 10 V  
Offset Error TC2  
Gain Error  
Gain Error TC2  
Full-Scale Error  
Full-Scale Error TC2  
ppm FSR/°C  
VOLTAGE OUTPUT  
CHARACTERISTICS  
Headroom  
2
2
V
V
Minimum voltage required between VIOUT and  
V
DPC+ supply  
Minimum voltage required between VIOUT and  
DPC− supply  
Footroom  
V
Short-Circuit Current  
Load2  
Capacitive Load Stability2  
16  
mA  
kΩ  
nF  
1
For specified performance  
10  
2
µF  
External compensation capacitor of 220 pF  
connected  
DC Output Impedance  
7
mΩ  
DC Power Supply Rejection  
Ratio (PSRR)  
10  
µV/V  
VOUT and −VSENSE Common-  
Mode Rejection Ratio  
(CMRR)  
10  
µV/V  
Error in VOUT voltage due to changes in −VSENSE  
voltage  
Rev. 0 | Page 4 of 72  
 
 
Data Sheet  
AD5753  
Parameter  
Min  
0
0
Typ  
Max  
24  
20  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
Bits  
Test Conditions/Comments  
OUTPUT CURRENT (IOUT  
)
4
20  
−20  
−24  
−1  
16  
+20  
+24  
+22  
Resolution  
CURRENT OUTPUT ACCURACY  
Assumes ideal 13.7 kΩ resistor  
3
(EXTERNAL RSET  
)
Unipolar Ranges  
4 mA to 20 mA, 0 mA to 20 mA, and 0 mA to  
24 mA ranges  
TUE  
−0.05  
−0.01  
+0.05  
+0.01  
% FSR  
% FSR  
TA = 25°C  
TUE Long-Term Stability  
Output Drift  
INL  
125  
2
ppm FSR  
ppm FSR/°C  
% FSR  
Drift after 1000 hours, TJ = 150°C  
5
−0.007  
−1  
+0.007  
+1  
DNL  
LSB  
Guaranteed monotonic  
Zero-Scale Error  
Zero-Scale TC2  
Offset Error  
−0.03  
0.002  
0.5  
0.001  
0.7  
0.002  
3
+0.03  
% FSR  
ppm FSR/°C  
% FSR  
ppm FSR/°C  
% FSR  
ppm FSR/°C  
% FSR  
−0.03  
−0.05  
−0.05  
+0.03  
+0.05  
+0.05  
Offset Error TC2  
Gain Error  
Gain Error TC2  
Full-Scale Error  
Full-Scale Error TC2  
Bipolar Ranges  
TUE  
0.002  
3
ppm FSR/°C  
20 mA, 24 mA, and −1 mA to +22 mA ranges  
−0.06  
+0.06  
% FSR  
−0.012  
+0.012  
% FSR  
TA = 25°C  
Drift after 1000 hours, TJ = 150°C  
TUE Long-Term Stability1  
Output Drift  
INL  
125  
12  
ppm FSR  
ppm FSR/°C  
% FSR  
15.5  
+0.013  
+1  
−0.013  
−1  
DNL  
LSB  
Guaranteed monotonic  
Zero-Scale Error  
Zero-Scale TC2  
Bipolar Zero Error  
Bipolar Zero Error TC2  
Offset Error  
−0.04  
0.003  
0.5  
0.003  
0.4  
0.002  
0.6  
0.002  
3
0.003  
3
+0.04  
% FSR  
ppm FSR/°C  
% FSR  
ppm FSR/°C  
% FSR  
ppm FSR/°C  
% FSR  
ppm FSR/°C  
% FSR  
ppm FSR/°C  
−0.02  
−0.04  
−0.06  
−0.06  
+0.02  
+0.04  
+0.06  
+0.06  
Offset Error TC2  
Gain Error  
Gain Error TC2  
Full-Scale Error  
Full-Scale Error TC2  
CURRENT OUTPUT ACCURACY  
(INTERNAL RSET  
)
Unipolar Ranges  
4 mA to 20 mA, 0 mA to 20 mA, and 0 mA to  
24 mA ranges  
TUE  
−0.12  
+0.12  
% FSR  
TUE Long-Term Stability1  
Output Drift  
INL  
380  
3
ppm FSR  
ppm FSR/°C Output drift  
% FSR  
Drift after 1000 hours, TJ = 150°C  
6
−0.01  
−1  
+0.01  
+1  
DNL  
LSB  
Guaranteed monotonic  
Zero-Scale Error  
Zero-Scale TC2  
Offset Error  
−0.04  
0.001  
0.5  
0.001  
+0.04  
% FSR  
ppm FSR/°C  
% FSR  
−0.04  
+0.04  
Rev. 0 | Page 5 of 72  
AD5753  
Data Sheet  
Parameter  
Min  
Typ  
Max  
+0.1  
Unit  
Test Conditions/Comments  
Offset Error TC2  
1
ppm FSR/°C  
% FSR  
ppm FSR/°C  
% FSR  
Gain Error  
−0.1  
−0.12  
0.003  
3
0.003  
3
Gain Error TC2  
Full-Scale Error  
Full-Scale Error TC2  
Bipolar Ranges  
TUE  
+0.12  
ppm FSR/°C  
20 mA, 24 mA, and −1 mA to +22 mA ranges  
Drift after 1000 hours, TJ = 150°C  
−0.12  
+0.12  
% FSR  
ppm FSR  
ppm FSR/°C Output drift  
% FSR  
LSB  
TUE Long-Term Stability1  
Output Drift  
INL  
380  
3
6
−0.02  
−1  
+0.02  
+1  
DNL  
Guaranteed monotonic  
Zero-Scale Error  
Zero-Scale TC2  
Bipolar Zero Error  
Bipolar Zero Error TC2  
Offset Error  
−0.06  
0.001  
2
0.002  
0.3  
0.001  
1
0.003  
3
+0.06  
% FSR  
ppm FSR/°C  
% FSR  
ppm FSR/°C  
% FSR  
ppm FSR/°C  
% FSR  
ppm FSR/°C  
% FSR  
ppm FSR/°C  
−0.02  
−0.06  
−0.12  
−0.12  
+0.02  
+0.06  
+0.12  
+0.12  
Offset Error TC2  
Gain Error  
Gain Error TC2  
Full-Scale Error  
Full-Scale Error TC2  
0.003  
3
CURRENT OUTPUT  
CHARACTERISTICS  
Headroom  
2.3  
V
V
Minimum voltage required between VIOUT and  
DPC+ supply  
Minimum voltage required between VIOUT and  
DPC− supply; unipolar ranges do not require any  
V
Footroom  
2.3 or 0  
V
footroom and takes on the 0 value  
Resistive Load2  
1000  
The dc-to-dc converter is characterized with  
a maximum load of 1 kΩ, chosen such that  
headroom and footroom compliance is not  
exceeded  
Output Impedance  
DC PSRR  
100  
0.1  
MΩ  
µA/V  
Midscale output  
REFERENCE INPUT/OUTPUT  
Reference Input  
Reference Input Voltage4  
DC Input Impedance  
Reference Output  
Output Voltage  
2.5  
120  
V
MΩ  
For specified performance  
55  
2.495  
−10  
2.5  
2.505  
+10  
V
TA = 25°C (including drift after 1000 hours at TJ =  
150°C)  
Reference TC2  
ppm/°C  
µV p-p  
Output Noise (0.1 Hz to  
7
10 Hz)2  
Noise Spectral Density2  
Capacitive Load2  
Load Current  
80  
nV/√Hz  
nF  
mA  
At 10 kHz  
1000  
3
Short-Circuit Current  
Line Regulation  
Load Regulation  
Thermal Hysteresis2  
5
1
140  
150  
mA  
ppm/V  
ppm/mA  
ppm  
Rev. 0 | Page 6 of 72  
Data Sheet  
AD5753  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
VLDO OUTPUT  
Output Voltage  
Output Voltage TC2  
Output Voltage Accuracy  
Externally Available Current  
Short-Circuit Current  
Load Regulation  
Capacitive Load  
DC-TO-DC  
3.3  
30  
V
ppm/°C  
%
mA  
mA  
mV/mA  
µF  
−2  
+2  
30  
55  
0.8  
0.1  
Recommended operation  
Start-Up Time  
1.25  
ms  
Switch  
Peak Current Limit2  
150  
400  
mA  
User programmable in 50 mA steps via the  
DCDC_CONFIG2 register  
Oscillator  
Oscillator Frequency (fSW)  
Minimum Duty Cycle  
Current Output DPC Mode  
500  
5
kHz  
%
Current output dynamic power control mode  
VDPC+ and VDPC− Voltage  
Range  
4.95  
27  
V
Assuming sufficient supply margin between  
AVDD1 and VDPC+, and AVSS and VDPC−; see the  
Power Dissipation Control section for further  
details; maximum operating range of  
|VDPC+ to VDPC−| = 50 V  
VDPC+ and VDPC− Headroom  
Current Output PPC Mode  
2.3  
2.5  
V
Typical voltage headroom between VIOUT and  
V
DPC+ or VDPC−; only applicable when dc-to-dc  
converter is in regulation, that is, when the load  
is sufficiently high  
Programmable power control mode  
VDPC+ and VDPC− Voltage  
Range  
5
25.677  
V
Assuming sufficient supply margin between  
(AVDD1 and VDPC+) and (AVSS and VDPC−); see the  
Power Dissipation Control section for further  
details; maximum operating range of |VDPC+ to  
V
DPC−| = 50 V  
VDPC+ and VDPC− Voltage  
Accuracy  
−500  
5
+500  
25  
mV  
V
Only applicable when dc-to-dc is operating in  
regulation, that is, when the load is sufficiently  
high  
Voltage Output DPC Mode  
Voltage output dynamic power control mode  
VDPC+ and VDPC− Voltage  
Range  
15  
5 V = −VSENSE (MIN) + 15 V; 25 V = −VSENSE (MAX) + 15 V;  
where VSENSE (MIN) = −10 V and VSENSE (MAX) = +10 V;  
assuming sufficient supply margin between AVDD1  
and VDPC+, and AVSS and VDPC−; see the Power  
Dissipation Control section for further details;  
maximum operating range of |VDPC+ to VDPC−| = 50 V  
VDPC+ and VDPC− Voltage  
Accuracy  
−250  
+250  
mV  
Only applicable when dc-to-dc is operating in  
regulation, that is, when the is load sufficiently  
high  
VIOUT LINE PROTECTOR  
On Resistance, RON  
12  
TA = 25°C  
Overvoltage Response Time,  
tRESPONSE  
250  
ns  
Overvoltage Leakage Current  
100  
µA  
Line protector fault detect block sinks current  
for a positive fault and sources current for a  
negative fault  
Rev. 0 | Page 7 of 72  
AD5753  
Data Sheet  
Parameter  
ADC  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Resolution  
Input Voltage Range  
ADC1 Pin  
12  
Bits  
0
−0.5  
0
0
−15  
0.5  
V
V
V
V
V
ADC_IP_SELECT = 10000  
ADC_IP_SELECT = 10010, AVSS must be ≤ −1 V  
ADC_IP_SELECT = 01111  
+0.5  
1.25  
2.5  
ADC_IP_SELECT = 10001  
ADC2 Pin  
Total Error  
ADC1 Pin  
+15  
−0.25  
−0.3  
−0.5  
−0.5  
+0.25  
+0.3  
+0.5  
+0.5  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
μs  
2.5 V input range  
1.25 V input range  
0 V to 0.5 V and 0.5 V input ranges  
ADC2 Pin  
All other ADC Inputs  
Conversion Time2  
0.3  
100  
Table 18 lists all ADC input nodes  
GENERAL-PURPOSE  
INPUT/OUTPUT OUTPUT  
5
ISOURCE or ISINK  
VLOGIC/1 kΩ  
mA  
Assume 1 kΩ is connected to the GPIO pin  
Output Voltage  
Low, VOL  
High, VOH  
0.4  
V
V
ISOURCE = 2 mA  
ISOURCE = 2 mA  
VLOGIC − 0.2  
0.7 × VLOGIC  
GPIO INPUT  
Input Voltage  
High, VIH  
V
Low, VIL  
0.3 × VLOGIC  
V
Input Current  
Input Capacitance  
DIGITAL OUTPUTS  
SDO  
1.35  
2.6  
μA  
pF  
Output Voltage  
Low, VOL  
High, VOH  
High Impedance Leakage  
Current  
0.4  
+1  
V
V
μA  
Sinking = 200 μA  
Sourcing = 200 μA  
VLOGIC − 0.2  
−1  
High Impedance Output  
Capacitance2  
FAULT  
2.2  
0.6  
pF  
Output Voltage  
Low, VOL  
0.4  
V
V
V
10 kΩ pull-up resistor to VLOGIC  
At 2.5 mA  
10 kΩ pull-up resistor to VLOGIC  
High, VOH  
VLOGIC  
0.05  
DIGITAL INPUTS  
Input Voltage  
3 V ≤ VLOGIC ≤ 5.5 V  
High, VIH  
0.7 × VLOGIC  
V
V
Low, VIL  
0.3 × VLOGIC  
1.71 V ≤ VLOGIC < 3 V  
High, VIH  
Low, VIL  
0.8 × VLOGIC  
−1.5  
V
V
μA  
0.2 × VLOGIC  
+1.5  
Input Current  
Per pin, internal pull-down on SCLK, SDI, RESET,  
and LDAC; internal pull-up on SYNC  
Pin Capacitance2  
2.4  
pF  
Per pin  
Rev. 0 | Page 8 of 72  
Data Sheet  
AD5753  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
POWER REQUIREMENTS  
Supply Voltages  
6
AVDD1  
7
5
−33  
33  
33  
0
V
V
V
Maximum operating range of |AVDD1 to AVSS| = 60 V  
Maximum operating range of |AVDD2 to AVSS| = 50 V  
Maximum operating range of |AVDD1 to AVSS| = 60 V;  
for bipolar output ranges, VOUT or IOUT headroom  
must be obeyed when calculating AVSS  
AVDD2  
6
AVSS  
maximum; for unipolar current output ranges,  
AVSS maximum = 0 V; for unipolar voltage output  
ranges, AVSS maximum = −2.5V  
VLOGIC  
1.71  
5.5  
V
Supply Quiescent Currents6  
Quiescent current, assuming no load current  
Voltage output mode, dc-to-dc converter  
enabled but not active  
Current output mode, dc-to-dc converter  
enabled but not active  
Voltage output mode, dc-to-dc converter  
enabled but not active  
7
AIDD1  
0.05  
0.05  
3.3  
0.11  
0.11  
3.6  
mA  
mA  
mA  
mA  
7
AIDD2  
2.9  
3.1  
Current output mode, dc-to-dc converter  
enabled but not active  
Voltage output mode  
Current output mode  
VIH = VLOGIC, VIL = DGND  
7
AISS  
−0.11  
−0.11  
−0.05  
0.05  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
7
ILOGIC  
0.01  
1.3  
1
7
IDPC+  
1.0  
0.8  
2.3  
−1.0  
−0.15  
−2.3  
Voltage output mode  
Unipolar current output mode  
Bipolar current output mode  
Voltage output mode  
Unipolar current output mode  
Bipolar current output mode  
3.1  
7
IDPC−  
−1.3  
−0.2  
−3.1  
Power Dissipation  
Power dissipation assuming an ideal power  
supply and excluding external load power  
dissipation, current output DPC mode, negative  
rail DPC disabled, 0 mA to 20 mA range; see the  
Example Module Power Calculation section for  
calculation methodology  
120  
145  
180  
200  
105  
mW  
mW  
mW  
mW  
AVDD1 = 24 V, AVDD2 = 5 V, AVSS = −15 V, RLOAD = 1 kΩ,  
I
OUT = 20 mA  
AVDD1 = 24 V, AVDD2 = 5 V, AVSS = −15 V, RLOAD = 0 Ω,  
OUT = 20 mA  
I
AVDD1 = AVDD2 = 24 V, AVSS = −15 V, RLOAD = 1 kΩ,  
IOUT = 20 mA  
AVDD1 = AVDD2 = 24 V, AVSS = −15 V, RLOAD = 0 Ω,  
I
OUT = 20 mA  
AVDD1 = 24 V, AVDD2 = 5 V, AVSS = −24 V, RLOAD = 1 kΩ,  
OUT = −20 mA, negative rail DPC enabled  
I
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
2 Guaranteed by design and characterization; not production tested.  
3 See the Current Output section for more information about the internal and external RSET resistors.  
4 The AD5753 is factory calibrated with an external 2.5 V reference connected to REFIN.  
5 Where ISOURCE is the current source and ISINK is the current sink.  
6 Production tested to AVDD1 maximum = 30 V and AVSS minimum = −30 V.  
7 Where AIDD1 is the current on the AVDD1 supply, AIDD2 is the current on the AVDD2 supply, AISS is the current on the AVSS supply, ILOGIC is the current on the VLOGIC supply,  
IDPC+ and IDPC− are the currents on the VDPC+ and VDPC− supplies, respectively.  
Rev. 0 | Page 9 of 72  
AD5753  
Data Sheet  
AC PERFORMANCE CHARACTERISTICS  
AVDD1 = VDPC+ = 15 V, dc-to-dc converter disabled, AVDD2 = 5 V, AVSS = VDPC− = −15 V, VLOGIC = 1.71 V to 5.5 V, AGND = DGND =  
REFGND = PGND1 = 0 V, REFIN = 2.5 V external, voltage output: RLOAD = 1 kΩ, CLOAD = 220 pF, current output: RLOAD = 300 Ω. All  
specifications at TA = −40°C to +115°C, TJ < 125°C, unless otherwise noted.  
Table 2.  
Parameter  
DYNAMIC PERFORMANCE1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Voltage Output  
Output Voltage Settling Time  
Output voltage settling time specifications also apply to the  
enabled dc-to-dc converter  
6
12  
20  
20  
15  
µs  
µs  
µs  
V/µs  
nV-sec  
nV-sec  
mV  
nV-sec  
LSB p-p  
5 V step to 0.03% FSR, 0 V to 5 V range  
10 V step to 0.03% FSR, 0 V to 10 V range  
100 mV step to 1 LSB (16-bit LSB), 0 V to 10 V range  
0 V to 10 V range, digital slew rate control disabled  
Slew Rate  
3
25  
5
25  
2
0.2  
Power-On Glitch Energy  
Digital-to-Analog Glitch Energy  
Glitch Impulse Peak Amplitude  
Digital Feedthrough  
Output Noise (0.1 Hz to 10 Hz  
Bandwidth)  
16-bit LSB, 0 V to 10 V range  
Output Noise Spectral Density  
AC PSRR  
185  
70  
nV/√Hz  
dB  
Measured at 10 kHz, midscale output, 0 V to 10 V range  
200 mV, 50 Hz and 60 Hz sine wave superimposed on power  
supply voltage  
Current Output  
Output Current Settling Time  
15  
15  
µs  
µs  
To 0.1% FSR (0 mA to 24 mA), dc-to-dc converter disabled  
PPC mode, dc-to-dc converter enabled, dc-to-dc current limit =  
150 mA  
200  
0.2  
µs  
DPC mode, dc-to-dc converter enabled; external inductor and  
capacitor components as described in Table 10, dc-to-dc current  
limit = 150 mA  
Output Noise (0.1 Hz to 10 Hz  
Bandwidth)  
LSB p-p  
16-bit LSB, 0 mA to 24 mA range  
Output Noise Spectral Density  
AC PSRR  
0.8  
80  
nA/√Hz  
dB  
Measured at 10 kHz, midscale output, 0 mA to 24 mA range  
200 mV, 50 Hz and 60 Hz sine wave superimposed on power  
supply voltage  
1 Guaranteed by design and characterization; not production tested.  
Rev. 0 | Page 10 of 72  
 
 
Data Sheet  
AD5753  
TIMING CHARACTERISTICS  
AVDD1 = VDPC+ = 15 V, dc-to-dc converter disabled, AVDD2 = 5 V, AVSS = VDPC− = −15 V, VLOGIC = 1.71 V to 5.5 V, AGND = DGND =  
REFGND = PGND1 = 0 V, REFIN = 2.5 V external, voltage output: RLOAD = 1 kΩ, CLOAD = 220 pF, current output: RLOAD = 300 Ω. All  
specifications at TA = −40°C to +115°C, TJ < 125°C, unless otherwise noted. The units indicate the minimum or maximum time the  
action takes to complete.  
Table 3.  
Parameter1, 2, 3 1.71 V ≤ VLOGIC < 3 V  
3 V ≤ VLOGIC ≤ 5.5 V  
Unit  
Description  
t1  
t2  
t3  
t4  
33  
120  
16  
60  
16  
60  
10  
20  
66  
10  
33  
10  
33  
10  
ns minimum Serial clock input (SCLK) cycle time, write operation  
ns minimum SCLK cycle time, read operation  
ns minimum SCLK high time, write operation  
ns minimum SCLK high time, read operation  
ns minimum SCLK low time, write operation  
ns minimum SCLK low time, read operation  
ns minimum SYNC falling edge to SCLK falling edge setup time,  
write operation  
33  
33  
ns minimum SYNC falling edge to SCLK falling edge setup time,  
read operation  
t5  
t6  
10  
10  
ns minimum 24th or 32nd SCLK falling edge to  
SYNC  
rising edge  
500  
500  
ns minimum SYNC high time (applies to all register writes outside  
of those listed in this table)  
1.5  
1.5  
µs minimum  
SYNC  
high time (DAC_INPUT register write)  
500  
500  
µs minimum SYNC high time (DAC_CONFIG register write, where  
the Range[3:0] bits change; see the Calibration  
Memory CRC section for more timing information  
t7  
t8  
5
6
5
6
ns minimum Data setup time  
ns minimum Data hold time  
t9  
750  
1.5  
250  
600  
750  
1.5  
250  
600  
ns minimum  
µs minimum  
ns minimum  
falling edge to  
rising edge  
falling edge  
LDAC  
SYNC  
LDAC  
SYNC  
t10  
t11  
t12  
rising edge to  
LDAC  
pulse width low  
ns maximum LDAC falling edge to DAC output response time,  
digital slew rate control disabled.  
2
2
µs maximum LDAC falling edge to DAC output response time,  
digital slew rate control enabled.  
t13  
t14  
See the AC Performance See the AC Performance µs maximum DAC output settling time  
Characteristics section  
Characteristics section  
1.5  
1.5  
µs maximum SYNC rising edge to DAC output response time  
(LDAC = 0)  
t15  
t16  
t17  
5
5
µs minimum  
RESET  
pulse width  
40  
100  
28  
100  
ns maximum SCLK rising edge to SDO valid  
µs minimum RESET rising edge to first SCLK falling edge after  
SYNC falling edge (t17 does not appear in the timing  
diagrams)  
1 Guaranteed by design and characterization; not production tested.  
2 All input signals are specified with tR = tF = 5 ns (10% to 90% of VLOGIC) and timed from a voltage level of 1.2 V. tR is rise time. tF is fall time.  
3 See Figure 2, Figure 3, Figure 4, and Figure 5.  
Rev. 0 | Page 11 of 72  
 
 
AD5753  
Data Sheet  
Timing Diagrams  
t1  
SCLK  
1
2
24  
t3  
t2  
t6  
t4  
t5  
SYNC  
t8  
t7  
SDI  
MSB  
LSB  
t11  
t11  
t10  
LDAC  
t9  
t13  
t12  
VI  
OUT  
LDAC = 0  
t13  
t14  
VI  
OUT  
t15  
RESET  
Figure 2. Serial Interface Timing Diagram  
SCLK  
24  
1
1
24  
t6  
SYNC  
SDI  
MSB  
LSB  
MSB  
LSB  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
MSB  
LSB  
SDO  
UNDEFINED  
SELECTED REGISTER DATA  
CLOCKED OUT  
t16  
Figure 3. Readback Timing Diagram  
Rev. 0 | Page 12 of 72  
 
 
Data Sheet  
AD5753  
1
2
241  
SCLK  
SYNC  
t8  
t7  
D23  
D21  
D20  
D19  
D18  
D17  
D16  
D1  
D0  
SDI  
D22  
D11  
SDO  
DISABLED  
SDO  
DISABLED  
SDO  
DIG  
DIAG  
ANA  
DIAG  
WDT  
STATUS  
ADC  
ADC  
ADC  
CHN[0]  
ADC  
DATA[11]  
ADC  
DATA[1]  
ADC  
DATA[0]  
FAULT  
PIN  
1
0
BUSY CHN[4]  
t16  
1
TH  
ND  
IF ANY EXTRA SCLK FALLING EDGES ARE RECEIVED AFTER THE 24 (OR 32 , IF CRC IS ENABLED) SCLK, BEFORE SYNC RETURNS HIGH, SDO CLOCKS OUT 0.  
Figure 4. Autostatus Readback Timing Diagram  
200µA  
I
OL  
V
V
(MIN) OR  
(MAX)  
TO OUTPUT  
PIN  
OH  
OL  
C
L
30pF  
200µA  
I
OH  
Figure 5. Load Circuit for the SDO Timing Diagram  
Rev. 0 | Page 13 of 72  
 
 
AD5753  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Transient currents of up to  
200 mA do not cause silicon controlled rectifier (SCR) latch-up.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 4.  
Parameter  
Rating  
AVDD1 to AGND, DGND  
AVSS to AGND, DGND  
AVDD1 to AVSS  
AVDD2, VDPC+ to AGND, DGND  
AVDD2, VDPC+ to VDPC−  
VDPC− to AGND, DGND  
−0.3 V to +44 V  
+0.3 V to −35 V  
−0.3 V to +66 V  
−0.3 V to +35 V  
−0.3 V to +55 V  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Close attention to  
PCB thermal design is required.  
+0.3 V to AVSS −0.3 V or −35 V  
(whichever voltage is less)  
VLOGIC to DGND  
−0.3 V to +6 V  
θJA is the junction to ambient thermal resistance and ΨJT is the  
junction to top of package thermal resistance.  
Digital Inputs to DGND (SCLK,  
SDI, SYNC, AD0, AD1, RESET,  
LDAC)  
−0.3 V to VLOGIC + 0.3 V or +6V  
(whichever voltage is less)  
Table 5. Thermal Resistance  
Digital Outputs to DGND (FAULT, −0.3 V to VLOGIC + 0.3 V or +6V  
SDO, CLKOUT)  
GPIO_0, GPIO_1, and GPIO_2 to  
AGND  
REFIN, REFOUT, VLDO, CHART to  
AGND  
Package Type  
CP-40-151  
θJA  
ΨJT  
Unit  
(whichever voltage is less)  
38  
0.5  
°C/W  
−0.3 V to VLOGIC + 0.3 V or +6V  
(whichever voltage is less)  
−0.3 V to AVDD2 + 0.3 V or +6V  
(whichever voltage is less)  
1 Test Condition 1: Thermal impedance simulated values are based on a  
JEDEC 2S2P thermal test board with thermal vias. See JEDEC and JESD51.  
RA to AGND  
RB to AGND  
−0.3 V to +4.5 V  
−0.3 V to +4.5 V  
ESD CAUTION  
VIOUT to AGND  
+VSENSE to AGND  
−VSENSE to AGND  
CCOMP to AGND  
SW+ to AGND  
38 V  
38 V  
38 V  
AVSS − 0.3 V to VDPC+ + 0.3 V  
−0.3 V to AVDD1 + 0.3 V or +33 V  
(whichever voltage is less)  
SW− to AGND  
+0.3 V to AVSS − 0.3 V or −33 V  
(whichever voltage is less)  
AGND, DGND to REFGND  
AGND, DGND to PGND1, PGND2  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−40°C to +115°C  
Industrial Operating  
Temperature Range (TA)1  
Storage Temperature Range  
Junction Temperature  
(TJ Maximum)  
−65°C to +150°C  
125°C  
Power Dissipation  
Lead Temperature  
Soldering  
(TJ maximum − TA)/θJA  
JEDEC industry standard  
J-STD-020  
Electrostatic Discharge (ESD)  
Human Body Model2  
4 kV  
Field Induced Charged  
Device Model3  
750 V  
1 Power dissipated on the chip must be derated to keep the junction  
temperature below 125°C.  
2 As per ANSI/ESDA/JEDEC JS-001, all pins.  
3 As per ANSI/ESDA/JEDEC JS-002, all pins.  
Rev. 0 | Page 14 of 72  
 
 
 
Data Sheet  
AD5753  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
SW+  
1
2
30 SW–  
SS  
28 NIC  
27 FAULT  
26 AD0  
25 AD1  
24 SYNC  
23 SDI  
22 SCLK  
21 CLKOUT  
AV  
29 AV  
DD1  
DD2  
AV  
3
ADC1  
4
AD5753  
AGND  
5
REFGND  
6
TOP VIEW  
R
A
(Not to Scale)  
7
R
8
B
C
9
HART  
REFIN  
10  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
2. CONNECT THE EXPOSED PAD TO THE POTENTIAL  
OF THE V PIN, OR, ALTERNATIVELY, THE  
DPC–  
EXPOSED PAD CAN BE LEFT ELECTRICALLY  
UNCONNECTED. IT IS RECOMMENDED THAT THE  
PAD BE THERMALLY CONNECTED TO A COPPER  
PLANE FOR ENHANCED THERMAL PERFORMANCE.  
Figure 6. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
SW+  
Switching Output for the Positive DC-to-DC Circuitry. To use the dc-to-dc feature of the device, connect the  
external inductor as shown in Figure 77.  
2
3
4
5
6
7
AVDD1  
AVDD2  
ADC1  
AGND  
REFGND  
RA  
Positive Analog Supply. The voltage range on this pin is from 7 V to 33 V.  
Positive Low Voltage Analog Supply. The voltage range on this pin is from 5 V to 33 V.  
Multiplexed ADC External Input 1.  
Ground Reference Point for the Analog Circuitry. This pin must be connected to 0 V.  
Ground Reference Point for Internal Reference. This pin must be connected to 0 V.  
External Current Setting Resistor. An external precision, low drift, 13.7 kΩ current setting resistor can be connected  
between RA and RB to improve the current output temperature drift performance. It is recommended to place the  
external resistor as close as possible to the AD5753.  
8
9
RB  
External Current Setting Resistor. An external precision, low drift, 13.7 kΩ current setting resistor can be connected  
between RA and RB to improve the current output temperature drift performance. It is recommended to place the  
external resistor as close as possible to the AD5753.  
HART Input Connection. The HART signal must be ac-coupled to this pin. If the HART signal is not being used, leave  
this pin unconnected. This pin is disconnected from the HART summing node by default and is connected via the  
HART_EN bit in the GP_CONFIG1 register.  
CHART  
10  
11  
REFIN  
REFOUT  
External 2.5 V Reference Voltage Input.  
Internal 2.5 V Reference Voltage Output. REFOUT must be connected to REFIN to use the internal reference. A  
capacitor between REFOUT and REFGND is not recommended.  
12  
13  
VLDO  
VLOGIC  
3.3 V Low Dropout (LDO) Output Voltage. VLDO must be decoupled to the AGND with a 0.1 µF capacitor.  
Digital Supply. The voltage range on this pin is from 1.71 V to 5.5 V. VLOGIC must be decoupled to DGND with a 0.1 µF  
capacitor.  
14  
SDO  
Serial Data Output. This pin clocks data from the serial register in readback mode. The maximum SCLK speed for  
readback mode is 15 MHz and this speed is dependent on the VLOGIC voltage. See Table 3 for the timing specifications.  
15  
16  
DGND  
RESET  
Digital Ground.  
Hardware Reset. Active low input. Do not write an SPI command within 100 μs of issuing a reset either by using the  
hardware RESET pin or via software.  
17  
18  
19  
20  
GPIO_0  
GPIO_1  
GPIO_2  
LDAC  
General-Purpose Input/Output 0.  
General-Purpose Input/Output 1.  
General-Purpose Input/Output 2.  
Load DAC. Active low input. This pin updates the DAC_OUTPUT register and, consequently, the DAC output. Do  
not assert LDAC within the 500 ns window before the rising edge of SYNC or 1.5 µs after the rising edge of SYNC  
(see Table 3 for the timing specifications).  
Rev. 0 | Page 15 of 72  
 
AD5753  
Data Sheet  
Pin No. Mnemonic Description  
21  
CLKOUT  
Optional Clock Output Signal (Disabled by Default). This pin is a divided down version of the internal 10 MHz  
internal oscillator, which generates the master clock (MCLK), and is configured in the GP_CONFIG1 register.  
22  
SCLK  
Serial Clock Input. Data is clocked to the input shift register on the falling edge of the SCLK. In write mode, this pin  
operates at clock speeds of up to 50 MHz and this speed is dependent on the VLOGIC voltage. In read mode, the maximum  
SCLK speed is 15 MHz and this speed is dependent on the VLOGIC voltage. See Table 3 for the timing specifications.  
23  
24  
SDI  
Serial Data Input. Data must be valid on the falling edge of SCLK.  
Frame Synchronization Signal for the Serial Interface. Active low input. While SYNC is low, data is transferred in on  
the falling edge of SCLK.  
SYNC  
25  
26  
27  
AD1  
AD0  
Address Decode 1 for the AD5753 Device.  
Address Decode 0 for the AD5753 Device.  
Fault Pin. Active low, open-drain output. This pin is high impedance when no faults are detected and is asserted  
low when certain faults are detected. Some of these faults include an open circuit in current mode, a short circuit  
in voltage mode, a CRC error, or an overtemperature error (see the Output Fault section). This pin must be connected to  
FAULT  
VLOGIC with a 10 kΩ pull-up resistor.  
28  
29  
NIC  
AVSS  
Not Internally Connected.  
Negative Analog Supply. The voltage range on this pin is 0 V to −33 V. If using the device solely for unipolar current  
output purposes, the AVSS can be set to 0 V. For a unipolar voltage output, AVSS (maximum) is −2 V. When using  
bipolar output ranges, the VOUT or IOUT headroom must be obeyed when calculating the AVSS maximum. For  
example, for a 10 V output, the AVSS maximum is −12.5 V. See the AVSS Considerations section for an important  
note on power supply sequencing.  
30  
SW−  
Switching Output for the Negative DC-to-DC Circuitry. To use the dc-to-dc feature of the device, connect the pin  
and external inductor as shown in Figure 78.  
31  
32  
PGND2  
VDPC−  
Power to Ground.  
Negative Supply for Current and Voltage Output Stage. To use the dc-to-dc feature of the device, connect the  
external capacitor as shown in Figure 78.  
33  
34  
NIC  
−VSENSE  
Not Internally Connected.  
Sense Connection for Negative Voltage Output Load Connection for VOUT Mode. This pin must stay within 10 V of  
AGND for specified operation. For specified operation, VDPC− tracks −VSENSE with respect to AGND. It is  
recommended to connect a series 1 kΩ resistor to this pin.  
35  
36  
CCOMP  
Optional Compensation Capacitor Connection for the Voltage Output Buffer. Connecting a 220 pF capacitor  
between this pin and the VIOUT pin allows the voltage output to drive up to 2 µF. The addition of this capacitor  
reduces the bandwidth of the output amplifier, increasing the settling time.  
Sense Connection for Positive Voltage Output Load Connection for Voltage Output Mode. It is recommended to  
connect a series 1 kΩ resistor to this pin.  
+VSENSE  
37  
38  
39  
VIOUT  
ADC2  
VDPC+  
Voltage or Current Output Pin. VIOUT is a shared pin that provides either a buffered output voltage or current.  
Multiplexed ADC External Input 2.  
Positive Supply for Current and Voltage Output Stage. To use the dc-to-dc feature of the device, connect the  
external capacitor as shown in Figure 77.  
40  
PGND1  
EPAD  
Power to Ground.  
Exposed Pad. Connect the exposed pad to the potential of the VDPC− pin, or, alternatively, the exposed pad can be left  
electrically unconnected. It is recommended that the pad be thermally connected to a copper plane for enhanced  
thermal performance.  
Rev. 0 | Page 16 of 72  
Data Sheet  
AD5753  
TYPICAL PERFORMANCE CHARACTERISTICS  
VOLTAGE OUTPUT  
0.0020  
0.0015  
0.0010  
0.0005  
0
AV  
= V  
= +15V  
DD1  
DPC+  
AV = V  
= –15V  
SS  
DPC–  
1kΩ LOAD  
0.0015  
0.0010  
0.0005  
0
+5V RANGE, INL MIN  
+10V RANGE, INL MIN  
±5V RANGE, INL MIN  
±10V RANGE, INL MIN  
+5V RANGE, INL MAX  
+10V RANGE, INL MAX  
±5V RANGE, INL MAX  
±10V RANGE, INL MAX  
–0.0005  
–0.0010  
–0.0015  
–0.0005  
–0.0010  
–0.0015  
0
8192 16384 24576 32768 40960 49152 57344 65536  
DAC CODE  
25  
70  
105  
125  
TEMPERATURE (°C)  
Figure 7. INL Error vs. DAC Code  
Figure 10. INL Error vs. Temperature  
1.0  
0.8  
1.0  
0.8  
DNL ERROR MAX  
DNL ERROR MIN  
AV  
= V  
= +15V  
= –15V  
AV  
AV = V  
= V  
= +15V  
DPC+  
+5V RANGE  
DD1  
DPC+  
DD1  
+10V RANGE  
AV = V  
= –15V  
SS  
DPC–  
SS  
DPC–  
±5V RANGE  
±10V RANGE  
+10V RANGE WITH DC-TO-DC ENABLED  
ALL RANGES  
1kΩ LOAD  
T
= 25°C  
A
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–40  
25  
115  
125  
0
8192 16384 24576 32768 40960 49152 57344 65536  
DAC CODE  
TEMPERATURE (ºC)  
Figure 8. DNL Error vs. DAC Code  
Figure 11. DNL Error vs Temperature  
0.006  
0.004  
0.002  
0
0.008  
0.006  
0.004  
0.002  
0
+5V RANGE, TUE MIN  
+10V RANGE, TUE MIN  
±5V RANGE, TUE MIN  
±10V RANGE, TUE MIN  
+5V RANGE, TUE MAX  
AV  
AV = V  
= V  
= 15V  
DPC+  
DD1  
+10V RANGE, TUE MAX  
= –15V  
SS  
DPC–  
±5V RANGE, TUE MAX  
±10V RANGE, TUE MAX  
1kΩ LOAD  
T
= 25°C  
A
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.002  
–0.004  
–0.006  
+5V RANGE  
+10V RANGE  
±5V RANGE  
±10V RANGE  
AV  
= V  
= +15V  
= –15V  
DD1  
DPC+  
AV = V  
SS  
DPC–  
1kΩ LOAD  
+10V RANGE WITH DC-TO-DC ENABLED  
0
8192 16384 24576 32768 40960 49152 57344 65536  
DAC CODE  
–40  
25  
70  
105  
125  
TEMPERATURE (°C)  
Figure 9. TUE vs. DAC Code  
Figure 12. TUE vs. Temperature  
Rev. 0 | Page 17 of 72  
 
 
AD5753  
Data Sheet  
0.008  
0.006  
0.004  
0.002  
0
0.020  
0.015  
0.010  
0.005  
0
±5V RANGE  
±10V RANGE  
5V RANGE  
10V RANGE  
±5V RANGE  
±10V RANGE  
–0.002  
–0.004  
–0.006  
–0.005  
–0.010  
–0.015  
–0.020  
AV  
= V  
= +15V  
= –15V  
AV  
= V  
= +15V  
= –15V  
DD1  
DPC+  
DD1  
DPC+  
–0.008  
–0.010  
AV = V  
AV = V  
SS  
DPC–  
SS  
DPC–  
1kΩ LOAD  
1kΩ LOAD  
–40  
25  
70  
TEMPERATURE (°C)  
105  
125  
–40  
25  
70  
TEMPERATURE (°C)  
105  
125  
Figure 13. Full-Scale Error vs. Temperature  
Figure 16. Bipolar Zero Error vs. Temperature  
0.002  
0.001  
0
0.008  
0.006  
0.004  
0.002  
0
AV  
AV = V  
1kΩ LOAD  
= V  
= +15V  
= –15V  
5V RANGE  
5V RANGE  
10V RANGE  
DD1  
DPC+  
10V RANGE  
±5V RANGE  
±10V RANGE  
SS  
DPC–  
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
–0.006  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
AV  
= V  
= +15V  
DD1  
DPC+  
AV = V  
= –15V  
SS  
DPC–  
1kΩ LOAD  
–40  
25  
70  
TEMPERATURE (°C)  
105  
125  
–40  
25  
70  
TEMPERATURE (°C)  
105  
125  
Figure 14. Offset Error vs. Temperature  
Figure 17. Zero-Scale Error vs. Temperature  
0.010  
0.008  
0.006  
0.004  
0.002  
0
0.005  
0.004  
0.003  
0.002  
0.001  
0
5V RANGE  
1kΩ LOAD  
T = 25°C  
A
0V TO 10V RANGE, MAX INL  
0V TO 10V RANGE, MIN INL  
10V RANGE  
±5V RANGE  
±10V RANGE  
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
–0.002  
–0.004  
–0.006  
AV  
AV = V  
1kΩ LOAD  
= V  
= +15V  
= –15V  
DD1  
DPC+  
SS  
DPC–  
–40  
25  
70  
TEMPERATURE (°C)  
105  
125  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
AV /|AV | SUPPLY (V)  
DD1  
SS  
Figure 15. Gain Error vs. Temperature  
Figure 18. INL Error vs. AVDD1/|AVSS| Supply  
Rev. 0 | Page 18 of 72  
Data Sheet  
AD5753  
1.0  
15  
10  
5
AV  
AV = V  
= V  
= +15V  
= –15V  
0V TO 10V RANGE, MAX DNL  
0V TO 10V RANGE, MIN DNL  
DD1  
DPC+  
0.8  
SS DPC  
±10V RANGE  
OUTPUT UNLOADED  
T = 25°C  
0.6  
A
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–5  
–10  
–15  
1kΩ LOAD  
A
T
= 25°C  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
AV /|AV | SUPPLY (V)  
–5  
0
5
10  
15  
TIME (μs)  
DD1  
SS  
Figure 22. Full-Scale Positive Step  
Figure 19. DNL Error vs. AVDD1/|AVSS| Supply  
15  
10  
5
0.05  
0.04  
0.03  
0.02  
0.01  
0
AV  
AV = V  
= V  
= +15V  
= –15V  
DD1  
DPC+  
0V TO 10V RANGE, MAX TUE  
0V TO 10V RANGE, MIN TUE  
SS DPC  
±10V RANGE  
OUTPUT UNLOADED  
= 25°C  
T
A
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–5  
–10  
–15  
1kΩ LOAD  
= 25°C  
T
A
–5  
0
5
10  
15  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
AV /|AV | SUPPLY (V)  
TIME (μs)  
DD1  
SS  
Figure 20. TUE vs. AVDD1/|AVSS| Supply  
Figure 23. Full-Scale Negative Step  
0.0010  
0.0008  
0.0006  
0.0004  
0.0002  
0
0.10  
AV  
AV = V  
= V  
= +15V  
= –15V  
HIGH TO LOW  
LOW TO HIGH  
DD1  
DPC+  
SS  
DPC  
±10V RANGE  
0.05  
0
T
= 25°C  
A
–0.05  
–0.010  
–0.015  
–0.020  
–0.025  
–0.0002  
–0.0004  
–0.0006  
–0.0008  
–0.0010  
AV  
AV = V  
= V  
= +15V  
= –15V  
DD1  
DPC+  
SS DPC  
0 TO 10V RANGE  
1kΩ LOAD  
T
= 25°C  
A
–20 –16 –12  
–8  
–4  
0
4
8
12  
16  
20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT CURRENT (mA)  
TIME (µs)  
Figure 21. Sink and Source Capability of the Output Amplifier  
Figure 24. Digital-to-Analog Glitch Major Code Transition  
Rev. 0 | Page 19 of 72  
AD5753  
Data Sheet  
20  
4.925  
4.920  
4.915  
4.910  
4.905  
4.900  
4.895  
AV  
AV = V  
0V TO 10V RANGE  
OUTPUT UNLOADED  
= V  
= +15V  
= –15V  
T
= 25°C  
DD1  
DPC+  
A
SS  
DPC  
15  
10  
5
0
–5  
–10  
–15  
0
1
2
3
4
5
6
7
8
9
10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
TIME (Seconds)  
TIME (µs)  
Figure 25. Peak-to-Peak Noise (0.1 Hz to 10 Hz Bandwidth)  
Figure 28. VOUT vs. Time on Power-Up  
400  
0
0V TO 10V RANGE – MIDSCALE CODE  
OUTPUT UNLOADED  
AV  
AV = V  
= V  
= +15V  
= –15V  
DPC  
AV  
V
= 15V  
DD1  
DPC+  
DD2  
DPC+  
DPC–  
= 15V  
SS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= 25°C  
V
= –15V  
300  
200  
A
1kΩ LOAD  
= 220pF  
C
LOAD  
100  
0
–100  
–200  
–300  
–400  
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
TIME (ms)  
Figure 29. VOUT PSRR vs. Frequency  
Figure 26. Peak-to-Peak Noise (100 kHz Bandwidth)  
A
A
= V  
= +15V  
= –15V  
VDD1  
DPC+  
= V  
VSS  
DPC–  
±10V RANGE MIDSCALE CODE  
T
= 25°C  
A
V
DPC+  
10kΩ LOAD  
C
2
= 220pF  
LOAD  
A
A
= V  
= +15V  
= –15V  
VDD1  
DPC+  
= V  
SYNC  
VSS  
DPC–  
3
4
±10V RANGE MIDSCALE CODE  
T
= 25°C  
A
10kΩ LOAD  
C
= 220pF  
LOAD  
V
OUT  
V
OUT  
4
CH2 10.0mV  
CH4 10.0mV  
2.00µs  
CH3 2.00V  
CH4 50.0mV  
1.00µs  
Figure 30. Voltage Output Ripple  
Figure 27. VOUT vs. Time on Output Enable  
Rev. 0 | Page 20 of 72  
Data Sheet  
AD5753  
CURRENT OUTPUTS  
0.004  
0.002  
0.001  
0
4mA TO 20mA, EXTERNAL R  
4mA TO 20mA, INTERNAL R  
SET  
SET  
AV  
= +15V  
DD1  
SS  
AV = –15V  
4mA TO 20mA, EXTERNAL R  
4mA TO 20mA, INTERNAL R  
, WITH DC-TO-DC CONVERTER  
SET  
, WITH DC-TO-DC CONVERTER  
SET  
0.003  
0.002  
0.001  
0
0mA TO 20mA RANGE, MAX INL  
0mA TO 24mA RANGE, MAX INL  
4mA TO 20mA RANGE, MAX INL  
±24mA RANGE, MAX INL  
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
0mA TO 20mA RANGE, MIN INL  
0mA TO 24mA RANGE, MIN INL  
4mA TO 20mA RANGE, MIN INL  
±24mA RANGE, MIN INL  
AV = +15V  
DD  
–0.001  
–0.002  
AV = –15V  
SS  
=25°C  
T
A
300Ω LOAD  
0
8192 16384 24576 32768 40960 49152 57344 65536  
DAC CODE  
–40  
25  
70  
105  
125  
TEMPERATURE (°C)  
Figure 31. INL Error vs. DAC Code  
Figure 34. INL Error vs. Temperature, Internal RSET  
1.0  
0.8  
0.003  
0.002  
0.001  
0
AV  
= +15V  
4mA TO 20mA, EXTERNAL RSET  
4mA TO 20mA, INTERNAL RSET  
4mA TO 20mA, EXTERNAL RSET, WITH DC-TO-DC CONVERTER  
4mA TO 20mA, INTERNAL RSET, WITH DC-TO-DC CONVERTER  
DD1  
SS  
AV = –15V  
0.6  
0.4  
0.2  
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
–0.006  
0mA TO 20mA RANGE, INL MAX  
0
0mA TO 24mA RANGE, INL MAX  
4mA TO 20mA RANGE, INL MAX  
±24mA RANGE, INL MAX  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0mA TO 20mA RANGE, INL MIN  
0mA TO 24mA RANGE, INL MIN  
4mA TO 20mA RANGE, INL MIN  
±24mA RANGE, INL MIN  
0
8192 16384 24576 32768 40960 49152 57344 65536  
DAC CODE  
–40  
25  
70  
105  
125  
TEMPERATURE (ºC)  
Figure 32. DNL Error vs. DAC Code  
Figure 35. INL Error vs. Temperature, External RSET  
0.015  
0.010  
0.005  
0
1.0  
0.8  
4mA TO 20mA, EXTERNAL R  
SET  
DNL ERROR MAX  
DNL ERROR MIN  
AV  
AV = V  
ALL RANGES  
= V  
= +15V  
= –15V  
DD1  
DPC+  
4mA TO 20mA, INTERNAL R  
SET  
SS  
DPC–  
0.6  
0.4  
0.2  
0
–0.005  
–0.010  
–0.015  
–0.020  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
4mA TO 20mA, EXTERNAL R  
4mA TO 20mA, INTERNAL R  
, WITH DC-TO-DC CONVERTER  
, WITH DC-TO-DC CONVERTER  
SET  
SET  
0
8192 16384 24576 32768 40960 49152 57344 65536  
DAC CODE  
–40  
25  
115  
125  
TEMPERATURE (ºC)  
Figure 33. TUE vs. DAC Code  
Figure 36. DNL Error vs. Temperature  
Rev. 0 | Page 21 of 72  
 
AD5753  
Data Sheet  
0.15  
0.10  
0.05  
0
0.15  
0.10  
0.05  
0
0mA TO 20mA, INTERNAL R  
AVDD1 = +15V  
AVSS = –15V  
SET  
SET  
SET  
0mA TO 24mA, INTERNAL R  
4mA TO 20mA, INTERNAL R  
p/m 24mA, INTERNAL R  
SET  
0mA TO 20mA, EXTERNAL R  
0mA TO 24mA, EXTERNAL R  
4mA TO 20mA, EXTERNAL R  
SET  
SET  
SET  
p/m 24mA, EXTERNAL R  
SET  
0mA TO 20mA TUE MIN  
0mA TO 24mA TUE MIN  
4mA TO 20mA TUE MIN  
p/m 24mA TUE MIN  
0mA TO 20mA TUE MAX  
0mA TO 24mA TUE MAX  
4mA TO 20mA TUE MAX  
p/m 24mA TUE MAX  
–0.05  
–0.10  
–0.15  
–0.05  
–0.10  
AVDD1 = +15V  
AVSS = –15V  
–0.15  
–40  
–40  
25  
115  
125  
125  
125  
25  
115  
125  
125  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 37. TUE Error vs. Temperature, Internal RSET  
Figure 40. Full-Scale Error vs. Temperature  
0.03  
0.02  
0.01  
0
0.04  
0.03  
0.02  
0.01  
0
AVDD1 = +15V  
AVSS = –15V  
AVDD1 = +15V  
AVSS = –15V  
–0.01  
–0.02  
–0.03  
–0.01  
–0.02  
–0.03  
–0.04  
0mA TO 20mA MIN TUE  
0mA TO 24mA MIN TUE  
4mA TO 20mA MIN TUE  
p/m 24mA, MIN TUE  
0mA TO 20mA MAX TUE  
0mA TO 24mA MAX TUE  
4mA TO 20mA MAX TUE  
p/m 20mA, MAX TUE  
0mA TO 20mA, INTERNAL  
RSET  
SET  
SET  
0mA TO 24mA, INTERNAL R  
4mA TO 20mA, INTERNAL R  
p/m 24mA, INTERNAL R  
SET  
0mA TO 20mA, EXTERNAL R  
0mA TO 24mA, EXTERNAL R  
4mA TO 20mA, EXTERNAL R  
SET  
SET  
SET  
p/m 24mA, EXTERNAL R  
SET  
–0.04  
–40  
25  
115  
–40  
25  
115  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 38. TUE Error vs. Temperature, External RSET  
Figure 41. Zero-Scale Error vs. Temperature  
0.04  
0.03  
0.02  
0.01  
0
0.10  
0.05  
0
AVDD1 = +15V  
AVSS = –15V  
0mA TO 20mA, INTERNAL R  
0mA TO 24mA, INTERNAL R  
4mA TO 20mA, INTERNAL R  
0mA TO 20mA, INTERNAL R  
0mA TO 24mA, INTERNAL R  
4mA TO 20mA, INTERNAL R  
SET  
SET  
SET  
SET  
SET  
SET  
p/m 24mA, INTERNAL R  
p/m 24mA, INTERNAL R  
SET  
SET  
)R  
S
F%  
(R  
OR  
–0.05  
–0.10  
–0.15  
–0.01  
–0.02  
–0.03  
EN  
IA  
G
0mA TO 20mA, EXTERNAL R  
0mA TO 24mA, EXTERNAL R  
4mA TO 20mA, EXTERNAL R  
SET  
SET  
SET  
0mA TO 20mA, EXTERNAL R  
SET  
SET  
SET  
0mA TO 24mA, EXTERNAL R  
4mA TO 20mA, EXTERNAL R  
p/m 24mA, EXTERNAL R  
SET  
p/m 24mA, EXTERNAL R  
SET  
–0.04  
–40  
25  
115  
–40  
25  
115  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 39. Offset Error vs. Temperature  
Figure 42. Gain Error vs. Temperature  
Rev. 0 | Page 22 of 72  
Data Sheet  
AD5753  
0.05  
1.0  
0.8  
4mA TO 20mA RANGE MAX TUE  
4mA TO 20mA RANGE MIN TUE  
R
= 300Ω  
LOAD  
= 25°C  
4mA TO 20mA RANGE MAX DNL  
4mA TO 20mA RANGE MIN DNL  
T
A
0.04  
0.03  
0.02  
0.01  
0
0.6  
0.4  
0.2  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
R
= 300Ω  
= 25°C  
LOAD  
T
A
6
8
10 12 14 16 18 20 22 24 26 28 30  
AV /|AV | SUPPLY (V)  
6
8
10 12 14 16 18 20 22 24 26 28 30  
AV /|AV | SUPPLY (V)  
DD1  
SS  
DD1  
SS  
Figure 43. TUE vs. AVDD1/|AVSS| Supply, Internal RSET  
Figure 46. DNL Error vs. AVDD1/|AVSS| Supply, External RSET  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.005  
0.003  
R
T
= 300Ω  
= 25°C  
4mA TO 20mA RANGE MAX TUE  
4mA TO 20mA RANGE MIN TUE  
LOAD  
4mA TO 20mA RANGE MAX INL  
4mA TO 20mA RANGE MIN INL  
A
0.001  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.001  
–0.003  
–0.005  
R
= 300Ω  
= 25°C  
LOAD  
T
A
6
8
10 12 14 16 18 20 22 24 26 28 30  
AV /|AV | SUPPLY (V)  
6
8
10 12 14 16 18 20 22 24 26 28 30  
AV /|AV | SUPPLY (V)  
DD1  
SS  
DD1  
SS  
Figure 44. TUE vs. AVDD1/|AVSS| Supply, External RSET  
Figure 47. INL Error vs. AVDD1/|AVSS| Supply, Internal RSET  
1.0  
0.8  
0.005  
0.003  
4mA TO 20mA RANGE MAX INL  
4mA TO 20mA RANGE MIN INL  
4mA TO 20mA RANGE MAX DNL  
4mA TO 20mA RANGE MIN DNL  
0.6  
0.4  
0.2  
0.001  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.001  
–0.003  
–0.005  
R
T
= 300Ω  
= 25°C  
R
T
= 300Ω  
= 25°C  
LOAD  
LOAD  
A
A
6
8
10 12 14 16 18 20 22 24 26 28 30  
6
8
10 12 14 16 18 20 22 24 26 28 30  
AV  
/|AV | SUPPLY (V)  
SS  
AV  
/|AV | SUPPLY (V)  
SS  
DD1  
DD1  
Figure 45. DNL Error vs. AVDD1/|AVSS| Supply, Internal RSET  
Figure 48. INL Error vs. AVDD1/|AVSS| Supply, External RSET  
Rev. 0 | Page 23 of 72  
AD5753  
Data Sheet  
AVDD1 = 24V  
AVSS = –24V  
4mA TO 20mA RANGE  
FULL-SCALE STEP  
1kΩ LOAD  
T
= 25ºC  
A
AV  
3
DD1  
I
OUT  
4
CH1  
CH4  
V
WITH 400mA LIMIT (V)  
DPC+  
I
WITH 400mA LIMIT (V)  
OUT  
V
WITH 150mA LIMIT (V)  
DPC+  
I
WITH 150mA LIMIT(V)  
OUT  
80.0µs  
CH1 5.00V  
CH4 5.00V  
CH4  
4.00ms  
CH3 5.00V  
CH4 10.0mV  
Figure 52. Output Current and VDPC+ Settling Time  
Figure 49. Output Current vs. Time on Power-Up  
12  
10  
8
T
= 25°C  
AV  
SS  
= +15V  
A
DD1  
AV = –15V  
4mA TO 20mA RANGE  
FULL-SCALE STEP  
300Ω LOAD  
T
= 25°C  
A
SYNC  
3
4
6
I
OUT  
4
I
WITH 150mA I  
(V)  
DCDCLIMIT  
OUT  
2
V
WITH 150mA I  
(V)  
DPC+  
DCDCLIMIT  
I
WITH 400mA I  
(V)  
OUT  
DCDCLIMIT  
V
WITH 400mA I  
(V)  
DCDCLIMIT  
DPC+  
0
400ns  
CH3 2.00V  
CH4 20.0mV  
–100 –50  
0
50 100 150 200 250 300 350 400 450 500  
SETTLING TIME (µs)  
Figure 53. IOUT and VDPC+ Voltage vs. Settling Time where IDCDCLIMIT is the  
DC-to-DC Converter Current Limit  
Figure 50. Output Current vs. Time on Output Enable  
10  
9
16  
AV  
= +30V  
DD1  
SS  
AV = –15V  
0mA TO 24mA RANGE  
1kΩ LOAD  
14  
12  
10  
8
8
T
= 25°C  
I
I
I
I
AT –40°C  
AT +25°C  
AT +85°C  
AT +125°C  
V
V
V
V
AT –40°C  
AT +25°C  
AT +85°C  
AT +125°C  
A
OUT  
OUT  
OUT  
OUT  
DPC+  
DPC+  
DPC+  
DPC+  
7
6
5
4
3
2
1
6
AV  
SS  
= +15V  
DD1  
4
AV = –15V  
4mA TO 20mA RANGE  
FULL-SCALE STEP  
300Ω LOAD  
2
I
= 150mA  
DCDCLIMIT  
0
0
0
5
10  
15  
20  
25  
30  
–100 –50  
0
50 100 150 200 250 300 350 400 450 500 550  
SETTLING TIME (µs)  
OUTPUT CURRENT (mA)  
Figure 51. DC-to-DC Converter Headroom vs. Output Current  
Figure 54. IOUT and VDPC+ Voltage vs. Settling Time Including Temperature  
Rev. 0 | Page 24 of 72  
Data Sheet  
AD5753  
20  
0
AV  
V
V
T
= 25°C  
A
DD2  
DPC+  
DPC–  
V
DPC+  
2
–20  
–40  
–60  
–80  
–100  
–120  
3
4
I
OUT  
10  
100  
1k  
10k  
100k  
1M  
10M  
B
B
CH3 2.00V B CH2 10.0mV  
2.00µs  
W
W
W
CH4 10.0mV  
FREQUENCY (Hz)  
Figure 55. Output Current Ripple vs. Time with DC-to-DC Converter  
Figure 56. IOUT PSRR vs. Frequency  
Rev. 0 | Page 25 of 72  
AD5753  
Data Sheet  
DC-TO-DC BLOCK  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
AV  
AV  
AV  
AV  
AV  
= 28V, 1kΩ LOAD  
= 28V, 300Ω LOAD  
= 28V, 0Ω LOAD  
= 15V, 300Ω LOAD  
= 15V, 0Ω LOAD  
DD1  
DD1  
DD1  
DD1  
DD1  
20  
10  
0
AV  
AV  
AV  
= 28V, 1kΩ, LOAD  
= 28V, 300Ω, LOAD  
= 15V, 300Ω, LOAD  
DD1  
DD1  
DD1  
–40  
25  
85  
TEMPERATURE (°C)  
105  
125  
–24 –20 –16 –12 –8 –4  
0
4
8
12 16 20 24  
OUTPUT CURRENT (mA)  
Figure 60. Output Efficiency vs. Temperature  
Figure 57. DC-to-DC Efficiency vs. Output Current  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AV  
AV  
AV  
AV  
AV  
= 28V, 1kΩ LOAD  
= 28V, 300Ω LOAD  
= 28V, 0Ω LOAD  
= 15V, 300Ω LOAD  
= 15V, 0Ω LOAD  
AV  
AV  
AV  
AV  
AV  
= 28V, 1kΩ LOAD  
= 28V, 300Ω LOAD  
= 28V, 0Ω LOAD  
= 15V, 300Ω LOAD  
= 15V, 0Ω LOAD  
DD1  
DD1  
DD1  
DD1  
DD1  
DD1  
DD1  
DD1  
DD1  
DD1  
–24 –20 –16 –12 –8 –4  
0
4
8
12 16 20 24  
–40  
25  
85  
TEMPERATURE (°C)  
105  
125  
OUTPUT CURRENT (mA)  
Figure 58. DC-to-DC Efficiency vs. Temperature  
Figure 61. Power Dissipation vs. Output Current  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AV  
AV  
AV  
= 28V, 1kΩ LOAD  
= 28V, 300Ω LOAD  
= 15V, 300Ω LOAD  
DD1  
DD1  
DD1  
AV  
AV  
AV  
AV  
AV  
= 28V, 1kΩ  
= 28V, 300Ω  
= 28V, 0Ω  
DD1  
DD1  
DD1  
DD1  
DD1  
= 15V, 300Ω  
= 15V, 0Ω  
–40  
25  
85  
TEMPERATURE (°C)  
105  
125  
–24 –20 –16 –12 –8 –4  
0
4
8
12 16 20 24  
OUTPUT CURRENT (mA)  
Figure 59. Output Efficiency vs. Output Current  
Figure 62. Power Dissipation vs. Temperature  
Rev. 0 | Page 26 of 72  
 
Data Sheet  
AD5753  
REFERENCE  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
T
= 25°C  
A
A
= 5V  
VDD2  
T
= 25°C  
A
AV  
DD2  
3
4
REF  
OUT  
CH3 2.00V  
CH4 1.00 V  
10.0µs  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
LOAD CURRENT (mA)  
Figure 63. REFOUT Turn On Transient  
Figure 66. REFOUT vs. Load Current  
5
2.50044  
2.50043  
2.50042  
2.50041  
2.50040  
2.50039  
2.50038  
2.50037  
2.50036  
2.50035  
AV  
= V  
= +15V  
= –15V  
DD1  
DPC+  
T = 25°C  
A
AV = V  
SS  
DPC–  
= 25°C  
4
3
2
1
0
T
A
–1  
–2  
–3  
–4  
–5  
0
1
2
3
4
5
6
7
8
9
10  
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
AV SUPPLY (V)  
TIME (µs)  
DD2  
Figure 64. Peak-to-Peak Noise (0.1 Hz to 10 Hz Bandwidth)  
Figure 67. Reference Output Voltage vs. AVDD2 Supply  
1.5  
1.0  
2.5030  
2.5025  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
2.4980  
2.4975  
30 DEVICES SHOWN  
DD2  
AV  
= V  
= 15V  
= –15V  
DD1  
DPC+  
AV  
= 15V  
AV = V  
SS  
DPC–  
= 25°C  
T
A
0.5  
0
–0.5  
–1.0  
–1.5  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TIME (ms)  
TEMPERATURE (°C)  
Figure 65. Peak-to-Peak Noise (100 kHz Bandwidth)  
Figure 68. REFOUT vs. Temperature  
Rev. 0 | Page 27 of 72  
 
AD5753  
Data Sheet  
GENERAL  
10.15  
10.10  
10.05  
10.00  
9.95  
80  
V
= 3.3V  
= 25°C  
LOGIC  
AV  
= 5.5V  
DD2  
T
A
T
= 25°C  
A
70  
60  
50  
40  
30  
20  
10  
0
9.90  
–40  
25  
70  
105  
125  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
TEMPERATURE (°C)  
LOGIC INPUT VOLTAGE (V)  
Figure 72. MCLK Frequency vs. Temperature  
Figure 69. VLOGIC Current vs. Logic Input Voltage  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.23  
3.22  
3.21  
2.0  
1.5  
A
= 15V  
= 25°C  
V
= 0V  
= 25°C  
VDD2  
OUT  
T
T
A
A
AI  
DD1  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
AI  
SS  
0
5
10  
15  
20  
25  
30  
35  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
LOAD CURRENT (mA)  
AV  
/|AV | VOLTAGE SUPPLY (V)  
DD1  
SS  
Figure 73. VLDO vs. Load Current  
Figure 70. AIDD1/AISS Current vs. AVDD1/|AVSS| Voltage Supply  
1.0  
AI  
DD1  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
T
= 0mA  
= 25°C  
OUT  
A
0
5
10  
15  
20  
25  
30  
35  
AV  
VOLTAGE SUPPLY (V)  
DD1  
Figure 71. AIDD1 Current vs. AVDD1 Voltage Supply  
Rev. 0 | Page 28 of 72  
 
Data Sheet  
AD5753  
TERMINOLOGY  
Full-Scale Error  
Total Unadjusted Error (TUE)  
Full-scale error is a measure of the output error when full-scale  
code is loaded to the DAC output register. Ideally, the output is  
full-scale − 1 LSB. Full-scale error is expressed in % FSR.  
TUE is a measure of the output error that takes into account  
various errors, such as INL error, offset error, gain error, and  
output drift over supplies, temperature, and time. TUE is  
expressed in % FSR.  
Headroom  
Headroom is the difference between the voltage required at the  
output, which is the programmed voltage in voltage output  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy, also known as INL, is a measure  
of the maximum deviation, either in LSBs or % FSR, from the  
best fit line passing through the DAC transfer function.  
mode and the programmed current × R  
LOAD in current output  
mode, and the voltage supplied by the positive supply rail, VDPC+  
Headroom is relevant when the output is positive with respect  
to ground.  
.
Differential Nonlinearity (DNL)  
DNL is the difference between the measured change and the  
ideal 1 LSB change between any two adjacent codes. A specified  
differential nonlinearity of 1 LSB maximum ensures mono-  
tonicity.  
Footroom  
Footroom is the difference between the voltage required at the  
output, which is the programmed voltage in voltage output  
mode and the programmed current × RLOAD in current output  
mode, and the voltage supplied by the negative supply rail, AVSS.  
Footroom is relevant when the output is negative with respect  
to ground.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant for increasing digital input code. The AD5753 is  
monotonic over the full operating temperature range.  
V
OUT or −VSENSE Common-Mode Rejection Ratio (CMRR)  
Zero-Scale or Negative Full-Scale Error  
V
OUT or −VSENSE CMRR is the error in the VOUT voltage that  
Zero-scale or negative full-scale error is the error in the DAC  
output voltage when 0x0000 (straight binary coding) is loaded  
to the DAC output register.  
occurs due to changes in the –VSENSE voltage.  
Current Loop Compliance Voltage  
Current loop compliance voltage is the maximum voltage at the  
VIOUT pin for which the output current is equal to the  
programmed value.  
Zero-Scale Temperature Coefficient (TC)  
Zero-scale TC is a measure of the change in zero-scale error  
with a change in temperature. Zero-scale error TC is expressed  
in ppm FSR/°C.  
Voltage Reference Thermal Hysteresis  
Bipolar Zero Error  
Voltage reference thermal hysteresis is the difference in output  
voltage measured at +25°C compared to the output voltage  
measured at +25°C after cycling the temperature from +25°C to  
−40°C to +115°C and then back to +25°C.  
Bipolar zero error is the deviation of the analog output from the  
ideal half-scale output of 0 V when the DAC output register is  
loaded with 0x8000 (straight binary coding).  
Bipolar Zero Temperature Coefficient (TC)  
Voltage Reference TC  
Bipolar zero TC is a measure of the change in the bipolar zero  
error with a change in temperature. It is expressed in ppm FSR/°C.  
Voltage reference TC is a measure of the change in the reference  
output voltage with a change in temperature. The reference TC  
is calculated by using the box method. This method defines the  
TC as the maximum change in the reference output over a given  
temperature range expressed in ppm/°C and is as follows:  
Offset Error  
Offset error is the deviation of the analog output from the ideal and  
is measured using ¼ scale and ¾ scale digital code measurements.  
It is expressed in % FSR.  
V
REF _ MAX VREF _ MIN  
TC =  
×106  
Offset Error (TC)  
Offset error TC is a measure of the change in the offset error  
with a change in temperature. It is expressed in ppm FSR/°C.  
V
REF _ NOM ×Temp Range  
where:  
REF_MAX is the maximum reference output measured over the  
total temperature range.  
REF_MIN is the minimum reference output measured over the  
total temperature range.  
REF_NOM is the nominal reference output voltage, 2.5 V.  
V
Gain Error  
Gain error is a measure of the span error of the DAC. It is the  
DAC transfer characteristic slope deviation from the ideal value  
expressed in % FSR.  
V
V
Gain Error Temperature Coefficient (TC)  
Gain error TC is a measure of the change in gain error with  
changes in temperature. Gain error TC is expressed in  
ppm FSR/°C.  
Temp Range is the specified temperature range, −40°C to  
+115°C.  
Rev. 0 | Page 29 of 72  
 
AD5753  
Data Sheet  
Line Regulation  
Power-On Glitch Energy  
Line regulation is the change in reference output voltage due to  
a specified change in power supply voltage. It is expressed in  
ppm/V.  
Power-on glitch energy is the impulse injected into the analog  
output when the AD5753 is powered on. It is specified as the  
area of the glitch in nV-sec.  
Load Regulation  
Digital-to-Analog Glitch Energy  
Load regulation is the change in reference output voltage due to  
a specified change in reference load current. It is expressed in  
ppm/mA.  
Digital-to-analog glitch energy is the energy of the impulse injected  
into the analog output when the input code in the DAC output  
register changes state. It is normally specified as the area of the  
glitch in nV-sec. The worst case usually occurs when the digital  
input code is changed by 1 LSB at the major carry transition  
(0x7FFF to 0x8000).  
Dynamic Power Control (DPC)  
In DPC mode, the AD5753 circuitry senses the output voltage  
and dynamically regulates the supply voltage, VDPC+, to meet  
compliance requirements plus an optimized headroom voltage  
for the output buffer.  
Glitch Impulse Peak Amplitude  
Glitch impulse peak amplitude is the peak amplitude of the  
impulse injected into the analog output when the input code in the  
DAC output register changes state. It is specified as the amplitude  
of the glitch in millivolts and the worst case usually occurs when  
the digital input code is changed by 1 LSB at the major carry  
transition (0x7FFF to 0x8000).  
Programmable Power Control (PPC)  
In PPC mode, the VDPC+ voltage is user programmable to a fixed  
level that must accommodate the required maximum output load.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time the output takes  
to settle to a specified level for a full-scale input change. This  
specification depends on the manner in which the DPC feature  
is configured, such as enabled, disabled, or PPC mode enabled,  
and on the characteristics of the external dc-to-dc inductor and  
capacitor components used.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the DAC analog output from the DAC digital inputs. However,  
the digital feedthrough is measured when the DAC output is  
LDAC  
not updated, which occurs when the  
pin is held high. The  
digital feedthrough is specified in nV-sec and measured with a  
full-scale code change on the data bus.  
Slew Rate  
The device slew rate is a limitation in the rate of change of the  
output voltage. The output slewing speed of a voltage output  
DAC is usually limited by the slew rate of the amplifier used at  
the output. Slew rate is measured from 10% to 90% of the  
output signal and is expressed in V/µs.  
Power Supply Rejection Ratio (PSRR)  
PSRR indicates how the output of the DAC is affected by changes  
in the power supply voltage.  
Rev. 0 | Page 30 of 72  
Data Sheet  
AD5753  
THEORY OF OPERATION  
The AD5753 is a single-channel, precision voltage and current  
output DAC designed to meet the requirements of industrial  
factory automation and process control applications. The device  
provides a high precision, fully integrated, single-chip solution for  
generating a unipolar, bipolar current, or voltage output. Package  
power dissipation is minimized by incorporating on-chip DPC and  
then regulating the supply voltage, VDPC+ and VDPC−, to the VIOUT  
output driver from 4.95 V to 27 V by using complementary  
buck dc-to-dc converters optimized for minimum on-chip power  
dissipation. The AD5753 consists of a two die solution with the  
dc-to-dc converter circuitry and the VIOUT line protector located on  
the dc-to-dc die. The remaining circuitry is on the main die.  
Interdie communication is performed over an internal 3-wire  
interface.  
Voltage Output Mode  
If voltage output mode is enabled, the voltage output from the  
DAC is buffered and scaled to output a software selectable  
unipolar or bipolar voltage range (see Figure 75).  
The available voltage ranges are 0 V to 5 V, 5 V, 0 V to 10 V,  
and 10 V. A 20% overrange feature is also available via the DAC_  
CONFIG register, as well as the function to negatively offset the  
unipolar voltage ranges via the GP_CONFIG1 register (see the  
General-Purpose Configuration 1 Register section).  
+V  
SENSE  
RANGE  
SCALING  
VI  
DAC  
OUT  
V
SHORT FAULT  
OUT  
DAC ARCHITECTURE  
–V  
SENSE  
The DAC core architecture of the AD5753 consists of a voltage  
mode R-2R DAC ladder network. The voltage output of the  
DAC core is converted to either a current or voltage output at the  
VIOUT pin. Only one mode can be enabled at any one time. Both  
the voltage and current output stages are supplied by the VDPC+  
power rail, which is internally generated from AVDD1, and the  
Figure 75. Voltage Output  
Reference  
The AD5753 can operate either with an external or internal  
reference. The reference input requires a 2.5 V reference for  
specified performance. This input voltage is then internally  
buffered before being applied to the DAC.  
VDPC− power rail, which is internally generated from AVSS.  
Current Output Mode  
The AD5753 contains an integrated buffered 2.5 V voltage  
reference that is externally available for use elsewhere within the  
system. The internal reference drives the integrated 12-bit ADC.  
REFOUT must be connected to REFIN to use the internal  
reference to drive the DAC.  
If current output mode is enabled, the voltage output from the  
DAC is converted to a current (see Figure 74), which is then  
mirrored to the supply rail so that the application only sees a  
current source output.  
The available current ranges are 0 mA to 20 mA, 0 mA to 24 mA,  
4 mA to 20 mA, 20 mA, 24 mA, and −1 mA to +22 mA. An  
internal or external 13.7 kΩ RSET resistor can be used for the  
voltage to current conversion.  
SERIAL INTERFACE  
The AD5753 is controlled over a versatile 4-wire serial interface  
that operates at clock rates of up to 50 MHz and is compatible  
with SPI, QSPI, MICROWIRE, and DSP standards. Data coding  
is always straight binary.  
V
DPC+  
R2  
R3  
Input Shift Register  
With the SPI CRC enabled (default state), the input shift register is  
32 bits wide. Data is loaded to the device MSB first as a 32-bit word  
under the control of a serial clock input, SCLK. Data is clocked in  
on the falling edge of SCLK. If the CRC is disabled, the serial  
interface is reduced to 24 bits. A 32-bit frame is still accepted but  
the last 8 bits are ignored. See the Register Map section for full  
details on the registers that can be addressed via the SPI  
interface.  
16-BIT  
DAC  
R
R
A
B
R
SET  
VI  
OUT  
Vx  
R1  
R4  
V
DPC–  
Table 7. Writing to a Register (CRC Enabled)  
MSB  
I
OUT  
LSB  
[D7:D0]  
CRC  
OPEN FAULT  
D31  
[D30:D29] [D28:D24] [D23:D8]  
Figure 74. Voltage to Current Conversion Circuitry  
Slip Bit  
AD5753  
address  
Register  
address  
Data  
Rev. 0 | Page 31 of 72  
 
 
 
 
 
AD5753  
Data Sheet  
not write SPI commands to the device within 100 ꢀs of a reset  
event.  
Transfer Function  
Table 8 shows the input code to ideal output voltage relationship for  
the AD5753 for straight binary data coding of the ±5 V output  
range.  
POWER SUPPLY CONSIDERATIONS  
The AD5753 has the following four supply rails: AVDD1, AVDD2  
AVSS, and VLOGIC. See Table 1 for the voltage range of the four  
supply rails and the associated conditions.  
,
Table 8. Ideal Output Voltage to Input Code Relationship  
Digital Input, Straight Binary  
Data Coding  
Analog Output  
VOUT  
AVDD1 Considerations  
MSB  
LSB  
1111  
AVDD1 is the supply rail for the positive dc-to-dc converter and can  
range from 7 V to 33 V. Although the maximum value of AVDD1 is  
33 V and the minimum value of AVSS is −33 V, the maximum  
operating range of |AVDD1 to AVSS| is 60 V. VDPC+ is derived from  
AVDD1 and the value depends on the dc-to-dc converter mode of  
operation  
1111 1111  
1111 1111  
1000 0000  
0000 0000  
0000 0000  
1111  
1111  
0000  
0000  
0000  
2 × VREF × (32,767/32,768)  
2 × VREF × (32,766/32,768)  
0 V  
−2 × VREF × (32,767/32,768)  
−2 × VREF  
1110  
0000  
0001  
0000  
POWER-ON STATE OF THE AD5753  
The dc-to-dc converter requires a sufficient level of margin to be  
maintained between AVDD1 and VDPC+ to ensure the dc-to-dc  
circuitry operates correctly. This margin is 5% of the maximum  
VDPC+ voltage for a given mode of operation.  
On initial power-on or a device reset, the voltage and current  
output channel is disabled. The switch connecting the VIOUT via a  
30 kΩ pull-down resistor to AGND is open. This switch can be  
configured in the DCDC_CONFIG2 register. VDPC+ and VDPC−  
are internally driven to ±±.8 V upon power-on, until the dc-to-  
dc converters are enabled.  
Table 9. AVDD1 to VDPC+ Margin  
Mode of Operation  
DPC Voltage Mode  
DPC Current Mode  
PPC Current Mode  
VDPC+ Maximum  
15 V  
After device power-on or a device reset, a calibration memory  
refresh command is required (see the Programming Sequence  
to Enable the Output section). It is recommended to wait 500 μs  
at minimum after writing this command before writing further  
instructions to the device to allow time for internal calibrations  
to take place.  
(IOUT maximum × RLOAD) + IOUT headroom  
DCDC_CONFIG1[4:0] programmed value  
See the Power Dissipation Control section for further details on  
the dc-to-dc converter modes of operation.  
Calculating Supply Voltage  
Assuming DPC current mode, use the following equation to  
calculate the supply voltage:  
Power-On Reset  
AV  
DD2  
VDPC+ maximum = IOUT maximum voltage + IOUT headroom  
= 22.5 V  
3.3V  
LDO  
INT_AVCC  
where:  
V
LDO  
V
I
OUT maximum = 20 mA; RLOAD = 1 kΩ  
IOUT maximum voltage = IOUT maximum × RLOAD = 20 V  
OUT headroom = 2.5 V  
I
|VDPC+ to AVDD1| headroom is calculated as 5% of 22.5 V =  
1.125 V. Therefore, AVDD1 (minimum) = 22.5 V + 1.125 V =  
23.625 V. Assuming a worst case AVDD1 supply rail tolerance of  
±10%, this example requires an AVDD1 supply rail of  
approximately 26 V.  
SYNC  
SCLK  
SOFTWARE  
RESET  
POWER-ON  
RESET  
SDI  
HARDWARE  
RESET  
RESET  
AVSS Considerations  
Figure 76. Power-On Reset Block Diagram  
AVSS is the negative supply rail and has a range of −33 V to 0 V. As  
in the case of AVDD1, AVSS must obey the 60 V maximum operating  
range of |AVDD1 to AVSS|. VDPC− is derived from AVSS and the value  
depends on the dc-to-dc converter mode of operation. The dc-  
to-dc converter requires a sufficient level of margin between  
AVSS and VDPC− to ensure the dc-to-dc circuitry operates  
correctly. This margin is 5% of the maximum |VDPC−| voltage for  
a given mode of operation.  
The AD5753 incorporates a power-on reset circuit that ensures the  
AD5753 is held in reset if the power supplies are insufficient  
enough to allow reliable operation. The power-on reset circuit  
(see Figure 76) monitors the AVDD2 generated VLDO, the INT_  
RESET  
AVCC voltages, the  
pin, and the SPI reset signal. The  
power-on reset circuit keeps the AD5753 in reset until the voltages  
on the VLDO and an internal AVCC voltage node (INT_AVCC) are  
sufficient for reliable operation. The AD5753 is reset if the  
RESET  
power-on circuit receives a signal from the  
pin or if a  
software reset is written to the AD5753 via the SPI interface. Do  
Rev. 0 | Page 32 of 72  
 
 
 
 
 
Data Sheet  
AD5753  
VDPC− to AVSS. For unipolar voltage output ranges, the maximum  
Calculating Supply Voltage  
AVSS is −2 V to enable sufficient footroom for the internal voltage  
output circuitry. If negative rail DPC is disabled, connect VDPC−  
to AVSS. To avoid power supply sequencing issues, a Schottky diode  
must be placed between VDPC− and ground and the ground supply  
must always be available.  
Assuming DPC current mode, use the following equation to  
calculate the supply voltage:  
VDPC− minimum = IOUT minimum voltage + IOUT headroom =  
−22.5 V  
where:  
AVDD2 Considerations  
IOUT minimum = −20 mA; RLOAD = −20 V  
I
I
OUT minimum voltage = IOUT minimum × RLOAD = −20 V  
OUT headroom = −2.5 V  
AVDD2 is the positive low voltage supply rail and has a range of 5 V  
to 33 V. If only one positive power rail is available, AVDD2 can be  
tied to AVDD1. However, to optimize for reduced power dissipation,  
supply AVDD2 with a separate lower voltage supply.  
VLOGIC Considerations  
VLOGIC is the digital supply for the device and ranges from 1.71 V to  
The |VDPC− to AVSS| headroom is calculated as 5% of −22.5 V =  
−1.125 V. Therefore, AVSS (minimum) = −22.5 V − 1.125 V =  
−23.625 V. Assuming a worst case AVSS supply rail tolerance of  
±10%, this example requires an AVSS supply rail of  
approximately −26 V.  
5.5 V. The 3.3 V VLDO output voltage can be used to drive VLOGIC  
.
For unipolar current output ranges, with negative rail DPC  
disabled, AVSS can be tied to AGND (0 V) and can be connected  
Rev. 0 | Page 33 of 72  
AD5753  
Data Sheet  
DEVICE FEATURES AND DIAGNOSTICS  
POWER DISSIPATION CONTROL  
DC-to-DC Converter Operation  
The AD5753 contains integrated buck dc-to-dc converter  
circuitry that controls the positive and negative (VDPC+ and  
VDPC−) power supply to the output buffers. The converter reduces  
power consumption from standard designs when using the  
device in both current and voltage output modes. AVDD1 is the  
supply rail for the dc-to-dc converter and ranges from 7 V to  
33 V. VDPC+ is also derived from this supply rail. AVSS is the  
supply rail for the negative rail dc-to-dc converter and ranges  
from −33 V to 0 V. VDPC− is also derived from this supply rail.  
The value of both the VDPC+ and VDPC− rails depends on the dc-  
to-dc converter mode of operation as well as the output load, DPC  
voltage mode, DPC current mode, and PPC current mode.  
The dc-to-dc converter uses a fixed, 500 kHz frequency, peak  
current mode control scheme to step down the AVDD1 and AVSS  
inputs to produce VDPC+ and VDPC− to supply the driver circuitry of  
the voltage or current output channel. The dc-to-dc converters  
incorporate a low-side synchronous switch and, therefore, do  
not require an external Schottky diode. The dc-to-dc converters  
operate predominantly in discontinuous conduction mode  
(DCM), where the inductor current goes to zero for an appreciable  
percentage of the switching cycle. To avoid generating lower  
frequency harmonics on the VDPC+ and VDPC− regulated output  
voltage rails, the dc-to-dc converters do not skip any cycles. The  
dc-to-dc converters must therefore transfer a minimum amount  
of energy to the load, that is, the current or voltage output stage  
and the respective load, to operate at a fixed frequency. Thus,  
for light loads, such as a low RLOAD or low IOUT, the VDPC+ and VDPC−  
voltage can rise beyond the target value and stop regulating.  
This voltage rise is not a fault condition and does not represent  
the worst case power dissipation condition in an application.  
Figure 77 shows the discrete components needed for the positive  
dc-to-dc circuitry and Figure 78 shows the components needed  
for the negative dc-to-dc circuitry. The following sections  
describe how to select components and circuitry operation. Use  
the same circuitry on the negative AVSS rail if the negative DPC  
mode is in use, such as if DCDC_CONFIG2 Bit 1 = 1. If the  
negative DPC is not in use, tie VDPC− to AVSS.  
The dc-to-dc converter requires a sufficient level of margin  
between AVDD1 and VDPC+, and between AVSS and VDPC− to  
ensure that the dc-to-dc circuitry operates correctly. This  
margin value is 5% of the VDPC+/|VDPC−| maximum.  
L
DCDC  
47µH  
C
DCDC  
2.2µF  
C
4.7µF  
IN  
0.1µF  
PGND1  
DPC Voltage Mode  
AV  
SW+  
V
DPC+  
DD1  
PGND1  
In DPC voltage mode, with the voltage output enabled or disabled,  
the converter regulates the VDPC+ supply to 15 V above the  
−VSENSE voltage and regulates the VDPC− supply to 15 V below the  
−VSENSE voltage. This mode allows the full output voltage range to  
be efficiently applied across remote loads, with corresponding  
remote grounds at up to 10 V potential relative to the local  
ground supply (AGND) for the AD5753.  
POSITIVE  
DC-TO-DC  
CONVERTER  
CIRCUITRY  
V
DPC+  
Figure 77. Positive DC-to-DC Circuit  
DPC Current Mode  
V
DPC–  
In standard current input module designs, the combined line  
and load resistance values typically range from 50 Ω to 750 Ω.  
Output module systems must provide enough voltage to meet  
the compliance voltage requirement across the full range of load  
resistor values. For example, in a 4 mA to 20 mA loop, when  
driving 20 mA to a 750 Ω load, a compliance voltage of >15 V is  
required. When driving 20 mA into a 50 Ω load, the required  
compliance is reduced to >1 V.  
NEGATIVE  
DC-TO-DC  
CONVERTER  
CIRCUITRY  
PGND2  
AV  
V
DPC–  
SW–  
SS  
C
IN  
0.1µF  
L
4.7µF  
DCDC  
47µH  
C
DCDC  
2.2µF  
PGND2  
In DPC current mode, the AD5753 dc-to-dc circuitry senses the  
output voltage and regulates the VDPC+ and VDPC− supply voltage to  
meet compliance requirements as well as an optimized headroom  
voltage for the output buffer. VDPC+ is dynamically regulated to  
4.95 V or IOUT × RLOAD + headroom, or whichever voltage is  
greater, which excludes the light load condition whereby the  
VDPC+ voltage can rise beyond the target value. This same  
analysis applies to VDPC−, except with the opposite polarity. As  
previously noted, the exclusion of the light load does not represent  
the worst case power dissipation condition in an application. The  
Figure 78. Negative DC-to-DC Circuit  
Table 10. Recommended DC-to-DC Components  
Symbol Component  
Value  
47 μH  
2.2 μF  
4.7 μF  
Manufacturer  
LDCDC  
CDCDC  
CIN  
PA6594-AE  
GCM31CR71H225KA55L  
GRM31CR71H475KA12L  
Coilcraft  
Murata  
Murata  
Rev. 0 | Page 34 of 72  
 
 
 
 
 
Data Sheet  
AD5753  
AD5753 is capable of driving up to 24 mA through a 1 kΩ load  
for a given input supply (24 V + headroom).  
in efficiency results. Larger size inductors translate to lower core  
losses. The slew rate control feature of the AD5753 can limit  
peak currents during slewing. Program an appropriate current  
limit via the DCDC_CONFIG2 register to shut off the internal  
switch if the inductor current reaches that limit.  
At low output power levels, the regulated headroom increases  
above 2.3 V due to the fact that the dc-to-dc circuitry uses a  
minimum on time duty cycle. This behavior is expected and  
does not impact any worse case power dissipation.  
DC-to-DC Converter Input and Output Capacitor Selection  
The output capacitor, CDCDC, affects the ripple voltage of the  
dc-to-dc converter and limits the maximum slew rate at which  
the output current can rise. The ripple voltage is directly related  
to the output capacitance. The CDCDC capacitor recommended by  
Analog Devices (see Table 10), combined with the recommended  
47 μH inductor, results in a 500 kHz ripple with an amplitude  
less than 50 mV and a guaranteed stability and operation with  
HART capability across all operating modes.  
PPC Current Mode  
The dc-to-dc converter can also operate in programmable power  
control mode, where the VDPC+ and VDPC− voltages are user  
programmable to a given level to accommodate the required  
maximum output load. This mode represents a trade-off between  
the optimized power efficiency of the DPC current mode and the  
system settling time with a fixed supply and dc-to-dc disabled. In  
PPC current mode, VDPC+ and VDPC− are regulated to a user  
programmable level between +5 V and +25.677 V (VDPC+) and  
−5 V and −25.677 V (VDPC−), with respect to −VSENSE in steps of  
0.667 V. This mode is useful if settling time is an important  
requirement of the design. See the DC-to-DC Converter Settling  
Time section for information on settling time. If the load is  
nonlinear in nature, take care in selecting the programmed level  
of VDPC+ and VDPC−. VDPC+ and VDPC− must be set high enough to  
obey the output compliance voltage specification. If the load is  
unknown, use the external +VSENSE input to the ADC to monitor  
the VIOUT pin in current mode to determine the user  
For high voltage capacitors, the capacitor size is often an  
indication of the charge storage ability. It is important to  
characterize the dc bias voltage vs. the capacitance curve for this  
capacitor. Any specified capacitance values reference a dc bias  
corresponding to the maximum VDPC+ and VDPC− voltage in the  
application. The capacitor temperature range, as well as the  
voltage rating, must be considered for a given application. These  
considerations are key when selecting the components  
described in Table 10.  
The input capacitor, CIN, provides much of the dynamic current  
required for the dc-to-dc converter (see Table 10 for details),  
and a low effective series resistance (ESR) component is  
recommended as the input capacitor. For the AD5753, it is  
recommended to use a low ESR tantalum or ceramic capacitor of  
4.7 ꢀF (1206 size) in parallel with a 0.1 ꢀF (0402 size) capacitor.  
Ceramic capacitors must be chosen carefully because they can  
exhibit an increased sensitivity to dc bias voltages and temperature.  
X5R or X7R dielectrics are preferred because these capacitors  
remain stable over wider operating voltage and temperature  
ranges. Take care if selecting a tantalum capacitor to ensure a low  
ESR value.  
programmable value at which to set VDPC+  
.
DC-to-DC Converter Settling Time  
When in DPC current mode, the settling time is dominated by the  
dc-to-dc converter settling time and is typically 200 μs without  
the digital slew rate control feature enabled. To reduce initial  
VIOUT waveform overshoot without adding a capacitor on VIOUT  
and thereby affecting HART operation, enable the digital slew  
rate control feature by using the DAC_CONFIG register (see  
Table 33 for bit descriptions).  
Table 11 shows the typical settling time for each dc-to-dc  
converter mode. All values shown assume the component uses  
recommended by Analog Devices, Inc. (see in Table 10). The  
achievable settling time in any given application is dependent on  
the choice of external inductor and capacitor components, as  
well as the dc-to-dc converter current-limit setting.  
CLKOUT  
The AD5753 provides a CLKOUT signal to the system for  
synchronization purposes. This signal is programmable to eight  
frequency options between 416 kHz and 588 kHz with the default  
option being 500 kHz, the same switching frequency of the dc-  
to-dc converter. This feature is configured in the GP_CONFIG1  
register and is disabled by default  
Table 11. Settling Time vs. DC-to-DC Converter Mode  
DC-to-DC Converter Mode  
Settling Time (μs)  
DPC Current Mode  
PPC Current Mode  
DPC Voltage Mode  
200  
15  
15  
INTERDIE 3-WIRE INTERFACE  
A 3-wire interface facilitates communication between the two  
die in the AD5753. The 3-wire interface master is located on the  
main die and the 3-wire interface slave is on the dc-to-dc die.  
The three interface signals are data, DCLK (running at  
MCLK/8), and interrupt.  
DC-to-DC Converter Inductor Selection  
For typical 4 mA to 20 mA applications, a 47 ꢀH inductor  
(shown in Table 10), combined with the 500 kHz switching  
frequency, drives up to 24 mA into a load resistance of up to 1 kꢁ  
with a greater than 24 V + headroom AVDD1 supply. It is  
important to ensure that the peak current does not cause the  
inductor to saturate, especially at the maximum ambient  
temperature. If the inductor enters saturation mode, a decrease  
The main purpose of the 3-wire interface is to read from or write  
to the DCDC_CONFIG1 and DCDC_CONFIG2 registers.  
Addressing these registers via the SPI interface initiates an internal  
3-wire interface transfer from the main die to the dc-to-dc die. The  
Rev. 0 | Page 35 of 72  
 
 
 
AD5753  
Data Sheet  
3-wire interface master on the main die initiates writes and  
reads to and from the registers on the dc-to-dc die using DCLK  
as the serial clock. The slave uses an interrupt signal to the dc-  
to-dc die to indicate that a read of the dc-to-dc die internal  
status register is required.  
VOLTAGE OUTPUT  
Voltage Output Amplifier and VSENSE Functionality  
The voltage output amplifier is capable of generating both unipolar  
and bipolar output voltages. The amplifier is also capable of driving  
a 1 kΩ load in parallel with 2 μF with an external compensation  
capacitor to AGND. Figure 79 shows the voltage output driving  
a load, RLOAD, on top of a common-mode voltage (VCM) of 10 V.  
An integrated 2 Mꢁ resistor ensures that the amplifier loop is  
kept closed and prevents potentially large and destructive  
voltages on the VIOUT due to the broken amplifier loop in  
applications where a cable may become disconnected from  
+VSENSE. If remote sensing of the load is not required, connect  
+VSENSE directly to VIOUT and connect −VSENSE directly to AGND via  
1 kΩ series resistors.  
For every 3-wire interface write, an automatic read and compare  
process can be enabled (default case) to ensure that the contents of  
the copy of the main die DCDC_CONFIGx registers match the  
contents of the registers on the dc-to-dc die. This comparison is  
performed to ensure the integrity of the digital circuitry on the  
dc-to-dc die. With this feature enabled, a 3-wire interface (3WI)  
transfer takes approximately 300 μs. When disabled, this  
transfer time reduces to 30 μs.  
The BUSY_3WI flag in the DCDC_CONFIG2 register is asserted  
during the 3-wire interface transaction. The BUSY_3WI flag is also  
set when the user updates the DAC range via the range bits  
(Bits[3:0]) in the DAC_CONFIG register due to the internal  
calibration memory refresh caused by this action, which requires a  
3-wire interface transfer between the two die. A write to either  
of the DCDC_CONFIGx registers must not be initiated while  
BUSY_3WI is asserted. If a write occurs while BUSY_3WI is  
asserted, the new write is delayed until the current 3-wire  
interface transfer completes.  
+V  
SENSE  
AD5753  
VI  
2MΩ  
2MΩ  
OUT  
V
OUT  
16-BIT  
DAC  
RANGE  
SCALING  
–V  
R
SENSE  
LOAD  
V
±10V  
CM  
Figure 79. Voltage Output  
3-Wire Interface Diagnostics  
Driving Large Capacitive Loads  
The voltage output amplifier is capable of driving capacitive  
Any faults on the dc-to-dc die trigger an interrupt to the main  
die and an automatic status read of the dc-to-dc die is performed.  
After the read transaction, the main die retains a copy of the dc-to-  
dc die status bits (VIOUT_OV_ERR, DCDC_P_SC_ERR, and  
DCDC_P_PWR_ERR). These values are available in both the  
ANALOG_DIAG_RESULTS register, and via the ORed analog  
diagnostic results bits in the status register. These bits also  
loads of up to 2 μF with the addition of a 220 pF nonpolarized  
compensation capacitor. This capacitor, though allowing the  
AD5753 to drive higher capacitive loads and reduce overshoot,  
increases the device settling time and, therefore, negatively  
affects the bandwidth of the system. Without the compensation  
capacitor, capacitive loads of up to 10 nF can be driven.  
FAULT  
trigger the  
pin.  
Voltage Output Short-Circuit Protection  
In response to the interrupt request, the main die (master)  
performs a 3-wire interface read operation to read the dc-to-dc  
die status. The interrupt is only asserted again by a subsequent dc-  
to-dc die fault flag, upon which the 3-wire interface initiates  
another status read transaction. If an interrupt signal is detected  
six times in a row, the interrupt detection mechanism is disabled  
until a 3-wire interface write transaction completes. This disabling  
prevents the 3-wire interface from being blocked because of the  
constant dc-to-dc die status reads when the interrupt is toggling.  
The INTR_SAT_3WI flag in the DCDC_CONFIG2 register  
indicates when this event occurs, and a write to either DCDC_  
CONFIGx register resets this bit to 0.  
Under normal operation, the voltage output sinks and sources  
up to 12 mA and maintains specified operation. The short-  
circuit current is typically 16 mA. If a short circuit is detected,  
FAULT  
the  
pin goes low and the VOUT_SC_ERR bit in the  
ANALOG_DIAG_RESULTS register is set.  
FAULT PROTECTION  
The AD5753 incorporates a line protector on the VIOUT pin, the  
+VSENSE and −VSENSE pins. The line protector operates by clamping  
the voltage internal to the line protector to the VDPC+ and VDPC−  
rails, thus protecting the internal circuitry from external voltage  
faults. If a voltage outside of these limits is detected on the  
VIOUT pin, an error flag (VIOUT_OV_ERR) located in the  
ANALOG_DIAG_RESULTS register is set.  
During a 3-wire read or write operation, the address and data bits  
in the transaction produce parity bits. These parity bits are checked  
on the receive side and if the bits do not match on both die, the  
ERR_3WI bit in the DIGITAL_DIAG_RESULTS register is set.  
If the read and compare process is enabled and a parity error  
occurs, the 3WI_RC_ERR bit in the DIGITAL_DIAG_ RESULTS  
register is also set.  
Rev. 0 | Page 36 of 72  
 
 
 
Data Sheet  
AD5753  
CURRENT OUTPUT  
External Current Setting Resistor  
I
OUT  
I
OUT  
16-BIT  
DAC  
RANGE  
SCALING  
As shown in Figure 74, RSET is an internal sense resistor that forms  
part of the voltage to current conversion circuitry. The stability  
of the output current value over temperature is dependent on  
the stability of the RSET value. To improve the output current  
over temperature stability, connect an external 13.7 kΩ, low  
drift resistor, instead of the internal resistor, between the RA and  
RB pins of the AD5753.  
C1  
C2  
C
HART  
HART MODEM  
OUTPUT  
HART_EN  
Figure 80. Coupling the HART Signal  
As well as their use in attenuating the incoming HART modem  
signal, a minimum capacitance of the C1 and C2 capacitors is  
required to ensure the bandwidth presented to the modem  
output signal allows the 1.2 kHz and 2.2 kHz frequencies through  
the capacitor. Assuming a HART signal of 500 mV p-p, the  
recommended values are C1 = 47 nF and C2 = 150 nF. Digitally  
controlling the output slew rate is necessary to meet the analog  
rate of change requirements for HART.  
Table 1 shows the AD5753 performance specifications with both  
the internal RSET resistor and an external 13.7 kΩ RSET resistor. The  
external RSET resistor specification assumes an ideal resistor. The  
actual performance depends on the absolute value and  
temperature coefficient of the resistor used. Therefore, the  
resistor specifications directly affect the gain error of the output  
and the TUE.  
If the HART feature is not required, disable the HART_EN bit  
and leave the CHART pin open circuit. However, if the DAC  
output signal must be slowed with a capacitor, the HART_EN bit  
must be enabled and the required CSLEW capacitor must be  
connected to the CHART pin.  
To arrive at the absolute worst case overall TUE of the output  
with a particular external RSET resistor, add the percentage of the  
RSET resistor absolute error (the absolute value of the error) to  
the TUE of the AD5753 that is using the external RSET resistor  
shown in Table 1 (expressed in % FSR). Consider the temperature  
coefficient as well as the specifications of the external reference,  
if this is the option being used in the system.  
DIGITAL SLEW RATE CONTROL  
The AD5753 slew rate control feature allows the user to control the  
rate at which the output value changes. This feature is available in  
both current and voltage mode. Disabling the slew rate control  
feature changes the output value at a rate limited by the output  
drive circuitry and the attached load. To reduce the slew rate,  
enable the slew rate control feature. Enabling this feature causes  
the output to digitally step from one output code to the next at a  
rate defined by two parameters accessible via the DAC_CONFIG  
register. These two parameters are SR_CLOCK and SR_STEP.  
SR_CLOCK and SR_STEP define the rate at which the digital  
slew is updated. For example, if the selected update rate is 8 kHz,  
the output updates every 125 µs. In conjunction with SR_CLOCK,  
SR_STEP defines by how much the output value changes at each  
update. Together, both parameters define the rate of change of the  
output value.  
The magnitude of the error, derived from summing the absolute  
error and TC error of the external RSET resistor and external  
reference with the AD5753 TUE specification, is unlikely to  
occur because the TC values of the individual components are  
unlikely to exhibit the same drift polarity and, therefore, an  
element of cancelation occurs. For this reason, add the TC  
values with a root of squares method. A further improvement of  
the TUE specification is gained by performing a two point  
calibration at zero scale and full scale, thus reducing the absolute  
errors of the voltage reference and the RSET resistor.  
Current Output Open-Circuit Detection  
When in current output mode, if the available headroom falls  
below the compliance range due to an open-loop circuit or an  
insufficient power supply voltage, the IOUT_OC_ERR flag in  
the ANALOG_DIAG_RESULTS register is asserted and the  
The following equation describes the slew rate as a function of  
the step size, the slew rate frequency, and the LSB size:  
FAULT  
pin goes low.  
Output Change  
Slew Time=  
HART CONNECTIVITY  
Step Size×SlewRate Frequency×LSB Size  
The AD5753 has a CHART pin onto which a HART signal can be  
coupled. The HART signal appears on the current output if the  
HART_EN bit in the GP_CONFIG1 register as well as the VIOUT  
output is enabled.  
where:  
Slew Time is expressed in seconds.  
Step Size is the change in output.  
Output Change is expressed in amps for current output mode or  
volts for voltage output mode.  
Slew Rate Frequency is SR_CLOCK.  
LSB Size is SR_STEP.  
Figure 80 shows the recommended circuit for attenuating and  
coupling the HART signal into the AD5753. To achieve 1 mA p-p  
at the VIOUT pin, a signal of approximately 125 mV p-p is required  
at the CHART pin. The HART signal on the VIOUT pin is inverted  
relative to the signal input at the CHART pin.  
When the slew rate control feature is enabled, all output changes  
occur at the programmed slew rate. For example, if the WDT times  
out and an automatic clear occurs, the output slews to the clear  
value at the programmed slew rate. However, setting the  
Rev. 0 | Page 37 of 72  
 
 
 
 
AD5753  
Data Sheet  
CLEAR_NOW_EN bit in the GP_CONFIG1 register overrides  
this default behavior and causes the output to immediately update  
to the clear code, rather than at the programmed slew rate.  
FAULT  
pin to return  
high, assuming that there are no other active faults. When  
configuring the FAULT_PIN_CONFIG register, the user decides  
clears the SPI_CRC_ERR bit and causes the  
FAULT  
whether the SPI CRC error affects the  
FAULT  
pin. See the  
The slew rate frequency for any given value is the same for all  
output ranges. The step size, however, varies across output  
ranges for a given value of step size because the LSB size is  
different for each output range.  
Pin Configuration Register section for further details.  
The SPI CRC feature is used for both transmitting and receiving  
data packets.  
ADDRESS PINS  
UPDATE ON SYNC HIGH  
SYNC  
The AD5753 address pins (AD0 and AD1) are used in conjunction  
with the address bits within the SPI frame (see Table 12) to  
determine which AD5753 device is being addressed by the system  
controller. With the two address pins, up to four devices can be  
independently addressed on one board.  
SCLK  
MSB  
D23  
LSB  
D0  
SDI  
24-BIT DATA  
SPI Interface and Diagnostics  
24-BIT DATA TRANSFER—NO CRC ERROR CHECKING  
The AD5753 is controlled over a 4-wire serial interface with an  
8-bit cyclic redundancy check (CRC-8) that is enabled by  
default. The input shift register is 32 bits wide and data is  
loaded into the device MSB first under the control of a serial  
clock input, SCLK. Data is clocked in on the falling edge of SCLK.  
If CRC is disabled, the serial interface is reduced to 24 bits. A  
32-bit frame is still accepted but the last 8 bits are ignored.  
UPDATE ON SYNC HIGH  
ONLY IF CRC CHECK PASSED  
SYNC  
SCLK  
SDI  
MSB  
D31  
LSB  
D8  
D7  
D0  
Table 12. Writing to a Register (CRC Enabled)  
24-BIT DATA  
8-BIT CRC  
MSB  
LSB  
D31  
[D30:D29]  
[D28:D24]  
[D23:D8] [D7:D0]  
FAULT PIN GOES LOW  
IF CRC CHECK FAILS  
FAULT  
Slip Bit AD5753  
address  
Register address  
Data  
CRC  
32-BIT DATA TRANSFER WITH CRC ERROR CHECKING  
LDAC  
Figure 81. CRC Timing (Assume  
= 0)  
As shown in Table 12, every SPI frame contains two address  
bits. These bits must match the AD0 and AD1 pins for a particular  
device to accept the SPI frame on the bus.  
SPI Interface Slip Bit  
Adding the slip bit enhances the interface robustness. The MSB  
of the SPI frame must equal the inverse of MSB − 1 for the frame to  
be considered valid. If an incorrect slip bit is detected, the data  
is ignored and the SLIPBIT_ERROR bit in the DIGITAL_  
DIAG_RESULTS register is asserted.  
SPI Cyclic Redundancy Check  
To verify that data is correctly received in noisy environments,  
the AD5753 offers a CRC based on a CRC-8. The device, either a  
micro or a field-programmable gate array (FPGA), controlling the  
AD5753 generates an 8-bit frame check sequence by using the  
following polynomial:  
SPI Interface SCLK Count Feature  
An SCLK count feature is also built into the SPI diagnostics,  
meaning that only SPI frames with exactly 32 SCLK falling  
edges (24 if SPI CRC is disabled) are accepted by the interface  
as a valid write. SPI frames lengths other than 32 are ignored  
and the SCLK_COUNT_ERR flag asserts in the DIGITAL_  
DIAG_RESULTS register.  
C(x) = x8 + x2 + x1 + 1  
This 8-bit frame check sequence is added to the end of the data-  
SYNC  
word and 32 bits are sent to the AD5753 before taking  
high.  
If the SPI_CRC_EN bit is set high (default state), the user must  
supply a frame that is exactly 32 bits wide that contains the 24 data  
bits and the 8-bit CRC. If the CRC check is valid, the data is written  
to the selected register. If the CRC check fails, the data is ignored,  
Readback Modes  
The AD5753 offers the following four readback modes:  
FAULT  
FAULT  
the  
pin goes low, and the  
pin status bit and digital  
Two-stage readback mode  
Autostatus readback mode  
SYNC  
Shared  
Echo mode  
diagnostic status bit (DIG_DIAG_STATUS) in the status register  
are asserted. A subsequent readback of the DIGITAL_DIAG_  
RESULTS register shows that the SPI_CRC_ERR bit is also set.  
This register is per individual bits, a write one per bit clears the  
register (see the Sticky Diagnostic Results Bits section for more  
details). Therefore, the SPI_CRC_ERR bit is cleared by writing a 1  
to Bit D0 of the DIGITAL_DIAG_RESULTS register. Writing a 1  
autostatus readback mode  
Rev. 0 | Page 38 of 72  
 
 
Data Sheet  
AD5753  
The two-stage readback consists of a write to a dedicated  
register, TWO_STAGE_READBACK_SELECT, to select the  
register location to be read back. This write is followed by a no  
operation (NOP) command during which the contents of the  
selected register are available on the SDO pin.  
timeout event, regardless if Bit 10 or Bit 9 is enabled, a dedicated  
WDT_STATUS bit in the status register, as well as a WDT_ERR bit  
in the DIGITAL_DIAG_RESULTS register, alerts the user that the  
WDT is timed out. After a WDT timeout occurs, all writes to the  
LDAC  
DAC_INPUT register, as well as the hardware or software  
events, are ignored until the active WDT fault flag within the  
DIGITAL_DIAG_RESULTS register clears.  
Table 13. SDO Contents for Read Operation  
MSB  
LSB  
After the active WDT fault flag clears, the WDT restarts by  
performing a subsequent WDT reset command.  
[D31:D30] D29  
[D28:24]  
[D23:D8] [D7:D0]  
0b10  
FAULT  
Register address  
Data  
CRC  
pin status  
On power-up, the WDT is disabled by default. The default  
timeout setting is 1 sec. The default method to reset the WDT is  
to write one specific key. On timeout, the default action is to set  
Bits[D31:D30] = 0b10 are used for synchronization purposes  
during readback.  
If autostatus readback mode is selected, the contents of the status  
register are available on the SDO line during every SPI transaction.  
This feature allows the user to continuously monitor the status  
register and to act quickly if a fault occurs. The AD5753 powers up  
with this feature disabled. When this feature is enabled, the  
normal two-stage readback feature is not available. Only the  
status register is available on SDO. To read back other registers,  
first disable the automatic readback feature before following the  
two-stage readback sequence. The automatic status readback  
can be reenabled after the register is read back.  
FAULT  
the relevant WDT_ERR flag bits and the  
pin. See Table 42  
for the specific register bit details to support the configurability of  
the WDT operation.  
USER DIGITAL OFFSET AND GAIN CONTROL  
The AD5753 has a USER_GAIN register and a USER_OFFSET  
register that trim the gain and offset errors from the entire signal  
chain. The 16-bit USER_GAIN register allows the user to adjust the  
gain of the DAC channel in steps of 1 LSB. The USER_GAIN  
register coding is straight binary, as shown in Table 14. The default  
code in the USER_GAIN register is 0xFFFF, which results in a no  
gain factor applied to the programmed output. In theory, the gain  
can be tuned across the full range of the output. In practice, the  
maximum recommended gain trim is approximately 50% of the  
programmed range to maintain accuracy.  
SYNC  
The shared AD5753  
version of the autostatus readback mode used to avoid SDO bus  
SYNC  
autostatus readback is a special  
contention when multiple devices share the same  
line.  
Echo mode behaves similarly to autostatus readback mode,  
except that every second readback consists of an echo (a  
repetition) of the previous command written to the AD5753  
(see Figure 82). See the Reading from Registers section for  
further details on the readback modes.  
Table 14. Gain Register Adjustment  
Gain Adjustment Factor  
D15  
[D14:D1]  
D0  
1
1
1
1
65,535/65,536  
2/65,536  
1/65,536  
1
0
1
0
0
1
STATUS  
PREVIOUS  
COMMAND  
PREVIOUS  
COMMAND  
REGISTER  
CONTENTS  
Figure 82. SDO Contents, Echo Mode  
0
0
0
WDT  
The 16-bit USER_OFFSET register allows the user to adjust the  
offset of the DAC channel from −32,768 LSBs to +32,768 LSBs  
in steps of 1 LSB. The USER_OFFSET register coding is straight  
binary, as shown in Table 15. The default code in the USER_  
OFFSET register is 0x8000, which results in zero offset  
programmed to the output.  
The WDT feature ensures that communication is not lost between  
the system controller and the AD5753, and that the SPI  
datapath lines function as expected.  
When enabled, the WDT alerts the system if the AD5753 has not  
received a specific SPI frame in the user programmable timeout  
period. When the specific SPI frame is received, the watchdog  
resets the timer controlling the timeout alert. The SPI frame  
used to reset the WDT is configurable as one of the two  
following choices:  
Table 15. Offset Register Adjustment  
Gain Adjustment  
+32,768 LSBs  
+32,767 LSBs  
No Adjustment (Default)  
D15  
[D13:D2]  
D0  
1
0
0
1
1
1
1
0
1
1
0
0
A specific key code write to the key register (default).  
A valid SPI write to any register.  
When a watchdog timeout event occurs, there are two user  
configurable actions the AD5753 takes. The first is to load the  
DAC output with a user defined clear code stored in the  
CLEAR_CODE register. The second is to perform a software  
reset. These two actions can be enabled via Bit 10 and Bit 9,  
respectively, in the WDT_CONFIG register. On a watchdog  
−32,767 LSBs  
−32,768 LSBs  
0
0
0
Rev. 0 | Page 39 of 72  
 
 
 
 
 
AD5753  
Data Sheet  
The decimal value that is written to the internal DAC register  
(DAC code) is calculated with the following equation:  
and to automatically update the output channel. The read only  
DAC_OUTPUT register represents the value currently available at  
the DAC output, except in the case of user gain and user offset  
calibration. In this case, the DAC_OUTPUT register contains  
the DAC data input by the user, on which the calibration is  
performed and not the result of the calibration.  
(M +1)  
DAC code = D×  
where:  
+ C 215  
216  
D is the code loaded to the DAC_INPUT register.  
Both the USER_GAIN register and the USER_OFFSET register  
have 16 bits of resolution. The correct method to calibrate the  
gain and offset is to first calibrate the gain and then calibrate the  
offset.  
M is the code in the USER_GAIN register (default code = 216 − 1).  
C is the code in the USER_OFFSET register (default code = 215).  
Data from the DAC_INPUT register is processed by a digital  
multiplier and adder and both are controlled by the contents of  
the user gain and user offset registers, respectively. The calibrated  
DAC data is then loaded to the DAC. The loading of the DAC data  
DAC OUTPUT UPDATE AND DATA INTEGRITY  
DIAGNOSTICS  
Figure 83 shows a simplified version of the DAC input loading  
circuitry. If used, the USER_GAIN and USER_OFFSET registers  
must be updated before writing to the DAC_INPUT register.  
LDAC  
is dependent on the state of the  
pin.  
Each time data is written to the USER_GAIN or USER_  
OFFSET register, the DAC output is not automatically updated.  
Instead, the next write to the DAC_INPUT register uses these  
user gain and user offset values to perform a new calibration  
REFIN  
OUTPUT  
AMPLIFIER  
DAC OUTPUT  
16-BIT  
DAC  
REGISTER  
VI  
OUT  
(READ ONLY)  
LDAC  
CLEAR EVENT  
(WDT TIMEOUT)  
(HARDWARE OR SOFTWARE)  
USER  
GAIN AND OFFSET  
CALIBRATION  
CLEAR CODE  
REGISTER  
DAC INPUT  
REGISTER  
SCLK  
SYNC  
SDI  
SDO  
INTERFACE LOGIC  
Figure 83. Simplified Serial Interface of Input Loading Circuitry  
Rev. 0 | Page 40 of 72  
 
 
Data Sheet  
AD5753  
The DAC_OUTPUT register, and ultimately the DAC output,  
updates in any of the following cases:  
DAC_LATCH_MON_ERR flag in the DIGITAL_  
DIAG_RESULTS register.  
DAC LATCHES  
If a write is performed to the DAC_INPUT register with  
LDAC  
DIGITAL  
BLOCK  
D
Q
the hardware  
register is updated on the rising edge of  
subject to the timing specifications shown in Table 2.  
LDAC  
pin tied low, the DAC_OUTPUT  
16-BIT  
DAC  
D
Q
Q
SYNC  
and is  
If the hardware  
register is written to, the DAC_OUTPUT register does not  
LDAC  
pin is tied high and the DAC_INPUT  
Figure 84. DAC Data Integrity  
GPIO PINS  
update until a software  
instruction is issued or the  
pin is pulsed low.  
LDAC  
hardware  
The AD5753 provides the following three GPIO pins: GPIO_0,  
GPIO_1, and GPIO_2. Using the GP_CONFIG register, each of  
these pins can be configured as a digital output, a digital input,  
or as a 100 kΩ to DGND (default). When configured as a digital  
input or output, the GPIO_DATA register is used to read or  
write from or to the relevant pins.  
If a WDT timeout occurs with the CLEAR_ON_WDT_  
FAIL bit set, the CLEAR_CODE register contents are  
loaded into the DAC_OUTPUT register.  
If the slew rate control feature is enabled, the DAC_  
OUTPUT register contains the dynamic value of the DAC  
as the register slews between values.  
USE OF KEY CODES  
While a WDT fault is active, all writes to the DAC_  
LDAC  
Key codes are used via the key register for the following  
functions (see the Key Register section for full details):  
INPUT register, as well as hardware or software  
events,  
are ignored. If the CLEAR_ON_WDT_FAIL bit is set such that  
the output is set to the clear code, after the WDT fault flag clears,  
the DAC_INPUT register must be written to before the DAC_  
OUTPUT register updates. The DAC_INPUT register must be  
Initiating calibration memory refresh.  
Initiating a software reset.  
Initiating a single ADC conversion.  
WDT reset key.  
LDAC  
written to because performing a software or hardware  
only reloads the DAC with the clear code. As described in this  
section, after configuring the DAC range via the DAC_CONFIG  
register, the DAC_INPUT register must be written to, even if the  
contents of the DAC_INPUT register are not changing from the  
current value.  
Using specific keys to initiate actions such as a calibration  
memory refresh or a device reset provides extra system  
robustness because the keys reduce the probability of either task  
being initiated in error.  
SOFTWARE RESET  
The GP_CONFIG2 register contains a bit to enable a global  
software LDAC mode, which ignores the device under test  
(DUT) address bits of the SW_LDAC command, thus enabling  
multiple AD5753 devices to be simultaneously updated by using  
a single SW_LDAC command. This feature is useful if the  
A software reset requires two consecutive writes of 0x15FA and  
0xAF51 respectively to the key register. A device reset can be  
RESET  
initiated via the hardware  
pin, the software reset keys, or  
automatically after a WDT timeout (if configured to do so). The  
RESET_OCCURRED bit in the DIGITAL_DIAG_RESULTS  
register is set when the device is reset. This RESET_OCCURRED  
bit defaults to 1 on power-up. Both of the diagnostic results  
registers implement a write 1 to clear the function that is, a 1  
must be written to this bit to clear it (see the Sticky Diagnostic  
Results Bits section).  
LDAC  
hardware  
pin is not being used in a system containing  
multiple AD5753 devices.  
DAC Data Integrity Diagnostics  
To protect against transient changes to the internal digital  
circuitry, the digital block stores both the digital DAC value and  
an inverted copy of the digital DAC value. A check is completed  
to ensure that the two values correspond to each other before the  
DAC is strobed to update to the DAC code. This matching feature  
is enabled by default via the INVERSE_DAC_  
CALIBRATION MEMORY CRC  
For every calibration memory refresh cycle, which is either  
initiated via a key code write to the key register or automatically  
initiated when the Range[3:0] bits of the DAC_CONFIG register, is  
changed, an automatic CRC is calculated on the contents of the  
calibration memory shadow registers. The result of this CRC is  
compared with the factory stored reference CRC value. If the  
CRC values match, the read of the entire calibration memory is  
considered valid. If the values do not match, the CAL_MEM_  
CRC_ERR bit in the DIGITAL_DIAG_RESULTS register is set  
to 1. This calibration memory CRC feature is enabled by default  
and can be disabled via the CAL_MEM_CRC_EN bit in the  
DIGITAL_DIAG_CONFIG register.  
CHECK_EN bit in the DIGITAL_DIAG_CONFIG register.  
Outside of the digital block, the DAC code is stored in latches,  
as shown in Figure 84. These latches are potentially vulnerable  
to the same transient events that affect the digital block. To  
protect the DAC latches against such transients, enable the DAC  
latch monitor feature via the DAC_LATCH_MON_EN bit  
within the DIGITAL_DIAG_CONFIG register. This latch monitor  
feature monitors the actual digital code driving the DAC and  
compares the code with the digital code generated within the  
digital block. Any difference between the two codes sets the  
Rev. 0 | Page 41 of 72  
 
 
 
 
 
AD5753  
Data Sheet  
Two-stage readback commands are permitted while this  
calibration memory refresh cycle is active. However, a write to any  
register other than the TWO_STAGE_READBACK_SELECT  
register or the NOP register sets the INVALID_SPI_ACCESS_  
ERR bit in the DIGITAL_DIAG_RESULTS register. As described  
in the Programming Sequence to Enable the Output section, a  
wait period of 500 µs is recommended after a calibration  
memory refresh cycle is initiated.  
BACKGROUND SUPPLY AND TEMPERATURE  
MONITORING  
Excessive die temperature and overvoltage are known to be related  
to common cause failures. These conditions can be monitored  
in a continuous fashion by using comparators, which eliminates the  
requirement to poll the ADC.  
Both die have a built-in temperature sensor with a 5oC accuracy.  
The die temperature is monitored by a comparator and the  
background temperature comparators are permanently enabled.  
Programmable trip points corresponding to 142°C, 127°C,  
112°C, and 97°C can be configured in the GP_CONFIG1 register.  
If the temperature of either die exceeds the programmed limit, the  
relevant status bit in the ANALOG_DIAG_RESULTS register is set  
INTERNAL OSCILLATOR DIAGNOSTICS  
An internal frequency monitor uses the internal MCLK to  
increment a 16-bit counter at a rate of 1 kHz (MCLK/10,000).  
The counter value can be read in the FREQ_MONITOR register.  
The user can poll this register periodically and use it as a diagnostic  
tool for the internal oscillator (to monitor that the oscillator is  
running), and to measure the oscillator frequency. This counter  
feature is enabled by default via the FREQ_MON_EN bit in the  
DIGITAL_DIAG_CONFIG register.  
FAULT  
and the  
pin is asserted low.  
The low voltage supplies on the AD5753 are monitored via low  
power static comparators. This monitoring function is disabled  
by default and is enabled via the COMPARATOR_CONFIG bits  
in the GP_CONFIG2 register. The INT_EN bit in the  
DAC_CONFIG register must be set for the REFIN buffer to be  
powered up and for this node to be available to the REFIN  
comparator. The monitored nodes are REFIN, REFOUT, VLDO  
and INT_AVCC. There is a status bit in the ANALOG_DIAG_  
RESULTS register that corresponds to each monitored node. If  
any of the monitored node supplies exceed the upper or lower  
threshold values (see Table 16 for the threshold values), the  
corresponding status bit is set. Note that if a REFOUT fault  
occurs, the REFOUT_ERR status bit is set. The INT_AVCC,  
If the MCLK stops, the AD5753 sends a specific code of  
0x07DEAD to the SDO line for every SPI frame. This oscillator  
dead code feature is enabled by default and is disabled by clearing  
the OSC_STOP_DETECT_EN bit in the GP_CONFIG1 register.  
This feature is limited to the maximum readback timing  
specifications described in Table 3.  
,
STICKY DIAGNOSTIC RESULTS BITS  
The AD5753 contains the following two diagnostic results  
registers: digital and analog (see Table 47 and Table 48, respectively  
for the diagnostic error bits). The diagnostic result bits contained  
within these registers are sticky (R/W-1-C), that is, each bit needs  
a 1 to be written to it to clear the error bit. However, if the fault  
is still present, even after writing a 1 to the bit in question, the error  
bit does not clear to 0. Upon writing Logic 1 to the bit, it updates to  
the latest value, which is Logic 1 if the fault is still present and  
Logic 0 if the fault is no longer present.  
V
LDO, and temperature comparator status bits can then also be set  
because REFOUT is used as the comparison voltage for these  
nodes. Like all the other status bits in the ANALOG_DIAG_  
RESULTS register, these bits are sticky and need a 1 to be written to  
them to clear them, assuming that the error condition is  
subsided. If the error condition is still present, the flag remains high  
even after a 1 is written to clear it.  
These are the two following exceptions to this R/W-1-C access  
within the DIGITAL_DIAG_RESULTS register: CAL_MEM_  
UNREFRESHED and SLEW_BUSY. These flags automatically  
clear when the calibration memory refreshes or the output slew  
is complete.  
Table 16. Comparator Supply Activation Thresholds  
Lower  
Nominal  
Upper  
Supply  
INT_AVCC  
VLDO  
REFIN  
REFOUT  
Threshold (V) Value/Range (V) Threshold (V)  
3.8  
2.8  
2.24  
2.24  
4 to 5  
3 to 3.6  
2.5  
5.2  
3.8  
2.83  
2.83  
The status register contains a DIG_DIAG_STATUS and  
ANA_DIAG_STATUS bit and both bits are the result of a  
logical OR of the diagnostic results bits contained in each  
diagnostic results registers. All analog diagnostic flag bits are  
included in the logical OR of the ANA_DIAG_STATUS bit and  
all digital diagnostic flag bits, with the exception of the SLEW_  
BUSY bit, are included in the logical OR of the DIG_DIAG_  
STATUS bit. The ORed bits within the status register are read  
only and not sticky (R/W-1-C).  
2.5  
OUTPUT FAULT  
FAULT  
The AD5753 is equipped with a  
pin. This pin is an active  
low, open-drain output that connects several AD5753 devices  
together to one pull-up resistor for global fault detection. This pin  
is high impedance when no faults are detected and is asserted  
low when certain faults, such as an open circuit in current  
mode, a short circuit in voltage mode, a CRC error, or an  
overtemperature error, are detected. Table 17 shows the fault  
FAULT  
conditions that automatically force the  
pin active and  
highlights the user maskable fault bits available via the FAULT_  
PIN_CONFIG register (see Table 45). All registers contain a  
Rev. 0 | Page 42 of 72  
 
 
 
 
 
Data Sheet  
AD5753  
FAULT  
The DIG_DIAG_STATUS, ANA_DIAG_STATUS, and WDT_  
STATUS bits of the status register are used in conjunction with  
corresponding  
pin status bit, FAULT_PIN_STATUS, that  
FAULT  
mirrors the inverted current state of the  
pin. For example, if  
FAULT  
the  
pin and the FAULT_PIN_STATUS bit to inform the  
FAULT  
the  
pin is active, the FAULT_PIN_STATUS bit is 1.  
FAULT  
user which fault condition is causing the  
FAULT_PIN_STATUS bit to activate.  
pin or which  
1
FAULT  
Table 17.  
Pin Trigger Sources  
Mapped to  
Mask  
Ability  
ADC MONITORING  
FAULT  
Fault Type  
Pin  
The AD5753 incorporates a 12-bit ADC to provide diagnostic  
information on user selectable inputs such as supplies, grounds,  
internal die temperatures, references, and external signals. See  
Table 18 for a full list of these selectable inputs. The ADC reference  
is derived from REFOUT and provides independence from the  
DAC reference (REFIN) if necessary. The ADC_CONFIG  
register configures the ADC mode of operation, either user  
initiated individual conversions or sequence mode, and selects  
the multiplexed ADC input channel via the ADC_IP_SELECT  
bits (see Table 44).  
Digital Diagnostic Faults  
Oscillator Stop Detect  
Calibration Memory Not Refreshed  
Reset Detected  
3-Wire Interface Error  
WDT Error  
Yes  
No  
No  
Yes  
Yes  
Yes  
N/A  
N/A  
No  
Yes  
No  
Yes  
Yes  
No  
Yes  
No2  
Yes  
Yes  
3-Wire Read and Compare Parity Error Yes  
DAC Latch Monitor Error  
Inverse DAC Check Error  
Calibration Memory CRC Error  
Invalid SPI Access  
SCLK Count Error  
Slip Bit Error  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
ADC Transfer Function Equations  
The ADC has an input range of 0 V to 2.5 V and can be used to  
digitize a variety of different nodes. The set of inputs to the ADC  
encompasses both unipolar and bipolar ranges, varying from  
high to low voltage values. Therefore, to be able to digitize the  
voltage values, the voltage ranges outside of the 0 V to 2.5 V  
ADC input range must be divided down.  
SPI CRC Error  
Analog Diagnostic Faults  
VIOUT Overvoltage Error  
DC-to-DC Short-Circuit Error  
DC-to-DC Power Error  
Current Output Open Circuit Error  
Voltage Output Short-Circuit Error  
DC-to-DC Die Temperature Error  
Main Die Temperature Error  
REFFOUT Comparator Error  
REFIN Comparator Error  
INT_AVCC Comparator Error  
VLDO Comparator Error  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
The ADC transfer function equation is dependent on the  
selected ADC input node. See Table 18 for a summary of all  
transfer function equations).  
1 N/A means not applicable.  
2 Although the SCLK count error cannot be masked in the FAULT_PIN_CONFIG  
FAULT  
register, it can be excluded from the  
pin by enabling the SPI_DIAG_  
QUIET_EN bit (Bit D3 in the GP_CONFIG1 register).  
Table 18. ADC Input Node Summary  
ADC_IP_SELECT VIN Node Description  
ADC Transfer Function  
T (°C) = (−0.09369 × D) + 307 where D = ADC_CODE (the  
ADC result)  
00000  
Main die temperature  
T (°C) = (−0.11944 × D) + 436  
00001  
00010  
00011  
00100  
00101  
00110  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
DC-to-dc die temperature  
Reserved  
REFIN  
Internal 1.23 V reference voltage (REF2)  
Reserved  
Reserved  
ADC2 pin input ( 15 V input range)  
Voltage on the +VSENSE buffer output  
Voltage on the −VSENSE buffer output  
ADC1 pin input (0 – 1.25 V input range)  
ADC1 pin input (0 – 0.5 V input range)  
ADC1 pin input (0 – 2.5 V input range)  
ADC1 pin input ( 0.5 V input range)  
Reserved  
REFIN (V) = (D/212) × 2.75  
REF2 (V) = (D/212) × 2.5  
Reserved  
Reserved  
ADC2 (V) = (30 × D)/212 − 15  
+VSENSE (V) = ((50 × D)/212) − 25  
−VSENSE (V) = ((50 × D)/212) − 25  
ADC1 (V) = D/212 × 1.25  
ADC1 (V) = D/212 × 2.5 × 1/5 = D/212 × 0.5  
ADC1 (V) = D/212 × 2.5  
ADC1 (V) = D/212 - 0.5  
Rev. 0 | Page 43 of 72  
 
 
 
AD5753  
Data Sheet  
ADC_IP_SELECT VIN Node Description  
ADC Transfer Function  
Reserved  
INT_AVCC (V) = D/212 × 10  
VLDO (V) = D/212 × 10  
VLOGIC (V) = D/212 × 10  
REFGND (V) = D/212 × 2.5  
AGND (V) = D/212 × 2.5  
DGND (V) = D/212 × 2.5  
VDPC+ (V) = D/212 × 37.5  
AVDD2 (V) = D/212 × 37.5  
VDPC− (V) = (15 × D/212 − 14) × 2.5  
10011  
10100  
10101  
10110  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
Reserved  
INT_AVCC  
VLDO  
VLOGIC  
REFGND  
AGND  
DGND  
VDPC+  
AVDD2  
VDPC−  
DC-to-dc die node; configured in the DCDC_CONFIG2 register  
00: AGND on dc-to-dc die  
01: Internal 2.5 V supply on dc-to-dc die  
10: AVDD1  
11: AVSS  
REFOUT  
AGND (dc-to-dc) (V) = (D/212) × 2.5  
Internal 2.5 V (dc-to-dc) (V) = (D/212) × 5  
AVDD1 (V) = D/212 × 37.5  
AVSS (V) = (15 × D/212 − 14) × 2.5  
REFOUT (V) = (D/212) × 2.5  
11111  
AV  
AV  
DD1  
V
PGND1  
DD2  
AGND  
SW+  
DPC+  
MCLK  
10MHz  
POWER MANAGEMENT  
BLOCK  
POWER-ON  
RESET  
CALIBRATION  
MEMORY  
V
LDO  
TEMPERATURE,  
INTERNAL 2.5V SUPPLY,  
INT_AVCC, REF2  
DC-TO-DC DIE TO AGND  
V
LOGIC  
DGND  
DIGITAL  
BLOCK  
CLKOUT  
AD0  
DC-TO-DC DIE  
3-WIRE INTERFACE  
V
DPC+  
AD1  
R
B
DATA AND  
16  
16  
RESET  
LDAC  
SCLK  
SDI  
16-BIT  
DAC  
DAC  
I
OUT  
RANGE  
CONTROL  
R
A
REG  
REGISTERS  
I
R
OUT  
SET  
SCALING  
V
X
USER GAIN  
USER OFFSET  
WATCHDOG  
TIMER  
V
DPC–  
SYNC  
SDO  
C
HART  
FAULT  
HART_EN  
STATUS  
REGISTER  
V
DPC+  
+V  
SENSE  
REFIN  
REFERENCE  
BUFFERS  
+V  
SENSE  
REFIN  
V
OUT  
RANGE  
SCALING  
VI  
–V  
OUT  
V
OUT  
SENSE  
VREF  
–V  
REFOUT  
SENSE  
C
COMP  
V
DPC-  
TEMPERATURE  
SENSOR  
DC-TO-DC DIE  
REFGND  
12-BIT  
ADC  
ANALOG  
DIAGNOSTICS  
GPIO_0  
GPIO_1  
GPIO_2  
AD5753  
ADC1 ADC2  
AV  
SW+  
V
PGND2  
SS  
DPC-  
NOTES  
1. GRAY ITEMS REPRESENT DIAGNOSTIC ADC INPUT NODES.  
Figure 85. Diagnostic ADC Input Nodes  
Rev. 0 | Page 44 of 72  
Data Sheet  
AD5753  
it starts again with Channel 0 until disabled. Before Command  
0b010 is issued, Command 000 and Command 001 must be used  
to configure all the required channels to enable key sequencing  
mode (see Figure 86). If the sequencing is disabled and later  
reenabled, the sequencer is reset to recommence converting on  
the first channel in the sequence.  
ADC Configuration  
The ADC is configured using the ADC_CONFIG register via the  
SEQUENCE_COMMAND bits (Bits[10:8]), the SEQUENCE_  
DATA bits (Bits[7:5]), and the ADC_IP_SELECT bits (Bits[4:0]).  
Table 19 shows the contents of the ADC_CONFIG register.  
Table 19. ADC Configuration Register  
Automatic Sequencing (Command 011)  
[D10:D8]  
[D7:D5]  
[D4:D0]  
Sequencing starts on the next valid SPI frame and starts with  
Channel 0, continuing to Channel N − 1 where N is the channel  
depth on every valid SPI frame. When the sequence is complete, it  
starts again with Channel 0 until disabled. As with the key  
sequencing mode, before Command 011 is issued, Command 000  
and Command 001 must be used to configure all the required  
channels to enable automatic sequencing mode (see Figure 86). If  
the sequencing is disabled and later reenabled, the sequencer is  
reset to recommence converting on the first channel in the  
sequence. When reenabled, the channels do not need to be  
reconfigured unless the desired list of nodes changes. Use  
automatic sequencing in conjunction with the autostatus  
readback mode to ensure that the latest ADC result is available.  
Command  
Data  
ADC input select  
The ADC can be set up to either monitor a single node of interest  
or configured to sequence through up to eight nodes of interest.  
The sequential conversions can be initiated automatically after  
every valid SPI frame is received by the device (automatic sequence  
mode), or in a more controlled manner via a specific key code  
written to the key register (key sequence mode). When a  
conversion is complete, the ADC result is available in the status  
register and, if in sequence mode, the sequencer address is  
advanced. If autostatus readback mode is used in conjunction with  
either sequence mode, the last completed ADC conversion data is  
available on the SDO during every SPI frame written to the device.  
The sequencer command has a maximum channel depth of  
eight channels. Each channel in the sequencer must be configured  
with the required ADC input for that sequencer channel via the  
ADC_IP_SELECT bits. The number of configured channels must  
equal the channel depth. If the active sequencer channel location is  
not configured correctly, the sequencer stores the previously  
loaded channel value and defaults all other enabled sequencer  
channels 0b00000 for all sequencer channels. To avoid any 3-wire  
interface related delays between ADC conversions if a dc-to-dc die  
node is required to be part of the ADC sequencer, perform this  
configuration using the DCDC_ADC_CONTROL_DIAG bits in  
the DCDC_CONFIG2 register before configuring the ADC  
sequencer. If multiple nodes from the dc-to-dc die are required  
within the sequence, key sequencing mode must be used rather  
than automatic sequencing mode because the DCDC_ADC_  
CONTROL_DIAG bits must be updated between ADC  
conversions to configure the next dc-to-dc die node required by the  
sequence.  
Single Immediate Conversion (Command 100)  
Single immediate conversion mode initiates a single conversion  
on the node currently selected in the ADC_IP_SELECT bits of the  
ADC_CONFIG register. Selecting this command stops any active  
automatic sequence, which means the sequencer must be reenabled  
if required. The sequencer does not need to be reconfigured  
because the configuration of the sequencer depth and channels  
is stored.  
Single Key Conversion (Command 101)  
Single key conversion mode sets up an individual ADC input  
node to be converted when the user initiates the mode by  
writing the 0x1ADC key code to the key register.  
Sequencing Mode Setup  
A list of the relevant ADC sequencer commands are shown in  
Table 20. These commands are available in the ADC_CONFIG  
register; see Table 44 for the ADC_CONFIG register bits. The  
default depth (000) is equivalent to one diagnostic channel up to a  
binary depth value of 111, which is equivalent to eight channels.  
The four ADC modes of operation are key sequencing,  
automatic sequencing, single immediate conversion, and single  
key conversion. The sequencing modes are mutually exclusive so if  
the key sequencing mode is enabled, it disables the automatic  
sequencing mode and vice versa.  
Table 20. Command Bits  
Value Description  
000  
001  
Set the sequencer depth (0 to 7)  
Load the sequencer Channel N with the selected ADC  
input  
Key Sequencing (Command 010)  
Writing Command 010 to the command bits in the ADC_  
CONFIG register enables key sequencing mode. Key sequencing  
starts with a write to the key register with Key Code 0x1 ADC and  
starts on Channel 0, continuing to Channel N – 1, where N is  
the channel depth with every 0x1ADC command. This mode  
enables users to control channel switching during sequencing  
because the switch only occurs every specific key code command,  
rather than for every valid SPI frame, which occurs in  
010  
011  
100  
Enable or disable key sequencer  
Enable or disable automatic sequencer  
Perform a single conversion on the currently selected  
ADC input  
101  
Set up single key conversion, that is, select the ADC mux  
input to be used when the 0x1ADC key is written with a  
write to the key register (this conversion is outside of the  
key sequencing mode)  
automatic sequencing mode. When the sequence is completed,  
Rev. 0 | Page 45 of 72  
 
 
AD5753  
Data Sheet  
Use the following procedure to set up the sequencer:  
1. Select the depth.  
2. Load the channels to the sequencer N times for N channels.  
3. Enable the sequencer. Enabling the sequencer also starts  
the first conversion.  
An example of configuring the sequencer to monitor three  
ADC nodes is shown in Figure 86.  
SELECT A DEPTH OF 3 CHANNELS  
COMMAND[D10:D8] DATA[D7:D5]  
000 010  
DIAGNOSTIC SELECT[D4:D0]  
DON’T CARE  
SELECT DEPTH  
(NUMBER OF CHANNELS)  
SELECT CHANNEL 0 WITH AV  
PIN  
DD2  
DIAGNOSTIC SELECT[D4:D0]  
AV MUX  
COMMAND[D10:D8] DATA[D7:D5]  
001 000  
NO = 0  
NO = 1  
NO = 2  
LOAD DESIRED CHANNEL  
N INTO THE SEQUENCER  
DD2  
INPUT ADDRESS  
SELECT CHANNEL 1 WITH MAIN DIE TEMPERATURE  
COMMAND[D10:D8] DATA[D7:D5]  
001 001  
DIAGNOSTIC SELECT[D4:D0]  
MAIN DIE TEMP MUX  
INPUT ADDRESS  
SELECT CHANNEL 2 WITH V  
LDO  
COMMAND[D10:D8] DATA[D7:D5]  
001 010  
DIAGNOSTIC SELECT[D4:D0]  
V
MUX  
LDO  
INPUT ADDRESS  
NO  
IS N = DEPTH – 1?  
YES  
ENABLE AUTOMATIC SEQUENCING  
COMMAND[D10:D8] DATA[D7:D5]  
011 001  
DIAGNOSTIC SELECT[D4:D0]  
DON’T CARE  
ENABLE FOR AUTO/  
KEY SEQUENCING  
Figure 86. Example Automatic Sequence Mode Setup for Three ADC Input Nodes  
Rev. 0 | Page 46 of 72  
 
Data Sheet  
AD5753  
converted ADC node (ADC Conversion Result 0), as well as the  
associated channel address. If another SPI frame is not received  
while the ADC is busy converting due to Command 1, the next  
data to appear on the SDO line contains the associated conversion  
result, ADC Conversion Result 1. However, if an SPI frame is  
received while the ADC is busy, the status register contents  
available on SDO still contain the previous conversion result  
and indicates that the ADC_BUSY flag is high. Any new ADC  
conversion instructions received while the ADC_BUSY bit is  
active are ignored. If using a sequencer mode, the sequencer  
address is updated after the conversion completes.  
ADC Conversion Timing  
Figure 87 shows an example where autostatus readback mode is  
enabled. The status register always contains the last completed  
ADC conversion result together with the associated mux  
address, ADC_IP_SELECT.  
This example is applicable irrespective of the ADC conversion  
mode in use (key sequencing, automatic sequencing, single  
immediate conversion, or single key conversion). During the  
first ADC conversion command shown, the contents of the  
status register are available on the SDO line. The ADC portion  
of this data contains the conversion result of the previously  
ADC CONVERSION TIME  
SCLK  
1
1
24  
OR  
32  
24  
OR  
32  
SYNC  
SDI  
INITIATE  
CONVERSION 1  
ADC CONVERSION  
COMMAND NUMBER 2  
ADC CONVERSION  
COMMAND NUMBER 1  
ASSUME AUTOSTATUS  
READBACK IS ALREADY  
ENABLED  
ADC CONVERSION  
RESULT NUMBER 1  
ADC CONVERSION  
RESULT NUMBER 0  
SDO  
CONTENTS OF STATUS  
REGISTER CLOCKED OUT  
CONTENTS OF STATUS  
REGISTER CLOCKED OUT  
DIG  
DIAG  
ANA  
WDT  
ADC  
ADC  
CHN[4]  
ADC  
ADC  
ADC  
DATA[1]  
ADC  
DATA[0]  
FAULT  
PIN  
1
0
DIAG STATUS BUSY  
CHN[0] DATA[11]  
NOTES  
1. STATUS REGISTER CONTENTS CONTAINING ADC CONVERSION RESULT, CORRESPONDING  
ADDRESS, AND ADC BUSY INDICATOR.  
2. GRAY ITEMS HIGHLIGHT THEADC BITS OF THE DATA FRAME SHOWN.  
Figure 87. ADC Conversion Timing Example  
Rev. 0 | Page 47 of 72  
 
AD5753  
Data Sheet  
REGISTER MAP  
WRITING TO REGISTERS  
The AD5753 is controlled and configured via 29 on-chip  
registers described in the Register Details section. The four  
possible access permissions are as follows:  
Use the format data frame in Table 21 when writing to any  
register. By default, the SPI CRC is enabled, and the input  
register is 32 bits wide with the last eight bits corresponding to  
the CRC code. Only frames of exactly 32 bits wide are accepted  
as valid. If the CRC is disabled, the input register is 24 bits wide,  
and 32-bit frames are also accepted, with the final 8 bits ignored.  
Table 22 describes the bit names and functions of Bit D23 to  
Bit D16. Bit D15 to Bit D0 depend on the register that is being  
addressed.  
R/W: read or write  
R: read only  
R/W-1-C: read or write 1 to clear  
R0: read zero  
R0/W: read zero or write  
Reading from and writing to reserved registers is flagged as an  
invalid SPI access. When accessing registers with reserved bit  
fields, the default value of those bit fields must be written. These  
values are listed in the Reset column of Table 27 to Table 52.  
Table 21. Writing to a Register  
MSB  
LSB  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
[D15:D0]  
AD1  
AD0  
REG_ADR4  
REG_ADR3  
REG_ADR2  
REG_ADR1  
REG_ADR0  
Data  
AD1  
Table 22. Input Register Decode  
Bit  
Description  
Slip bit. This bit must equal the inverse of Bit D22, that is, AD1.  
AD1  
AD1, AD0  
Used in association with the external pins, AD1 and AD0, to determine which AD5753 device is being  
addressed by the system controller. Up to four unique devices can be addressed, corresponding to  
the AD1 and AD0 addresses of 0b00, 0b01, 0b10, and 0b11.  
REG_ADR4, REG_ADR3, REG_ADR2,  
REG_ADR1, REG_ADR0  
Selects which register is written to. See Table 26 for a summary of the available registers.  
Rev. 0 | Page 48 of 72  
 
 
 
 
Data Sheet  
AD5753  
Two-Stage Readback Mode  
READING FROM REGISTERS  
Two-stage readback mode consists of a write to the TWO_  
STAGE_READBACK_SELECT register to select the register  
location to be read back, followed by a NOP command. To  
perform a NOP command, write all zeros to Bits[D15:D0] of  
the NOP register (see Table 27). During the NOP command, the  
contents of the selected register are available on the SDO pin in  
the data frame format shown in Table 23. It is also possible to write  
a new two-stage readback command during the second frame, such  
that the corresponding new data is available on the SDO pin in the  
subsequent frame (see Figure 88). Bits[D31:D30] (or  
The AD5753 has four options for readback mode that can be  
configured in the TWO_STAGE_READBACK_SELECT register  
(see Table 46). These options are as follows:  
Two-stage readback  
Autostatus readback  
SYNC  
Shared  
Echo mode  
autostatus readback  
Bits[D23:D22], if SPI CRC is not enabled) = 0b10 are used as part  
of the synchronization during readback. The contents of the first  
write instruction to the TWO_STAGE_READBACK_  
SELECT register is shown in Table 24.  
Table 23. SDO Contents for Read Operation  
MSB  
LSB  
[D23:D22]  
D21  
[D20:16]  
[D15:D0]  
0b10  
pin status  
Register address  
Data  
FAULT  
Table 24. Reading from a Register Using Two-Stage Readback Mode  
MSB  
LSB  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
[D15:D5]  
Reserved  
D4 D3 D2 D1 D0  
AD1  
AD0  
0x13  
READBACK_SELECT[4:0]  
AD1  
SCLK  
24  
OR  
32  
24  
OR  
32  
24  
OR  
32  
1
1
1
SYNC  
SDI  
TWO-STAGE  
READBACK  
*NOP  
NOP  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
*ALTERNATIVELY,  
WRITE ANOTHER  
TWO-STAGE READBACK  
SDO  
UNDEFINED  
SELECTED REGISTER DATA  
CLOCKED OUT  
SELECTED REGISTER DATA  
CLOCKED OUT  
Figure 88. Two-Stage Readback Example  
Rev. 0 | Page 49 of 72  
 
 
 
 
AD5753  
Data Sheet  
The autostatus readback mode can be used in conjunction with  
the ADC sequencer to consecutively monitor up to eight different  
ADC inputs. See the ADC Monitoring section for further details  
on the ADC sequencer. The autostatus readback mode can be  
configured via the READBACK_MODE bits in the TWO_  
STAGE_READBACK_SELECT register (see the Two-Stage  
Readback Select Register section). Figure 89 shows an example  
of the data frames for an autostatus readback.  
Autostatus Readback Mode  
If autostatus readback mode is selected, the contents of the  
status register are available on the SDO line during every SPI  
transaction. When reading back the status register, the SDO  
contents differ from the data frame format shown in Table 23.  
The contents of the status register are shown in Table 25.  
Table 25. SDO Contents for a Read Operation on the Status Register  
MSB  
LSB  
D23 D22 D21  
D20  
D19  
D18  
D17  
[D16:D12]  
[D11:D0]  
1
0
FAULT_PIN_STATUS DIG_DIAG_STATUS ANA_DIAG_STATUS WDT_STATUS ADC_BUSY ADC_CH[4:0] ADC_DATA[11:0]  
SCLK  
24  
OR  
32  
24  
OR  
32  
24  
OR  
32  
1
1
1
SYNC  
SDI  
ANY WRITE COMMAND  
ANY WRITE COMMAND  
ANY WRITE COMMAND  
ASSUME AUTOSTATUS  
READBACK IS ALREADY  
ENABLED  
SDO  
CONTENTS OF STATUS  
REGISTER CLOCKED OUT  
CONTENTS OF STATUS  
REGISTER CLOCKED OUT  
CONTENTS OF STATUS  
REGISTER CLOCKED OUT  
Figure 89. Autostatus Readback Example  
Rev. 0 | Page 50 of 72  
 
 
Data Sheet  
AD5753  
SPI write is valid. Refer to the example shown in Figure 90.  
SYNC  
READBACK_MODE bits in the two-stage readback select register  
(see the Two-Stage Readback Select Register section).  
SYNC  
Shared  
The shared  
autostatus readback mode that is used to avoid SDO bus con-  
Autostatus Readback Mode  
Configure the shared  
autostatus readback mode via the  
SYNC  
autostatus readback is a special version of the  
SYNC  
tention when multiple AD5753 devices are sharing the same  
line. If this scenario occurs, the AD5753 devices are distinguished  
from each other using the hardware address pins. An internal  
flag is set after each valid write to a device and the flag is cleared  
on the subsequent falling edge of  
autostatus readback mode behaves in a similar manner to the  
normal autostatus readback mode, except the device does not  
Echo Mode  
Echo mode behaves in a similar manner to the autostatus  
readback mode, except that every second readback consists of  
an echo of the previous command written to the AD5753. Echo  
mode is useful for checking which SPI instruction is received in  
the previous SPI frame. Echo mode can be configured via the  
READBACK_MODE bits in the two-stage readback select register  
(see the Two-Stage Readback Select Register section).  
SYNC  
SYNC  
. The shared  
SYNC  
output the status register contents on SDO when  
low, unless the internal flag is set, which occurs when the previous  
goes  
24  
OR  
32  
24  
OR  
32  
24  
OR  
32  
24  
OR  
32  
SCLK  
1
1
1
1
1
SYNC  
SDI  
DEVICE 0  
FLAG SET  
DEVICE 1  
FLAG SET  
NO FLAG SET  
DEVICE 0  
FLAG SET  
DEVICE 1  
FLAG SET  
VALID  
WRITE TO DEVICE 0  
VALID  
WRITE TO DEVICE 1  
INVALID  
VALID  
WRITE TO DEVICE 0  
VALID  
WRITE TO DEVICE 1  
WRITE TO DEVICE 0  
ASSUME SHARED SYNC  
AUTOSTATUS READBACK  
IS ALREADY ENABLED  
FOR BOTH DUTS  
DEVICE 0 STATUS REG  
DEVICE 1 STATUS REG  
DEVICE 0 STATUS REG  
SDO  
SYNC  
Figure 90. Shared  
Autostatus Readback Example  
PREVIOUS COMMAND  
STATUS REGISTER CONTENTS  
PREVIOUS COMMAND  
Figure 91. SDO Contents—Echo Mode  
Rev. 0 | Page 51 of 72  
 
AD5753  
Data Sheet  
8. Write a zero-scale DAC code to the DAC_INPUT register.  
If a bipolar range is selected in Step 7, then a DAC code  
that represents a 0 mA/0 V output must be written to the  
DAC_INPUT register. It is important that this step be  
completed even if the contents of the DAC_INPUT register  
are not changing.  
PROGRAMMING SEQUENCE TO ENABLE THE  
OUTPUT  
To write to and set up the AD5753 from a power-on or reset  
condition, take the following steps:  
1. Perform a hardware or software reset and wait 100 μs.  
2. Perform a calibration memory refresh by writing 0xFCBA to  
the key register. Wait a minimum of 500 μs before proceeding  
to Step 3 to allow time for the internal calibrations to  
complete. As an alternative to waiting 500 μs for the refresh  
cycle to complete, poll the CAL_MEM_UNREFRESHED bit  
in the DIGITAL_DIAG_RESULTS register until it is 0.  
3. Write 1 to Bit D13 in the DIGITAL_DIAG_RESULTS register  
to clear the RESET_OCCURRED flag.  
9. If the LDAC functionality is being used, perform either a  
software or hardware LDAC command.  
10. Rewrite the same word, used in Step 7, to the DAC_CONFIG  
register with the OUT_EN bit enabled. Allow a minimum  
of 1.25 ms to pass between Step 6 and Step 9, which is the  
time from when the dc-to-dc is enabled to when the VIOUT  
output is enabled.  
11. Write the required DAC code to the DAC_INPUT register.  
4. If the CLKOUT signal is required, configure and enable  
CLKOUT via the GP_CONFIG1 register. It is important to  
configure this feature before enabling the dc-to-dc converter.  
5. Write to the DCDC_CONFIG2 register to set the dc-to-dc  
current limit and enable the negative dc-to-dc converter (if  
using negative DPC). Wait 300 μs to allow the 3-wire interface  
communication to complete. As an alternative to waiting  
300 μs for the 3-wire interface communication to complete,  
poll the BUSY_3WI bit in the DCDC_CONFIG2 register  
until it is 0.  
6. Write to the DCDC_CONFIG1 register to set up the dc-to-dc  
converter mode, which enables the dc-to-dc converter. Wait  
300 μs to allow the 3-wire interface communication to  
complete. As an alternative to waiting 300 μs for the 3-wire  
interface communication to complete, poll the BUSY_3WI bit  
in the DCDC_CONFIG2 register until it is 0.  
Figure 92 shows an example of a change to the programming  
sequence.  
Changing and Reprogramming the Range  
After the output is enabled, take the following steps to change  
the output range:  
1. Write to the DAC_INPUT register. Set the output to 0 mA  
or 0 V.  
2. Write to the DAC_CONFIG register. Disable the output  
(OUT_EN = 0) and set the new output range. Keep the  
INT_EN bit set. Wait 500 μs minimum before proceeding  
to Step 3 to allow time for internal calibrations to complete.  
3. Write Code 0x0000 or the case of bipolar ranges, write  
Code 0x8000 to the DAC_INPUT register. It is important  
that this step be completed even if the contents of the DAC_  
INPUT register do not change.  
7. Write to the DAC_CONFIG register to set the INT_EN bit,  
which powers up the DAC and internal amplifiers without  
enabling the channel output, and configure the output range,  
internal or external RSET, and slew rate. Keep the OUT_EN  
bit disabled at this point. Wait for a minimum of 500 μs  
before proceeding to Step 8 to allow the internal  
4. Reload the DAC_CONFIG register word from Step 2 and set  
the OUT_EN bit to 1 to enable the output.  
5. Write the required DAC code to the DAC_INPUT register.  
calibrations to complete. As an alternative to waiting 500 μs  
for the internal calibrations to complete, poll the CAL_  
MEM_UNREFRESHED bit in the DIGITAL_DIAG_  
RESULTS register until it reads 0.  
Rev. 0 | Page 52 of 72  
 
Data Sheet  
AD5753  
EXAMPLE CONFIGURATION TO ENABLE THE OUTPUT CORRECTLY  
1. PERFORM HARDWARE OR  
SOFTWARE RESET  
ADDRESS[D23:D21]  
SLIPBIT + AD[1:0]  
REGISTER ADDRESS[D20:D16]  
0x08  
DATA[D15:D0]  
0xFCBA  
WRITE  
2. PERFORM CALIBRATION  
MEMORY REFRESH  
WAIT = 0  
IS CAL_MEM_  
UNREFRESHED  
= 0?  
N
N
IS WAIT  
= 500µs?  
WAIT = WAIT + 1  
ADDRESS[D23:D21]  
SLIPBIT + AD[1:0]  
REGISTER ADDRESS[D20:D16]  
0x14  
DATA[D15:D0]  
D13 = 1  
WRITE  
WRITE  
WRITE  
3. CLEAR RESET_  
OCCURRED BIT  
ADDRESS[D23:D21]  
SLIPBIT + AD[1:0]  
REGISTER ADDRESS[D20:D16]  
0x09  
DATA[D15:D0]  
4. CONFIGURE CLKOUT  
IF REQUIRED  
GP CONFIG1 SETTINGS  
ADDRESS[D23:D21]  
SLIPBIT + AD[1:0]  
REGISTER ADDRESS[D20:D16]  
0x0C  
DATA[D15:D0]  
5. SET UP THE  
DCTODC CONVERTER  
SETTINGS AND ENABLE  
NEGATIVE DC-TO-DC  
DC-TO-DC SETTINGS  
WAIT = 0  
N
N
N
N
IS BUSY_3WI  
= 0?  
IS WAIT  
WAIT = WAIT + 1  
= 300µs?  
REGISTER ADDRESS[D20:D16]  
0x0B  
DATA[D15:D0]  
ADDRESS[D23:D20]  
SLIPBIT + AD[1:0]  
WRITE  
6. SET UP THE  
DC-TO-DC CONVERTER MODE  
DC-TO-DC MODE  
WAIT = 0  
N
IS BUSY_3WI  
= 0?  
IS WAIT  
= 300µs?  
WAIT = WAIT + 1  
ADDRESS[D23:D21]  
SLIPBIT + AD[1:0]  
REGISTER ADDRESS[D20:D16]  
0x06  
DATA[D15:D0]  
D6 = 0  
WRITE  
7. CONFIGURE THE DAC  
(OUTPUT DISABLED)  
WAIT = 0  
IS CAL_MEM_  
UNREFRESHED  
= 0?  
N
IS WAIT  
= 500µs?  
WAIT = WAIT + 1  
ADDRESS[D23:D21]  
SLIPBIT + AD[1:0]  
REGISTER ADDRESS[D20:D16]  
0x01  
DATA[D15:D0]  
DAC CODE  
WRITE  
WRITE  
WRITE  
WRITE  
8. WRITE 0mV/0mA DAC  
CODE  
ADDRESS[D23:D21]  
SLIPBIT + AD[1:0]  
REGISTER ADDRESS[D19:D16]  
0x07  
DATA[D15:D0]  
0x1DAC  
9. PERFORM AN LDAC COMMAND  
ADDRESS[D23:D21]  
SLIPBIT + AD[1:0]  
REGISTER ADDRESS[D19:D16]  
0x06  
DATA[D15:D0]  
D6 = 1  
10. CONFIGURE THE DAC  
(OUTPUT ENABLED)  
ADDRESS[D23:D21]  
SLIPBIT + AD[1:0]  
REGISTER ADDRESS[D20:D16]  
0x01  
DATA[D15:D0]  
DAC CODE  
11. WRITE THE REQUIRED DAC  
CODE  
NOTES  
1. AD[1:0] ARE THE ADDRESS BITS AD1 AND AD0.  
Figure 92. Example Configuration to Enable the Output Correctly (CRC Disabled for Simplicity)  
Rev. 0 | Page 53 of 72  
 
AD5753  
Data Sheet  
REGISTER DETAILS  
Table 26. Register Summary  
Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
Name  
Description  
Reset  
Access  
NOP  
NOP register.  
DAC input register.  
DAC output register.  
Clear code register.  
User gain register.  
User offset register.  
DAC configuration register.  
Software LDAC register.  
Key register.  
General-Purpose Configuration 1 register.  
General-Purpose Configuration 2 register.  
DC-to-DC Configuration 1 register.  
DC-to-DC Configuration 2 register.  
GPIO configuration register.  
GPIO data register.  
WDT configuration register.  
Digital diagnostic configuration register.  
ADC configuration register.  
FAULT pin configuration register.  
0x000000 R0/W  
0x010000 R/W  
0x020000  
DAC_INPUT  
DAC_OUTPUT  
CLEAR_CODE  
USER_GAIN  
USER_OFFSET  
DAC_CONFIG  
SW_LDAC  
R
0x030000 R/W  
0x04FFFF R/W  
0x058000 R/W  
0x060C00 R/W  
0x070000 R0/W  
0x080000 R0/W  
0x090204 R/W  
0x0A0200 R/W  
0x0B0000 R/W  
0x0C0100 R/W  
0x0D0000 R/W  
0x0E0000 R/W  
0x0F0009 R/W  
0x10005D R/W  
0x110000 R/W  
0x120000 R/W  
0x130000 R/W  
0x14A000 R/W-1-C  
0x150000 R/W-1-C  
Key  
GP_CONFIG1  
GP_CONFIG2  
DCDC_CONFIG1  
DCDC_CONFIG2  
GPIO_CONFIG  
GPIO_DATA  
WDT_CONFIG  
DIGITAL_DIAG_CONFIG  
ADC_CONFIG  
FAULT_PIN_CONFIG  
TWO_STAGE_READBACK_SELECT Two stage readback select register.  
DIGITAL_DIAG_RESULTS  
ANALOG_DIAG_RESULTS  
Status  
CHIP_ID  
FREQ_MONITOR  
Reserved  
Reserved  
Reserved  
DEVICE_ID_3  
Digital diagnostic results register.  
Analog diagnostic results register.  
Status register.  
Chip ID register.  
Frequency monitor register.  
Reserved.  
Reserved.  
Reserved.  
Generic ID register.  
0x100000  
0x170101  
0x180000  
0x190000  
0x1A0000  
0x1B0000  
0x1C0000  
R
R
R
R
R
R
R
NOP Register  
Address: 0x00, Reset: 0x000000, Name: NOP  
Write 0x0000 to Bits[D15:D0] at this address to perform a no operation (NOP) command. Bits[D15:D0] (see Table 21) of this register always  
read back as 0x0000.  
Table 27. Bit Descriptions for NOP  
Bits  
Bit Name  
Description  
Reset  
0x0  
Access  
21  
FAULT_PIN_STATUS  
REGISTER_ADDRESS  
NOP command  
The FAULT_PIN_STATUS bit reflects the current status of the FAULT pin.  
Register address.  
R
[20:16]  
[15:0]  
0x0  
R
Write 0x0000 to perform a NOP command.  
0x0  
R0/W  
Rev. 0 | Page 54 of 72  
 
 
 
Data Sheet  
AD5753  
DAC Input Register  
Address: 0x01, Reset: 0x010000, Name: DAC_INPUT  
LDAC  
Bits[D15:D0] consists of the 16-bit data to be written to the DAC. If the  
pin is tied low (active), the DAC_INPUT register contents  
LDAC  
LDAC  
pin is tied high, the  
are written directly to the DAC_OUTPUT register without any  
functionality dependence. If the  
LDAC  
contents of the DAC_INPUT register are written to the DAC_OUTPUT register when the  
LDAC  
pin is brought low or when the software  
command is written.  
Table 28. Bit Descriptions for DAC_INPUT  
Bits  
Bit Name  
Description  
Reset  
0x0  
Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
pin.  
R
FAULT  
[20:16] REGISTER_ADDRESS  
[15:0] DAC_INPUT_DATA  
Register address.  
DAC input data.  
0x0  
R
0x0  
R/W  
DAC Output Register  
Address: 0x02, Reset: 0x020000, Name: DAC_OUTPUT  
DAC_OUTPUT is a read only register and contains the latest calibrated 16-bit DAC output value. If a clear event occurs due to a WDT  
fault, this register contains the clear code until the DAC is updated to another code.  
Table 29. Bit Descriptions for DAC_OUTPUT  
Bits  
Bit Name  
Description  
Reset  
0x0  
Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
Register address.  
pin.  
R
R
R
FAULT  
[20:16] REGISTER_ADDRESS  
[15:0] DAC_OUTPUT_DATA  
0x0  
DAC output data. For example, the last calibrated 16-bit DAC output value.  
0x0  
Clear Code Register  
Address: 0x03, Reset: 0x030000, Name: CLEAR_CODE  
When writing to the CLEAR_CODE register, Bits[D15:D0] consist of the clear code that clears the DAC when a clear event occurs (for  
example, a WDT fault). After a clear event, the DAC_INPUT register must be rewritten to with the 16-bit data to be written to the DAC,  
even if it is the same data as previously written before the clear event. Performing an LDAC write to the hardware or software does not  
update the DAC_OUTPUT register to a new code until the DAC_INPUT register is first written to.  
Table 30. Bit Descriptions for CLEAR_CODE  
Bits  
Bit Name  
Description  
Reset  
0x0  
Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
pin.  
R
FAULT  
[20:16] REGISTER_ADDRESS Register address.  
[15:0] CLEAR_CODE Clear code. The DAC clears to this code upon a clear event, for example, a WDT fault.  
0x0  
R
0x0  
R/W  
User Gain Register  
Address: 0x04, Reset: 0x04FFFF, Name: USER_GAIN  
The 16-bit USER_GAIN register allows the user to adjust the gain of the DAC channel in steps of 1 LSB. The USER_GAIN register coding  
is straight binary. The default code is 0xFFFF. Theoretically, the gain can be tuned across the full range of the output. However, the  
maximum recommended gain trim is approximately 50% of the programmed range to maintain accuracy.  
Table 31. Bit Descriptions for USER_GAIN  
Bits  
Bit Name  
Description  
Reset  
0x0  
Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
Register address.  
pin.  
R
R
FAULT  
[20:16] REGISTER_ADDRESS  
[15:0] USER_GAIN  
0x0  
User gain correction code.  
0xFFFF R/W  
Rev. 0 | Page 55 of 72  
AD5753  
Data Sheet  
User Offset Register  
Address: 0x05, Reset: 0x058000, Name: USER_OFFSET  
The 16-bit USER_OFFSET register allows the user to adjust the offset of the DAC channel by −32,768 LSBs to +32,768 LSBs in steps of 1 LSB.  
The USER_OFFSET register coding is straight binary. The default code is 0x8000, which results in zero offset programmed to the output.  
Table 32. Bit Descriptions for USER_OFFSET  
Bits  
Bit Name  
Description  
Reset  
0x0  
Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
Register address.  
pin.  
R
R
FAULT  
[20:16] REGISTER_ADDRESS  
[15:0] USER_OFFSET  
0x0  
User offset correction code.  
0x8000 R/W  
DAC Configuration Register  
Address: 0x06, Reset: 0x060C00, Name: DAC_CONFIG  
The DAC_CONFIG register configures the DAC (range, internal or external RSET, and output enable), enables the output stage circuitry,  
and configures the slew rate control function.  
Table 33. Bit Descriptions for DAC_CONFIG  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
pin.  
0x0  
0x0  
0x0  
R
FAULT  
[20:16] REGISTER_ADDRESS Register address.  
R
[15:13] SR_STEP  
Slew rate step. In conjunction with the slew rate clock, the slew rate step defines how  
much the output value changes at each update. Together, both parameters define the  
rate of change of the output value.  
R/W  
000: 4 LSB (default).  
001: 12 LSB.  
010: 64 LSB.  
011: 120 LSB.  
100: 256 LSB.  
101: 500 LSB.  
110: 1820 LSB.  
111: 2048 LSB.  
[12:9]  
SR_CLOCK  
Slew rate clock. Slew rate clock defines the rate at which the digital slew is updated.  
0x6  
R/W  
0000: 240 kHz.  
0001: 200 kHz.  
0010: 150 kHz.  
0011: 128 kHz.  
0100: 64 kHz.  
0101: 32 kHz.  
0110: 16 kHz (default).  
0111: 8 kHz.  
1000: 4 kHz.  
1001: 2 kHz.  
1010: 1 kHz.  
1011: 512 Hz.  
1100: 256 Hz.  
1101: 128Hz.  
1110: 64 Hz.  
1111: 16 Hz.  
8
7
SR_EN  
Enables slew rate control.  
0: disable (default).  
1: enable.  
0x0  
0x0  
R/W  
R/W  
RSET_EXT_EN  
Enables external current setting resistor.  
0: select internal RSET resistor (default).  
1: select external RSET resistor.  
Rev. 0 | Page 56 of 72  
 
Data Sheet  
AD5753  
Bits  
6
Bit Name  
OUT_EN  
Description  
Enables VIOUT  
Reset Access  
.
0x0  
R/W  
0: disable VIOUT output (default).  
1: enable VIOUT output.  
Enables internal buffers.  
0: disable (default).  
5
INT_EN  
0x0  
R/W  
1: enable. Setting this bit powers up the DAC and internal amplifiers but does not enable  
the output. It is recommended to set this bit and allow a >200 μs delay before enabling the  
output. This delay results in a reduced output enable glitch.  
4
OVRNG_EN  
Range  
Enables 20% voltage overrange.  
0: disable (default).  
1: enable.  
0x0  
R/W  
R/W  
[3:0]  
Selects output range. Note that changing the contents of the range bits initiates an internal 0x0  
calibration memory refresh and. Consequently, a subsequent SPI write must not be performed  
until the CAL_MEM_UNREFRESHED bit in the DIGITAL_DIAG_RESULTS register returns to 0.  
Writes to invalid range codes are ignored.  
0000: 0 V to 5 V voltage range (default).  
0001: 0 V to 10 V voltage range.  
0010: 5 V voltage range.  
0011: 10 V voltage range.  
1000: 0 mA to 20 mA current range.  
1001: 0 mA to 24 mA current range.  
1010: 4 mA to 20 mA current range.  
1011: 20 mA current range.  
1100: 24 mA current range.  
1101: −1 mA to +22 mA current range.  
Software LDAC Register  
Address: 0x07, Reset: 0x070000, Name: SW_LDAC  
Writing 0x1DAC to the SW_LDAC register performs a software LDAC update on the device matching the DUT_ADDRESS, the device  
address bits AD1 and AD0, bits within the SPI frame. If the GLOBAL_SW_LDAC bit in the GP_CONFIG2 register is set, the  
DUT_ADDRESS bits are ignored and all devices sharing the same SPI bus are updated via the SW_LDAC command. Bits[15:0] of this  
register always read back as 0x0000.  
Table 34. Bit Descriptions for SW_LDAC  
Bits  
Bit Name  
Description  
Reset  
0x0  
Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
pin.  
R
FAULT  
[20:16] REGISTER_ADDRESS Register address.  
[15:0] LDAC_COMMAND  
Key Register  
Address: 0x08, Reset: 0x080000, Name: Key  
0x0  
R
Software LDAC. Write 0x1DAC to this register to perform a software LDAC instruction. 0x0  
R0/W  
The key register accepts specific key codes to perform tasks such as calibration memory refresh and software reset. Bits[15:0] of this  
register always read back as 0x0000. All unlisted key codes are reserved.  
Table 35. Bit Descriptions for Key  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
pin.  
0x0  
0x0  
0x0  
R
FAULT  
[20:16] REGISTER_ADDRESS Register address.  
R
[15:0]  
KEY_CODE  
Key code.  
R0/W  
0x15FA: first of two keys to initiate a software reset.  
0xAF51: second of two keys to initiate a software reset.  
0x1ADC: key to initiate a single ADC conversion on the selected ADC channel.  
0x0D06: key to reset the WDT.  
0xFCBA: key to initiate a calibration memory refresh to the shadow registers. This key  
is only valid the first time it is run and has no effect if subsequent writes occur within a  
given system reset cycle.  
Rev. 0 | Page 57 of 72  
 
AD5753  
Data Sheet  
General-Purpose Configuration 1 Register  
Address: 0x09, Reset: 0x090204, Name: GP_CONFIG1  
The GP_CONFIG register configures functions such as the temperature comparator threshold and CLKOUT, as well as enabling other  
miscellaneous features.  
Table 36. Bit Descriptions for GP_CONFIG1  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
Register address.  
pin.  
0x0  
0x0  
0x0  
0x0  
R
FAULT  
[20:16] REGISTER_ADDRESS  
[15:14] RESERVED  
R
Reserved. (Do not alter the default value of this bit)  
R
[13:12] SET_TEMP_THRESHOLD Sets the temperature comparator threshold value.  
R/W  
00: 142°C (default).  
01: 127°C.  
10: 112°C.  
11: 97°C.  
[11:10] CLKOUT_CONFIG  
Configures the CLKOUT pin.  
00: disable. No clock is output on the CLKOUT pin (default).  
0x0  
0x4  
R/W  
R/W  
01: enable. Clock is output on the CLKOUT pin according to the CLKOUT_FREQ bits  
(Bits[9:7]).  
10: reserved. Do not select this option.  
11: reserved. Do not select this option.  
Configure the frequency of CLKOUT.  
000: 416 kHz.  
[9:7]  
CLKOUT_FREQ  
001: 435 kHz.  
010: 454 kHz.  
011: 476 kHz.  
100: 500 kHz (default).  
101: 526 kHz.  
110: 555 kHz.  
111: 588 kHz.  
6
5
HART_EN  
Enables the path to the CHART pin.  
0: output of the DAC drives the output stage directly (default).  
1: CHART path is coupled to the DAC output to allow a HART modem connection or  
connection of a slew capacitor.  
0x0  
0x0  
R/W  
R/W  
NEG_OFFSET_EN  
Enables negative offset in unipolar VOUT mode. When set, this bit offsets the  
currently enabled unipolar output range. This bit is only applicable to the 0 V to 6 V  
range and the 0 V to 12 V range. The 0 V to 6 V range becomes −300 mV to +5.7 V.  
The 0 V to 12 V range becomes −400 mV to +11.6 V.  
0: disable (default).  
1: enable.  
4
3
CLEAR_NOW_EN  
Enables clear to occur immediately, even if the output slew feature is currently enabled. 0x0  
0: disable (default).  
1: enable.  
R/W  
R/W  
SPI_DIAG_QUIET_EN  
Enables SPI diagnostic quiet mode. When this bit is enabled, SPI_CRC_ERR,  
SLIPBIT_ERR, and SCLK_COUNT_ERR are not included in the logical OR calculation,  
which creates the DIG_DIAG_STATUS bit in the status register. They are also masked  
from affecting the FAULT pin if this bit is set.  
0x0  
0: disable (default).  
1: enable.  
2
OSC_STOP_DETECT_EN  
Enables automatic 0x07DEAD code on SDO if the MCLK stops.  
0: disable.  
0x1  
R/W  
1: enable (default).  
1
0
Reserved  
Reserved  
Reserved. Do not alter the default value of this bit.  
Reserved. Do not alter the default value of this bit.  
0x0  
0x0  
R/W  
R/W  
Rev. 0 | Page 58 of 72  
 
Data Sheet  
AD5753  
General-Purpose Configuration 2 Register  
Address: 0x0A, Reset: 0x0A0200, Name: GP_CONFIG2  
The GP_CONFIG2 register configures and enables functions such as the voltage comparators and the global software LDAC.  
Table 37. Bit Descriptions for GP_CONFIG2  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
FAULT pin.  
0x0  
R
[20:16] REGISTER_ADDRESS  
15 Reserved  
[14:13] COMPARATOR_CONFIG  
Register address.  
0x0  
0x0  
0x0  
R
Reserved. Do not alter the default value of this bit.  
R0  
R/W  
Enables or disables the voltage comparator inputs for test purposes. The  
temperature comparator is permanently enabled. See the Background  
Supply and Temperature Monitoring section.  
00: disable voltage comparators (default).  
01: reserved.  
10: reserved.  
11: enable voltage comparators. The INT_EN bit in the DAC_CONFIG register  
must be set to power-up the REFIN buffer and make the REFIN buffer  
available to the REFIN comparator.  
12  
11  
10  
Reserved  
Reserved. Do not alter the default value of this bit.  
Reserved. Do not alter the default value of this bit.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
Reserved  
GLOBAL_SW_LDAC  
When enabled, the DUT address bits are ignored when performing a  
software LDAC command, enabling multiple devices to be simultaneously  
updated using one SW_LDAC command.  
0: disable (default).  
1: enable.  
9
FAULT_TIMEOUT  
Enables reduced fault detect timeout. This bit configures the delay from  
when the analog block indicates a VIOUT fault has been detected to the  
associated change of the relevant bit in the ANALOG_DIAG_RESULTS  
register. This feature provides flexibility to accommodate a variety of output  
load values.  
0x1  
R/W  
0: fault detect timeout = 25 ms.  
1: fault detect timeout = 6.5 ms (default).  
[8:5]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved. Do not alter the default value of these bits.  
Reserved. Do not alter the default value of this bit.  
Reserved. Do not alter the default value of this bit.  
Reserved. Do not alter the default value of this bit.  
Reserved. Do not alter the default value of this bit.  
Reserved. Do not alter the default value of this bit.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
4
3
2
1
0
Rev. 0 | Page 59 of 72  
AD5753  
Data Sheet  
DC-to-DC Configuration 1 Register  
Address: 0x0B, Reset: 0x0B0000, Name: DCDC_CONFIG1  
The DCDC_CONFIG1 register configures the dc-to-dc controller mode.  
Table 38. Bit Descriptions for DCDC_CONFIG1  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
Register address.  
pin.  
0x0  
0x0  
0x0  
0x0  
0x0  
R
FAULT  
[20:16] REGISTER_ADDRESS  
R
[15:8]  
7
Reserved  
Reserved. Do not alter the default value of this bit.  
Reserved. Do not alter the default value of this bit.  
These two bits configure the dc-to-dc converters.  
00: dc-to-dc converter powered off (default).  
R0  
R/W  
R/W  
Reserved  
[6:5]  
DCDC_MODE  
01: DPC current mode. The positive and negative DPC rails tracks the headroom and  
footroom of the current output buffer.  
10: DPC voltage mode. The positive DPC rail is regulated to 15 V with respect to  
−VSENSE. If enabled, the negative DPC rail is also regulated to −15 V with respect to  
−VSENSE  
.
11: PPC current mode. VDPC+ and VDPC− (if enabled) is regulated to a user programmable  
level between 5 V and 25.677 V (depending on the DCDC_VPROG bits, Bits[4:0]) with  
respect to −VSENSE. If the VDPC− is disabled, the ENABLE_PPC_BUFFERS bit (Bit 11 in the  
ADC_CONFIG register) must be set prior to enabling PPC current mode.  
[4:0]  
DCDC_VPROG  
DC-to-dc programmed voltage in PPC mode. VDPC+ and VDPC− is regulated to a user  
programmable level between 5 V (0b00000) and 25.677 V (0b11111), in steps of  
0x0  
R/W  
0.667 V with respect to −VSENSE  
.
DC-to-DC Configuration 2 Register  
Address: 0x0C, Reset: 0x0C0100, Name: DCDC_CONFIG2  
The DCDC_CONFIG2 register configures various dc-to-dc die features, such as the dc-to-dc converter current limit and the dc-to-dc die  
node, to be multiplexed to the ADC.  
Table 39. Bit Descriptions for DCDC_CONFIG2  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
FAULT pin.  
0x0  
R
[20:16] REGISTER_ADDRESS  
[15:13] Reserved  
Register address.  
0x0  
0x0  
0x0  
R
Reserved. Do not alter the default value of these bits.  
Three-wire interface busy indicator.  
0: 3-wire interface not currently active.  
1: 3-wire interface busy.  
R0  
R
12  
BUSY_3WI  
11  
INTR_SAT_3WI  
Three-wire interface saturation flag. This flag is set to 1 when the  
interrupt detection circuitry is automatically disabled due to six  
consecutive interrupt signals. A write to either of the dc-to-dc  
configuration registers clears this bit to 0.  
0x0  
0x0  
R
10  
DCDC_READ_COMP_DIS  
Disables 3-wire interface read and compare cycle. This read and compare  
cycle ensures that copied contents of the dc-to-dc configuration  
registers on the main die match the dc-to-dc die contents on the.  
R/W  
0: enable automatic read and compare cycle (default).  
1: when set, this bit disables the automatic read and compare cycle  
after each 3-wire interface write.  
[9:8]  
7
Reserved  
Reserved. Do not alter the default value of these bits.  
Adjusts the deglitch time on VIOUT overvoltage error flag.  
0: deglitch time set to 1.02 ms (default).  
0x1  
0x0  
R/W  
R/W  
VIOUT_OV_ERR_DEGLITCH  
1: deglitch time set to 128 μs.  
6
VIOUT_PULLDOWN_EN  
Enables the 30 kΩ resistor to ground on VIOUT  
.
0x0  
R/W  
0: disable (default).  
1: enable.  
Rev. 0 | Page 60 of 72  
Data Sheet  
AD5753  
Bits  
Bit Name  
Description  
Reset Access  
[5:4]  
DCDC_ADC_CONTROL_DIAG  
Selects which dc-to-dc die node is multiplexed to the ADC on the  
main die.  
0x0  
R/W  
00: AGND on dc-to-dc die.  
01: internal 2.5 V supply on dc-to-dc die.  
10: AVDD1  
.
11: reserved. Do not select this option.  
These three bits set the dc-to-dc converter current limit.  
000: 150 mA (default).  
001: 200 mA.  
[3:1]  
DCDC_ILIMIT  
0x0  
R/W  
010: 250 mA.  
011: 300 mA.  
100: 350 mA.  
101: 400 mA.  
110: 400 mA.  
111: 400 mA.  
0
DCDC_NEG_EN  
Enables negative dc-to-dc.  
0: disable (default).  
1: enable.  
0x0  
R/W  
GPIO Configuration Register  
Address: 0x0D, Reset: 0x0D0000, Name: GPIO_CONFIG  
The GPIO_CONFIG register configures the GPIO pins as either inputs, outputs or 100 kΩ to DGND.  
Table 40. Bit Descriptions for GPIO_CONFIG  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the current status of the  
pin.  
0x0  
0x0  
0x0  
0x0  
R
FAULT  
[20:16]  
[15:6]  
[5:4]  
REGISTER_ADDRESS Register address.  
R
Reserved  
Reserved.  
R0  
R/W  
GPIO_2_CFG  
Configuration bits for GPIO_2.  
00: 100 kΩ to DGND (default).  
01: GPO mode. GPIO_2 pin goes to the value of the GPO_2_WRITE bit.  
10: GPI mode. GPO_2_READ is the value of the GPIO_2 pin.  
11: reserved.  
[3:2]  
[1:0]  
GPIO_1_CFG  
GPIO_0_CFG  
Configuration bits for GPIO_1.  
00: 100 kΩ to DGND (default).  
01: GPO mode. GPIO_1 pin goes to value in GPO_1_WRITE bit.  
10: GPI mode. GPO_1_READ is the value of the GPI_1 pin.  
11: reserved.  
0x0  
0x0  
R/W  
R/W  
Configuration bits for GPIO_0.  
00: 100 kΩ to DGND (default).  
01: GPO mode. GPIO_0 pin goes to value in GPO_0_WRITE bit.  
10: GPI mode. GPO_0_WRITE is the value of the GPIO_0 pin.  
11: reserved.  
Rev. 0 | Page 61 of 72  
AD5753  
Data Sheet  
GPIO Data Register  
Address: 0x0E, Reset: 0x0E0000, Name: GPIO_DATA  
The GPIO_DATA register is used to read and write from and to the GPIO_0, GPIO_1, and GPIO_2 pins.  
Table 41. Bit Descriptions for GPIO_DATA  
Bits  
Bit Name  
Description  
Reset  
0x0  
Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the current status of the  
pin.  
R
FAULT  
[20:16]  
[15:6]  
5
REGISTER_ADDRESS Register address.  
0x0  
R
Reserved  
Reserved.  
0x0  
R0  
R
GPI_2_READ  
User readable bit. This bit reflects the logic value on the GPIO_2 pin in GPO and GPI 0x0  
mode.  
4
3
GPO_2_WRITE  
GPI_1_READ  
User writable bit. This bit reflects the GPIO_2 pin logic value in GPO mode.  
0x0  
R/W  
R
User readable bit. This bit reflects the logic value on the GPIO_1 pin in GPO and GPI 0x0  
mode.  
2
1
GPO_1_WRITE  
GPI_0_READ  
User writable bit. This bit reflects the GPIO_1 pin logic value in GPO mode.  
0x0  
R/W  
R
User readable bit. This bit reflects the logic value on the GPIO_0 pin in GPO and GPI 0x0  
mode.  
0
GPO_0_WRITE  
User writable bit. This bit reflects the GPIO_0 pin logic value in GPO mode.  
0x0  
R/W  
WDT Configuration Register  
Address: 0x0F, Reset: 0x0F0009, Name: WDT_CONFIG  
The WDT_CONFIG register configures the WDT timeout values. This register also configures the acceptable resets for WDT setup and  
configures the resulting response to a WDT fault, for example, clears the output or resets the device.  
Table 42. Bit Descriptions for WDT_CONFIG  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
Register address.  
pin.  
0x0  
0x0  
0x0  
0x0  
R
FAULT  
[20:16] REGISTER_ADDRESS  
[15:11] Reserved  
R
Reserved. Do not alter the default value of these bits.  
R
10  
CLEAR_ON_WDT_FAIL  
Enable clear on WDT fault. If the WDT times out, a clear event occurs, whereby the  
output is loaded with the clear code stored in the CLEAR_CODE register.  
R/W  
0: disable (default).  
1: enable.  
9
8
RESET_ON_WDT_FAIL  
Enables a software reset to automatically occur if the WDT times out.  
0: disable (default).  
1: enable.  
0x0  
0x0  
R/W  
R/W  
KICK_ON_VALID_WRITE Enables any valid SPI command to reset the WDT. Any active WDT error flags must  
be cleared before the WDT can be restarted.  
0: disable (default).  
1: enable.  
7
6
Reserved  
WDT_EN  
Reserved. Do not alter the default value of this bit.  
Enables the WDT, then starts the WDT, assuming there are no active WDT fault flags.  
0: disable (default).  
0x0  
0x0  
R/W  
R/W  
1: enable.  
[5:4]  
[3:0]  
Reserved  
Reserved. Do not alter the default value of these bits.  
0x0  
0x9  
R/W  
R/W  
WDT_TIMEOUT  
Sets the WDT timeout value. Setting WDT_TIMEOUT to a binary value beyond  
0b1010 results in the default setting of 1 sec.  
0000: 1 ms.  
0001: 5 ms.  
0010: 10 ms.  
0011: 25 ms.  
0100: 50 ms.  
0101: 100 ms.  
0110: 250 ms.  
Rev. 0 | Page 62 of 72  
 
Data Sheet  
AD5753  
Bits  
Bit Name  
Description  
Reset Access  
0111: 500 ms.  
1000: 750 ms.  
1001: 1 sec (default).  
1010: 2 sec.  
Digital Diagnostic Configuration Register  
Address: 0x10, Reset: 0x10005D, Name: DIGITAL_DIAG_CONFIG  
The DIGITAL_DIAG_CONFIG register configures various digital diagnostic features of interest.  
Table 43. Bit Descriptions for DIGITAL_DIAG_CONFIG  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
Register address.  
pin.  
0x0  
0x0  
0x0  
0x0  
0x1  
R
FAULT  
[20:16] REGISTER_ADDRESS  
R
[15:9]  
[8:7]  
6
Reserved  
Reserved. Do not alter the default value of these bits.  
Reserved. Do not alter the default value of these bits.  
R0  
R/W  
R/W  
Reserved  
DAC_LATCH_MON_EN  
Enables a diagnostic monitor on the DAC latches. This feature monitors the actual  
digital code driving the DAC and compares the code with the digital code generated  
within the digital block. Any difference between the two codes causes the DAC_  
LATCH_MON_ERR flag to be set in the DIGITAL_DIAG_RESULTS register.  
0: disable.  
1: enable (default).  
5
4
Reserved  
Reserved. Do not alter the default value of this bit.  
0x0  
0x1  
R/W  
R/W  
INVERSE_DAC_CHECK_EN  
Enables check for DAC code vs. inverse DAC code error.  
0: disable.  
1: enable (default).  
3
2
CAL_MEM_CRC_EN  
FREQ_MON_EN  
Enables the CRC of calibration memory on a calibration memory refresh.  
0: disable.  
1: enable (default).  
0x1  
0x1  
R/W  
R/W  
Enables the internal frequency monitor on the MCLK.  
0: disable.  
1: enable (default).  
1
0
Reserved  
Reserved. Do not alter the default value of this bit.  
Enables the SPI CRC function.  
0: disable.  
0x0  
0x1  
R/W  
R/W  
SPI_CRC_EN  
1: enable (default).  
ADC Configuration Register  
Address: 0x11, Reset: 0x110000, Name: ADC_CONFIG  
The ADC_CONFIG register configures the ADC to one of the following four modes of operation: key sequencing, automatic sequencing,  
single immediate conversion of the currently selected ADC_IP_SELECT node, and single-key conversion.  
Table 44. Bit Descriptions for ADC_CONFIG  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
Register address. Do not alter the default value.  
Reserved. Do not alter the default value of these bits.  
Enable the sense buffers for PPC mode.  
pin.  
0x0  
0x0  
0x0  
0x0  
0x0  
R
FAULT  
[20:16] REGISTER_ADDRESS  
[15:12] Reserved  
R
R/W  
R/W  
R/W  
11  
ENABLE_PPC_BUFFERS  
[10:8]  
SEQUENCE_COMMAND ADC sequence command bits.  
000: set the depth of the sequencer. The contents of the SEQUENCE_DATA bits  
correspond to the depth of the sequencer (000 = 1 channel, 001 = 2 channels,…,  
111 = 8 channels).  
001: set the SEQUENCE_DATA[7:5] bits with the channel number for the selected  
ADC input, ADC_IP_SELECT[4:0].  
Rev. 0 | Page 63 of 72  
 
AD5753  
Data Sheet  
Bits  
Bit Name  
Description  
Reset Access  
010: Enable or disable key sequencer mode, depending on the contents of the  
SEQUENCE_DATA[7:5] bits. SEQUENCE_DATA[7:5] = 001 enables the key sequencer.  
SEQUENCE_DATA[2:0] ≠ 001 disables the key sequencer.  
011: enable/disable automatic sequencer mode, depending on the contents of the  
SEQUENCE_DATA[2:0] bits. SEQUENCE_DATA[2:0] = 001: enables the automatic  
sequencer. SEQUENCE_DATA[2:0] ≠ 001: disables the automatic sequencer.  
100: initiate a single conversion on the ADC_IP_SELECT (Bits[4:0]) input. This disables  
autosequencing. The SEQUENCE_DATA bits, Bits[7:5], are not applicable for this  
command.  
101: set up the ADC for future individual ADC conversions (if not using the key  
sequencer) using the 0x1ADC key code. The SEQUENCE_DATA bits, Bits[7:5], are not  
applicable for this command.  
110: reserved. Do not select this option.  
111: reserved. Do not select this option.  
[7:5]  
[4:0]  
SEQUENCE_DATA  
ADC_IP_SELECT  
The function of the contents of this field is dependent on the command being  
issued by the SEQUENCE_COMMAND bits.  
0x0  
0x0  
R/W  
R/W  
Selects which node to multiplex to the ADC. All unlisted 5-bit codes are reserved  
and return an ADC result of zero.  
00000: main die temperature.  
00001: dc-to-dc die temperature.  
00010: reserved. Do not select this option.  
00011: REFIN. The INT_EN bit in the DAC_CONFIG register must be set for the REFIN  
buffer to be powered up and this node to be available to the ADC.  
00100: REF2; internal 1.23 V reference voltage.  
00101: reserved. Do not select this option.  
00110: reserved. Do not select this option.  
01100: ADC2 pin input ( 15 V input range).  
01101: voltage on the +VSENSE buffer output.  
01110: voltage on the −VSENSE buffer output  
01111: ADC1 pin input (0 V to 1.25 V input range).  
10000: ADC1 pin input (0 V to 0.5 V input range).  
10001: ADC1 pin input (0 V to 2.5 V input range).  
10010: ADC1 pin input ( 0.5 V input range).  
10011: reserved. Do not select this option.  
10100: INT_AVCC.  
10101: VLDO  
.
10110: VLOGIC  
.
11000: REFGND.  
11001: AGND.  
11010: DGND.  
11011: VDPC+  
11100: AVDD2  
11101: VDPC−  
.
.
.
11110: dc-to-dc die node. Configured in the DCDC_CONFIG2 register.  
11111: REFOUT.  
Rev. 0 | Page 64 of 72  
Data Sheet  
AD5753  
FAULT  
Pin Configuration Register  
Address: 0x12, Reset: 0x120000, Name: FAULT_PIN_CONFIG  
FAULT FAULT  
pin, if so desired.  
The  
register masks particular fault bits from the  
Table 45. Bit Descriptions for FAULT_PIN_CONFIG  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
Register address.  
pin.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
FAULT  
[20:16] REGISTER_ADDRESS  
R
15  
14  
13  
12  
11  
10  
9
INVALID_SPI_ACCESS_ERR If this bit is set, do not map the INVALID_SPI_ACCESS_ERR fault flag to the  
pin.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FAULT  
VIOUT_OV_ERR  
Reserved  
If this bit is set, do not map the VIOUT_OV_ERR fault flag to the  
Reserved. Do not alter the default value of this bit.  
pin.  
FAULT  
INVERSE_DAC_CHECK_ERR If this bit is set, do not map the INVERSE_DAC_CHECK_ERR flag to the  
pin.  
FAULT  
Reserved  
Reserved. Do not alter the default value of this bit.  
OSCILLATOR_STOP_DETECT If this bit is set, do not map the clock stop error to the  
pin.  
FAULT  
DAC_LATCH_MON_ERR  
WDT_ERR  
If this bit is set, do not map the DAC_LATCH_MON_ERR fault flag to the  
pin.  
FAULT  
8
If this bit is set, do not map the WDT_ERR flag to the  
pin.  
FAULT  
7
SLIPBIT_ERR  
If this bit is set, do not map the SLIPBIT_ERR error flag to the  
pin.  
FAULT  
6
SPI_CRC_ERR  
Reserved  
If this bit is set, do not map the SPI_CRC_ERR error flag to the pin.  
Reserved. Do not alter the default value of this bit.  
5
4
DCDC_P_SC_ERR  
If this bit is set, do not map the positive rail dc-to-dc short circuit error flag to the  
FAULT pin.  
3
2
IOUT_OC_ERR  
If this bit is set, do not map the current output open-circuit error flag to the  
If this bit is set, do not map the voltage output short-circuit error flag to the  
pin.  
0x0  
R/W  
R/W  
R/W  
R/W  
FAULT  
FAULT  
VOUT_SC_ERR  
pin. 0x0  
1
DCDC-DIE_TEMP_ERR  
MAIN_DIE_TEMP_ERR  
If this bit is set, do not map the dc-to-dc die temperature error flag to the  
pin.  
0x0  
0x0  
FAULT  
0
If this bit is set, do not map the main die temperature error flag to the  
FAULT  
pin.  
Two-Stage Readback Select Register  
Address: 0x13, Reset: 0x130000, Name: TWO_STAGE_READBACK_SELECT  
The TWO_STAGE_READBACK_SELECT register selects the address of the register required for a two-stage readback operation. The  
address of the register selected for readback is stored in Bits[D4:D0].  
Table 46. Bit Descriptions for TWO_STAGE_READBACK_SELECT  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
pin.  
0x0  
0x0  
0x0  
0x0  
R
FAULT  
[20:16] REGISTER_ADDRESS Register address.  
R
[15:7]  
[6:5]  
Reserved  
Reserved.  
R
READBACK_MODE  
These bits control the SPI readback mode.  
0: two-stage SPI readback mode (default).  
R/W  
01: autostatus readback mode. The status register contents are shifted out on SDO for  
every SPI frame.  
10: shared SYNC autostatus readback mode. This mode allows the use of a shared SYNC  
line on multiple devices (distinguished using the hardware address pins). After each valid  
write to a device, a flag is set. This mode behaves similar to the normal autostatus readback  
mode, except that the device does not output the status register contents on SDO as  
SYNC goes low, unless the internal flag is set (previous SPI write is valid).  
11: the status register contents and the previous SPI frame instruction are alternately  
available on SDO.  
[4:0]  
READBACK_SELECT Selects readback address for a two-stage readback.  
0x00: NOP register (default).  
0x0  
R/W  
0x01: DAC_INPUT register.  
0x02: DAC_OUTPUT register.  
0x03: CLEAR_CODE register.  
0x04: USER_GAIN register.  
Rev. 0 | Page 65 of 72  
 
 
 
 
AD5753  
Data Sheet  
Bits  
Bit Name  
Description  
Reset Access  
0x05: USER_OFFSET register.  
0x06: DAC_CONFIG register.  
0x07: SW_LDAC register.  
0x08: key register.  
0x09: GP_CONFIG1 register.  
0x0A: GP_CONFIG2 register.  
0x0B: DCDC_CONFIG1 register.  
0x0C: DCDC_CONFIG2 register.  
0x0D: GPIO_CONFIG register.  
0x0E: GPIO_DATA register.  
0x0F: WDT_CONFIG register.  
0x10: DIGITAL_DIAG_CONFIG register.  
0x11: ADC_CONFIG register.  
0x12: FAULT_PIN_CONFIG register.  
0x13: TWO_STAGE_READBACK_SELECT register.  
0x14: DIGITAL_DIAG_RESULTS register.  
0x15: ANALOG_DIAG_RESULTS register.  
0x16: Status register.  
0x17: CHIP_ID register.  
0x18: FREQ_MONITOR register.  
0x19: reserved. Do not select this option.  
0x1A: reserved. Do not select this option.  
0x1B: reserved .Do not select this option.  
0x1C: DEVICE_ID_3 register.  
Digital Diagnostic Results Register  
Address: 0x14, Reset: 0x14A000, Name: DIGITAL_DIAG_RESULTS  
The DIGITAL_DIAG_RESULTS register contains an error flag for the on-chip digital diagnostic features, most of which are configurable using  
the digital diagnostic configuration register. This register also contains a flag to indicate that a reset occurred, as well as a flag to indicate  
that the calibration memory has not refreshed or an invalid SPI access attempted. With the exception of the CAL_MEM_UNREFRESHED and  
SLEW_BUSY flags, all of these flags require a 1 to be written to them to update them to their current value. The CAL_MEM_UNREFRESHED  
and SLEW_BUSY flags automatically clear when the calibration memory refresh or output slew, respectively, is complete. When the  
corresponding enable bits in the DIGITAL_DIAG_CONFIG register are not enabled, the respective flag bits read as zero.  
Table 47. Bit Descriptions for DIGITAL_DIAG_RESULTS  
Bits  
Bit Name  
Description  
Reset  
0x0  
Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
Register address.  
pin.  
R
R
R
FAULT  
[20:16] REGISTER_ADDRESS  
0x0  
15  
CAL_MEM_UNREFRESHED  
Calibration memory unrefreshed flag. Modifying the range bits in the  
0x1  
DAC_CONFIG register also initiates a calibration memory refresh, which  
asserts this bit. Unlike the R/W-1-C bits in this register, this bit is automatically  
cleared after the calibration memory refresh completes.  
0: calibration memory is refreshed.  
1: calibration memory is unrefreshed (default on power-up). This bit asserts if  
the range bits are modified in the DAC_CONFIG register.  
14  
SLEW_BUSY  
This flag is set to 1 when the DAC is actively slewing. Unlike the R/W-1-C bits  
in this register, this bit is automatically cleared when slewing is complete.  
0x0  
R
13  
12  
11  
10  
9
RESET_OCCURRED  
ERR_3WI  
This bit flags that a reset occurred (default on power-up is therefore Logic 1). 0x1  
R/W-1-C  
R/W-1-C  
R/W-1-C  
R/W-1-C  
R/W-1-C  
This bit flags an error in the interdie 3-wire interface communications.  
0x0  
0x0  
0x0  
0x0  
WDT_ERR  
This bit flags a WDT fault.  
Reserved.  
Reserved  
3WI_RC_ERR  
This bit flags an error if the 3-wire read and compare process is enabled and  
a parity error occurs.  
8
DAC_LATCH_MON_ERR  
This bit flags if the output of the DAC latches does not match the input.  
0x0  
R/W-1-C  
Rev. 0 | Page 66 of 72  
 
Data Sheet  
AD5753  
Bits  
7
Bit Name  
Description  
Reset  
Access  
Reserved  
Reserved.  
0x0  
R/W-1-C  
R/W-1-C  
6
INVERSE_DAC_CHECK_ERR  
This bit flags if a fault it detected between the DAC code driven by the digital 0x0  
core and an inverted copy.  
5
4
CAL_MEM_CRC_ERR  
This bit flags a CRC error for the CRC calculation of the calibration memory  
upon refresh.  
0x0  
R/W-1-C  
R/W-1-C  
INVALID_SPI_ACCESS_ERR  
This bit flags if an invalid SPI access is attempted, such as writing to or reading  
from an invalid or reserved address. This bit also flags if an SPI write is attempted  
directly after powering up but before a calibration memory refresh is performed  
or if an SPI write is attempted while a calibration memory refresh is in progress.  
Performing a two stage readback is permitted during a calibration memory  
refresh and does not cause this flag to set. Attempting to write to a read only  
register also causes this bit to assert.  
0x0  
3
2
Reserved  
Reserved.  
0x0  
0x0  
R/W-1-C  
R/W-1-C  
SCLK_COUNT_ERR  
This bit flags an SCLK falling edge count error. 32 clocks are required if SPI  
CRC is enabled and 24 clocks or 32 clocks are required if SPI CRC is not enabled.  
1
0
SLIPBIT_ERR  
SPI_CRC_ERR  
This bit flags an SPI frame slip bit error, that is, the MSB of the SPI word is not  
equal to the inverse of MSB − 1.  
0x0  
0x0  
R/W-1-C  
R/W-1-C  
This bit flags an SPI CRC error.  
Analog Diagnostic Results Register  
Address: 0x15, Reset: 0x150000, Name: ANALOG_DIAG_RESULTS  
The ANALOG_DIAG_RESULTS register contains an error flag corresponding to the four voltage nodes (VLDO, INT_AVCC, REFIN, and  
REFOUT) monitored in the background by comparators, as well as a flag for the main die temperature, which is also monitored by a  
comparator. Voltage output short circuit, current output open circuit, and dc-to-dc error flags are also contained in this register. Like the  
DIGITAL_DIAG_RESULTS register, all of the flags contained in this register require a 1 to be written to them to update or clear them.  
When the corresponding diagnostic features are not enabled, the respective error flags are read as zero.  
Table 48. Bit Descriptions for ANALOG_DIAG_RESULTS  
Bits  
Bit Name  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
R
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the FAULT pin.  
[20:16] REGISTER_ADDRESS  
[15:14] Reserved  
Register address.  
R
Reserved.  
R0  
13  
12  
11  
10  
9
VIOUT_OV_ERR  
Reserved  
This bit flags if the voltage at the VIOUT pin goes outside of the VDPC+ rail or AVSS rail.  
R/W-1-C  
R/W-1-C  
R/W-1-C  
R/W-1-C  
R/W-1-C  
Reserved.  
DCDC_P_SC_ERR  
Reserved  
This bit flags a dc-to-dc short-circuit error for the positive rail dc-to-dc circuit.  
Reserved.  
DCDC_P_PWR_ERR  
This bit flags a dc-to-dc regulation fault, that is, the dc-to-dc circuitry cannot reach 0x0  
the target VDPC+ voltage due to an insufficient AVDD1 voltage.  
8
7
Reserved  
Reserved.  
0x0  
R/W-1-C  
R/W-1-C  
IOUT_OC_ERR  
This bit flags a current output open circuit error. This error bit is set in the case of a 0x0  
current output open circuit and in the case where there is insufficient headroom  
available to the internal current output driver circuitry to provide the programmed  
output current.  
6
5
4
3
VOUT_SC_ERR  
This bit flags a voltage output short-circuit error.  
0x0  
0x0  
0x0  
0x0  
R/W-1-C  
R/W-1-C  
R/W-1-C  
R/W-1-C  
DCDC_DIE_TEMP_ERR This bit flags an overtemperature error for the dc-to-dc die.  
MAIN_DIE_TEMP_ERR  
REFOUT_ERR  
This bit flags an overtemperature error for the main die.  
This bit flags that the REFOUT node is outside of the comparator threshold levels  
or if the short-circuit current limit occurs.  
2
1
0
REFIN_ERR  
This bit flags that the REFIN node is outside of the comparator threshold levels.  
This bit flags that the INT_AVCC node is outside of the comparator threshold levels.  
0x0  
0x0  
0x0  
R/W-1-C  
R/W-1-C  
R/W-1-C  
INT_AVCC_ERR  
VLDO_ERR  
This bit flags that the VLDO node is outside of the comparator threshold levels or if  
the short-circuit current limit occurs.  
Rev. 0 | Page 67 of 72  
 
AD5753  
Data Sheet  
Status Register  
Address: 0x16, Reset: 0x100000, Name: Status  
FAULT  
The Status register contains ADC data and status bits, as well as the WDT, OR'ed analog and digital diagnostics, and the  
bits.  
pin status  
Table 49. Bit Descriptions for Status  
Bits  
Bit Name  
Description  
Reset Access  
21  
FAULT_PIN_STATUS The FAULT_PIN_STATUS bit reflects the inverted current status of the  
pin.  
0x0  
0x1  
R
R
FAULT  
20  
DIG_DIAG_STATUS  
This bit represents the result of a logical OR of the contents of Bits[15:0] in the DIGITAL_  
DIAG_RESULTS register, with the exception of the SLEW_BUSY bit. Therefore, if any of these  
bits are high, the DIG_DIAG_STATUS bit is high. Note that this bit is high on power-up due to  
the active RESET_OCCURRED flag. A quiet mode is also available (SPI_DIAG_QUIET_EN in  
the GP_CONFIG1 register), such that the logical OR function only incorporates Bits[D15:D3]  
of the DIGITAL_DIAG_RESULTS register (with the exception of the SLEW_BUSY bit). If an SPI  
CRC, SPI slip bit, or SCLK count error occurs, the DIG_DIAG_STATUS bit is not set high.  
19  
ANA_DIAG_STATUS This bit represents the result of a logical OR of the contents of Bits[13:0] in the  
ANALOG_DIAG_RESULTS register. Therefore, if any bit in this register is high, the  
ANA_DIAG_STATUS bit is high.  
0x0  
R
18  
17  
WDT_STATUS  
ADC_BUSY  
WDT status bit.  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
ADC busy status bit.  
[16:12] ADC_CH  
[11:0] ADC_DATA  
Address of the ADC channel represented by the ADC_DATA bits in the status register.  
12 bits of ADC data representing the converted signal addressed by the ADC_CH bits,  
Bits[16:12].  
Chip ID Register  
Address: 0x17, Reset: 0x170101, Name: CHIP_ID  
The CHIP_ID register contains the silicon revision ID of both the main die and the dc-to-dc die.  
Table 50. Bit Descriptions for CHIP_ID  
Bits  
Bit Name  
Description  
Reset  
0x0  
Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
Register address.  
pin.  
R
FAULT  
[20:16] REGISTER_ADDRESS  
[15:11] Reserved  
0x0  
R
Reserved.  
0x0  
R0  
R
[10:8]  
[7:0]  
DCDC_DIE_CHIP_ID  
MAIN_DIE_CHIP_ID  
These bits reflect the silicon revision number of the dc-to-dc die.  
These bits reflect the silicon revision number of the main die.  
0x2  
0x2  
R
Frequency Monitor Register  
Address: 0x18, Reset: 0x180000, Name: FREQ_MONITOR  
An internal frequency monitor uses the MCLK to create a pulse at a frequency of 1 kHz (MCLK/10,000). This pulse is used to increment  
a 16-bit counter. The value of the counter is available to read in the FREQ_MONITOR register. The user can poll this register periodically  
and use it both as a diagnostic tool for the internal oscillator (to monitor that the oscillator is running) and to measure the frequency. This  
feature is enabled by default via the FREQ_MON_EN bit in the DIGITAL_DIAG_CONFIG register.  
Table 51. Bit Descriptions for FREQ_MONITOR  
Bits  
Bit Name  
Description  
Reset  
0x0  
Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
Register address.  
pin.  
R
R
R
FAULT  
[20:16] REGISTER_ADDRESS  
[15:0] FREQ_MONITOR  
0x0  
Internal clock counter value.  
0x0  
Rev. 0 | Page 68 of 72  
Data Sheet  
AD5753  
Generic ID Register  
Address: 0x1C, Reset: 0x1C0000, Name: DEVICE_ID_3  
Table 52. Bit Descriptions for DEVICE_ID_3  
Bits  
Bit Name  
Description  
Reset  
0x0  
Access  
21  
FAULT_PIN_STATUS  
The FAULT_PIN_STATUS bit reflects the inverted current status of the  
pin.  
R
R
R
R
R
FAULT  
[20:16] REGISTER_ADDRESS  
Register address.  
Reserved.  
0x0  
[15:8]  
[7:3]  
[2:0]  
Reserved  
Reserved  
Generic ID  
0x0  
Reserved.  
0x0  
Generic ID.  
0x0  
000: reserved.  
001: reserved.  
010: AD5753.  
011: reserved.  
100: reserved.  
101: reserved.  
110: reserved.  
111: reserved.  
Rev. 0 | Page 69 of 72  
 
AD5753  
Data Sheet  
APPLICATIONS INFORMATION  
Assume the dc-to-dc converter is at 90% efficiency. Therefore,  
VDPC+ power = 512.5 mW. The total input power at the AD5753  
side of the isolated dc-to-dc power module is therefore 512.5 mW +  
19.18 mW = 531.68 mW. Subtracting the 400 mW load power  
from this value gives the power associated only with the  
AD5753, which is 131.68 mW.  
EXAMPLE MODULE POWER CALCULATION  
Using the example module shown in Figure 93, the power  
dissipation (excluding the power dissipated in the load) of the  
module can be calculated using the methodology shown in the  
Power Calculation Methodology (RLOAD = 1 kΩ) section.  
Assuming a maximum IOUT value of 20 mA and RLOAD value of  
1 kΩ, the total module power is calculated as approximately  
226 mW. The power associated with the external digital isolation is  
not included in the calculations because this power is dependent  
on the choice of component used.  
Assuming an 85% efficiency isolated, dc-to-dc power module,  
the total input power becomes 625.5 mW (see Figure 93).  
Total Module Power = Input Power Load Power  
Therefore, the equation is as follows:  
Replacing the 1 kΩ load with a short circuit, the power dissipation  
calculation is shown in the Power Calculation Methodology  
(RLOAD = 0 Ω) section, which shows that the total module power  
becomes approximately 206 mW in a short-circuit load  
condition.  
625.5 mW − 400 mW = 225.5 mW  
Power Calculation Methodology (RLOAD = 0 Ω)  
Using the voltage and current values in Table 53, the total  
quiescent current power is 19.18 mW.  
Next, use the following equation:  
Power Calculation Methodology (RLOAD = 1 kΩ)  
(VDPC+) × (20 mA + IDPC+) = 4.95 V × 20.5 mA = 101.5 mW  
Table 53. Quiescent Current Power Calculation  
Assume dc-to-dc converter at 65% efficiency. Therefore, VDPC+  
power = 156.2 mW. The total input power at the AD5753 side of  
the isolated dc-to-dc power module is therefore 156.2 mW +  
19.18 mW = 175.38 mW. Subtracting the 0 mW load power  
from this value gives the power associated only with the  
AD5753, which is 175.38 mW.  
Voltage (V)  
AVDD1 = 24  
AVDD2 = 5  
AVSS = −15  
VLOGIC = 3.3  
Current (mA)  
AIDD1 = 0.05  
AIDD2 = 2.9  
AISS = 0.23  
ILOGIC = 0.01  
Power (mW)  
1.2  
14.5  
3.45  
0.033  
Using the voltage and current values in Table 53, the total  
quiescent current power is 19.18 mW.  
Assuming an 85% efficiency isolated, dc-to-dc power module,  
the total input power becomes 206.33 mW (see Figure 93).  
Next, perform the following calculation:  
Total Module Power = Input Power Load Power  
Therefore, the equation is as follows:  
(VDPC+) × (20 mA + IDPC+) = 22.5 V × 20.5 mA = 461.25 mW  
206.33 mW − 0 mW = 206.33 mW  
Rev. 0 | Page 70 of 72  
 
 
 
 
 
Data Sheet  
AD5753  
(3) TOTAL MODULE POWER  
(1) TOTAL INPUT POWER  
+24V RAIL  
+24V  
–15V  
ISOLATED  
DC-TO-DC  
POWER  
+5V  
MODULE  
(85% EFFICIENCY)  
AV  
AV  
DD1  
DD2  
+5V  
+24V  
DC-TO-DC  
CIRCUITRY  
ADuM412D  
+3.3V  
LDO  
V
DPC+  
(2) LOAD POWER  
VI  
OUT  
OUTPUT  
CIRCUITRY  
AD5753  
R
LOAD  
V
DPC–  
DC-TO-DC  
CIRCUITRY  
AV  
SS  
–15V  
NOTES  
1. GRAY ITEMS HIGHLIGHT THE THREE DIFFERENTAREAS USED IN CALCULATIONS.  
Figure 93. Example Module Containing the AD5753  
Preliminary Technical Data  
Rev. 0 | Page 71 of 72  
 
AD5753  
Data Sheet  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
40  
31  
30  
1
0.50  
BSC  
*
4.70  
EXPOSED  
PAD  
4.60 SQ  
4.50  
21  
10  
11  
20  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
1.00  
0.95  
0.85  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-5  
WITH THE EXCEPTION OF THE EXPOSED PAD DIMENSION.  
Figure 94. 40-Lead Lead Frame Chip Scale Package [LFCSP]  
6 mm × 6 mm Body and 0.95 mm Package Height  
(CP-40-15)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CP-40-15  
CP-40-15  
−40°C to +115°C  
−40°C to +115°C  
AD5753BCPZ-REEL  
AD5753BCPZ-RL7  
EVAL-AD5753SDZ  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D17285-0-5/19(0)  
Rev. 0 | Page 72 of 72  
 
 

相关型号:

AD5754

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5754AREZ

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5754AREZ-REEL7

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5754BREZ

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5754BREZ-REEL7

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5754R

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5754RBREZ

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5754RBREZ-REEL7

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5755

Quad-Channel, 12-Bit, Serial Input, 4 mA to 20 mA Output
ADI

AD5755-1

Low Power HART Modem
ADI

AD5755-1ACPZ

Quad Channel, 16-Bit,Serial Input, 4 mA to 20 mA and Voltage Output DAC,Dynamic Power Control
ADI

AD5755-1ACPZ-REEL7

Quad Channel, 16-Bit,Serial Input, 4 mA to 20 mA and Voltage Output DAC,Dynamic Power Control
ADI