AD5760SDZ [ADI]

Voltage Output DAC;
AD5760SDZ
型号: AD5760SDZ
厂家: ADI    ADI
描述:

Voltage Output DAC

文件: 总27页 (文件大小:595K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultra Stable, 16-Bit 0.5 LSB INL,  
Voltage Output DAC  
Data Sheet  
AD5760  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
REFP  
CC  
DD  
True 16-bit voltage output DAC, 0.5 LSB INL  
8 nV/√Hz output noise spectral density  
0.00625 LSB long-term linearity error stability  
0.018 ppm/°C gain error temperature coefficient  
2.5 µs output voltage settling time  
6.8kΩ 6.8kΩ  
R1  
A1  
R
IOV  
CC  
FB  
R
FB  
INV  
SDIN  
SCLK  
SYNC  
SDO  
INPUT  
SHIFT  
16  
16  
16-BIT  
DAC  
DAC  
REG  
V
OUT  
REGISTER  
AND  
3.5 nV-sec midscale glitch impulse  
CONTROL  
LOGIC  
Integrated precision reference buffers  
Operating temperature range: −40°C to +125°C  
4 mm × 5 mm LFCSP package  
Wide power supply range of up to 16.5 V  
35 MHz Schmitt triggered digital interface  
1.8 V-compatible digital interface  
6kΩ  
LDAC  
CLR  
POWER-ON RESET  
AND CLEAR LOGIC  
RESET  
AD5760  
DGND  
V
AGND  
V
REFN  
SS  
Figure 1.  
APPLICATIONS  
Medical instrumentation  
Test and measurement  
Industrial control  
Scientific and aerospace instrumentation  
Data acquisition systems  
Digital gain and offset adjustment  
Power supply control  
Table 1. Related Devices  
Part No.  
Description  
AD5790  
AD5791  
AD5780  
AD5781  
20-bit, 2 LSB accurate DAC  
20-bit, 1 LSB accurate DAC  
18-bit, 1 LSB accurate DAC  
18-bit, 0.5 LSB INL  
AD5541A/AD5542A  
16-bit, 1 LSB accurate 5 V DAC  
GENERAL DESCRIPTION  
The AD57601 is a true 16-bit, unbuffered voltage output digital-  
to-analog converter (DAC) that operates from a bipolar supply  
of up to 33 V. The AD5760 accepts a positive reference input  
range of 5 V to VDD − 2.5 Vand a negative reference input range  
of VSS + 2.5 V to 0 V. The AD5760 offers a relative accuracy  
specification of 0.5 LSB maximum range, and operation is  
guaranteed monotonic with a 0.5 LSB differential nonlinearity  
(DNL) maximum range specification.  
PRODUCT HIGHLIGHTS  
1. True 16-bit accuracy.  
2. Wide power supply range of up to 16.5 V.  
3. −40°C to +125°C operating temperature range.  
4. Low 8 nV/√Hz noise.  
5. Low 0.018 ppm/°C gain error temperature coefficient.  
COMPANION PRODUCTS  
Output Amplifier Buffer: AD8675, ADA4898-1, ADA4004-1  
External Reference: ADR445  
The device uses a versatile 3-wire serial interface that operates  
at clock rates of up to 35 MHz and is compatible with standard  
serial peripheral interface (SPI), QSPI™, MICROWIRE™, and  
DSP interface standards. The device incorporates a power-on  
reset circuit that ensures that the DAC output powers up to 0 V  
in a known output impedance state and remains in this state  
until a valid write to the device takes place. The device provides  
an output clamp feature that places the output in a defined load  
state.  
DC-to-DC Design Tool: ADIsimPower™  
Additional companion products on the AD5780 product page.  
1 Protected by U.S. Patent No. 7,884,747 and 8,089,380.  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2011–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
 
AD5760  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DAC Architecture....................................................................... 18  
Serial Interface............................................................................ 18  
Hardware Control Pins.............................................................. 19  
On-Chip Registers...................................................................... 19  
AD5760 Features ............................................................................ 23  
Power-On to 0 V......................................................................... 23  
Power-Up Sequence ................................................................... 23  
Configuring the AD5760 .......................................................... 23  
DAC Output State ...................................................................... 23  
Output Amplifier Configuration.............................................. 23  
Applications Information.............................................................. 25  
Typical Operating Circuit ......................................................... 25  
Evaluation Board........................................................................ 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Companion Products ....................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 18  
REVISION HISTORY  
4/2018—Rev. E to Rev. F  
9/2012—Rev. B to Rev. C  
Added Power-Up Sequence Section and Figure 50; Renumbered  
Sequentially ..................................................................................... 23  
Updated Outline Dimensions ....................................................... 27  
Changes to Ordering Guide .......................................................... 27  
Changes to Patent Footnote .............................................................1  
Changes to Figure 46...................................................................... 17  
Changes to Terminology Section ................................................. 19  
Changes to Figure 53...................................................................... 25  
Changes to Figure 55...................................................................... 27  
Updated Outline Dimensions and changes to  
10/2016—Rev. D to Rev. E  
Changes to Figure 4 and Table 5..................................................... 8  
Changes to Figure 42, Figure 43, and Figure 44 ......................... 15  
Ordering Guide............................................................................... 29  
2/2012—Rev. A to Rev. B  
7/2013—Rev. C to Rev. D  
Deleted Linearity Compensation Section ......................................3  
Changes to t1 Test Conditions/Comments and Endnote 2 ......... 5  
Deleted Figure 4................................................................................ 7  
Changes to Pin 11 Description ....................................................... 8  
Deleted Daisy-Chain Operation Section..................................... 20  
12/2011—Rev. 0 to Rev. A  
Changes to Table 2.............................................................................3  
Changes to Figure 48...................................................................... 18  
Changes to DAC Register Section................................................ 22  
Changes to Table 10 and Table 11 ................................................ 23  
11/2011—Revision 0: Initial Version  
Rev. F | Page 2 of 27  
 
Data Sheet  
AD5760  
SPECIFICATIONS  
VDD = +12.5 V to +16.5 V, VSS = −16.5 V to −12.5 V, V REFP = +1 0 V, V REFN = −10 V, VCC = 2.7 V to 5.5 V, IOV CC = 1.71 V to 5.5 V, s  
RL = unloaded, CL = unloaded, TMIN to TMAX, unless otherwise noted.  
Table 2.  
A, B Versions1  
Parameter  
STATIC PERFORMANCE2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Resolution  
Integral Nonlinearity Error (Relative  
Accuracy)  
16  
−0.5  
Bits  
LSB  
+0.5  
B grade, VREFx  
=
10 V, +10 V and +5 V  
−2  
−0.5  
−1  
+2  
+0.5  
+1  
LSB  
LSB  
LSB  
A grade, VREFx  
B grade, VREFx  
A grade, VREFx  
=
=
=
10 V, +10 V and +5 V  
10 V, +10 V and +5 V  
10 V, +10 V and +5 V  
Differential Nonlinearity Error  
Long-Term Linearity Error Stability3  
Full-Scale Error  
0.00625  
0.2  
0.17  
LSB  
LSB  
LSB  
LSB  
After 750 hours at TA = 135°C  
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
−0.75  
−1.4  
−2.5  
+0.75  
+1.4  
+2.5  
0.1  
VREFP = 5 V, VREFN = 0 V  
Full-Scale Error Temperature  
Coefficient  
0.026  
ppm/°C  
VREFP = +10 V, VREFN = −10 V  
Zero-Scale Error  
−1.2  
−2.5  
−5.2  
0.0812  
0.044  
0.056  
0.025  
+1.2  
+2.5  
+5.2  
LSB  
LSB  
LSB  
ppm/°C  
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
VREFP = 5 V, VREFN = 0 V  
Zero-Scale Error Temperature  
Coefficient  
VREFP = +10 V, VREFN = −10 V  
Gain Error  
−19  
−35  
−68  
2.3  
1.9  
0.9  
0.018  
0.015  
+19  
+35  
+68  
ppm FSR  
ppm FSR  
ppm FSR  
ppm/°C  
%
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
VREFP = 5 V, VREFN = 0 V  
Gain Error Temperature Coefficient  
R1, RFB Matching  
VREFP = +10 V, VREFN = −10 V  
OUTPUT CHARACTERISTICS  
Output Voltage Range  
VREFN  
VREFP  
V
Output Voltage Settling Time  
2.5  
µs  
10 V step to 0.02%, using the ADA4898-1  
buffer in unity-gain mode  
3.5  
8
8
µs  
125 code step to 1 LSB4  
Output Noise Spectral Density  
nV/√Hz  
nV/√Hz  
µV p-p  
At 1 kHz, DAC code = midscale  
At 10 kHz, DAC code = midscale  
DAC code = midscale, 0.1 Hz to 10 Hz  
bandwidth  
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
Output Voltage Noise  
1.1  
Midscale Glitch Impulse4  
14  
3.5  
4
14  
3.5  
4
57  
0.27  
3.4  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
kΩ  
VREFP = 5 V, VREFN = 0 V  
MSB Segment Glitch Impulse4  
VREFP = +10 V, VREFN = −10 V, see Figure 42  
VREFP = 10 V, VREFN = 0 V, see Figure 43  
VREFP = 5 V, VREFN = 0 V, see Figure 44  
On removal of output ground clamp  
Output Enabled Glitch Impulse  
Digital Feedthrough  
DC Output Impedance (Normal  
Mode)  
DC Output Impedance (Output  
Clamped to Ground)  
6
kΩ  
Rev. F | Page 3 of 27  
 
AD5760  
Data Sheet  
A, B Versions1  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
REFERENCE INPUTS  
VREFP Input Range  
VREFN Input Range  
Input Bias Current  
5
VDD − 2.5  
0
+20  
+4  
V
V
nA  
VSS + 2.5  
−20  
−4  
−0.63  
−0.63  
1
TA = 0°C to 105°C  
VREFP, VREFN  
Input Capacitance  
LOGIC INPUTS  
Input Current5  
Input Low Voltage, VIL  
Input High Voltage, VIH  
Pin Capacitance  
pF  
−1  
+1  
µA  
V
V
0.3 × IOVCC  
IOVCC = 1.71 V to 5.5 V  
IOVCC = 1.71 V to 5.5 V  
0.7 × IOVCC  
5
3
pF  
LOGIC OUTPUT (SDO)  
Output Low Voltage, VOL  
Output High Voltage, VOH  
High Impedance Leakage Current  
High Impedance Output  
Capacitance  
0.4  
1
V
V
µA  
pF  
IOVCC = 1.71 V to 5.5 V, sinking 1 mA  
IOVCC = 1.71 V to 5.5 V, sourcing 1 mA  
IOVCC − 0.5  
POWER REQUIREMENTS  
All digital inputs at DGND or IOVCC  
VDD  
VSS  
VCC  
7.5  
VDD − 33  
2.7  
VSS + 33  
−2.5  
5.5  
V
V
V
IOVCC  
1.71  
5.5  
V
IOVCC ≤ VCC  
IDD  
ISS  
ICC  
IOICC  
10.3  
−10  
600  
52  
7.5  
1.5  
90  
14  
mA  
mA  
µA  
µA  
µV/V  
µV/V  
dB  
dB  
−14  
900  
140  
SDO disabled  
∆VDD 10%, VSS = −15 V  
∆VSS 10%, VDD = 15 V  
∆VDD 200 mV, 50 Hz/60 Hz, VSS = −15 V  
∆VSS 200 mV, 50 Hz/60 Hz, VDD = 15 V  
DC Power Supply Rejection Ratio  
AC Power Supply Rejection Ratio  
90  
1 Temperature range: −40°C to +125°C, typical conditions: TA = 25°C, VDD = +15 V, VSS = −15 V, VREFP = +10 V, VREFN = −10 V.  
2 Performance characterized with the AD8675ARZ output buffer.  
3 Linearity error refers to both INL error and DNL error; either parameter can be expected to drift by the amount specified after the length of time specified.  
4 The AD5760 is configured in unity-gain mode with a low-pass RC filter on the output. R = 300 Ω, C = 143 pF (total capacitance seen by the output buffer, lead  
capacitance, and so forth).  
5 Current flowing in an individual logic pin.  
Rev. F | Page 4 of 27  
 
Data Sheet  
AD5760  
TIMING CHARACTERISTICS  
VCC = 2.7 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Limit1  
Parameter  
IOVCC = 1.71 V to 3.3 V  
40  
IOVCC = 3.3 V to 5.5 V Unit  
28  
Test Conditions/Comments  
SCLK cycle time  
2
t1  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
ns typ  
ns min  
ns typ  
ns min  
92  
15  
9
60  
10  
5
SCLK cycle time (readback mode)  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge hold time  
Minimum SYNC high time  
t2  
t3  
t4  
5
5
t5  
2
2
t6  
48  
8
40  
6
t7  
SYNC rising edge to next SCLK falling edge ignore  
Data setup time  
Data hold time  
LDAC falling edge to SYNC falling edge  
SYNC rising edge to LDAC falling edge  
LDAC pulse width low  
t8  
t9  
9
7
7
12  
13  
20  
14  
130  
130  
50  
140  
0
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
10  
16  
11  
130  
130  
50  
140  
0
LDAC falling edge to output response time  
SYNC rising edge to output response time (LDAC tied low)  
CLR pulse width low  
CLR pulse activation time  
SYNC falling edge to first SCLK rising edge  
65  
62  
0
60  
45  
0
ns max SYNC rising edge to SDO tristate (CL = 50 pF)  
ns max SCLK rising edge to SDO valid (CL = 50 pF)  
ns min  
ns typ  
ns typ  
SYNC rising edge to SCLK rising edge ignore  
RESET pulse width low  
35  
150  
35  
150  
RESET pulse activation time  
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVCC) and timed from a voltage level of (VIL + VIH)/2.  
2 Maximum SCLK frequency is 35 MHz for write mode and 16 MHz for readback mode.  
Rev. F | Page 5 of 27  
 
 
AD5760  
Data Sheet  
t1  
SCLK  
1
2
24  
t3  
t2  
t6  
t4  
t5  
SYNC  
SDIN  
t9  
t8  
DB23  
DB0  
t12  
t10  
t11  
LDAC  
t13  
V
OUT  
OUT  
t14  
V
t15  
CLR  
t16  
V
OUT  
t21  
RESET  
t22  
V
OUT  
Figure 2. Write Mode Timing Diagram  
t20  
t1  
t17  
t7  
SCLK  
1
2
24  
1
2
24  
t3  
t2  
t6  
t17  
t5  
t5  
t4  
SYNC  
SDIN  
t9  
t8  
DB23  
DB0  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
t18  
t19  
DB23  
DB0  
SDO  
REGISTER CONTENTS CLOCKED OUT  
Figure 3. Readback Mode Timing Diagram  
Rev. F | Page 6 of 27  
 
Data Sheet  
AD5760  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Transient currents of up to  
100 mA do not cause SCR latch-up.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 4.  
Parameter  
VDD to AGND  
VSS to AGND  
VDD to VSS  
VCC to DGND  
IOVCC to DGND  
Rating  
−0.3 V to +34 V  
−34 V to +0.3 V  
−0.3 V to +34 V  
−0.3 V to +7 V  
−0.3 V to VCC + 3 V or +7 V  
(whichever is less)  
This device is a high performance integrated circuit with an  
ESD rating of 1.6 kV, and it is ESD sensitive. Proper precautions  
must be taken for handling and assembly.  
Digital Inputs to DGND  
−0.3 V to IOVCC + 0.3 V or  
+7 V (whichever is less)  
ESD CAUTION  
VOUT to AGND  
VREFP to AGND  
VREFN to AGND  
DGND to AGND  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
VSS − 0.3 V to +0.3 V  
−0.3 V to +0.3 V  
Operating Temperature Range, TA  
Industrial  
Storage Temperature Range  
Maximum Junction Temperature,  
TJ max  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Power Dissipation  
LFCSP Package  
(TJ max − TA)/θJA  
θJA Thermal Impedance  
Lead Temperature  
Soldering  
31.0°C/W  
JEDEC industry standard  
J-STD-020  
ESD (Human Body Model)  
1.6 kV  
Rev. F | Page 7 of 27  
 
 
AD5760  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
AGND  
1
2
3
19  
18  
17  
16  
15  
14  
13  
OUT  
V
V
SS  
REFP  
V
V
DD  
SS  
AD5760  
TOP VIEW  
(Not to Scale)  
V
RESET 4  
V
REFN  
5
6
DGND  
SYNC  
SCLK  
DD  
CLR  
LDAC 7  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
2. NEGATIVE ANALOG SUPPLY CONNECTION (V ). A VOLTAGE  
SS  
IN THE RANGE OF −16.5V TO −2.5V CAN BE CONNECTED TO  
THIS PIN. V MUST BE DECOUPLED TO AGND.  
SS  
3. EXPOSED PAD. THE EXPOSED PAD CAN BE LEFT  
ELECTRICALLY UNCONNECTED PROVIDED THAT A SUPPLY  
CONNECTION IS MADE AT THE VSS PINS. IT IS RECOMMENDED  
THAT THE EXPOSED PAD BE THERMALLY CONNECTED TO A  
COPPER PLANE FOR ENHANCED THERMAL PERFORMANCE.  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3, 5  
VOUT  
VREFP  
VDD  
Analog Output Voltage.  
Positive Reference Voltage Input. A voltage in the range of 5 V to VDD − 2.5 V can be connected to this pin.  
Positive Analog Supply Connection. A voltage in the range of 7.5 V to 16.5 V can be connected to this pin.  
VDD must be decoupled to AGND.  
4
6
RESET  
CLR  
Active Low Reset. Asserting this pin returns the AD5760 to its power-on status.  
Active Low Input. Asserting this pin sets the DAC register to a user defined value (see Table 12) and updates  
the DAC output. The output value depends on the DAC register coding that is being used, either binary or  
twos complement.  
7
LDAC  
Active Low Load DAC Logic Input. This pin is used to update the DAC register and, consequently, the analog  
output. When tied permanently low, the output is updated on the rising edge of SYNC. If LDAC is held high  
during the write cycle, the input register is updated, but the output update is held off until the falling edge  
of LDAC. Do not leave the LDAC pin unconnected.  
8
9
VCC  
IOVCC  
Digital Supply. Voltage range is from 2.7 V to 5.5 V. VCC should be decoupled to DGND.  
Digital Interface Supply. Digital threshold levels are referenced to the voltage applied to this pin. Voltage  
range is from 1.71 V to 5.5 V.  
10, 21, 22, 23  
11  
12  
DNC  
SDO  
SDIN  
Do Not Connect. Do not connect to these pins.  
Serial Data Output. Data is clocked out on the rising edge of the serial clock input.  
Serial Data Input. This device has a 24-bit input shift register. Data is clocked into the register on the falling  
edge of the serial clock input.  
13  
14  
SCLK  
SYNC  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input.  
Data can be transferred at rates of up to 35 MHz.  
Level Triggered Control Input (Active Low). This is the frame synchronization signal for the input data.  
When SYNC goes low, it enables the input shift register, and data is then transferred in on the falling edges  
of the following clocks. The DAC is updated on the rising edge of SYNC.  
15  
16  
17, 18  
DGND  
VREFN  
VSS  
Ground Reference Pin for Digital Circuitry.  
Negative Reference Voltage Input.  
Negative Analog Supply Connection. A voltage in the range of −16.5 V to −2.5 V can be connected to this  
pin. VSS must be decoupled to AGND.  
19  
20  
24  
AGND  
RFB  
INV  
Ground Reference Pin for Analog Circuitry.  
Feedback Connection for External Amplifier. See the AD5760 Features section for further details.  
Inverting Input Connection for External Amplifier. See the AD5760 Features section for further details.  
EPAD (VSS)  
Exposed Pad. The exposed pad can be left electrically unconnected provided that a supply connection is  
made at the VSS pins. It is recommended that the exposed pad be thermally connected to a copper plane for  
enhanced thermal performance.  
Rev. F | Page 8 of 27  
 
Data Sheet  
AD5760  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.10  
0.10  
0.05  
0
V
V
V
V
= +5V  
= 0V  
V
V
V
V
= +10V  
= –10V  
REFP  
REFN  
DD  
SS  
REFP  
REFN  
0.08  
0.06  
0.04  
0.02  
0
= +15V  
= –15V  
= +15V  
= –15V  
DD  
SS  
–0.05  
–0.10  
–0.15  
–0.20  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
AD8675 OUTPUT BUFFER  
= 25°C  
AD8675 OUTPUT BUFFER  
T = 25°C  
A
T
A
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
DAC CODE  
DAC CODE  
Figure 5. Integral Nonlinearity Error vs. DAC Code, 10 V Span  
Figure 8. Integral Nonlinearity Error vs. DAC Code, 5 V Span, ×2 Gain Mode  
0.15  
0.10  
0.05  
0
0.10  
V
V
V
V
= +10V  
= 0V  
V
V
V
V
= +10V  
= –10V  
REFP  
REFN  
DD  
SS  
REFP  
REFN  
DD  
SS  
0.08  
0.06  
0.04  
0.02  
0
= +15V  
= +15V  
= –15V  
= –15V  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.05  
–0.10  
AD8675 OUTPUT BUFFER  
= 25°C  
AD8675 OUTPUT BUFFER  
T = 25°C  
A
T
A
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
DAC CODE  
DAC CODE  
Figure 6. Integral Nonlinearity Error vs. DAC Code, 10 V Span  
Figure 9. Differential Nonlinearity Error vs. DAC Code, 10 V Span  
0.10  
0.05  
0
0.20  
V
V
V
V
= +5V  
= 0V  
V
V
V
V
= +10V  
= 0V  
REFP  
REFN  
DD  
SS  
REFP  
REFN  
DD  
SS  
= +15V  
= –15V  
= +15V  
0.15  
0.10  
0.05  
0
= –15V  
–0.05  
–0.10  
–0.15  
–0.20  
–0.05  
–0.10  
AD8675 OUTPUT BUFFER  
= 25°C  
AD8675 OUTPUT BUFFER  
= 25°C  
T
T
A
A
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
DAC CODE  
DAC CODE  
Figure 7. Integral Nonlinearity Error vs. DAC Code, 5 V Span  
Figure 10. Differential Nonlinearity Error vs. DAC Code, 10 V Span  
Rev. F | Page 9 of 27  
 
 
 
AD5760  
Data Sheet  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.09  
0.07  
0.05  
0.03  
0.01  
–0.01  
V
V
V
V
= +5V  
= 0V  
V
V
= +15V  
= –15V  
REFP  
REFN  
DD  
SS  
DD  
SS  
= +15V  
= –15V  
AD8675 OUTPUT BUFFER  
±10V SPAN MAX INL  
+10V SPAN MAX INL  
+5V SPAN MAX INL  
±10V SPAN MIN INL  
+10V SPAN MIN INL  
+5V SPAN MIN INL  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
AD8675 OUTPUT BUFFER  
= 25°C  
T
A
–40  
–20  
0
20  
40  
60  
80  
100  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
TEMPERATURE (°C)  
DAC CODE  
Figure 14. Differential Nonlinearity Error vs. Temperature  
Figure 11. Differential Nonlinearity Error vs. DAC Code, 5 V Span  
0.08  
AD8675 OUTPUT BUFFER  
0.09  
INL MAX  
T
= 25°C  
A
0.06  
0.04  
0.07  
0.05  
0.02  
T
V
V
= 25°C  
A
0
0.03  
= +10V  
REFP  
REFN  
= –10V  
–0.02  
–0.04  
–0.06  
–0.08  
–0.1.0  
AD8675 OUTPUT BUFFER  
0.01  
–0.01  
–0.03  
–0.05  
INL MIN  
14.5  
V
V
V
V
= +5V  
= 0V  
REFP  
REFN  
DD  
SS  
= +15V  
= –15V  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
12.5  
13.0  
13.5  
14.0  
15.0  
15.5  
16.0  
16.5  
V
/|V | (V)  
DD SS  
DAC CODE  
Figure 12. Differential Nonlinearity Error vs. DAC Code, 5 V Span,  
×2 Gain Mode  
Figure 15. Integral Nonlinearity Error vs. Supply Voltage, 10 V Span  
0.15  
0.20  
V
V
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
0.15  
0.10  
0.05  
0
0.10  
INL MAX  
0.05  
T
= 25°C  
A
V
= 5V  
0
–0.05  
–0.10  
–0.15  
REFP  
REFN  
±10V SPAN MAX INL  
+10V SPAN MAX INL  
+5V SPAN MAX INL  
±10V SPAN MIN INL  
+10V SPAN MIN INL  
+5V SPAN MIN INL  
V
= 0V  
AD8675 OUTPUT BUFFER  
–0.05  
–0.10  
–0.15  
INL MIN  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
–40  
–20  
0
20  
40  
60  
80  
100  
V
TEMPERATURE (°C)  
DD SS  
Figure 13. Integral Nonlinearity Error vs. Temperature  
Figure 16. Integral Nonlinearity Error vs. Supply Voltage, 5 V Span  
Rev. F | Page 10 of 27  
Data Sheet  
AD5760  
0.8  
0.6  
0.4  
0.2  
0
0.09  
0.08  
0.07  
0.06  
T
V
V
= 25°C  
A
= 5V  
= 0V  
REFP  
REFN  
DNL MAX  
AD8675 OUTPUT BUFFER  
T
= 25°C  
0.05  
0.04  
0.03  
0.02  
0.01  
0
A
V
V
= +10V  
REFP  
REFN  
= –10V  
AD8675 OUTPUT BUFFER  
–0.2  
DNL MIN  
14.5  
–0.4  
–0.01  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
12.5  
13.0  
13.5  
14.0  
15.0  
15.5  
16.0  
16.5  
V
DD SS  
V
/|V | (V)  
DD SS  
Figure 17. Differential Nonlinearity Error vs. Supply Voltage, 10 V Span  
Figure 20. Zero-Scale Error vs. Supply Voltage, 5 V Span  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
–0.08  
–0.09  
–0.10  
–0.11  
–0.12  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
DNL MAX  
T
= 25°C  
A
V
= 5V  
REFP  
REFN  
V
= 0V  
AD8675 OUTPUT BUFFER  
T
V
V
= 25°C  
A
= +10V  
REFP  
DNL MIN  
= –10V  
REFN  
AD8675 OUTPUT BUFFER  
–0.01  
12.5 13.0 13.5 14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
V
/|V | (V)  
DD SS  
V
DD SS  
Figure 18. Differential Nonlinearity Error vs. Supply Voltage, 5 V Span  
Figure 21. Midscale Error vs. Supply Voltage, 10 V Span  
0.15  
0.5  
0.4  
T
V
V
= 25°C  
A
= +10V  
REFP  
= –10V  
REFN  
AD8675 OUTPUT BUFFER  
0.10  
0.05  
0
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.05  
T
= 25°C  
A
V
V
= 5V  
= 0V  
REFP  
REFN  
AD8675 OUTPUT BUFFER  
7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
–0.10  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
V
/|V | (V)  
V
DD SS  
DD SS  
Figure 19. Zero-Scale Error vs. Supply Voltage, 10 V Span  
Figure 22. Midscale Error vs. Supply Voltage, 5 V Span  
Rev. F | Page 11 of 27  
AD5760  
Data Sheet  
0.14  
0.38  
0.36  
0.34  
0.32  
0.30  
0.28  
0.26  
T
A
= 25°C  
= +10V  
T
V
V
= 25°C  
A
V
= 5V  
REFP  
REFP  
= 0V  
REFN  
V
= –10V  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
REFN  
AD8675 OUTPUT BUFFER  
AD8675 OUTPUT BUFFER  
12.5  
13.  
0
13.5  
14.  
0
V
14.5  
15.  
0
15.5  
16.  
0
16.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
/|V | (V)  
DD SS  
V
DD SS  
Figure 23. Full-Scale Error vs. Supply Voltage, 10 V Span  
Figure 26. Gain Error vs. Supply Voltage, 5 V Span  
0.5  
0.3  
0.08  
0.06  
0.04  
0.02  
0
T
V
V
= 25°C  
A
INL MAX  
= 5V  
= 0V  
REFP  
REFN  
AD8675 OUTPUT BUFFER  
0.1  
T
= 25°C  
= +15V  
SS  
A
DD  
V
–0.1  
–0.3  
–0.5  
–0.7  
–0.9  
V
= –15V  
AD8675 OUTPUT BUFFER  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
INL MIN  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
DD SS  
V
| (V)  
REFP  
REFN  
Figure 27. Integral Nonlinearity Error vs. Reference Voltage  
Figure 24. Full-Scale Error vs. Supply Voltage, 5 V Span  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.08  
T
= 25°C  
A
V
= +10V  
REFP  
REFN  
V
= –10V  
INL MAX  
AD8675 OUTPUT BUFFER  
0.06  
0.04  
0.02  
0
T
= 25°C  
= +15V  
SS  
A
DD  
V
V
= –15V  
AD8675 OUTPUT BUFFER  
–0.02  
–0.04  
–0.06  
INL MIN  
–0.02  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
12.5  
13.0  
13.5  
14.0  
V
14.5  
15.0  
15.5  
16.0  
16.5  
/|V | (V)  
DD SS  
V
| (V)  
REFP  
REFN  
Figure 28. Differential Nonlinearity Error vs. Reference Voltage  
Figure 25. Gain Error vs. Supply Voltage, 10 V Span  
Rev. F | Page 12 of 27  
Data Sheet  
AD5760  
–0.25  
–0.30  
–0.35  
–0.40  
–0.45  
–0.50  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
–0.08  
–0.09  
–0.10  
T
V
V
= 25°C  
A
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
T
= 25°C  
DD  
SS  
A
V
= +15V  
= –15V  
V
AD8675 OUTPUT BUFFER  
5.0  
5.5  
6.0  
6.5  
V
7.0  
7.5  
| (V)  
REFN  
8.0  
8.5  
9.0  
9.5 10.0  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
| (V)  
REFP  
REFN  
/|V  
REFP  
Figure 32. Gain Error vs. Reference Voltage  
Figure 29. Zero-Scale Error vs. Reference Voltage  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
–0.05  
–0.07  
–0.09  
–0.11  
–0.13  
–0.15  
–0.17  
–0.19  
–0.21  
–0.23  
–0.25  
T
V
V
= 25°C  
±10V SPAN  
+10V SPAN  
+5V SPAN  
A
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
V
V
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
40 60 80 100  
TEMPERATURE (°C)  
–40  
–20  
0
20  
5.0  
5.5  
6.0  
6.5  
V
7.0  
7.5  
| (V)  
REFN  
8.0  
8.5  
9.0  
9.5 10.0  
/|V  
REFP  
Figure 33. Full-Scale Error vs. Temperature  
Figure 30. Midscale Error vs. Reference Voltage  
0.15  
0.10  
0.40  
0.38  
0.36  
0.34  
0.32  
0.3  
±10V SPAN  
T
= 25°C  
A
V
V
+10V SPAN  
+5V SPAN  
= +15V  
DD  
SS  
= –15V  
AD8675 OUTPUT BUFFER  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
V
V
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
–40 –20 20  
TEMPERATURE (°C)  
0
40  
60  
80  
100  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
| (V)  
REFP  
REFN  
Figure 34. Midscale Error vs. Temperature  
Figure 31. Full-Scale Error vs. Reference Voltage  
Rev. F | Page 13 of 27  
AD5760  
Data Sheet  
0.4  
0.010  
0.008  
0.006  
0.004  
0.002  
0
±10V SPAN  
+10V SPAN  
+5V SPAN  
I
DD  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
I
SS  
V
V
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
40 60 80 100  
TEMPERATURE (°C)  
–0.8  
–40  
–20  
0
20  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
V
/V (V)  
DD SS  
Figure 35. Zero-Scale Error vs. Temperature  
Figure 38. Power Supply Currents vs. Power Supply Voltages  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
6
4
2
0
±10V SPAN  
+10V SPAN  
+5V SPAN  
V
V
V
V
= +15V  
= –15V  
REFP  
REFN  
DD  
SS  
= +10V  
= –10V  
–2  
–4  
ADA4808-1 BUFFERED  
LOAD = 10MΩ | | 20pF  
–6  
V
V
= +15V  
= –15V  
DD  
SS  
–8  
AD8675 OUTPUT BUFFER  
–1.0  
–40  
–10  
–1  
–20  
0
20  
TEMPERATURE (°C)  
40 60 80 100  
0
1
2
3
4
5
TIME (µs)  
Figure 39. Rising Full-Scale Voltage Step  
Figure 36. Gain Error vs. Temperature  
6
4
900  
IOV = 5V, LOGIC VOLTAGE  
CC  
INCREASING  
V
V
V
V
= +15V  
= –15V  
T
= 25°C  
DD  
SS  
A
800  
700  
600  
500  
400  
300  
200  
100  
0
= +10V  
IOV = 5V, LOGIC VOLTAGE  
REFP  
CC  
= –10V  
REFN  
DECREASING  
ADA4808-1 BUFFERED  
LOAD = 10MΩ | | 20pF  
IOV = 3V, LOGIC VOLTAGE  
CC  
2
INCREASING  
IOV = 3V, LOGIC VOLTAGE  
CC  
0
DECREASING  
–2  
–4  
–6  
–8  
–10  
0
1
2
3
4
5
6
–1  
0
1
2
3
4
5
LOGIC INPUT VOLTAGE (V)  
TIME (µs)  
Figure 40. Falling Full-Scale Voltage Step  
Figure 37. IOICC vs. Logic Input Voltage  
Rev. F | Page 14 of 27  
Data Sheet  
AD5760  
10  
9
8
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
V
= 5V  
= 0V  
NEGATIVE  
POSITIVE  
REFP  
REFN  
UNITY-GAIN MODE  
ADA4898-1  
RC LOW-PASS FILTER  
V
V
= +10V  
= –10V  
REFP  
REFN  
RC LOW-PASS FILTER  
UNITY-GAIN MODE  
ADA4898-1  
–1  
0
1
2
3
4
5
TIME (µs)  
CODE  
Figure 41. 500 Code Step Settling Time  
Figure 44. 6 MSB Segment Glitch Energy for 5 V VREF  
55  
25  
20  
15  
10  
5
±10V REF  
10V REF  
5V REF  
V
V
= +10V  
= –10V  
NEGATIVE  
POSITIVE  
REFP  
REFN  
45  
35  
UNITY-GAIN MODE  
ADA4898-1  
RC LOW PASS FILTER  
POSITIVE  
CODE CHANGE  
NEGATIVE  
CODE CHANGE  
25  
15  
5
–5  
–15  
–25  
–1  
0
0
1
2
3
TIME (µs)  
CODE  
Figure 45. Midscale Peak-to-Peak Glitch for 10 V  
Figure 42. 6 MSB Segment Glitch Energy for 10 V VREF  
800  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
= +15V  
MIDSCALE CODE LOADED  
OUTPUT UNBUFFERED  
AD8676 REFERENCE BUFFERS  
V
V
= 10V  
= 0V  
NEGATIVE  
POSITIVE  
A
REFP  
REFN  
V
V
V
V
DD  
UNITY-GAIN MODE  
= –15V  
600  
400  
SS  
ADA4898-1  
= +10V  
= –10V  
REFP  
REFN  
RC LOW-PASS FILTER  
200  
0
–200  
–400  
–600  
0
1
2
3
4
5
6
7
8
9
10  
TIME (Seconds)  
CODE  
Figure 46. Voltage Output Noise, 0.1 Hz to 10 Hz Bandwidth  
Figure 43. 6 MSB Segment Glitch Energy for 10 V VRE  
Rev. F | Page 15 of 27  
 
 
 
AD5760  
Data Sheet  
100  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
V
V
V
= +15V  
= –15V  
REFP  
REFN  
V
= +15V  
= –15V  
REFP  
DD  
SS  
DD  
SS  
V
V
V
= +10V  
= –10V  
= +10V  
= –10V  
REFN  
UNITY GAIN  
ADA4898-1  
10  
–0.02  
1
0
1
2
3
4
5
6
0.1  
1
10  
100  
1k  
10k  
TIME (µs)  
FREQUENCY (Hz)  
Figure 47. Noise Spectral Density vs. Frequency  
Figure 48. Glitch Impulse on Removal of Output Clamp  
Rev. F | Page 16 of 27  
 
Data Sheet  
AD5760  
TERMINOLOGY  
Relative Accuracy  
Output Voltage Settling Time  
Relative accuracy, or integral nonlinearity (INL), is a measure of  
the maximum deviation, in LSB, from a straight line passing  
through the endpoints of the DAC transfer function. A typical  
INL error vs. code plot is shown in Figure 5.  
Output voltage settling time is the amount of time it takes for  
the output voltage to settle to a specified level for a specified  
change in voltage. For fast settling applications, a high speed  
buffer amplifier is required to buffer the load from the 3.4 kΩ  
output impedance of the AD5760, in which case, it is the  
amplifier that determines the settling time.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic. A  
typical DNL error vs. code plot is shown in Figure 9.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is specified as the area of the glitch in nV-sec and is  
measured when the digital input code is changed by 1 LSB at  
the major carry transition (see Figure 48).  
Linearity Error Long-Term Stability  
Linearity error long-term stability is a measure of the stability of  
the linearity of the DAC over a long period of time. It is specified  
in LSB for a time period of 500 hours and 1000 hours at an  
elevated ambient temperature.  
Output Enabled Glitch Impulse  
Output enabled glitch impulse is the impulse injected into the  
analog output when the clamp to ground on the DAC output is  
removed. It is specified as the area of the glitch in nV-sec (see  
Figure 48).  
Zero-Scale Error  
Zero-scale error is a measure of the output error when zero-scale  
code (0x00000) is loaded to the DAC register. Ideally, the output  
voltage should be VREFN. Zero-scale error is expressed in LSBs.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC but is measured when the DAC output is not updated. It is  
specified in nV-sec and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s, and vice versa.  
Zero-Scale Error Temperature Coefficient  
Zero-scale error temperature coefficient is a measure of the  
change in zero-scale error with a change in temperature. It is  
expressed in ppm FSR/°C.  
Total Harmonic Distortion (THD)  
Full-Scale Error  
Total harmonic distortion is the ratio of the rms sum of the  
harmonics of the DAC output to the fundamental value. Only  
the second to fifth harmonics are included.  
Full-scale error is a measure of the output error when full-scale  
code (0x0FFFF) is loaded to the DAC register. Ideally, the  
output voltage should be VREFP − 1 LSB. Full-scale error is  
expressed in LSBs.  
DC Power Supply Rejection Ratio.  
DC power supply rejection ratio is a measure of the rejection of  
the output voltage to dc changes in the power supplies applied  
to the DAC. It is measured for a given dc change in power  
supply voltage and is expressed in µV/V.  
Full-Scale Error Temperature Coefficient  
Full-scale error temperature coefficient is a measure of the  
change in full-scale error with a change in temperature. It is  
expressed in ppm FSR/°C.  
AC Power Supply Rejection Ratio (AC PSRR)  
Gain Error  
AC power supply rejection ratio is a measure of the rejection of  
the output voltage to ac changes in the power supplies applied  
to the DAC. It is measured for a given amplitude and frequency  
change in power supply voltage and is expressed in decibels.  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal, expressed in ppm of the full-scale range.  
Gain Error Temperature Coefficient  
Gain error temperature coefficient is a measure of the change in  
gain error with a change in temperature. It is expressed in ppm  
FSR/°C.  
Midscale Error  
Midscale error is a measure of the output error when midscale  
code (0x08000) is loaded to the DAC register. Ideally, the output  
voltage should be (VREFP – VREFN)/2 +VREFN. Midscale error is  
expressed in LSBs.  
Rev. F | Page 17 of 27  
 
AD5760  
Data Sheet  
THEORY OF OPERATION  
R
R
R
V
The AD5760 is a high accuracy, fast settling, single, 16-bit,  
serial input, voltage output DAC. It operates from a VDD supply  
voltage of 7.5 V to 16.5 V and a VSS supply of −16.5 V to −2.5 V.  
Data is written to the AD5760 in a 24-bit word format via a 3-wire  
serial interface. The AD5760 incorporates a power-on reset  
circuit that ensures the DAC output powers up to 0 V with the  
OUT  
...  
...  
...  
2R  
2R  
E0  
2R  
2R  
S0  
2R  
S1  
2R  
S9  
2R  
...  
E61  
E62  
V
REFP  
V
REFN  
VOUT pin clamped to AGND through a ~6 kΩ internal resistor.  
10-BIT R-2R LADDER  
SIX MSBs DECODED INTO  
63 EQUAL SEGMENTS  
DAC ARCHITECTURE  
Figure 49. DAC Ladder Structure Serial Interface  
The architecture of the AD5760 consists of two matched DAC  
sections. A simplified circuit diagram is shown in Figure 49.  
The six MSBs of the 16-bit data-word are decoded to drive  
63 switches, E0 to E62. Each of these switches connects one of  
63 matched resistors to either the buffered VREFP or buffered  
VREFN voltage. The remaining 10 bits of the data-word drive the  
S0 to S9 switches of a 10-bit voltage mode R-2R ladder network.  
SERIAL INTERFACE  
The AD5760 has a 3-wire serial interface (  
, SCLK, and  
SYNC  
SDIN) that is compatible with SPI, QSPI, and MICROWIRE  
interface standards, as well as most DSPs (see Figure 2 for a  
timing diagram).  
Input Shift Register  
The input shift register is 24 bits wide. Data is loaded into the  
device MSB first as a 24-bit word under the control of a serial  
clock input, SCLK, which can operate at up to 35 MHz. The  
W
input register consists of a R/ bit, three address bits, and  
20 data bits as shown in Table 6. The timing diagram for this  
operation is shown in Figure 2.  
Table 6. Input Shift Register Format  
MSB  
LSB  
DB23  
DB22  
DB21  
Register address  
DB20  
DB19 to DB0  
R/W  
Register data  
Table 7. Decoding the Input Shift Register  
R/W  
X1  
0
0
0
0
1
1
Register Address  
Description  
0
0
0
0
1
0
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No operation (NOP). Used in readback operations.  
Write to the DAC register.  
Write to the control register.  
Write to the clearcode register.  
Write to the software control register.  
Read from the DAC register.  
Read from the control register.  
Read from the clearcode register.  
1
1 X is don’t care.  
Rev. F | Page 18 of 27  
 
 
 
 
 
 
Data Sheet  
AD5760  
Standalone Operation  
Synchronous DAC Update  
The serial interface works with both a continuous and noncon-  
tinuous serial clock. A continuous SCLK source can be used  
LDAC  
In this mode,  
is held low while data is being clocked into  
the input shift register. The DAC output is updated on the rising  
SYNC  
SYNC  
only if  
In gated clock mode, a burst clock containing the exact number  
SYNC  
is held low for the correct number of clock cycles.  
edge of  
Asynchronous DAC Update  
LDAC  
.
of clock cycles must be used, and  
the final clock to latch the data. The first falling edge of  
starts the write cycle. Exactly 24 falling clock edges must be applied  
SYNC SYNC  
is brought  
must be taken high after  
In this mode,  
into the input shift register. The DAC output is asynchronously  
LDAC SYNC  
is held high while data is being clocked  
SYNC  
updated by taking  
The update now occurs on the falling edge of  
RESET  
low after  
has been taken high.  
to SCLK before  
is brought high again. If  
LDAC  
.
high before the 24th falling SCLK edge, the data written is invalid.  
Reset Function (  
The AD5760 can be reset to its power-on state by two means:  
RESET  
)
SYNC  
If more than 24 falling SCLK edges are applied before  
brought high, the input data is also invalid.  
is  
either by asserting the  
in the software control register (see Table 13). If the  
is not used, hardwire it to IOVCC  
Asynchronous Clear Function (  
pin or by using the reset function  
SYNC  
The input shift register is updated on the rising edge of  
.
RESET  
pin  
SYNC  
For another serial transfer to take place,  
must be brought  
.
low again. After the end of the serial data transfer, data is  
automatically transferred from the input shift register to the  
addressed register. When the write cycle is complete, the output  
)
CLR  
CLR  
The  
pin is an active low clear that allows the output to be  
LDAC  
SYNC  
can be updated by taking  
low while  
is high.  
cleared to a user defined value. The 16-bit clearcode value is  
programmed to the clearcode register (see Table 12). It is  
CLR  
Readback  
The contents of all the on-chip registers can be read back via the  
SDO pin. Table 7 outlines how the registers are decoded. After a  
register has been addressed for a read, the next 24 clock cycles  
clock the data out on the SDO pin. The clocks must be applied  
necessary to maintain  
low for a minimum amount of time  
CLR  
to complete the operation (see Figure 2). When the  
is returned high, the output remains at the clear value (if  
signal  
LDAC  
is high) until a new value is loaded to the DAC register. The  
CLR  
SYNC  
SYNC  
while  
is low. When  
is returned high, the SDO pin  
output cannot be updated with a new value while the  
pin is  
is placed in tristate. For a read of a single register, the NOP  
function can be used to clock out the data. Alternatively, if more  
than one register is to be read, the data of the first register to be  
addressed can be clocked out at the same time that the second  
register to be read is being addressed. The SDO pin must be  
enabled to complete a readback operation. The SDO pin is  
enabled by default.  
low. A clear operation can also be performed by setting the CLR  
bit in the software control register (see Table 13).  
ON-CHIP REGISTERS  
DAC Register  
Table 9 outlines how data is written to and read from the DAC  
register.  
HARDWARE CONTROL PINS  
The following equation describes the ideal transfer function of  
the DAC:  
LDAC  
Load DAC Function (  
)
(
VREFP VREFN × D  
)
After data has been transferred into the input register of the  
DAC, there are two ways to update the DAC register and DAC  
VOUT  
=
+VREFN  
216  
SYNC  
LDAC  
output. Depending on the status of both  
and  
, one  
where:  
of two update modes is selected: synchronous DAC update or  
asynchronous DAC update.  
V
REFN is the negative voltage applied at the VREFN input pin.  
V
REFP is the positive voltage applied at the VREFP input pin.  
D is the 16-bit code programmed to the DAC.  
Rev. F | Page 19 of 27  
 
 
AD5760  
Data Sheet  
Table 8. Hardware Control Pins Truth Table  
LDAC  
CLR  
RESET  
Function  
X1  
X1  
0
0
1
X1  
X1  
0
1
0
1
0
1
0
0
The AD5760 is in reset mode. The device cannot be programmed.  
The AD5760 is returned to its power-on state. All registers are set to their default values.  
The DAC register is loaded with the clearcode register value, and the output is set accordingly.  
The output is set according to the DAC register value.  
The DAC register is loaded with the clearcode register value, and the output is set accordingly.  
The output is set according to the DAC register value.  
The output remains at the clearcode register value.  
The output remains set according to the DAC register value.  
The output remains at the clearcode register value.  
The DAC register is loaded with the clearcode register value and the output is set accordingly.  
The DAC register is loaded with the clearcode register value and the output is set accordingly.  
The output remains at the clearcode register value.  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
The output is set according to the DAC register value.  
1 X is don’t care.  
Table 9. DAC Register  
MSB  
LSB  
DB23  
R/W  
DB22  
DB21  
DB20  
DB19 to DB4  
DB3  
DB2  
DB1  
DB0  
Register address  
0
DAC register data  
16 bits of data  
R/W  
0
1
X1  
X1  
X1  
X1  
1 X is don’t care.  
Rev. F | Page 20 of 27  
 
Data Sheet  
AD5760  
Control Register  
Clearcode Register  
The clearcode register sets the value to which the DAC output is  
set when the pin or CLR bit in the software control register  
The control register controls the mode of operation of the  
AD5760.  
CLR  
is asserted. The output value depends on the DAC coding that is  
being used, either binary or twos complement. The default  
register value is 0.  
Table 10. Control Register  
MSB  
LSB  
DB23 DB22 DB21 DB20 DB19 to DB11 DB10  
DB9 DB8 DB7 DB6 DB5  
Control register data  
SDODIS BIN/2sC DACTRI OPGND RBUF Reserved  
DB4  
DB3  
DB2  
DB1  
DB0  
Register address  
R/W  
R/W  
0
1
0
Reserved  
Reserved  
0000  
Table 11. Control Register Functions  
Bit Name  
Reserved  
RBUF  
Description  
These bits are reserved and should be programmed to zero.  
Output amplifier configuration control.  
0: the internal amplifier, A1, is powered up and Resistors RFB and R1 are connected in series, as shown in Figure 53. This allows  
an external amplifier to be connected in a gain of two configuration. See the AD5760 Features section for further details.  
1: (default) the internal amplifier, A1, is powered down and Resistors RFB and R1 are connected in parallel, as shown in  
Figure 52, so that the resistance between the RFB and INV pins is 3.4 kΩ, equal to the resistance of the DAC. This allows the RFB  
and INV pins to be used for input bias current compensation for an external unity-gain amplifier. See the AD5760 Features  
section for further details.  
OPGND  
Output ground clamp control.  
0: the DAC output clamp to ground is removed, and the DAC is placed in normal mode.  
1: (default) the DAC output is clamped to ground through a ~6 kΩ resistance, and the DAC is placed in tristate mode.  
Resetting the device puts the DAC in OPGND mode, where the output ground clamp is enabled and the DAC is tristated.  
Setting the OPGND bit to 1 in the control register overrules any write to the DACTRI bit.  
DACTRI  
BIN/2sC  
SDODIS  
DAC tristate control.  
0: the DAC is in normal operating mode.  
1: (default) the DAC is in tristate mode.  
DAC register coding selection.  
0: (default) the DAC register uses twos complement coding.  
1: the DAC register uses offset binary coding.  
SDO pin enable/disable control.  
0: (default) the SDO pin is enabled.  
1: the SDO pin is disabled (tristate).  
Read/write select bit.  
W
R/  
0: AD5760 is addressed for a write operation.  
1: AD5760 is addressed for a read operation.  
Table 12. Clearcode Register  
MSB  
LSB  
DB23  
R/W  
DB22  
DB21  
DB20  
DB19 to DB4  
DB3  
DB2  
DB1  
DB0  
Register address  
1
Clearcode register data  
16 bits of data  
R/W  
0
1
X1  
X1  
X1  
X1  
1 X is don’t care.  
Rev. F | Page 21 of 27  
 
AD5760  
Data Sheet  
Software Control Register  
This is a write only register in which writing a 1 to a particular bit has the same effect as pulsing the corresponding pin low.  
Table 13. Software Control Register  
MSB  
LSB  
DB23  
R/W  
0
DB22  
DB21  
DB20  
DB19 to DB3  
DB2  
Software control register data  
Reset  
CLR1  
DB1  
DB0  
Register address  
0
1
0
Reserved  
LDAC2  
1
LDAC  
CLR  
The CLR function has no effect when the  
The LDAC function has no effect when the  
pin is low.  
pin is low.  
2
Table 14. Software Control Register Functions  
Bit Name  
Description  
LDAC  
Setting this bit to 1 updates the DAC register and, consequently, the DAC output.  
CLR  
Setting this bit to 1 sets the DAC register to a user defined value (see Table 12) and updates the DAC output. The output  
value depends on the DAC register coding that is being used, either binary or twos complement.  
Reset  
Setting this bit to 1 returns the AD5760 to its power-on state.  
Rev. F | Page 22 of 27  
 
Data Sheet  
AD5760  
AD5760 FEATURES  
POWER-ON TO 0 V  
OUTPUT AMPLIFIER CONFIGURATION  
The AD5760 contains a power-on reset circuit that, as well as  
resetting all registers to their default values, controls the output  
voltage during power-up. Upon power-on, the DAC is placed in  
tristate (its reference inputs are disconnected), and its output is  
clamped to AGND through a ~6 kΩ resistor. The DAC remains  
in this state until programmed otherwise via the control register.  
This is a useful feature in applications where it is important to  
know the state of the DAC output while it is in the process of  
powering up.  
There are a number of different ways that an output amplifier  
can be connected to the AD5760, depending on the voltage  
references applied and the desired output voltage span.  
Unity-Gain Configuration  
Figure 51 shows an output amplifier configured for unity gain.  
In this configuration, the output spans from VREFN to VREFP  
.
V
REFP  
6.8kΩ 6.8kΩ  
R1  
R
FB  
A1  
POWER-UP SEQUENCE  
AD8675  
ADA4898-1  
ADA4004-1  
R
FB  
INV  
OUT  
To power up the device in a known safe state, power up the VDD  
supply before powering up the VCC supply. This step ensures  
that VCC does not come up while VDD is unpowered during  
power-on. If the device cannot be powered-up in a safe state,  
connect an external Schottky diode across the VDD and VCC  
supplies as shown in Figure 50.  
V
16-BIT  
DAC  
V
OUT  
AD5760  
V
REFN  
V
V
CC  
DD  
Figure 51. Output Amplifier in Unity-Gain Configuration  
A second unity-gain configuration for the output amplifier is  
one that removes an offset from the input bias currents of the  
amplifier. It does this by inserting a resistance in the feedback  
path of the amplifier that is equal to the output resistance of the  
DAC. The DAC output resistance is 3.4 kΩ. By connecting R1  
and RFB in parallel, a resistance equal to the DAC resistance is  
available on chip. Because the resistors are all on one piece of  
silicon, they are temperature coefficient matched. To enable this  
mode of operation, the RBUF bit of the control register must be  
set to Logic 1. Figure 52 shows how the output amplifier is  
connected to the AD5760. In this configuration, the output  
amplifier is in unity gain, and the output spans from VREFN to  
V
V
CC  
DD  
AD5760  
Figure 50. Schottky Diode Connection  
CONFIGURING THE AD5760  
After power-on, the AD5760 must be configured to put it into  
normal operating mode before programming the output. To  
do this, the control register must be programmed. The DAC  
is removed from tristate by clearing the DACTRI bit, and the  
output clamp is removed by clearing the OPGND bit. At this  
point, the output goes to VREFN unless an alternative value is  
first programmed to the DAC register.  
VREFP. This unity-gain configuration allows a capacitor to be  
placed in the amplifier feedback path to improve dynamic  
performance.  
V
REFP  
DAC OUTPUT STATE  
R
FB  
R
6.8kΩ  
R1  
6.8kΩ  
The DAC output can be placed in one of three states, controlled  
by the DACTRI and OPGND bits of the control register, as  
shown in Table 15.  
FB  
10pF  
INV  
OUT  
V
OUT  
V
16-BIT  
DAC  
AD8675  
ADA4898-1  
ADA4004-1  
Table 15. Output State Truth Table  
DACTRI OPGND Output State  
AD5760  
0
0
1
1
0
1
0
1
Normal operating mode.  
Output is clamped via ~6 kΩ to AGND.  
Output is in tristate.  
V
REFN  
Figure 52. Output Amplifier in Unity-Gain with Amplifier Input Bias Current  
Compensation  
Output is clamped via ~6 kΩ to AGND.  
Rev. F | Page 23 of 27  
 
 
 
 
 
 
 
 
 
 
AD5760  
Data Sheet  
V
REFP  
Gain of Two Configuration (×2 Gain Mode)  
Figure 53 shows an output amplifier configured for a gain of  
two. The gain is set by the internal matched 6.8 kΩ resistors,  
which are exactly twice the DAC resistance, having the effect  
of removing an offset from the input bias current of the external  
6.8kΩ 6.8kΩ  
R1  
R
FB  
A1  
R
10pF  
FB  
INV  
OUT  
V
OUT  
V
16-BIT  
DAC  
amplifier. In this configuration, the output spans from 2 × VREFN  
AD8675  
ADA4898-1  
ADA4004-1  
VREFP to VREFP. This configuration is used to generate a bipolar  
output span from a single-ended reference input, with VREFN  
0 V. For this mode of operation, the RBUF bit of the control  
register must be cleared to Logic 0.  
=
AD5760  
V
REFN  
Figure 53. Output Amplifier in Gain of Two Configuration  
Rev. F | Page 24 of 27  
 
Data Sheet  
AD5760  
APPLICATIONS INFORMATION  
TYPICAL OPERATING CIRCUIT  
Figure 54. Typical Operating Circuit  
Rev. F | Page 25 of 27  
 
 
 
AD5760  
Data Sheet  
Figure 54 shows a typical operating circuit for the AD5760  
using an AD8675 as an output buffer. Because the output  
impedance of the AD5760 is 3.4 kΩ, an output buffer is  
required for driving low resistive, high capacitive loads.  
to aid designers in evaluating the high performance of the device  
with minimum effort. The evaluation kit includes a populated  
and tested AD5780 printed circuit board (PCB). The evaluation  
board interfaces to the USB port of a PC. Software is available  
with the evaluation board to allow the user to easily program  
the AD5780. The software runs on any PC that has Microsoft®  
Windows® XP (SP2), Vista (32-bit or 64-bit), or Windows 7  
installed. The UG-256 is available, which gives full details on  
the operation of the evaluation board  
EVALUATION BOARD  
Refer to the evaluation board available for the AD5780 or  
AD5790 to evaluate a 18-bit version or 20-bit version of the  
AD5760. An evaluation board is available for the AD5780  
Rev. F | Page 26 of 27  
 
Data Sheet  
AD5760  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
2.75  
2.65  
2.50  
4.10  
4.00  
3.90  
PIN 1  
INDICATOR  
PIN 1  
INDIC  
(SEE DETAIL A)  
ATOR AREA OPTIONS  
24  
20  
1
19  
0.50  
BSC  
5.10  
5.00  
4.90  
3.75  
3.65  
3.50  
EXPOSED  
PAD  
13  
7
12  
8
0.50  
0.40  
0.30  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
1.00  
0.90  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.30  
0.25  
0.20  
SECTION OF THIS DATA SHEET.  
0.20 REF  
Figure 55. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 5 mm Body and 0.90 mm Package Height  
(CP-24-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
INL  
0.5 LSB  
0.5 LSB  
2 LSB  
Package Description  
Package Option  
CP-24-5  
CP-24-5  
CP-24-5  
CP-24-5  
AD5760BCPZ  
AD5760BCPZ-REEL7  
AD5760ACPZ  
AD5760ACPZ-REEL7  
EVAL-AD5760SDZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
2 LSB  
1 Z = RoHS Compliant Part.  
©2011–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09650-0-4/18(F)  
Rev. F | Page 27 of 27  
 
 

相关型号:

AD5760_18

Voltage Output DAC
ADI

AD5761

Multiple Range, 16-/12-Bit Bipolar/Unipolar, Voltage Output DACs
ADI

AD5761ACPZ-RL7

Multiple Range, 16-/12-Bit Bipolar/Unipolar, Voltage Output DACs
ADI

AD5761ARUZ

Multiple Range, 16-/12-Bit Bipolar/Unipolar, Voltage Output DACs
ADI

AD5761ARUZ-RL7

Multiple Range, 16-/12-Bit Bipolar/Unipolar, Voltage Output DACs
ADI

AD5761BCPZ-RL7

Multiple Range, 16-/12-Bit Bipolar/Unipolar, Voltage Output DACs
ADI

AD5761BRUZ

Multiple Range, 16-/12-Bit Bipolar/Unipolar, Voltage Output DACs
ADI

AD5761BRUZ-RL7

Multiple Range, 16-/12-Bit Bipolar/Unipolar, Voltage Output DACs
ADI

AD5761R

Multiple Range, 16-/12-Bit, Bipolar/Unipolar Multiple Range
ADI

AD5761RACPZ-RL7

Multiple Range, 16-/12-Bit, Bipolar/Unipolar Multiple Range
ADI

AD5761RARUZ

Multiple Range, 16-/12-Bit, Bipolar/Unipolar Multiple Range
ADI

AD5761RARUZ-RL7

Multiple Range, 16-/12-Bit, Bipolar/Unipolar Multiple Range
ADI