AD5770RBCBZ-RL7 [ADI]

6-Channel, 14-Bit, Current Output DAC;
AD5770RBCBZ-RL7
型号: AD5770RBCBZ-RL7
厂家: ADI    ADI
描述:

6-Channel, 14-Bit, Current Output DAC

文件: 总59页 (文件大小:2053K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
6-Channel, 14-Bit, Current Output DAC  
with On-Chip Reference, SPI Interface  
Data Sheet  
AD5770R  
FEATURES  
APPLICATIONS  
6-channel, current output DAC  
14-bit resolution  
Programmable output current ranges  
Photonics control  
LED driver programmable current source  
Current mode biasing  
Channel 0: 0 mA to 300 mA, −60 mA to +300 mA, −60 mA  
to 0 mA  
Channel 1: 0 mA to 140 mA, 0 mA to 250 mA  
Channel 2: 0 mA to 55 mA, 0 mA to 150 mA  
Channel 3, Channel 4, Channel 5: 0 mA to 45 mA, 0 mA to  
100 mA  
All current sourcing output ranges scale back by up to 0.5×  
1.25 V, on-chip voltage reference  
Integrated precision reference resistor  
SPI interface  
GENERAL DESCRIPTION  
The AD5770R is a 6-channel, 14-bit resolution, low noise,  
programmable current output, digital-to-analog converter (DAC)  
for photonics control applications. The device incorporates a  
1.25 V, on-chip voltage reference, a 2.5 kΩ precision resistor for  
reference current generation, die temperature, output monitoring  
functions, fault alarm, and reset functions.  
The AD5770R contains five 14-bit resolution current sourcing  
DAC channels and one 14-bit resolution current sourcing and  
sinking DAC channel.  
Reset function  
Output current monitor  
Compliance voltage monitor  
Die temperature monitor  
Channel 0 can be configured to sink up to 60 mA and source up  
to 300 mA. Channel 1 to Channel 5 have multiple programmable  
output current sourcing ranges set by register access.  
Integrated thermal shutdown  
Each DAC operates with a wide power supply rail from 0.8 V to  
AVDD − 0.4 V for optimizing power efficiency and thermal  
power dissipation.  
49-ball, 4 mm × 4 mm WLCSP package  
Operating temperature: −40°C to +105°C  
The AD5770R operates from a 2.9 V to 5.5 V AVDD supply and  
is specified over the −40°C to +105°C temperature range.  
FUNCTIONAL BLOCK DIAGRAM  
IOVDD  
DVDD  
AVDD  
CREG  
CDAMP_IDACx  
PVDDx  
AD5770R  
CS  
INPUT  
DAC  
REGISTER  
DAC  
DAC  
IDAC0  
IDAC1  
REGISTER  
SCLK  
SDI  
SDO  
INPUT  
REGISTER  
DAC  
REGISTER  
INTERFACE  
LOGIC  
ALARM  
LDAC  
INPUT  
REGISTER  
DAC  
REGISTER  
DAC  
IDAC5  
RESET  
1.25V  
REFERENCE  
VREF_IO  
CREF  
IREF  
MUX_OUT  
TEMPERATURE  
SENSOR  
2.5kΩ INTERNAL  
RESISTOR  
REFGND  
AVEE  
DGND  
AGND  
PVEE0  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
AD5770R  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Load DAC.................................................................................... 28  
Input Page Mask Register.......................................................... 28  
DAC Page Mask Register........................................................... 28  
Output Stages.............................................................................. 28  
Output Filter ............................................................................... 30  
Output Current Scaling ............................................................. 30  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Performance Characteristics ................................................ 6  
Timing Specifications .................................................................. 7  
Timing Diagrams.......................................................................... 8  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 12  
Terminology .................................................................................... 24  
Theory of Operation ...................................................................... 25  
Digital to Analog Converter ..................................................... 25  
Precision Reference Current Generation ................................ 25  
Diagnostic Monitoring .............................................................. 25  
Serial Interface ............................................................................ 26  
Reset Function ............................................................................ 28  
....................................................................................... 30  
ALARM  
Applications Information .............................................................. 33  
Microprocessor Interfacing....................................................... 33  
AD5770R to SPI interface ......................................................... 33  
Thermal Considerations............................................................ 33  
Combining Channels to Increase Current Range.................. 33  
Layout Guidelines....................................................................... 33  
Register Summary .......................................................................... 35  
SPI Configuration Registers...................................................... 35  
AD5770R Configuration Registers.......................................... 35  
Register Details ............................................................................... 38  
Outline Dimensions....................................................................... 59  
Ordering Guide .......................................................................... 59  
REVISION HISTORY  
2/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 59  
 
Data Sheet  
AD5770R  
SPECIFICATIONS  
AVDD = DVDD = 2.9 V to 5.5 V, PVDD = 0.8 V to AVDD − 0.4 V, AVEE = −3.0 V to 0 V, 2.5 V ≤ PVDD − AVEE ≤ 5.5 V,  
IOVDD = 1.65 V to 5.5 V, AVEE ≤ PVEE0 ≤ 0 V, AVDD − PVEE0 ≤ 5.5 V, VREF = 1.25 V external voltage reference, ambient  
temperature (TA) = −40°C to +105°C, unless otherwise noted.  
Table 1.  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
2
STATIC PERFORMANCE, EXTERNAL RSET  
VREF = 1.25 V external voltage reference,  
assumes ideal 2.5 kΩ external RSET resistor,  
all channels and all output current ranges  
Resolution  
Relative Accuracy (INL)  
Differential Nonlinearity (DNL)  
14  
−6.5  
−1  
Bits  
LSB  
LSB  
+6.5  
+1  
TA = −20°C to +105°C, guaranteed  
monotonic  
−1  
−1.3  
+1.2  
+1.3  
LSB  
% full-scale  
range (FSR)  
Guaranteed monotonic  
Total Unadjusted Error  
Zero-Scale Error  
Zero-Scale Error Drift  
+600  
μA  
All 0s loaded into the DAC register  
Channel 0, Channel 1  
Channel 2  
500  
300  
170  
nA/°C  
nA/°C  
nA/°C  
μA  
μA/°C  
μA/°C  
% FSR  
ppm/°C  
ppm/°C  
% FSR  
ppm/°C  
ppm/°C  
LSB  
Channel 3, Channel 4, Channel 5  
Offset Error  
Offset Error Drift  
−600  
−1.3  
−1.3  
+600  
+1.3  
+1.3  
1
0.5  
Channel 0, Channel 1  
Channel 2, Channel 3, Channel 4, Channel 5  
All 1s loaded into the DAC register  
Channel 0, Channel 1  
Full-Scale Error  
Full-Scale Error Drift  
20  
50  
Channel 2, Channel 3, Channel 4, Channel 5  
Gain Error  
Gain Temperature Coefficient  
30  
80  
2
Channel 0, Channel 1  
Channel 2, Channel 3, Channel 4, Channel 5  
TA = 25°C, due to full-scale change in output  
current on a single adjacent channel  
DC Crosstalk  
DC Power Supply Rejection Ratio (PSRR)  
STATIC PERFORMANCE, INTERNAL RSET  
17  
μA/V  
TA = 25°C, DAC register loaded to full scale  
VREF = 1.25 V internal voltage reference,  
all channels and all output current ranges  
Resolution  
Relative Accuracy (INL)  
Differential Nonlinearity (DNL)  
14  
−6.5  
−1  
Bits  
LSB  
LSB  
+6.5  
+1  
TA = −20°C to +105°C, guaranteed  
monotonic  
−1  
−1.3  
+1.2  
+1.3  
+600  
LSB  
% FSR  
μA  
Guaranteed monotonic  
Total Unadjusted Error (TUE)  
Zero-Scale Error  
Zero-Scale Error Drift  
All 0s loaded into the DAC register  
Channel 0, Channel 1  
Channel 2  
500  
300  
170  
nA/°C  
nA/°C  
nA/°C  
μA  
μA/°C  
μA/°C  
% FSR  
ppm/°C  
ppm/°C  
% FSR  
ppm/°C  
ppm/°C  
Channel 3, Channel 4, Channel 5  
Offset Error  
Offset Error Drift  
−600  
−1.3  
−1.3  
+600  
+1.3  
+1.3  
1
0.5  
Channel 0, Channel 1  
Channel 2, Channel 3, Channel 4, Channel 5  
All 1s loaded into the DAC register  
Channel 0, Channel 1  
Full-Scale Error  
Full-Scale Error Drift  
20  
50  
Channel 2, Channel 3, Channel 4, Channel 5  
Gain Error  
Gain Temperature Coefficient  
30  
80  
Channel 0, Channel 1  
Channel 2, Channel 3, Channel 4, Channel 5  
Rev. 0 | Page 3 of 59  
 
 
 
AD5770R  
Data Sheet  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC Crosstalk  
2
LSB  
TA = 25°C, due to 200 mW change in  
output power on a single channel  
DC PSRR  
17  
μA/V  
TA = 25°C, DAC register loaded to midscale  
OUTPUT CHARACTERISTICS  
Output Current Ranges  
Channel 0  
−60  
−60  
0
0
0
0
0
0
0
0
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
+300  
300  
140  
250  
55  
150  
45  
100  
Channel 1  
Channel 2  
Channel 3, Channel 4, Channel 5  
Output Compliance Voltage3  
Channel 0  
0
PVDD0 −  
0.45  
V
When sourcing in the 0 mA to 300 mA  
range, DAC register is loaded to full scale  
PVEE0 + 0.5  
When sinking current on the −60 mA to  
0 mA and the −60 mA to +300 mA ranges,  
DAC register is loaded to zero scale  
Channel 1  
0
0
0
PVDD1 −  
0.275  
V
V
When configured to the 140 mA range  
with low headroom, DAC register is  
loaded to full scale  
When configured to the 250 mA range or  
to the 140 mA range with low noise, DAC  
register is loaded to full scale  
PVDD1 −  
0.45  
Channel 2, Channel 3, Channel 4,  
Channel 5  
PVDDx −  
0.275  
V
All output ranges, DAC register loaded to  
full scale  
DC Output Impedance  
VOLTAGE REFERENCE INPUT  
Reference Input Impedance  
600  
kΩ  
TA = 25°C  
60  
115  
1.25  
GΩ  
kΩ  
V
TA = 25°C, external 1.25 V reference option  
TA = 25°C, external 2.5 V reference option  
For specified performance, external  
1.25 V reference option  
Reference Input Range  
2.5  
V
External 2.5 V reference option  
VOLTAGE REFERENCE OUTPUT  
Output Voltage  
Reference Temperature Coefficient  
Output Impedance  
Output Current Load Capability  
Maximum Capacitive Load  
Load Regulation Sourcing  
Load Regulation Sinking  
Output Voltage Noise  
1.245  
1.25  
15  
0.01  
5
1.255  
V
TA = 25°C, reference output on  
Internal RSET resistor  
ppm/°C  
mA  
10  
µF  
250  
250  
920  
70  
70  
35  
µV/mA  
µV/mA  
nV rms  
nV/√Hz  
nV/√Hz  
µV/V  
TA = 25°C, 0.1 Hz to 10 Hz  
TA = 25°C , 1 kHz  
TA = 25°C, 10 kHz  
Output Voltage Noise Spectral Density  
Line Regulation  
TA = 25°C, due to change in AVDD  
INTEGRATED MULTIPLEXER  
Buffer Output Current  
Buffer Output Impedance  
Buffer Offset  
8
mA  
mV  
pF  
0.5  
0.3  
100  
Buffer Maximum Capacitive Load  
Rev. 0 | Page 4 of 59  
Data Sheet  
AD5770R  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LOGIC INPUTS  
Input Current  
CS, SCLK, SDI, LDAC, RESET  
Per pin  
−3.5  
+3.5  
μA  
Input Voltage  
Input Low Voltage (VINL  
)
0.3 ×  
V
IOVDD  
Input High Voltage (VINH  
)
0.7 ×  
V
IOVDD  
Pin Capacitance  
LOGIC OUTPUTS  
SDO Pin  
4.5  
pF  
Per pin  
Output Low Voltage (VOL)  
Output High Voltage (VOH)  
0.4  
0.4  
V
V
IOVDD −  
0.4  
Floating State Output Capacitance  
ALARM Pin  
Output Low Voltage (VOL)  
4
pF  
V
V
Open-drain enabled4, 10 kΩ pull-up  
resistor to IOVDD  
Open-drain enabled4, 10 kΩ pull-up  
resistor to IOVDD  
Output High Voltage (VOH)  
IOVDD –  
0.4  
TEMPERATURE MEASUREMENT DIODE  
Diode Output Voltage  
700  
880  
1.04  
−1.8  
−1.3  
−0.9  
mV  
mV  
V
mV/°C  
mV/°C  
mV/°C  
µA  
TA = 25°C, internal bias current  
TA = 25°C, 100 µA external bias current  
TA = 25°C, 200 µA external bias current  
Internal bias current  
100 µA external bias current  
200 µA external bias current  
Temperature Coefficient  
External Bias Current5  
100  
200  
Temperature diode bias current is  
supplied externally  
THERMAL ALARMS  
Overheat Warning Temperature  
125  
°C  
Junction temperature, warning flag  
activated  
Overheat Shutdown Temperature  
Overheat Warning Hysteresis  
Overheat Shutdown Hysteresis  
POWER REQUIREMENTS  
Analog Power Supply Voltage  
AVDD  
150  
4
20  
°C  
°C  
°C  
Junction temperature, thermal shutdown  
2.9  
−3.0  
0.8  
5.5  
0
AVDD − 0.4  
0
V
V
V
V
AVDD must be equal to DVDD  
AVEE  
PVDD0 to PVDD5  
PVEE0  
2.5 V ≤ PVDD − AVEE ≤ 5.5 V  
AVDD − PVEE0 ≤ 5.5 V  
AVEE  
Analog Power Supply Current  
AVDD Supply Current  
AVEE Supply Current  
PVDD0 to PVDD5 Supply Current  
Digital Power Supply Voltage  
DVDD  
32  
30  
125  
mA  
µA  
µA  
Internal voltage reference option selected  
All IDACx outputs disabled  
2.9  
1.65  
5.5  
5.5  
V
V
AVDD must be equal to DVDD  
IOVDD  
Rev. 0 | Page 5 of 59  
AD5770R  
Data Sheet  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Digital Power Supply Current  
DVDD Supply Current  
IODVDD Supply Current  
Power Consumption  
1.1  
200  
110  
mA  
nA  
mW  
All outputs at 0 A, nominal supplies  
1 See the Terminology section.  
2 See the Precision RSET Resistor section for more information about the internal and external RSET resistors  
3 When sourcing current, the output compliance voltage is the maximum voltage at the IDACx pin, for which the output current is within 0.1% of the measured full-  
scale range. When sinking current on Channel 0, the output compliance voltage is the minimum voltage at the IDAC0 pin, for which the output current is within 0.1%  
of the measured zero-scale current.  
4
ALARM  
ALARM  
section.  
The active low  
pin can be configured as an open drain. Refer to the  
5 The internal temperature sensing diode can be biased with an internal or external current. Refer to the Internal Die Temperature Monitoring section.  
AC PERFORMANCE CHARACTERISTICS  
AVDD = DVDD = 2.9 V to 5.5 V, PVDD = 0.8 V to AVDD − 0.4 V, AVEE = −3.0 V to 0 V, 2.5 V ≤ PVDD − AVEE ≤ 5.5 V,  
IOVDD = 1.65 V to 5.5 V, AVEE ≤ PVEE0 ≤ 0 V, AVDD − PVEE0 ≤ 5.5 V, VREF = 1.25 V external voltage reference, TA = 25°C, unless  
otherwise noted.  
Table 2.  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments2  
DYNAMIC PERFORMANCE  
Output Current Settling Time  
13  
10  
µs  
µs  
Zero-scale to full-scale step settling to 4 LSB,  
0 mA to 300 mA range  
Zero-scale to full-scale step settling to 4 LSB,  
0 mA to 45 mA range, Channel 3, Channel 4, and  
Channel 5  
Slew Rate  
50  
10  
mA/µs  
mA/µs  
Channel 0 , 0 mA to 300 mA range  
Channel 3, Channel 4, Channel 5, 0 mA to  
45 mA range  
Digital-to-Analog Glitch Impulse  
Multiplexer Switching Glitch  
Digital Feedthrough  
Digital Crosstalk  
DAC-to-DAC Crosstalk  
0.057  
14  
0.03  
0.03  
0.8  
nA-sec  
pA-sec  
nA-sec  
nA-sec  
nA-sec  
1 LSB change around major carry  
Switching monitored channel  
Victim Channel 4, due to a 300 mA step change  
on Channel 0  
Output Noise Spectral Density (NSD)  
35  
18  
19  
13  
nA/√Hz  
nA/√Hz  
nA/√Hz  
nA/√Hz  
Channel 0, 0 mA to 300 mA range, at 1 kHz, DAC  
register loaded to midscale  
Channel 1, 0 mA to 140 mA low noise range, at  
1 kHz, DAC register loaded to midscale  
Channel 2, 0 mA to 150 mA range, at 1 kHz, DAC  
register loaded to midscale  
Channel 3, Channel 4, Channel 5, 0 mA to  
100 mA range, at 1 kHz, DAC register loaded to  
midscale  
16  
9
nA/√Hz  
nA/√Hz  
nA/√Hz  
nA/√Hz  
Channel 0, 0 mA to 300 mA range, at 10 kHz,  
DAC register loaded to midscale  
Channel 1, 0 mA to 140 mA low noise range, at  
10 kHz, DAC register loaded to midscale  
Channel 2, 0 mA to 150 mA range, at 10 kHz,  
DAC register loaded to midscale  
Channel 3, Channel 4, Channel 5, 0 mA to  
100 mA range, at 10 kHz, DAC register loaded to  
midscale  
9
6
Rev. 0 | Page 6 of 59  
 
 
 
Data Sheet  
AD5770R  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments2  
Output Noise  
900  
nA rms  
0.1 Hz to 10 Hz, Channel 0, 0 mA to 300 mA  
range, DAC register loaded to full scale  
180  
400  
300  
nA rms  
nA rms  
nA rms  
0.1 Hz to 10 Hz, Channel 1, 0 mA to 140 mA low  
noise range, DAC register loaded to full scale  
0.1 Hz to 10 Hz, Channel 2, 0 mA to 150 mA  
range, DAC register loaded to full scale  
0.1 Hz to 10 Hz, Channel 3, Channel 4, Channel 5,  
0 mA to 100 mA range, DAC register loaded to  
full scale  
PVDDx AC PSRR  
−98  
−87  
−67  
−23  
−8  
dB  
dB  
dB  
dB  
dB  
100 Hz  
1 kHz  
10 kHz  
1000 kHz  
3000 kHz  
1 See the Terminology section.  
2 Temperature range is −40°C to +105°C, typically at 25°C.  
TIMING SPECIFICATIONS  
Table 3.  
Parameter  
1.65 V ≤ IOVDD ≤ 5.5 V  
Unit  
Test Conditions/Comments  
SCLK cycle time, write operation.  
SCLK cycle time, read operation.  
SCLK high time.  
SCLK low time.  
CS to SCLK rising edge setup time.  
Data setup time.  
t1  
50  
100  
20  
20  
25  
10  
10  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
t2  
t3  
t4  
t5  
t6  
t7  
Data hold time.  
SCLK rising edge to CS rising edge. LDAC idle high mode.  
SCLK rising edge to CS rising edge. LDAC idle low mode.  
CS high time.  
1
t7  
250  
30  
40  
5
t8  
t9  
CS rising edge to SCLK rising edge.  
SCLK rising edge to CS falling edge.  
SDO data valid from SCLK falling edge.  
CS rising edge to SDO disabled.  
LDAC pulse width low.  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
90  
40  
100  
10  
100  
10  
100  
LDAC falling edge to CS rising edge.  
SCLK rising edge to LDAC falling edge.  
RESET minimum pulse width low.  
RESET pulse activation time.  
1
CS  
LDAC  
CS  
t7 ≥ 250 ns only applies to the first SCLK rising edge to rising edge after  
Refer to Figure 3.  
(IDLEL LOW) falling edge. t7 ≥ 0 ns applies for all other SCLK rising edge to rising edge.  
Table 4. LDAC Idle Low Timing  
Parameter 1.65 V ≤ IOVDD ≤ 5.5 V Unit  
Test Conditions/Comments  
t1  
250  
ns min  
SCLK rising edge to CS rising edge. The first SCLK rising edge to CS rising edge after  
LDAC idle low falling edge.  
t2  
t3  
0
ns min  
ns min  
SCLK rising edge to CS rising edge.  
LDAC falling edge to CS rising edge.  
10  
Rev. 0 | Page 7 of 59  
 
 
AD5770R  
TIMING DIAGRAMS  
SCLK  
Data Sheet  
t1  
t4  
t2  
t7  
t10  
t3  
t9  
t8  
CS  
t5  
t6  
A
A
A
A
D
D
D
D
D
D
D
0
SDI  
R/W  
7
6
1
0
n
n – 1  
n – 1  
1
t11  
t12  
SDO  
D0  
n
1
t15  
t13  
LDAC (IDLE HIGH)  
t14  
LDAC (IDLE LOW)  
RESET  
IDACx  
t16  
t17  
Figure 2. Timing Diagram (Not to Scale)  
SCLK  
t1  
t2  
CS  
t3  
LDAC (IDLE LOW)  
LDAC  
Figure 3.  
Idle Low Timing Diagram  
Rev. 0 | Page 8 of 59  
 
 
 
 
Data Sheet  
AD5770R  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Table 5.  
Parameter  
Rating  
AVDD to DVDD  
AVDD to AGND  
AVDD to PVDDx  
AVDD to AVEE  
AVEE to AGND  
PVEE0 to AGND  
AVEE to PVEE0  
PVDDx to AGND  
PVDDx to AVEE  
AVDD to PVEE0  
VREF_IO to AGND  
IDAC0 to PVEE0  
IDAC1 through IDAC5 to AGND  
DVDD to DGND  
IOVDD to DGND  
REFGND to AGND  
AGND to DGND  
Digital Inputs to DGND1  
Digital Outputs to DGND2  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature, TJMAX  
Power Dissipation  
Lead Temperature, Soldering Reflow  
−0.3 V to +0.3 V  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to +10 V  
+0.3 V to −3.5 V  
+0.3 V to −3.5 V  
−3 .0 V to +0.3 V  
−0.3 V to +6.5 V  
−0.3 V to +8.5 V  
−0.3 V to +6.5 V  
−0.3 V to AVDD + 0.3 V  
−0.3 V to +6.5 V  
−0.3 V to PVDDx + 0.3 V  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to IOVDD + 0.3 V  
−0.3 V to IOVDD + 0.3 V  
−40°C to +105°C  
−65°C to +150°C  
150°C  
θ
JA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure.  
Table 6. Thermal Resistance  
Package Type  
θJA  
301  
Unit  
CB-49-5  
°C/W  
1 Thermal impedance simulated values are based on JEDEC 2S2P thermal test  
board with 16 thermal vias. See JEDEC JESD51.  
ESD CAUTION  
(TJMAX – TA)/θJA  
260°C, as per JEDEC  
J-STD-020  
1
RESET  
, and  
LDAC  
.
Digital inputs include SCLK, SDI,  
Digital outputs include SDO and  
2
ALARM  
.
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 9 of 59  
 
 
 
 
AD5770R  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BALL A1  
INDICATOR  
AD5770R  
1
2
3
4
5
6
7
CDAMP_  
IDAC1  
A
PVDD1  
IDAC1  
PVDD0  
IDAC2  
IDAC0  
PVDD2  
CDAMP_  
IDAC2  
B
C
D
E
F
IDAC0  
PVEE0  
DNC  
PVDD0  
PVDD5  
IDAC5  
PVDD4  
IDAC4  
PVDD1  
PVDD3  
DNC  
IDAC1  
IDAC3  
CDAMP_  
IDAC0  
AGND  
AVEE  
AGND  
DGND  
CDAMP_  
IDAC5  
CDAMP_  
IDAC4  
CDAMP_  
IDAC3  
AVEE  
IREF  
REFGND  
DNC  
AVDD  
DVDD  
DNC  
CS  
VREF_IO ALARM  
DGND  
LDAC  
SDI  
G
CREF  
RESET MUX_OUT CREG  
SDO  
IOVDD  
SCLK  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THESE PINS.  
Figure 4. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type1  
F
Description  
A1, B1  
IDAC0  
AO  
Current Output of Channel 0 is Available on this Pin. Channel 0 sinks up to 60 mA and sources up to  
300 mA.  
A2, B2  
A3  
A4  
PVDD0  
IDAC2  
PVDD2  
S
AO  
S
Power Supply for IDAC0.  
Current Output of Channel 2 is Available on this Pin. Channel 2 sources up to 150 mA.  
Power Supply for IDAC2.  
A5  
CDAMP_IDAC1 AI  
Damping Capacitor for IDAC1. Connect a 10 nF capacitor between this pin and the PVDD1  
supply.  
A6, B6  
A7, B7  
B3  
PVDD1  
IDAC1  
PVDD5  
S
AO  
S
Power Supply for IDAC1.  
Current Output of Channel 1 is Available on this Pin. Channel 1 sources up to 250 mA.  
Power Supply for IDAC5.  
B4  
CDAMP_IDAC2 AI  
Damping Capacitor for IDAC2. Connect a 10 nF capacitor between this pin and the PVDD2  
supply.  
B5  
C1  
PVDD4  
PVEE0  
S
S
Power Supply for IDAC4.  
Power Supply Return for IDAC0 Sink. When sinking this current on Channel 0, up to 60 mA  
flows out of PVEE0.  
C2  
CDAMP_IDAC0 AI  
Damping Capacitor for IDAC0. Connect a 10 nF capacitor between this pin and the PVDD0  
supply.  
C3  
C4, E4  
C5  
C6  
C7  
IDAC5  
AGND  
IDAC4  
PVDD3  
IDAC3  
AO  
S
Current Output of Channel 5 is Available on this Pin. Channel 5 sources up to 100 mA.  
Analog Supply Ground Pin.  
Current Output of Channel 4 is Available on this Pin. Channel 4 sources up to 100 mA.  
Power Supply for IDAC3.  
Current Output of Channel 3 is Available on this Pin. Channel 3 sources up to 100 mA.  
Do Not Connect. Do not connect to this pin.  
Negative Power Supply. AVEE must be between −3 V and 0 V. This pin supplies the low side  
voltage for biasing some analog circuit blocks.  
AO  
S
AO  
DNC  
S
D1, D6, E3, E6 DNC  
D2, D4  
AVEE  
D3  
CDAMP_IDAC5 AI  
Damping Capacitor for IDAC5. Connect a 10 nF capacitor between this pin and the PVDD5  
supply.  
Rev. 0 | Page 10 of 59  
 
Data Sheet  
AD5770R  
Pin No.  
Mnemonic  
CDAMP_IDAC4 AI  
Type1  
F
Description  
D5  
Damping Capacitor for IDAC4. Connect a 10 nF capacitor between this pin and the PVDD4  
supply.  
D7  
E1  
E2  
CDAMP_IDAC3 AI  
Damping Capacitor for IDAC3. Connect a 10 nF capacitor between this pin and the PVDD3  
supply.  
External Resistor Pin for Reference Current Generation (Optional). When using an external RSET  
resistor, connect this pin directly to REFGND via a low drift, 2.5 kΩ external resistor.  
Reference Supply Ground Pin. Connect this pin with a low impedance path to AGND. If using  
an external resistor, the low side of the RSET resistor must be connected to REFGND before the  
connection to AGND.  
IREF  
AI/O  
REFGND  
S
E5  
E7  
F1  
AVDD  
CS  
S
Analog Power Supply. AVDD must be between 2.9 V and 5.5 V. This pin supplies power to the  
analog circuit blocks on the device. This pin must be at the same potential as DVDD.  
Active Low Control Input. CS is used to frame data during a SPI transaction. When CS is low,  
data is transferred on the rising edges of SCLK.  
Voltage Reference Input/Output. When the internal reference is enabled, the buffered 1.25 V  
reference voltage can be made available on this pin. When the internal reference is disabled, an  
external reference must be applied to this pin. The external reference voltage must be 1.25 V or  
2.5 V.  
DI  
VREF_IO  
AI/O  
F2  
ALARM  
DO  
Active Low Output. When ALARM goes low, this alerts the user of a change in the status  
register. User must read the status register to deassert this pin.  
Digital Power Supply Ground.  
Digital Power Supply. DVDD must be between 2.9 V and 5.5 V. This pin supplies power to the  
digital core and internal oscillator blocks on the device. This pin must be at the same potential  
as AVDD.  
F3, F4  
F5  
DGND  
DVDD  
S
S
F6  
LDAC  
DI  
Logic Input. Pulsing this pin low allows any or all DAC registers to be updated if the input  
registers have new data, allowing any or all DAC outputs to update synchronously.  
Alternatively, this pin can be tied low.  
F7  
SDI  
DI  
Serial Data Input. Data to be written to the device is provided on this input and is clocked into  
the register on the rising edge of SCLK.  
G1  
G2  
G3  
CREF  
AI/O  
DI  
Filter Capacitor for Voltage Reference. A 0.1 µF capacitor connected from the CREF pin to AGND  
is recommended to achieve the specified performance from the AD5770R.  
Active Low Reset Input. Tie this pin high for normal operation. Asserting this pin low resets the  
AD5770R to the default configuration.  
Analog Output. An external analog-to-digital converter (ADC) reads voltages on this pin for  
diagnostic purposes. Use external excitation current for the temperature sensing diode and  
force the current on this pin.  
RESET  
MUX_OUT  
AI/O  
G4  
G5  
G6  
G7  
CREG  
SDO  
AI/O  
DO  
S
Filter Capacitor for Internal Regulator. A 1 µF capacitor connected from the CREG pin to AGND  
is recommended to achieve the specified performance from the AD5770R.  
Serial Data Output. A read back operation provides data on this output pin as a serial data  
stream. Data is clocked out on the falling edge of SCLK and is valid on the rising edge of SCLK.  
Logic Power Supply. IOVDD must be between 1.65 V and 5.5 V. This pin supplies power to the  
serial interface circuit blocks on the device.  
Serial Clock Input. Data is clocked into the input shift register on the rising edge of the serial  
clock input. Data can be transferred at rates up to 20 MHz when writing to the AD5770R. This  
pin has a maximum speed of 10 MHz when performing a read operation from the AD5770R.  
IOVDD  
SCLK  
DI  
1 AO is analog output, S is power, AI is analog input, DNC is do not connect, AI/O is analog input and output, DI is digital input, and DO is digital output.  
Rev. 0 | Page 11 of 59  
 
AD5770R  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.6  
1.0  
0.8  
0.4  
0.6  
0.2  
0.4  
0
0.2  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
Figure 5. INL Error vs. DAC Code (Channel 0, 0 mA to 300 mA Range)  
Figure 8. INL Error vs. DAC Code (Channel 3, 0 mA to 100 mA Range)  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
Figure 6. INL Error vs. DAC Code (Channel 1, 0 mA to 250 mA Range)  
Figure 9. INL Error vs. DAC Code (Channel 4, 0 mA to 100 mA Range)  
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
Figure 7. INL Error vs. DAC Code (Channel 2, 0 mA to 150 mA Range)  
Figure 10. INL Error vs. DAC Code (Channel 5, 0 mA to 100 mA Range)  
Rev. 0 | Page 12 of 59  
 
 
 
Data Sheet  
AD5770R  
1.0  
1.0  
0.8  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
Figure 11. DNL Error vs. DAC Code (Channel 0, 0 mA to 300 mA Range)  
Figure 14. DNL Error vs. DAC Code (Channel 3, 0 mA to 100 mA Range)  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
Figure 12. DNL Error vs. DAC Code (Channel 1, 0 mA to 250 mA Range)  
Figure 15. DNL Error vs. DAC Code (Channel 4, 0 mA to 100 mA Range)  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
Figure 13. DNL Error vs. DAC Code (Channel 2, 0 mA to 150 mA Range)  
Figure 16. DNL Error vs. DAC Code (Channel 5, 0 mA to 100 mA Range)  
Rev. 0 | Page 13 of 59  
 
 
AD5770R  
Data Sheet  
1.0  
1.0  
1.5  
+105°C  
+85°C  
+25°C  
–40°C  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
+105°C  
+85°C  
+25°C  
–40°C  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
Figure 17. INL Error vs. DAC Code for Various Temperatures (Channel 0, 0 mA  
to 300 mA Range)  
Figure 20. INL Error vs. DAC Code for Various Temperatures (Channel 3, 0 mA  
to 100 mA Range)  
1.0  
2.0  
1.5  
1.0  
0.5  
0
+105°C  
+85°C  
1.5  
+25°C  
–40°C  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
+105°C  
+85°C  
+25°C  
–40°C  
–1.5  
–2.0  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
Figure 18. INL Error vs. DAC Code for Various Temperatures (Channel 1, 0 mA  
to 250 mA Range)  
Figure 21. INL Error vs. DAC Code for Various Temperatures (Channel 4, 0 mA  
to 100 mA Range)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–0.5  
–1.5  
+105°C  
+85°C  
+25°C  
–40°C  
–1.0  
–1.5  
+105°C  
+85°C  
–2.0  
+25°C  
–40°C  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
–2.5  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
Figure 19. INL Error vs. DAC Code for Various Temperatures (Channel 2, 0 mA  
to 150 mA Range)  
Figure 22. INL Error vs. DAC Code for Various Temperatures (Channel 5, 0 mA  
to 100 mA Range)  
Rev. 0 | Page 14 of 59  
Data Sheet  
AD5770R  
1.0  
1.0  
0.8  
+105°C  
+85°C  
+25°C  
–40°C  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+105°C  
+85°C  
+25°C  
–40°C  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
Figure 23. DNL Error vs. DAC Code for Various Temperatures (Channel 0,  
0 mA to 300 mA Range)  
Figure 26. DNL Error vs. DAC Code for Various Temperatures (Channel 3,  
0 mA to 100 mA Range)  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
+105°C  
+85°C  
+25°C  
–40°C  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
+105°C  
+85°C  
–0.8  
–1.0  
+25°C  
–40°C  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
Figure 24. DNL Error vs. DAC Code for Various Temperatures (Channel 1,  
0 mA to 250 mA Range)  
Figure 27. DNL Error vs. DAC Code for Various Temperatures (Channel 4,  
0 mA to 100 mA Range)  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
+105°C  
+85°C  
+25°C  
–40°C  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
+105°C  
+85°C  
–0.8  
–1.0  
+25°C  
–40°C  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
CODE  
Figure 25. DNL Error vs. DAC Code for Various Temperatures (Channel 2,  
0 mA to 150 mA Range)  
Figure 28. DNL Error vs. DAC Code for Various Temperatures (Channel 5,  
0 mA to 100 mA Range)  
Rev. 0 | Page 15 of 59  
AD5770R  
Data Sheet  
70  
60  
50  
40  
30  
20  
10  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
0
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 29. Zero-Scale Error vs. Temperature  
Figure 32. Gain Error vs. Temperature  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
+105°C  
+85°C  
+25°C  
–40°C  
–0.005  
–0.010  
–0.015  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 30. Full-Scale Error vs. Temperature  
Figure 33. Total Unadjusted Error vs. DAC Code for Various Temperatures  
(Channel 0, 0 mA to 300 mA Range)  
0.05  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
+105°C  
+85°C  
+25°C  
110  
0.03  
0.01  
60  
10  
–0.01  
–0.03  
–0.05  
–40  
–90  
–40  
–20  
0
20  
40  
60  
80  
100  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
TEMPERATURE (°C)  
Figure 34. Total Unadjusted Error vs. DAC Code for Various Temperatures  
(Channel 1, 0 mA to 250 mA Range)  
Figure 31. Offset Error vs. Temperature  
Rev. 0 | Page 16 of 59  
Data Sheet  
AD5770R  
0.005  
0.03  
0.02  
0.01  
0
0
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
–0.01  
–0.02  
–0.03  
+105°C  
+85°C  
+25°C  
–40°C  
+105°C  
+85°C  
+25°C  
–40°C  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
Figure 35. Total Unadjusted Error vs. DAC Code for Various Temperatures  
(Channel 2, 0 mA to 150 mA Range)  
Figure 38. Total Unadjusted Error vs. DAC Code for Various Temperatures  
(Channel 5, 0 mA to 100 mA Range)  
0.03  
0.02  
0.01  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
–0.01  
–0.02  
CH1 (0mA TO 250mA)  
CH0 (0mA TO 300mA)  
CH0 (–60mA TO +300mA)  
0.4  
0.2  
0
+105°C  
+85°C  
+25°C  
–40°C  
–0.03  
–0.04  
WITH 5Ω LOAD  
–10  
0
10  
20  
30  
40  
50  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
TIME (µs)  
Figure 36. Total Unadjusted Error vs. DAC Code for Various Temperatures  
(Channel 3, 0 mA to 100 mA Range)  
Figure 39. Full-Scale Settling Time (Rising Step)  
0.010  
0.005  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CH1 (0mA TO 250mA)  
CH0 (0mA TO 300mA)  
CH0 (–60mA TO +300mA)  
WITH 5Ω LOAD  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
+105°C  
+85°C  
+25°C  
–40°C  
–0.030  
–10  
0
10  
20  
30  
40  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
TIME (µs)  
Figure 37. Total Unadjusted Error vs. DAC Code for Various Temperatures  
(Channel 4, 0 mA to 100 mA Range)  
Figure 40. Full-Scale Settling Time (Falling Step)  
Rev. 0 | Page 17 of 59  
AD5770R  
Data Sheet  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
+105°C  
+85°C  
+25°C  
–40°C  
+105°C  
+85°C  
+25°C  
–40°C  
0
0
0.05  
0.10  
0.15  
0.20  
0.25  
PVDD3 HEADROOM (V)  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
PVDD0 HEADROOM (V)  
Figure 41. CH0 Output Current for Various Temperatures vs. PVDD0 Headroom  
Figure 44. CH3 Output Current for Various Temperatures vs. PVDD3 Headroom  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.04  
0.010  
+105°C  
+105°C  
+85°C  
+85°C  
+25°C  
–40°C  
0.02  
0
0.005  
0
+25°C  
–40°C  
0
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20  
PVDD1 HEADROOM (V)  
0
0.05  
0.10  
0.15  
0.20  
0.25  
PVDD4 HEADROOM (V)  
Figure 42. CH1 Output Current for Various Temperatures vs. PVDD1 Headroom  
Figure 45. CH4 Output Current for Various Temperatures vs. PVDD4 Headroom  
0.06  
0.05  
0.04  
0.03  
0.02  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
+105°C  
+105°C  
+85°C  
+25°C  
–40°C  
0.01  
0
+85°C  
0.005  
0
+25°C  
–40°C  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0
0.05  
0.10  
0.15  
0.20  
0.25  
PVDD2 HEADROOM (V)  
PVDD5 HEADROOM (V)  
Figure 43. CH2 Output Current for Various Temperatures vs. PVDD2 Headroom  
Figure 46. CH5 Output Current for Various Temperatures vs. PVDD5 Footroom  
Rev. 0 | Page 18 of 59  
Data Sheet  
AD5770R  
900k  
800k  
700k  
600k  
500k  
400k  
300k  
200k  
100k  
0
0.35  
DC OUTPUT IMPEDANCE  
FULL-SCALE OUTPUT CURRENT  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
+105°C  
+85°C  
+25°C  
–40°C  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
PVEE0 HEADROOM (V)  
Figure 47. CH0 Output Current for Various Temperatures vs. PVEE0 Footroom  
Figure 49. DC Output Impedance vs. Full-Scale Output Current (All Ranges)  
20  
4
3
CH0 (0mA TO 300mA)  
CH0 (–60mA TO +300mA)  
CH1 (0mA TO 140mA, LOW HEADROOM)  
CH1 (0mA TO 140mA, LOW NOISE)  
CH1 (0mA TO 250mA)  
CH2 (0mA TO 55mA)  
CH2 (0mA TO 150mA)  
0
–20  
2
1
–40  
0
–60  
–1  
–2  
–3  
–4  
–5  
–80  
CH3 (0mA TO 45mA)  
CH3 (0mA TO 100mA)  
CH4 (0mA TO 45mA)  
CH4 (0mA TO 100mA)  
CH5 (0mA TO 45mA)  
CH5 (0mA TO 100mA)  
–100  
–120  
–140  
0dB = 1A/V  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
20  
40  
60  
80  
100  
FREQUENCY (Hz)  
TIME (Seconds)  
Figure 50. Peak-to-Peak Noise, 0.1 Hz to 10 Hz Bandwidth,  
(CH0 0 mA to 300 mA Range)  
Figure 48. AC PSRR vs. Frequency (All Ranges)  
Rev. 0 | Page 19 of 59  
AD5770R  
Data Sheet  
10µ  
400  
300  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
CH0 (0mA TO 300mA)  
CH0 (–60mA TO +300mA)  
CH1 (0mA TO 140mA, LOW HEADROOM)  
CH1 (0mA TO 140mA, LOW NOISE)  
CH1 (0mA TO 250mA)  
1µ  
CH2 (0mA TO 55mA)  
CH2 (0mA TO 150mA)  
200  
100  
100n  
10n  
1n  
0
CS  
–100  
–200  
–300  
–400  
20MHz SCLK  
0x0000 TO  
0x3FFF  
1.0  
0.5  
0
CH3 (0mA TO 45mA)  
CH3 (0mA TO 100mA)  
CH4 (0mA TO 45mA)  
CH4 (0mA TO 100mA)  
CH5 (0mA TO 45mA)  
CH5 (0mA TO 100mA)  
20MHz SCLK  
0x3FFF TO  
0x0000  
20MHz SCLK  
0x0000 TO  
0x2AAA  
100p  
1
–0.5  
4.5  
10  
100  
1k  
10k  
100k  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FREQUENCY (Hz)  
TIME (µs)  
Figure 51. Output NSD vs. Frequency (All Ranges)  
Figure 54. Digital Feedthrough  
10µ  
1µ  
450  
ATTACK CH1 ZS TO FS  
ATTACK CH1 FS TO ZS  
ATTACK CH2 ZS TO FS  
ATTACK CH2 FS TO ZS  
ATTACK CH3 ZS TO FS  
ATTACK CH3 FS TO ZS  
ATTACK CH4 ZS TO FS  
ATTACK CH4 FS TO ZS  
ATTACK CH5 ZS TO FS  
ATTACK CH5 FS TO ZS  
350  
250  
150  
50  
100n  
10n  
–50  
–150  
–250  
0.1  
1
10  
100  
1k  
10k  
100k  
186.2  
191.2  
196.2  
201.2  
206.2  
211.2  
FREQUENCY (Hz)  
TIME (µs)  
Figure 55. DAC to DAC Crosstalk (Victim Channel Zero)  
Figure 52. VREF_IO Output NSD vs. Frequency  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.2530  
1.2525  
1.2520  
1.2515  
1.2510  
1.2505  
1.2500  
0.007  
0.005  
0.003  
RLOAD IDAC0 = 5Ω  
RLOAD IDAC1 = 5Ω  
RLOAD IDAC2 = 5Ω  
RLOAD IDAC3 = 5Ω  
0.001  
–0.001  
V
V
V
= 5.5V  
= 3.3V  
= 2.9V  
DD  
DD  
DD  
RLOAD IDAC4 = 5Ω  
RLOAD IDAC5 = 5Ω  
CS  
–0.003  
–0.5  
227  
–0.005  
–0.003  
–0.001  
0.001  
0.003  
0.005  
220  
221  
222  
223  
224  
225  
226  
LOAD CURRENT (I)  
TIME (µs)  
Figure 53. VREF_IO Voltage vs. Load Current  
Figure 56. Analog Crosstalk  
Rev. 0 | Page 20 of 59  
Data Sheet  
AD5770R  
600  
500  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
400  
ATTACK CH0 ZS TO FS  
ATTACK CH0 FS TO ZS  
ATTACK CH1 ZS TO FS  
ATTACK CH1 FS TO ZS  
ATTACK CH2 ZS TO FS  
ATTACK CH2 FS TO ZS  
300  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
ATTACK CH4 ZS TO FS  
ATTACK CH4 FS TO ZS  
ATTACK CH5 ZS TO FS  
ATTACK CH5 FS TO ZS  
CS  
EXTERNAL BIAS (100µA)  
EXTERNAL BIAS (200µA)  
INTERNAL BIAS (10µA)  
–0.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
TIME (µs)  
TEMPERATURE (°C)  
Figure 60. Diode Voltage vs. Temperature  
Figure 57. Digital Crosstalk  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1
COOLING DOWN  
HEATING UP  
–0.5  
RESET  
RLOAD IOUT3 = 10  
0
110  
–1.0  
–200  
120  
130  
140  
150  
160  
170  
0
200  
400  
600  
800  
1000  
DIE TEMPERATURE (°C)  
TIME (ns)  
Figure 58. Reset Glitch  
Figure 61. Overheat Warning  
1.2535  
1.2530  
1.2525  
1.2520  
1.2515  
1.2510  
COOLING DOWN  
HEATING UP  
1
0
110  
115  
120  
125  
130  
135  
140  
145  
150  
155  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
DIE TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 59. VREF vs. Temperature for Devices for Five  
AD5770R Devices  
Figure 62. Overheat Shutdown  
Rev. 0 | Page 21 of 59  
AD5770R  
Data Sheet  
33.6  
33.4  
33.2  
33.0  
32.8  
32.6  
32.4  
32.2  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
32.0  
2.0  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 63. AVDD Supply Current (IAVDD) vs. Supply Voltage for Five AD5770R  
Devices  
Figure 66. IOVDD Supply Current vs. IOVDD Supply Voltage for  
Five AD5770R Devices  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
30.5  
–50  
1.10  
–30  
–10  
10  
30  
50  
70  
90  
110  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 67. IAVDD vs. Temperature for Ten AD5770R Devices  
Figure 64. DVDD Supply Current (IDVDD) vs. Supply Voltage for Five AD5770R  
Devices  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
SUPPLY VOLTAGE (V)  
Figure 65. IOVDD Supply Current vs. IOVDD Supply Voltage for Five  
AD5770R Devices  
Rev. 0 | Page 22 of 59  
Data Sheet  
AD5770R  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.08  
1.06  
1.75  
1.73  
1.71  
1.69  
1.67  
1.65  
1.04  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 69. IDVDD vs. Temperature  
Figure 68. IDVDD vs. Temperature for Ten AD5770R Devices  
Rev. 0 | Page 23 of 59  
AD5770R  
Data Sheet  
TERMINOLOGY  
TUE  
Output Settling Time  
Total unadjusted error is a measure of the output error taking  
all the various errors into account, namely INL error, offset  
error, gain error, and output drift over supplies, temperature,  
and time. TUE is expressed in % FSR.  
Output settling time is the amount of time it takes for the output of  
a DAC to settle to a specified level for a zero-scale to full-scale  
LDAC  
input change and is measured from the falling edge of  
.
Digital-to-Analog Glitch Impulse  
Relative Accuracy or Integral Nonlinearity (INL)  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nA-sec,  
and is measured when the digital input code is changed by 1 LSB at  
the major carry transition (0x1FFF to 0x2000 for the AD5770R).  
Relative accuracy or integral nonlinearity is a measurement of the  
maximum deviation, in LSBs, from a straight line passing through  
the endpoints of the DAC transfer function. Typical INL error vs.  
DAC code plots are shown in Figure 5 to Figure 10.  
Differential Nonlinearity (DNL)  
Digital Feedthrough  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic by  
design. Typical DNL error vs. DAC code plots are shown in  
Figure 11 to Figure 16.  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but is measured when the DAC output is not updated. It  
is specified in nA-sec and measured with a full-scale code  
change on the data bus, that is, from all 0s to all 1s and vice versa.  
DC Crosstalk  
Zero-Scale Error  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is measured  
with a full-scale output change on one DAC when monitoring  
another DAC maintained at midscale. It is expressed in nA-sec.  
Zero-scale error is a measurement of the output error when  
zero code (0x0000) is loaded to the DAC register. Zero code  
error is expressed in µA.  
Zero-Scale Error Temperature Coefficient  
Digital Crosstalk  
Zero code error drift is a measure of the change in zero code  
error with a change in temperature. It is expressed in nA/°C.  
Digital crosstalk is the glitch impulse transferred to the output of  
one DAC at midscale in response to a full-scale code change (all 0s  
to all 1s and vice versa) in the input register of another DAC. It is  
measured in standalone mode and is expressed in nA-sec.  
Gain Error  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal expressed as % FSR.  
DAC to DAC Crosstalk  
DAC to DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
analog output change of another DAC. It is measured by loading  
the attack channel with a full-scale code change (all 0s to all 1s  
and vice versa), using the write to and update commands when  
monitoring the output of the victim channel that is at midscale. The  
energy of the glitch is expressed in nA-sec.  
Gain Error Temperature Coefficient  
Gain temperature coefficient is a measurement of the change in  
gain error with changes in temperature. It is expressed in ppm  
of FSR/°C.  
Offset Error  
Offset error is a measurement of the difference between IOUTx  
(actual) and IOUTx (ideal), expressed in µA, in the linear region  
of the transfer function. Offset error can be negative or positive.  
Output Noise Spectral Density  
Output noise spectral density is a measurement of the internally  
generated random noise. Random noise is characterized as a  
spectral density (nA/√Hz). It is measured by loading the DAC  
to midscale and measuring noise at the output. It is measured  
in nA/√Hz.  
Offset Error Drift  
Offset error drift is a measurement of the change in offset error  
with a change in temperature. It is expressed in µA/°C.  
DC Power Supply Rejection Ratio (PSRR)  
PSRR indicates how the output of the DAC is affected by  
changes in the supply voltage. PSRR is the ratio of the change in  
IOUTx to a change in AVDD for a full-scale output of the DAC. It  
is measured in µA/V.  
Multiplexer Switching Glitch  
The multiplexer switching glitch is a measure of the impulse  
injected into the analog output of the DAC when the monitor  
mux is changed to monitor a different channel.  
AC Power Supply Rejection Ratio (AC PSRR)  
AC power supply rejection ratio is a measure of the rejection of the  
output current to ac changes in the power supplies applied to the  
DAC. AC PSRR is measured for a given amplitude and frequency  
change in power supply voltage and is expressed in decibels.  
Rev. 0 | Page 24 of 59  
 
Data Sheet  
AD5770R  
THEORY OF OPERATION  
When the external 1.25 V reference option is selected, switch  
SWA1 is closed, switch SWA2 is open, and switch SWA3 is  
connected to switch SWA2.  
DIGITAL TO ANALOG CONVERTER  
The AD5770R is a 6-channel, 14-bit, serial input, current output  
DAC capable of multiple low noise output current ranges with  
high power efficiency. Each of the six DACs has a segmented  
current steering architecture, chosen to achieve low glitch  
performance when changing codes.  
When the external 2.5 V option is selected, switch SWA1 and  
switch SWA2 are open and switch SWA3 is connected to the  
resistor divider shown in Figure 70.  
Precision RSET Resistor  
PRECISION REFERENCE CURRENT GENERATION  
The AD5770R integrates an on-chip 2.5 kΩ (10 ppm/°C, 0.1%)  
precision RSET resistor that can be used for the reference current  
generation. If required, an external precision RSET resistor can be  
used for reference current generation. The user selects an internal  
or an external reference resistor by writing to the REFERENCE_  
RESISTOR_SEL bit in the reference register. The AD5770R  
powers up with the internal precision RSET resistor selected.  
The AD5770R requires a 500 μA precision reference current for  
all four DAC cores, which is generated using a 1.25 V voltage  
reference and a 2.5 kΩ precision RSET resistor. The AD5770R  
integrates an internal 1.25 V voltage reference and 2.5 kΩ internal  
precision RSET resistor for this function. The AD5770R can also  
use an external voltage reference and external precision RSET resistor  
for the reference current generation. Ensure that the voltage  
reference and the precision RSET resistor have low noise, high  
accuracy, and low temperature drift to help minimize the  
overall IDACx gain error and gain error drift. Table 1 outlines the  
performance specifications of the AD5770R with both the internal  
reference and internal RSET resistor, and an external 1.25 V reference  
and external precision RSET resistor.  
The AD5770R integrates fault protection circuitry when using  
an external resistor. The AD5770R automatically switches from  
an external to an internal resistor if the external resistor option  
is selected, and if the external resistance is below the minimum  
specification. A simplified diagram of the how the reference resistor  
is configured by changing switch SWB1 is shown in Figure 70.  
SWA1  
Voltage Reference  
VREF_IO  
The AD5770R can use an external voltage reference for the  
precision reference current generation. The external reference  
voltage can be either 1.25 V or 2.5 V, configured by writing to  
the REFERENCE_VOLTAGE_SEL bits in the reference register.  
When the user selects the 2.5 V external voltage reference option,  
an internal voltage divider attenuates to achieve the 1.25 V  
required.  
1.25V  
SWA2  
INTERNAL  
REFERENCE  
SWA3  
PRECISION  
REFERENCE  
CURRENT  
The device powers up with the external 2.5 V reference voltage  
option selected.  
CREF  
100nF  
IREF  
The AD5770R integrates a low noise, on-chip, 15 ppm/°C, 1.25 V  
voltage reference that can be used as the voltage reference. The  
on-chip reference is powered down by default and is enabled when  
the REFERENCE_VOLTAGE_SEL bits in the reference register  
select the internal reference.  
SWB1  
R
SET_EXT  
2.5kΩ  
R
SET_INT  
2.5kΩ  
The buffered 1.25 V internal reference voltage can be made  
available at the VREF_IO pin for use as a system reference.  
Figure 70. AD5770R Reference Options  
DIAGNOSTIC MONITORING  
Regardless of the voltage reference scheme used, it is recommended  
that a 100 nF capacitor is placed between the CREF pin and AGND  
to achieve specified performance. A simplified diagram of the  
voltage reference configuration is shown in Figure 70.  
The AD5770R diagnostic feature allows the user to monitor  
output compliance voltages, output currents, and the internal  
die temperature of the device. The output compliance voltages,  
which are voltages representative of output current and internal  
die temperature, are multiplexed on-chip and are available on  
the MUX_OUT pin and can be measured using an external ADC.  
When the internal 1.25 V reference is selected and made  
available on the VREF_IO pin, switch SWA1 and switch SWA2  
are closed, and switch SWA3 is connected to switch SWA2.  
Diagnostics monitoring is disabled on power up and can be  
enabled by writing to the MON_FUNCTION bits in the  
MONITOR_SETUP register.  
When the internal 1.25 V reference is selected but not made  
available on the VREF_IO pin, switch SWA1 is open, switch  
SWA2 is closed, and switch SWA3 is connected to switch SWA2.  
The AD5770R integrates a voltage buffer on the multiplexer  
output to ease system design. The multiplexer buffer is disabled  
Rev. 0 | Page 25 of 59  
 
 
 
 
 
 
AD5770R  
Data Sheet  
and bypassed on power up. The multiplexer buffer is enabled by  
setting the MUX_BUFFER bit in the MONITOR_SETUP register.  
where:  
T is the die temperature (°C).  
VD is the diode voltage.  
Compliance Voltage Monitoring  
Using an external bias current of 100 µA, with the IB_EXT_EN  
bit set high, the internal die temperature can be calculated as  
follows:  
When the MON_FUNCTION bits in the MONITOR_  
SETUP register are set to select output voltage monitoring, the  
output compliance voltage of the selected DAC channel is  
multiplexed onto the MUX_OUT pin. The IDACx channel to  
be monitored is selected using the MON_CH bits in the  
MONITOR_SETUP register.  
880 mV VD  
T =  
+ 25  
(3)  
1.3 mV  
When using an external bias current of 200 µA, with the  
IB_EXT_EN bit set high, the die temperature can be calculated  
as follows:  
Output Current Monitoring  
When the MON_FUNCTION bits in the MONITOR_SETUP  
register select output current monitoring, a voltage representation  
of the output current of the selected DAC channel is multiplexed  
onto the MUX_OUT pin. The output current can only be  
monitored in current sourcing mode. The IDACx channel to be  
monitored is selected using the MON_CH bits in the MONITOR_  
SETUP register.  
1.04 V VD  
0.9 mV  
T =  
+ 25  
(4)  
SERIAL INTERFACE  
The AD5770R has a 4-wire ( , SCLK, SDI, and SDO) interface  
CS  
that is compatible with SPI, QSPI, and MICROWIRE interface  
standards as well as most digital signal processors (DSPs).  
The output current is calculated by  
For both read and write SPI transactions, data must be valid on  
the rising edge of SCLK (SCLK clock polarity = 0, SCLK clock  
phase = 0). For all SPI transactions, data is shifted MSB first.  
Communication with the device is separated into two distinct  
phases of operation. The first phase is the instruction phase and  
is used to initiate some action of the device. The second phase is  
the data phase where data is either passed to the device to operate  
on or received from the device in response to the instruction  
phase. Figure 71 illustrates the SPI transaction phases.  
IFULLSCALE × V  
VOS  
(
)
MUX  
ISOURCE  
=
(1)  
400 mV  
where:  
I
I
V
V
SOURCE is the output current being sourced.  
FULLSCALE is the full-scale output current.  
MUX is the measured voltage at the MUX_OUT pin.  
OS is the monitor offset voltage, nominally 28 mV.  
Uncalibrated, the current monitoring feature is accurate to  
within 10% of the full-scale output range. To improve the  
accuracy of the current monitor feature, calibrate VOS by  
measuring the voltage at the MUX_OUT pin at zero scale. To  
calibrate the 400 mV term, measure the voltage at the  
MUX_OUT pin at full scale.  
CS  
SDI  
7-BIT ADDRESS  
Z
R/W  
DATA BYTE  
DATA BYTE  
DATA BYTE  
DATA BYTE  
SDO  
DATA PHASE  
INSTRUCTION PHASE  
Figure 71. SPI Transaction Phases  
For 0 mA to 140 mA low headroom mode on Channel 1, use a  
value of 250 mA for IFULLSCALE  
.
Instruction Phase  
Internal Die Temperature Monitoring  
The instruction phase immediately follows the falling edge of  
When temperature monitoring is selected in the MONITOR_  
SETUP register, a voltage representation of the internal die  
temperature is multiplexed onto the MUX_OUT pin. To monitor  
the internal die temperature, a precision current is forced through a  
diode on the chip, and the voltage across the diode is multiplexed  
onto the MUX_OUT pin. Choose to use an external bias current  
for the temperature monitoring function by setting the  
IB_EXT_EN bit high in the MONITOR_SETUP register. The  
external bias current must be forced into the MUX_OUT pin.  
The multiplexer buffer must be bypassed when using an  
external bias current for temperature monitoring.  
CS  
that initiates the SPI transaction. The instruction phase  
W
consists of a read/write bit (R/ ) followed by a register address  
word. Setting R/ high selects a read instruction. Setting R/  
low selects a write instruction. The address word is 7 bits long.  
The register address sent in the instruction phase is used as the  
starting address to start writing or reading from. Refer to Table  
12 and Table 13 for a full list of registers and the associated  
addresses.  
W
W
Data Phase  
The data phase immediately follows the instruction phase.  
When a write instruction is sent to the device, data is written to  
the register location selected. When a read instruction is sent to  
the device, data stored in the register location selected is shifted  
out on the SDO pin.  
Using the internal bias current with the IB_EXT_EN bit set low,  
calculate the internal die temperature as follows:  
700 mV VD  
T =  
+ 25  
(2)  
1.8 mV  
Rev. 0 | Page 26 of 59  
 
 
 
Data Sheet  
AD5770R  
SPI Frame Synchronization  
mode, the internal SPI state machine resets after the data phase as if  
CS  
was deasserted, and awaits the next instruction. Single  
instruction mode forces each data phase to be preceded with a  
CS  
CS  
The  
falling edge on  
during a SPI transaction terminates part or all of the data transfer.  
CS  
pin is used to frame data during an SPI transaction. A  
CS CS  
initiates a SPI transaction. Deasserting  
new instruction phase even though the  
deasserted by the SPI master. Single instruction mode allows the  
user to access one or more registers in a single synchronization  
frame without having to deassert the  
The default for this bit is cleared, resulting in streaming mode  
being enabled.  
line has not been  
If  
is complete, the transaction aborts and the AD5770R returns to  
CS  
is deasserted (returned high) before the instruction phase  
CS  
line after each data bye.  
the ready state. If  
written, the transaction aborts and the AD5770R returns to the  
CS  
is deasserted before the first data word is  
ready state. If  
is deasserted after one or more data words have  
Figure 74 illustrates an SPI transaction in single instruction mode  
in which the following sequence of events occur:  
been written, those completed data words are written or read, but  
any partial written data words are aborted.  
1. Sets the output range of Channel 1.  
2. Enables the output of Channel 1.  
3. Writes to the Channel 1 DAC register.  
4. Reads the status register.  
Streaming Mode  
CS  
The  
pin can be held low, and multiple data bytes can be  
shifted during the data phase, which reduces the amount of  
overhead associated with data transfer. This mode of operation  
is known as streaming mode. When in streaming mode, the  
register address sent in the instruction phase is automatically  
incremented or decremented after each byte of data is processed.  
The ADDR_ASCENSION_MSB bit and ADDR_ASCENSION_  
LSB bit in the INTERFACE_CONFIG_A register selects the  
address increment or decrement. The default operation is to  
decrement addresses when streaming data. Figure 72 illustrates  
a streaming mode SPI write transaction in which the six input  
registers are accessed using only a single instruction byte. The  
register address is automatically decremented after each data  
byte is processed. Figure 73 illustrates a streaming mode SPI  
read transaction in which the six DAC registers are accessed  
using a decrementing address.  
Multibyte Registers  
CS  
If writing to a multibyte register,  
must be held low for the  
whole transaction for the write to be valid. The address used  
must be the address of the most significant byte. The ADDR_  
ASCENSION_MSB bit and the ADDR_ASCENSION_LSB bit in  
the INTERFACE_CONFIG_A register must be cleared. This  
applies when reading or writing to any multibyte register in  
both single instruction mode and streaming mode. Figure 75  
illustrates a multibyte register access. The AD5770R contains 14  
multibyte registers, as follows:  
Six input registers.  
Six DAC registers.  
One input page mask register.  
One DAC page mask register.  
Single Instruction Mode  
When the single instruction bit is set in the INTERFACE_  
CONFIG_B register, streaming mode is disabled, and the  
AD5770R is placed in single instruction mode. In single instruction  
CS  
CH5_INPUT_MSB ADDRESS  
INSTRUCTION PHASE  
CH5_INPUT_MSB  
CH5_INPUT_LSB  
CH0_INPUT_MSB  
CH0_INPUT_LSB  
SDI  
W
DATA PHASE  
Figure 72. Streaming Mode SPI Write Transaction with Decrementing Address  
CS  
CH5_DAC_LSB ADDRESS  
DON’T CARE  
DON’T CARE  
DON’T CARE  
DON’T CARE  
SDI  
R
SDO  
CH5_DAC_MSB  
CH5_DAC_LSB  
CH0_DAC_MSB  
CH0_DAC_MSB  
INSTRUCTION PHASE  
DATA PHASE  
Figure 73. Streaming Mode SPI Read Transaction with Decrementing Address  
CS  
OUTPUT_RANGE_CH1 CH1_MODE  
CH_CONFIG CH1 OUTPUT EN  
CH1_DAC_MSB MSB BYTE LSB BYTE  
R
STATUS DON’T CARE  
STATUS  
SDI  
W
W
W
SDO  
INSTRUCTION PHASE  
DATA PHASE  
Figure 74. SPI Transaction in Single Instruction Mode  
Rev. 0 | Page 27 of 59  
 
 
 
AD5770R  
Data Sheet  
CS  
SDI  
CH3_DAC_MSB ADDRESS CH3_DAC_MSB  
CH3_DAC_LSB  
W
DATA PHASE  
INSTRUCTION PHASE  
Figure 75. Multibyte Register Write  
Setting the SW_LDAC register for any channel updates the selected  
channels DAC register with the input register contents. The  
contents of the SW_LDAC register clear to 0x00 after a software  
RESET FUNCTION  
RESET  
The AD5770R has an asynchronous  
pin. For normal  
RESET  
pin to logic  
RESET  
operation,  
is tied high. Asserting the  
LDAC  
operation.  
low for at least 10 ns resets all registers to their default values.  
The reset function takes 100 ns, maximum. Data must not be  
written to the device during this time.  
INPUT PAGE MASK REGISTER  
Following a write to the input page mask register, the code  
loaded into this register is copied into the input register of any  
channels selected in the CH_SELECT register.  
The AD5770R has a software reset function that performs the  
RESET  
same function as the  
pin, with the exception of not  
resetting the INTERFACE_CONFIG_A register. The reset  
function is activated by setting the SW_RESET_MSB and  
SW_RESET_LSB bits in the INTERFACE_CONFIG_A register.  
The SW_RESET_MSB and SW_RESET_LSB bits clear  
automatically during a software reset.  
DAC PAGE MASK REGISTER  
Following a write to the DAC page mask register, the DAC code  
loaded into this register is copied into the DAC register of any  
channels selected in the CH_SELECT register.  
OUTPUT STAGES  
A reset function must not be performed when the TEMP_  
WARNING bit in the status register is high. Ensure that the device  
reads the correct trim values from the internal memory.  
Each of the six AD5770R channels has a programmable current  
output stage that sets the required output current.  
Channel 0 Sink Current Generator  
LOAD DAC  
To sink current on Channel 0, the sink current generator must  
be enabled by setting the CH0_SINK_EN bit in the CHANNEL_  
CONFIG register to one. On power-up, the sink current generator  
is enabled.  
The AD5770R DAC consists of double buffered registers for the  
DAC code. Data for one or many channels can be written to the  
input register without changing the DAC outputs. A load DAC  
command issued to the device transfers input register content into  
the DAC register, updating the DAC output.  
Output Shutdown  
Hardware  
Pin  
LDAC  
The AD5770R has an active low  
updates to the outputs of the DACs. When  
DAC codes can be written to the input registers of the DAC  
LDAC  
On power-up, the outputs of each channel are in shutdown mode.  
When a DAC output is in shutdown mode, the output current is  
set to 0 mA. However, the bias circuitry for each IDACx channel  
remains powered up, and only the output is shut down. The  
shutdown bits for each register are located in the CHANNEL_  
CONFIG register. When changing between output modes on a  
DAC channel, the output stage of the channel must be shut down  
to prevent glitches on the output.  
LDAC  
pin that can synchronize  
LDAC  
is held high,  
without affecting the output. When  
contents of the input register are transferred to the DAC register  
of the corresponding channel, and the output updates. The  
is taken low, the  
LDAC  
idle high behavior is shown in Figure 2.  
Channel 0  
LDAC  
CS  
pin is held low before the last rising edge of  
When the  
Channel 0 of the AD5770R sinks up to 60 mA and sources up to  
300 mA of current. This channel has three different modes of  
operation. The CH0_MODE bits in the OUTPUT_RANGE_CH0  
register configure the different modes. The configuration options  
for Channel 0 are listed in Table 8.  
prior to the beginning of a new SPI transaction and the input  
registers contents are modified, the update to the DAC output  
happens when the LSB of the DAC input register is written. The  
LDAC  
idle low behavior is shown in Figure 2 and Figure 3.  
LDAC  
The  
pin functionality can be masked for any or all  
On power-up, Channel 0 defaults to the 0 mA to 300 mA range.  
channels by configuring the corresponding HW_LDAC_  
MASK_CHx bits high in the HW_LDAC register, which is  
useful in cases where only a selection of channels are required to  
update synchronously.  
Channel 0 has a sinking only mode of −60 mA to 0 mA. In  
this mode, the DAC has a zero-scale output of −60 mA and a  
full-scale output of 0 mA. To enter this mode safely without  
output glitches, the output must be shut down first by setting  
CH0_SHUTDOWN_B high in the CHANNEL_CONFIG register.  
LDAC  
Software  
It is possible to transfer data from any or all input registers to  
the corresponding DAC registers with a write to the SW_LDAC  
register, which is useful in cases where only a selection of channels  
are required to update synchronously.  
Channel 0 has a sourcing and sinking mode where the DAC has  
a zero-scale output of −60 mA and a full-scale output of +300 mA.  
To reduce glitches on the output of Channel 0, CH0_MODE  
must be configured before taking the output out of shutdown.  
Rev. 0 | Page 28 of 59  
 
 
 
 
 
 
Data Sheet  
AD5770R  
Channel 1  
Channel 3 to Channel 5  
Channel 1 can be set up to source 0 mA to 140 mA or 0 mA to  
250 mA. The full-scale output range for Channel 1 must be set  
by writing to the CH1_MODE bits of the OUTPUT_RANGE_  
CH1 register. In addition to the 0 mA to 250 mA range, Channel 1  
has two 0 mA to 140 mA ranges; the channel can be set up to  
optimize for better noise and PSRR or for reduced headroom.  
The configuration options for Channel 1 are listed in Table 8.  
Channel 3, Channel 4, and Channel 5 of the AD5770R can be set  
up to source 0 mA to 45 mA or 0 mA to 100 mA. The full-scale  
output rages for Channel 3, Channel 4, and Channel 5 must be  
set by writing to the CH3_MODE, CH4_MODE, and  
CH5_MODE bits of the OUTPUT_RANGE_CH3, OUTPUT_  
RANGE_CH4, and OUTPUT_RANGE_CH5 registers. The  
configuration options for Channel 3, Channel 4, and Channel 5  
are listed in Table 8.  
Channel 2  
Channel 2 can be set up to source 0 mA to 55 mA or 0 mA to  
150 mA. The full-scale output range for Channel 2 must be set  
by writing to the CH2_MODE bits of the OUTPUT_RANGE_  
CH2 register. Table 8 lists configuration options for Channel 2.  
Table 8. Output Range Mode Register Setup  
Minimum  
Channel  
Mode Bit Name Mode Zero-Scale Output (mA) Full-Scale Output (mA)1 Headroom (mV) Comments  
Channel 0 CH0_MODE  
0x0  
0x1  
0x2  
0x1  
0x2  
0x3  
0x0  
0x1  
0x0  
0x1  
0x0  
0x1  
0x0  
0x1  
0
300  
0
450  
02  
−60  
−60  
0
0
0
0
0
0
0
0
0
0
0
300  
140  
140  
250  
55  
150  
45  
100  
45  
4502  
275  
450  
450  
275  
275  
275  
275  
275  
275  
275  
275  
Channel 1 CH1_MODE  
Low headroom  
Low noise and PSRR  
Channel 2 CH2_MODE  
Channel 3 CH3_MODE  
Channel 4 CH4_MODE  
Channel 5 CH5_MODE  
100  
45  
100  
1 Output current scaling feature disabled. See the Output Current Scaling section for more information.  
2 500 mV footroom from PVEE0 supply required when sinking current.  
Rev. 0 | Page 29 of 59  
 
AD5770R  
Data Sheet  
Background CRC Failure  
OUTPUT FILTER  
The AD5770R periodically performs a background cyclic  
redundancy check (CRC) on the status of the on-chip registers to  
ensure that the memory bits are not corrupted. In the unlikely  
Each channel of the AD5770R has a user programmable variable  
resistor in the output stage used for filtering. The output filter  
resistor creates a low-pass RC filter with the 10 nF external  
capacitor connected to the CDAMP_IDACx pin. The value loaded  
into the OUTPUT_FILTER_CH0x register configures the value of  
the variable resistor. Table 9 shows the cutoff frequency of each  
resistor setting.  
ALARM  
event that the background CRC fails, the  
pin activates  
and the BACKGROUND_CRC_STATUS bit in the status  
register is set high. Reading the status register deasserts the  
ALARM  
pin. A hardware or software reset is required to clear the  
ALARM  
BACKGROUND_CRC_STATUS bit. The  
pin can be set  
Table 9. IDACx Filter Bandwidth Control Settings  
to ignore background CRC failures by setting the BACKGROUND  
_CRC_ALARM_MASK bit of the ALARM_CONFIG register.  
OUTPUT_FIILTER_CHx  
Setting  
Cutoff  
Frequency  
Resistor Value  
60 Ω  
5.6 kΩ  
11.2 kΩ  
22.2 kΩ  
44.4 kΩ  
104 kΩ  
Overtemperature Warning and Shutdown  
0x0  
0x5  
0x6  
0x7  
0x8  
0x9  
262 kHz  
2.8 kHz  
1.4 kHz  
715 Hz  
357 Hz  
153 Hz  
To protect the device from damage from overtemperature  
occurrences during operation, the AD5770R has an  
overtemperature warning alert and an overtemperature  
shutdown alert.  
When the internal die temperature reaches approximately  
OUTPUT CURRENT SCALING  
ALARM  
125°C, the  
bit in the status register is set high. The user must read the  
ALARM  
pin activates, and the TEMP_WARNING  
When in current sourcing mode only, the full-scale output current  
of each channel of the AD5770R can be scaled by up to ½ of the  
nominal full-scale current and maintain 14-bit monotonicity.  
status register to deassert the  
When the internal die temperature reaches approximately 145°C,  
ALARM  
pin.  
The full-scale output current of any channel can be scaled by  
writing to the CHx_OUTPUT_SCALING bits of the OUTPUT_  
RANGE_CHx register. The value loaded into the CHx_OUTPUT_  
SCALING bits determines the multiplier, which scales the full-  
scale current. The adjusted full-scale current of an IDACx channel  
is calculated by,  
the  
OVER_TEMP bit in the status register is set. The user must  
ALARM  
pin activates (if not already activated) and the  
read the status register to deassert the  
pin.  
If the THERMAL_SHUTDOWN_EN bit in the ALARM_  
CONFIG register is set to high, the device shuts down the  
output stages to protect from over temperature, and the outputs  
remain shut down until the user initiates a software or hardware  
reset to the device.  
x
128  
IADJ = INOM × 1−  
(5)  
The TEMP_WARNING and OVER_TEMP flags in the status  
register clear when the device temperature returns below  
approximately 120°C. To guarantee proper data downloads  
from the internal memory, a reset function must not be  
performed when the TEMP_WARNING bit in the status  
register is high.  
where:  
I
I
ADJ is the adjusted full-scale output current.  
NOM is the nominal full-scale output current.  
x is the code loaded into output scaling register, 0 ≤ x ≤ 63.  
Refer to Table 10 for a list of output current ranges achievable  
using the scaling feature.  
ALARM  
The  
pin can be set to ignore over temperature faults  
ALARM  
and over temperature warnings by setting the OVER_TEMP_  
ALARM_MASK and TEMP_WARNING_ALARM_MASK bits  
of the ALARM_CONFIG register.  
The AD5770R provides a number of fault alerts that are signaled  
via the  
ALARM  
ALARM  
pin and the status register. The active low  
pin can be configured as an open-drain output by setting the  
OPEN_DRAIN_EN bit in the ALARM_CONFIG register,  
allowing several devices to be connected together to one pull-up  
resistor for global fault detection. Open drain mode on the  
Negative Compliance Voltage  
The compliance voltage on IDAC0 pin of the AD5770R can be a  
negative value when sinking current. The AD5770R has a  
negative compliance voltage alert feature to protect an external  
unipolar ADC connected to the MUX_OUT pin.  
ALARM  
pin is disabled on power up.  
The following sequence of events occurs if the user enables voltage  
monitoring of Channel 0 when the voltage on IDAC0 is negative:  
ALARM  
1. The  
pin activates.  
2. The MUX_OUT pin is disabled.  
3. The NEGATIVE_CHANNEL0 bit in the status register  
is set.  
Rev. 0 | Page 30 of 59  
 
 
 
 
 
Data Sheet  
AD5770R  
ALARM  
current that is too high and can damage the device. The AD5770R  
incorporates an internal protection circuit that protects the device  
if the reference current is too high.  
The status register must be read to dessert the  
pin.  
The following sequence of events occurs if the voltage on IDAC0  
goes negative after the user enables voltage monitoring of  
Channel 0:  
When the protection circuit detects a reference current that is  
too high, the following events occur:  
ALARM  
1. The  
pin activates.  
1. This circuit switches to the internal RSET resistor.  
2. The MUX_OUT pin is set to the same voltage as PVDD0.  
3. The NEGATIVE_CHANNEL0 bit in the status register is set.  
ALARM  
2. The  
pin activates.  
3. The IREF_FAULT bit in the status register is set.  
ALARM  
The status register must be read to dessert the  
pin.  
ALARM  
The user must then read the status register to deassert the  
ALARM  
The  
pin can be set to ignore the negative compliance  
voltage warning by setting the NEGATIVE_CHANNEL0_  
ALARM_MASK bit of the ALARM_CONFIG register.  
ALARM  
pin. The  
pin can be set to ignore IREF faults by setting  
the IREF_FAULT_ALARM_MASK bit of the ALARM_CONFIG  
register.  
IREF Fault  
When the external RSET resistor option is selected, it is important  
that the value of this external RSET resistor cannot create a reference  
Table 10. Full-Scale Output Current for All Scaling Code Values  
Channel 0,  
0 mA to  
Channel 1,  
0 mA to  
Channel 1,  
0 mA to  
Channel 2,  
0 mA to  
Channel 2,  
0 mA to  
150 mA Range to 45 mA Range  
Channel 3 to  
Channel 5, 0 mA  
Channel 3 to  
Channel 5, 0 mA  
to 100 mA Range  
Scaling  
Code  
300 mA Range 140 mA Range 250 mA Range 55 mA Range  
0
300  
140  
250  
55  
150  
45  
100  
(Default)  
1
2
3
4
5
6
7
8
298  
295  
293  
291  
288  
286  
284  
281  
279  
277  
274  
272  
270  
267  
265  
263  
260  
258  
255  
253  
251  
248  
246  
244  
241  
239  
237  
234  
232  
230  
227  
225  
139  
138  
137  
136  
135  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
110  
109  
108  
107  
106  
105  
248  
246  
244  
242  
240  
238  
236  
234  
232  
230  
229  
227  
225  
223  
221  
219  
217  
215  
213  
211  
209  
207  
205  
203  
201  
199  
197  
195  
193  
191  
189  
188  
55  
54  
54  
53  
53  
52  
52  
52  
51  
51  
50  
50  
49  
49  
49  
48  
48  
47  
47  
46  
46  
46  
45  
45  
44  
44  
43  
43  
43  
42  
42  
41  
149  
148  
146  
145  
144  
143  
142  
141  
139  
138  
137  
136  
135  
134  
132  
131  
130  
129  
128  
127  
125  
124  
123  
122  
121  
120  
118  
117  
116  
115  
114  
113  
45  
44  
44  
44  
43  
43  
43  
42  
42  
41  
41  
41  
40  
40  
40  
39  
39  
39  
38  
38  
38  
37  
37  
37  
36  
36  
36  
35  
35  
34  
34  
34  
99  
98  
98  
97  
96  
95  
95  
94  
93  
92  
91  
91  
90  
89  
88  
88  
87  
86  
85  
84  
84  
83  
82  
81  
80  
80  
79  
78  
77  
77  
76  
75  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Rev. 0 | Page 31 of 59  
 
AD5770R  
Data Sheet  
Channel 0,  
0 mA to  
Channel 1,  
0 mA to  
Channel 1,  
0 mA to  
Channel 2,  
0 mA to  
Channel 2,  
0 mA to  
150 mA Range to 45 mA Range  
Channel 3 to  
Channel 5, 0 mA  
Channel 3 to  
Channel 5, 0 mA  
to 100 mA Range  
Scaling  
Code  
300 mA Range 140 mA Range 250 mA Range 55 mA Range  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
223  
220  
218  
216  
213  
211  
209  
206  
204  
202  
199  
197  
195  
192  
190  
188  
185  
183  
180  
178  
176  
173  
171  
169  
166  
164  
162  
159  
157  
155  
152  
104  
103  
102  
101  
100  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
75  
74  
73  
72  
71  
186  
184  
182  
180  
178  
176  
174  
172  
170  
168  
166  
164  
162  
160  
158  
156  
154  
152  
150  
148  
146  
145  
143  
141  
139  
137  
135  
133  
131  
129  
127  
41  
40  
40  
40  
39  
39  
38  
38  
37  
37  
37  
36  
36  
35  
35  
34  
34  
34  
33  
33  
32  
32  
31  
31  
31  
30  
30  
29  
29  
28  
28  
111  
110  
109  
108  
107  
105  
104  
103  
102  
101  
100  
98  
97  
96  
95  
94  
93  
91  
90  
89  
33  
33  
33  
32  
32  
32  
31  
31  
31  
30  
30  
30  
29  
29  
28  
28  
28  
27  
27  
27  
26  
26  
26  
25  
25  
25  
24  
24  
24  
23  
23  
74  
73  
73  
72  
71  
70  
70  
69  
68  
67  
66  
66  
65  
64  
63  
63  
62  
61  
60  
59  
59  
58  
57  
56  
55  
55  
54  
53  
52  
52  
51  
88  
87  
86  
84  
83  
82  
81  
80  
79  
77  
76  
Rev. 0 | Page 32 of 59  
Data Sheet  
AD5770R  
APPLICATIONS INFORMATION  
COMBINING CHANNELS TO INCREASE CURRENT  
RANGE  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD5770R is via a serial  
bus that uses a standard protocol compatible with DSPs and  
microcontrollers. The communications channel requires a  
4-wire serial interface consisting of a clock signal, a data input  
signal, a data output signal, and a synchronization signal.  
The maximum current that can be sourced from IDAC0 is 300 mA.  
It is possible to increase the current source capability by connecting  
two channels directly together. Figure 77 shows IDAC1 combined  
with IDAC2 to create a full-scale output current of 400 mA. When  
channels are combined, care must be taken to ensure the following:  
AD5770R TO SPI INTERFACE  
The output compliance voltage stays within the range  
specified in Table 1.  
The SPI interface of the AD5770R is designed to be easily  
connected to industry-standard DSPs and microcontrollers.  
Figure 76 shows the AD5770R connected to the ADuCM320.  
The ADuCM320 has an integrated SPI port that can be  
connected directly to the SPI pins of the AD5770R.  
The output voltage stays within the absolute maximum  
ratings specified in Table 5.  
PVDDx  
250mA  
IDAC1  
ADuCM320  
AD5770R  
AD5770R  
P0.3/IRQ0/CS0/PLACLK0/PLAI[3]  
P0.0/SCLK0/PLAI[0]  
CS  
150mA  
IDAC2  
SCLK  
SDI  
400mA  
P0.2/MOSI0/PLAI[2]  
P0.1/MISO0/PLAI[1]  
SDO  
R
LOAD  
P1.4/PWM2/SCLK1/PLAO[10]  
P1.5/PWM3/MISO1/PLAO[11]  
P1.6/PWM4/MOSI1/PLAO[12]  
RESET  
LDAC  
ALARM  
Figure 77. Increasing the Current Range by Summing Channels  
Figure 76. ADuCM320 SPI Interface  
LAYOUT GUIDELINES  
Take careful consideration of the power supply and ground return  
layout in order to ensure the rated performance. Design the PCB  
on which the AD5770R is mounted so that the AD5770R lies on  
the analog plane.  
THERMAL CONSIDERATIONS  
The AD5770R has a maximum junction temperature of 150°C (see  
Table 5). To ensure reliable and specified operation over the lifetime  
of the device, it is important that the AD5770R is not operated  
under conditions that cause the junction temperature to exceed  
150°C. The junction temperature is directly affected by the power  
dissipated across the AD5770R and the ambient temperature.  
The AD5770R must have an ample supply bypassing of 10 μF in  
parallel with 0.1 μF on each supply, located as close to the package  
as possible (ideally directly against the device). The 10 μF capacitors  
are the tantalum bead type. The 0.1 μF capacitor must have low  
effective series resistance (ESR) and low effective series inductance  
(ESI). Common ceramic capacitors provide a low impedance  
path to ground at high frequencies to handle transient currents,  
due to internal logic switching.  
Table 1 specifies the output current ranges for each AD5770R  
channel and the maximum power supply voltages. Therefore, it  
is important to understand the effects of power dissipation on  
the package and the effects the package has on the junction  
temperature. The AD5770R is packaged in a 49-ball, 4 mm ×  
4 mm, wafer level chip scale packaging (WLCSP) package. The  
thermal impedance, θJA, is specified in Table 6.  
Ensure that the power supply line has as large a trace as possible  
to provide a low impedance path and reduce glitch effects on the  
supply line. Shield clocks and other fast switching digital signals  
from other parts of the board by using a digital ground. Avoid  
crossover of digital and analog signals if possible. When traces  
cross on opposite sides of the board, ensure that they run at right  
angles to each other to reduce feedthrough effects through the  
board. The best board layout technique is the microstrip technique,  
where the component side of the board is dedicated to the ground  
plane only, and the signal traces are placed on the solder side.  
However, this technique is not always possible with a 2-layer board.  
Table 11 provides examples of the maximum allowed power  
dissipation and the maximum allowed ambient temperature  
under certain conditions.  
Rev. 0 | Page 33 of 59  
 
 
 
 
 
 
 
 
AD5770R  
Data Sheet  
Because the AD5770R can dissipate a large amount of power, it is  
recommended to provide some heat sinking capability to allow  
power to dissipate easily.  
If using an external RSET resistor, the low side of the RSET resistor  
must be connected to REFGND before the connection to  
AGND. Ensure that the width of the trace connecting RSET to  
the IREF pin is as wide as possible to reduce the resistance and  
the temperature coefficient of the trace.  
For the WLCSP package, heat is transferred through the solder  
balls to the PCB board. θJA thermal impedance is dependent on  
board construction. More copper layers enable heat to be  
removed more effectively.  
Table 11. Thermal Considerations for 49-Ball WLCSP Package  
Parameter  
Description  
Maximum Power Dissipation  
Maximum allowed AD5770R power dissipation (PDISS) when operating at an ambient temperature of 105°C,  
TJMAX TA  
150 105  
=
=1.5 W  
θJA  
30  
Maximum Ambient  
Temperature  
Maximum allowed ambient temperature, when dissipating 1.985 W across the AD5770R:  
JMAX PDISS × θJA = 150 – (1.985 × 30) = 90.45°C  
T
Power dissipation calculation example:  
AVDD = DVDD = IOVDD = 3.3 V, PVDDx = 2.9 V  
AVEE = PVEE0 = 0 V, RLOAD = 5 Ω per channel, AD5770R quiescent power dissipation = 110 mW  
IDAC0 = 300 mA, power dissipation = 420 mW  
IDAC1 = 250 mA, power dissipation = 412.5 mW  
IDAC2 = 150 mA, power dissipation = 322.5 mW  
IDAC3, IDAC4, IDAC5 = 100 mA, power dissipation = 720 mW  
Total power dissipation = 110 mW + 1.875 W = 1.985 W  
Rev. 0 | Page 34 of 59  
 
Data Sheet  
AD5770R  
REGISTER SUMMARY  
SPI CONFIGURATION REGISTERS  
Table 12. AD5770R SPI Configuration Register Summary  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x00  
INTERFACE_  
CONFIG_A  
[7:0]  
SW_RESET_  
MSB  
Reserved  
ADDR_  
ASCENSION_  
SDO_  
ACTIVE_MSB  
SDO_  
ACTIVE_LSB  
ADDR_  
ASCENSION_  
Reserved  
SW_  
RESET_  
0x18  
R/W  
MSB  
LSB  
LSB  
0x01  
INTERFACE_  
CONFIG_B  
[7:0]  
SINGLE_INST  
Reserved  
SHORT_  
INSTRUCTION  
Reserved  
0x08  
R/W  
0x03  
0x04  
0x05  
0x06  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x10  
CHIP_TYPE  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
Reserved  
CHIP_TYPE  
0x08  
0x04  
0x40  
0x00  
0x00  
0x82  
0x56  
0x04  
0x00  
0x20  
R
PRODUCT_ID_L  
PRODUCT_ID_H  
CHIP_GRADE  
SCRATCH_PAD  
SPI_REVISION  
VENDOR_L  
PRODUCT_ID[7:0]  
R
PRODUCT_ID[15:8]  
R
GRADE  
DEVICE_REVISION  
R
VALUE  
VERSION  
VID[7:0]  
VID[15:8]  
LENGTH  
R/W  
R
R
VENDOR_H  
R
STREAM_MODE  
R/W  
R
INTERFACE_  
CONFIG_C  
Reserved  
STRICT_  
REGISTER_  
Reserved  
ACCESS  
0x11  
INTERFACE_  
STATUS_A  
[7:0]  
INTERFACE_  
NOT_READY  
Reserved  
0x00  
R
AD5770R CONFIGURATION REGISTERS  
Table 13. AD5770R Configuration Register Summary  
Reg Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset R/W  
0x14 CHANNEL_ [7:0]  
CONFIG  
CH0_SINK_EN  
Reserved CH5_  
CH4_  
CH3_  
CH2_  
CH1_  
SHUTDOWN_B  
CH0_  
SHUTDOWN_B  
0x80 R/W  
SHUTDOWN_B SHUTDOWN_B SHUTDOWN_B SHUTDOWN_B  
0x15 OUTPUT_  
RANGE_  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
CH0_OUTPUT_SCALING  
CH0_MODE  
0x00 R/W  
0x02 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x06 R/W  
CH0  
0x16 OUTPUT_  
RANGE_  
CH1_OUTPUT_SCALING  
CH2_OUTPUT_SCALING  
CH3_OUTPUT_SCALING  
CH4_OUTPUT_SCALING  
CH5_OUTPUT_SCALING  
CH1_MODE  
CH1  
0x17 OUTPUT_  
RANGE_  
Reserved  
Reserved  
Reserved  
Reserved  
CH2_  
MODE  
CH2  
0x18 OUTPUT_  
RANGE_  
CH3_  
MODE  
CH3  
0x19 OUTPUT_  
RANGE_  
CH4_  
MODE  
CH4  
0x1A OUTPUT_  
RANGE_  
CH5_  
MODE  
CH5  
0x1B REFERENCE [7:0]  
Reserved  
REFERENCE_  
RESISTOR_  
SEL  
REFERENCE_VOLTAGE_SEL  
0x1C ALARM_  
CONFIG  
[7:0]  
BACKGROUND_ IREF_  
NEGATIVE_  
CHANNEL0_  
ALARM_  
OVER_TEMP_ TEMP_  
ALARM_MASK WARNING_  
ALARM_  
BACKGROUND_ THERMAL_  
OPEN_  
DRAIN_  
EN  
CRC_ALARM_  
FAULT_  
CRC_EN  
SHUTDOWN_  
MASK  
ALARM_  
EN  
MASK  
MASK  
MASK  
0x1D OUTPUT_  
FILTER_  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
Reserved  
OUTPUT_FILTER_RESISTOR0  
OUTPUT_FILTER_RESISTOR1  
OUTPUT_FILTER_RESISTOR2  
OUTPUT_FILTER_RESISTOR3  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
CH0  
0x1E OUTPUT_  
FILTER_  
Reserved  
Reserved  
Reserved  
CH1  
0x1F OUTPUT_  
FILTER_  
CH2  
0x20 OUTPUT_  
FILTER_  
CH3  
Rev. 0 | Page 35 of 59  
 
 
 
 
 
AD5770R  
Data Sheet  
Reg Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset R/W  
0x21 OUTPUT_  
FILTER_  
[7:0]  
Reserved  
OUTPUT_FILTER_RESISTOR4  
OUTPUT_FILTER_RESISTOR5  
MON_CH  
0x00 R/W  
CH4  
0x22 OUTPUT_  
FILTER_  
[7:0]  
Reserved  
0x00 R/W  
0x00 R/W  
CH5  
0x23 MONITOR_ [7:0]  
SETUP  
MON_FUNCTION  
MUX_  
BUFFER  
IB_EXT_EN  
0x24 STATUS  
[7:0]  
BACKGROUND_  
CRC_STATUS  
Reserved  
IREF_FAULT  
NEGATIVE_  
CHANNEL0  
OVER_TEMP  
TEMP_  
WARNING  
0x00  
R
0x25 HW_LDAC [7:0]  
Reserved  
HW_LDAC_  
MASK_CH5  
HW_LDAC_  
MASK_CH4  
HW_LDAC_  
MASK_CH3  
HW_LDAC_  
MASK_CH2  
HW_LDAC_  
MASK_CH1  
HW_LDAC_  
MASK_CH0  
0x00 R/W  
0x26 CH0_DAC_ [7:0]  
LSB  
DAC_DATA0[5:0]  
DAC_DATA1[5:0]  
DAC_DATA2[5:0]  
DAC_DATA3[5:0]  
DAC_DATA4[5:0]  
DAC_DATA5[5:0]  
Reserved  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x27 CH0_DAC_ [7:0]  
MSB  
DAC_DATA0[13:6]  
DAC_DATA1[13:6]  
DAC_DATA2[13:6]  
DAC_DATA3[13:6]  
DAC_DATA4[13:6]  
DAC_DATA5[13:6]  
0x28 CH1_DAC_ [7:0]  
LSB  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x29 CH1_DAC_ [7:0]  
MSB  
0x2A CH2_DAC_ [7:0]  
LSB  
0x2B CH2_DAC_ [7:0]  
MSB  
0x2C CH3_DAC_ [7:0]  
LSB  
0x2D CH3_DAC_ [7:0]  
MSB  
0x2E CH4_DAC_ [7:0]  
LSB  
0x2F CH4_DAC_ [7:0]  
MSB  
0x30 CH5_DAC_ [7:0]  
LSB  
0x31 CH5_DAC_ [7:0]  
MSB  
0x32 DAC_PAGE [7:0]  
DAC_PAGE_MASK[5:0]  
_
MASK_LSB  
0x33 DAC_PAGE [7:0]  
DAC_PAGE_MASK[13:6]  
0x00 R/W  
_
MASK_MSB  
0x34 CH_SELECT [7:0]  
Reserved  
Reserved  
SEL_CH5  
SEL_CH4  
SEL_CH3  
SEL_CH2  
SEL_CH1  
SEL_CH0  
Reserved  
0x00 R/W  
0x00 R/W  
0x35 INPUT_  
PAGE_  
[7:0]  
[7:0]  
[7:0]  
INPUT_PAGE_MASK[5:0]  
MASK_LSB  
0x36 INPUT_  
PAGE_  
INPUT_PAGE_MASK[13:6]  
0x00 R/W  
MASK_MSB  
0x37 SW_LDAC  
SW_LDAC_  
CH5  
SW_LDAC_  
CH4  
SW_LDAC_  
CH3  
SW_LDAC_  
CH2  
SW_LDAC_  
CH1  
SW_LDAC_  
CH0  
0x00  
W
0x38 CH0_INPUT [7:0]  
_LSB  
INPUT_DATA0[5:0]  
INPUT_DATA1[5:0]  
INPUT_DATA2[5:0]  
INPUT_DATA3[5:0]  
INPUT_DATA4[5:0]  
Reserved  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x39 CH0_INPUT [7:0]  
_MSB  
INPUT_DATA0[13:6]  
INPUT_DATA1[13:6]  
INPUT_DATA2[13:6]  
INPUT_DATA3[13:6]  
0x3A CH1_INPUT [7:0]  
_LSB  
Reserved  
Reserved  
Reserved  
Reserved  
0x3B CH1_INPUT [7:0]  
_MSB  
0x3C CH2_INPUT [7:0]  
_LSB  
0x3D CH2_INPUT [7:0]  
_MSB  
0x3E CH3_INPUT [7:0]  
_LSB  
0x3F CH3_INPUT [7:0]  
_MSB  
0x40 CH4_INPUT [7:0]  
_LSB  
Rev. 0 | Page 36 of 59  
Data Sheet  
AD5770R  
Reg Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset R/W  
0x41 CH4_INPUT [7:0]  
_MSB  
INPUT_DATA4[13:6]  
0x00 R/W  
0x42 CH5_INPUT [7:0]  
_LSB  
INPUT_DATA5[5:0]  
Reserved  
0x00 R/W  
0x00 R/W  
0x43 CH5_INPUT [7:0]  
_MSB  
INPUT_DATA5[13:6]  
0x44 RESERVED  
[7:0]  
RESERVED0  
RESERVED1  
0x3F  
R
Rev. 0 | Page 37 of 59  
AD5770R  
Data Sheet  
REGISTER DETAILS  
Address: 0x00, Reset: 0x18, Name: INTERFACE_CONFIG_A  
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
0
[7] SW_RESET_MSB (R/W)  
Software Reset  
[0] SW_RESET_LSB (R/W)  
Software Reset  
0: Do Nothing.  
0: Do Nothing.  
1: Initiates a Software Reset.  
1: Initiates a Software Reset.  
[6] RESERVED  
[1] RESERVED  
[5] ADDR_ASCENSION_MSB (R/W)  
Address Ascension  
[2] ADDR_ASCENSION_LSB (R/W)  
Address Ascension  
0: Address Decrement.  
1: Address Increment.  
0: Address Decrement.  
1: Address Increment.  
[4] SDO_ACTIVE_MSB (R)  
[3] SDO_ACTIVE_LSB (R)  
SDO Pin Active  
SDO Pin Active  
Table 14. Bit Descriptions for INTERFACE_CONFIG_A  
Bits Bit Name  
Description  
Reset Access  
7
SW_RESET_MSB  
Software reset. Setting both software reset bits in a single SPI write performs a  
software reset on the device, returning all registers except INTERFACE_CONFIG_A to  
the default power-up state.  
0x0  
R/W  
0: do nothing.  
1: initiates a software reset.  
Reserved.  
6
5
Reserved  
0x0  
0x0  
R
R/W  
ADDR_ASCENSION_MSB Address Ascension. When set, this bit causes incrementing streaming addresses;  
otherwise, decrementing addresses are generated. This must be a mirror of ADDR_  
ASCENSION_LSB.  
0: address decrement.  
1: address increment.  
4
3
2
SDO_ACTIVE_MSB  
SDO_ACTIVE_LSB  
SDO pin active. SDO pin enabled. This bit is always set.  
SDO pin active. SDO pin enabled. This bit is always set.  
0x1  
0x1  
0x0  
R
R
ADDR_ASCENSION_LSB  
Address ascension. When set, this bit causes incrementing streaming addresses;  
otherwise, decrementing addresses are generated. This must be a mirror of ADDR_  
ASCENSION_MSB.  
R/W  
0: address decrement.  
1: address increment.  
Reserved.  
Software reset. Setting both software reset bits in a single SPI write performs a  
software reset on the device, returning all registers except INTERFACE_CONFIG_A to  
the default power up state.  
1
0
Reserved  
SW_RESET_LSB  
0x0  
0x0  
R
R/W  
0: do nothing.  
1: initiates a software reset.  
Address: 0x01, Reset: 0x08, Name: INTERFACE_CONFIG_B  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
[7] SINGLE_INST (R/W)  
[2:0] RESERVED  
Single Instruction  
[3] SHORT_INSTRUCTION (R)  
[6:4] RESERVED  
Short Instruction  
Table 15. Bit Descriptions for INTERFACE_CONFIG_B  
Bits Bit Name Description  
SINGLE_INST  
Reset Access  
7
Single instruction. When this bit is set, streaming mode is disable, and each SPI  
transaction must specify the register address to access.  
0x0  
R/W  
0: streaming mode enabled.  
1: streaming mode disabled.  
Reserved.  
[6:4] Reserved  
3
0x0  
0x01  
R
R
SHORT_INSTRUCTION Short instruction. When this bit is set, the address word must be 7 bits long.  
Rev. 0 | Page 38 of 59  
 
Data Sheet  
AD5770R  
Bits Bit Name  
Description  
Reset Access  
[2:0] Reserved  
Reserved.  
0x0  
R
Address: 0x03, Reset: 0x08, Name: CHIP_TYPE  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
[7:4] RESERVED  
[3:0] CHIP_TYPE (R)  
Chip Type  
Table 16. Bit Descriptions for CHIP_TYPE  
Bits  
[7:4]  
[3:0]  
Bit Name  
Reserved  
CHIP_TYPE  
Description  
Reserved.  
Reset  
0x0  
Access  
R
R
Chip type. Precision DAC chip type = 0x08.  
0x8  
Address: 0x04, Reset: 0x04, Name: PRODUCT_ID_L  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
0
[7:0] PRODUCT_ID[7:0] (R)  
Product ID  
Table 17. Bit Descriptions for PRODUCT_ID_L  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
PRODUCT_ID[7:0]  
Product ID. AD5770R product ID = 0x4004.  
0x4  
R
Address: 0x05, Reset: 0x40, Name: PRODUCT_ID_H  
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
0
[7:0] PRODUCT_ID[15:8] (R)  
Product ID  
Table 18. Bit Descriptions for PRODUCT_ID_H  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
PRODUCT_ID[15:8]  
Product ID. AD5770R product ID = 0x4004.  
0x40  
R
Address: 0x06, Reset: 0x00, Name: CHIP_GRADE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] GRADE (R)  
[3:0] DEVICE_REVISION (R)  
Device Grade  
Device Revision  
Table 19. Bit Descriptions for CHIP_GRADE  
Bits  
[7:4]  
[3:0]  
Bit Name  
Grade  
DEVICE_REVISION  
Description  
Device grade  
Device revision  
Reset  
0x0  
0x0  
Access  
R
R
Address: 0x0A, Reset: 0x00, Name: SCRATCH_PAD  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] VALUE (R/W)  
Scratch Pad  
Table 20. Bit Descriptions for SCRATCH_PAD  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
Value  
Scratch pad. Use this is register to test communication with the device.  
0x0  
R/W  
Rev. 0 | Page 39 of 59  
AD5770R  
Data Sheet  
Address: 0x0B, Reset: 0x82, Name: SPI_REVISION  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
1
0
[7:0] VERSION (R)  
SPI Standard Version  
Table 21. Bit Descriptions for SPI_REVISION  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
Version  
SPI standard version. Analog Devices SPI standard used.  
0x82  
R
Address: 0x0C, Reset: 0x56, Name: VENDOR_L  
7
6
5
4
3
2
1
0
0
1
0
1
0
1
1
0
[7:0] VID[7:0] (R)  
Manufacturer ID  
Table 22. Bit Descriptions for VENDOR_L  
Bits  
[7:0]  
Bit Name  
VID[7:0]  
Description  
Manufacturer ID. Analog Devices ID = 0x0456.  
Reset  
0x56  
Access  
R
Address: 0x0D, Reset: 0x04, Name: VENDOR_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
0
[7:0] VID[15:8] (R)  
Manufacturer ID  
Table 23. Bit Descriptions for VENDOR_H  
Bits  
[7:0]  
Bit Name  
VID[15:8]  
Description  
Manufacturer ID. Analog Devices ID = 0x0456.  
Reset  
0x4  
Access  
R
Address: 0x0E, Reset: 0x00, Name: STREAM_MODE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] LENGTH (R/W)  
Stream Length  
Table 24. Bit Descriptions for STREAM_MODE  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
LENGTH  
Stream length. These bits set the length of registers addresses to increment/decrement when streaming  
multiple bytes of data before looping back to the first register address. When the contents of this register  
are cleared, register addresses increment/decrement when in streaming mode until the end of the  
address space before looping to the last/first address and continuing to increment/decrement.  
0x0  
R/W  
Address: 0x10, Reset: 0x20, Name: INTERFACE_CONFIG_C  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
0
[7:6] RESERVED  
[4:0] RESERVED  
[5] STRICT_REGISTER_ACCESS (R)  
Strict Entity Access  
Table 25. Bit Descriptions for INTERFACE_CONFIG_C  
Bits  
[7:6]  
5
Bit Name  
Reserved  
Description  
Reserved.  
Reset  
0x0  
Access  
R
R
STRICT_REGISTER_ACCESS  
Strict register access. When this bit is set, all multibyte registers must be written to in a  
single SPI transaction. The address used must be the address of the most significant  
byte when address ascension is off or the address of the least significant byte when  
address accession is on.  
0x1  
[4:0]  
Reserved  
Reserved.  
0x0  
R
Rev. 0 | Page 40 of 59  
Data Sheet  
AD5770R  
Address: 0x11, Reset: 0x00, Name: INTERFACE_STATUS_A  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] INTERFACE_NOT_READY (R)  
[6:0] RESERVED  
Interface Not Ready  
Table 26. Bit Descriptions for INTERFACE_STATUS_A  
Bits Bit Name  
Description  
Reset Access  
7
INTERFACE_NOT_READY Interface not ready. When this bit is set, the device is not ready to receive data on the  
SPI bus.  
0x0  
R
[6:0] Reserved  
Reserved.  
0x0  
R
Address: 0x14, Reset: 0x80, Name: CHANNEL_CONFIG  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7] CH0_SINK_EN (R/W)  
Channel 0 Sink Current Generator  
Enable  
[0] CH0_SHUTDOWN_B (R/W)  
Channel 0 Output Enable  
0: Output Shutdown.  
0: Disable.  
1: Enable.  
1: Normal Operation.  
[1] CH1_SHUTDOWN_B (R/W)  
Channel 1 Output Enable  
0: Output Shutdown.  
[6] RESERVED  
[5] CH5_SHUTDOWN_B (R/W)  
Channel 5 Output Enable  
0: Output Shutdown.  
1: Normal Operation.  
[2] CH2_SHUTDOWN_B (R/W)  
Channel 2 Output Enable  
0: Output Shutdown.  
1: Normal Operation.  
[4] CH4_SHUTDOWN_B (R/W)  
Channel 4 Output Enable  
0: Output Shutdown.  
1: Normal Operation.  
[3] CH3_SHUTDOWN_B (R/W)  
Channel 3 Output Enable  
0: Output Shutdown.  
1: Normal Operation.  
1: Normal Operation.  
Table 27. Bit Descriptions for CHANNEL_CONFIG  
Bits Bit Name Description  
Reset Access  
7
CH0_SINK_EN  
Channel 0 sink current generator enable. When this bit is set, Channel 0 sink current is  
enabled.  
0x1  
R/W  
0: disable.  
1: enable.  
Reserved.  
6
5
Reserved  
0x0  
0x0  
R
R/W  
CH5_SHUTDOWN_B Channel 5 output enable. This active low enable bit shuts down the output of IDAC5  
when asserted.  
0: output shutdown.  
1: normal operation.  
4
3
2
1
0
CH4_SHUTDOWN_B Channel 4 output enable. This active low enable bit shuts down the output of IDAC4 when  
asserted.  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
0: output shutdown.  
1: normal operation.  
CH3_SHUTDOWN_B Channel 3 output enable. This active low enable bit shuts down the output of IDAC3 when  
asserted.  
0: output shutdown.  
1: normal operation.  
CH2_SHUTDOWN_B Channel 2 output enable. This active low enable bit shuts down the output of IDAC2 when  
asserted.  
0: output shutdown.  
1: normal operation.  
CH1_SHUTDOWN_B Channel 1 output enable. This active low enable bit shuts down the output of IDAC1 when  
asserted.  
0: output shutdown.  
1: normal operation.  
CH0_SHUTDOWN_B Channel 0 output enable. This active low enable bit shuts down the output of IDAC0 when  
asserted.  
Rev. 0 | Page 41 of 59  
AD5770R  
Data Sheet  
Bits Bit Name  
Description  
Reset Access  
0: output shutdown.  
1: normal operation.  
Address: 0x15, Reset: 0x00, Name: OUTPUT_RANGE_CH0  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] CH0_OUTPUT_SCALING (R/W)  
Channel 0 Output Range Scaling  
[1:0] CH0_MODE (R/W)  
Channel 0 Output Range Mode  
00: 0mA to 300mA.  
01: -60mA to 0mA.  
10: -60mA to 300mA.  
Table 28. Bit Descriptions for OUTPUT_RANGE_CH0  
Bits Bit Name  
Description  
Reset Access  
[7:2] CH0_OUTPUT_SCALING Channel 0 output range scaling. These bits set the output range scaling factor for  
Channel 0. Output scaling must only be used when in a sourcing current mode.  
0x0  
R/W  
[1:0] CH0_MODE  
Channel 0 output range mode. These bits select the output range mode for Channel 0.  
0x0  
R/W  
00: 0 mA to 300 mA.  
01: −60 mA to 0 mA.  
10: −60 mA to +300 mA.  
Address: 0x16, Reset: 0x02, Name: OUTPUT_RANGE_CH1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
[7:2] CH1_OUTPUT_SCALING (R/W)  
[1:0] CH1_MODE (R/W)  
Channel 1 Output Range Scaling  
Channel 1 Output Range Mode  
01: 0mA to 140mA - Low Headroom.  
10: 0mA to 140mA - Low Noise.  
11: 0mA to 250mA.  
Table 29. Bit Descriptions for OUTPUT_RANGE_CH1  
Bits Bit Name  
Description  
Reset Access  
[7:2] CH1_OUTPUT_SCALING Channel 1 output range scaling. These bits set the output range scaling factor for  
Channel 1.  
0x0  
R/W  
[1:0] CH1_MODE  
Channel 1 output range mode. These bits select the output range mode for Channel 1.  
01: 0 mA to 140 mA low headroom.  
0x2  
R/W  
10: 0 mA to 140 mA low noise.  
11: 0 mA to 250 mA.  
Address: 0x17, Reset: 0x00, Name: OUTPUT_RANGE_CH2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] CH2_OUTPUT_SCALING (R/W)  
Channel 2 Output Range Scaling  
[0] CH2_MODE (R/W)  
Channel 2 Output Range Mode  
0: 0mA to 55mA.  
[1] RESERVED  
1: 0mA to 150mA.  
Table 30. Bit Descriptions for OUTPUT_RANGE_CH2  
Bits Bit Name  
Description  
Reset Access  
[7:2] CH2_OUTPUT_SCALING Channel 2 output range scaling. These bits set the output range scaling factor for  
Channel 2.  
0x0  
R/W  
1
0
Reserved  
CH2_MODE  
Reserved.  
0x0  
0x0  
R
R/W  
Channel 2 output range mode. This bit selects the output range mode for Channel 2.  
0: 0 mA to 55 mA.  
1: 0 mA to 150 mA.  
Rev. 0 | Page 42 of 59  
Data Sheet  
AD5770R  
Address: 0x18, Reset: 0x00, Name: OUTPUT_RANGE_CH3  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] CH3_OUTPUT_SCALING (R/W)  
Channel 3 Output Range Scaling  
[0] CH3_MODE (R/W)  
Channel 3 Output Range Mode  
0: 0mA to 45mA.  
[1] RESERVED  
1: 0mA to 100mA.  
Table 31. Bit Descriptions for OUTPUT_RANGE_CH3  
Bits Bit Name  
Description  
Reset Access  
[7:2] CH3_OUTPUT_SCALING Channel 3 output range scaling. These bits set the output range scaling factor for  
Channel 3.  
0x0  
R/W  
1
0
Reserved  
CH3_MODE  
Reserved.  
0x0  
0x0  
R
R/W  
Channel 3 output range mode. This bit selects the output range mode for Channel 3.  
0: 0 mA to 45 mA.  
1: 0 mA to 100 mA.  
Address: 0x19, Reset: 0x00, Name: OUTPUT_RANGE_CH4  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] CH4_OUTPUT_SCALING (R/W)  
Channel 4 Output Range Scaling  
[0] CH4_MODE (R/W)  
Channel 4 Output Range Mode  
0: 0mA to 45mA.  
[1] RESERVED  
1: 0mA to 100mA.  
Table 32. Bit Descriptions for OUTPUT_RANGE_CH4  
Bits Bit Name  
Description  
Reset Access  
[7:2] CH4_OUTPUT_SCALING Channel 4 output range scaling. These bits set the output range scaling factor for  
Channel 4.  
0x0  
R/W  
1
0
Reserved  
CH4_MODE  
Reserved.  
0x0  
0x0  
R
R/W  
Channel 4 output range mode. This bit selects the output range mode for Channel 4.  
0: 0 mA to 45 mA.  
1: 0 mA to 100 mA.  
Address: 0x1A, Reset: 0x00, Name: OUTPUT_RANGE_CH5  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] CH5_OUTPUT_SCALING (R/W)  
Channel 5 Output Range Scaling  
[0] CH5_MODE (R/W)  
Channel 5 Output Range Mode  
0: 0mA to 45mA.  
[1] RESERVED  
1: 0mA to 100mA.  
Table 33. Bit Descriptions for OUTPUT_RANGE_CH5  
Bits Bit Name  
Description  
Reset Access  
[7:2] CH5_OUTPUT_SCALING Channel 5 output range scaling. These bits set the output range scaling factor for  
Channel 5.  
0x0  
R/W  
1
0
Reserved  
CH5_MODE  
Reserved.  
0x0  
0x0  
R
R/W  
Channel 5 output range mode. This bit selects the output range mode for Channel 5.  
0: 0 mA to 45 mA.  
1: 0 mA to 100 mA.  
Rev. 0 | Page 43 of 59  
AD5770R  
Data Sheet  
Address: 0x1B, Reset: 0x00, Name: REFERENCE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:3] RESERVED  
[1:0] REFERENCE_VOLTAGE_SEL (R/W)  
Voltage Reference Setup  
00: External 2.5V.  
01: Internal 1.25V (Reference Output  
On)  
[2] REFERENCE_RESISTOR_SEL (R/W)  
IREF Resistor Setup  
0: Internal Resistor.  
1: External Resistor.  
10: External 1.25V.  
11: Internal 1.25V (Reference Output  
Off)  
Table 34. Bit Descriptions for REFERENCE  
Bits Bit Name  
Description  
Reset Access  
[7:3] Reserved  
Reserved.  
0x0  
0x0  
R
R/W  
2
REFERENCE_RESISTOR_SEL IREF resistor setup. This bit selects whether an internal or external resistor is used  
for reference current generation.  
0: internal resistor.  
1: external resistor.  
[1:0] REFERENCE_VOLTAGE_SEL  
Voltage reference setup. These bits select the voltage reference scheme used for  
reference current generation.  
0x0  
R/W  
00: external 2.5 V.  
01: internal 1.25 V (reference output on).  
10: external 1.25 V.  
11: internal 1.25 V (reference output off).  
Address: 0x1C, Reset: 0x06, Name: ALARM_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
1
0
[7] BACKGROUND_CRC_ALARM_MASK (R/W)  
Background CRC Alarm Mask  
0: Normal Operation.  
[0] OPEN_DRAIN_EN (R/W)  
Open Drain ALARM Enable  
0: ALARM Open Drain Disable.  
1: ALARM Open Drain Enable.  
1: Mask Background CRC ALARM Activation.  
[6] IREF_FAULT_ALARM_MASK (R/W)  
External IREF Resistor Fault Alarm  
Mask  
[1] THERMAL_SHUTDOWN_EN (R/W)  
Thermal Shutdown Enable  
0: Disable Thermal Shutdown - Not  
Recommended.  
0: Normal Operation.  
1: Mask IREF Fault ALARM Activation.  
1: Enable Thermal Shutdown.  
[5] NEGATIVE_CHANNEL0_ALARM_MASK (R/W)  
Negative Voltage Channel 0 Fault  
Alarm Mask  
[2] BACKGROUND_CRC_EN (R/W)  
Background CRC Enable  
0: Disable Background CRC.  
1: Enable Background CRC.  
0: Normal Operation.  
1: Mask Negative Channel 0 ALARM  
Activation.  
[3] TEMP_WARNING_ALARM_MASK (R/W)  
Over-Temperature Warning Alarm  
Mask  
0: Normal Operation.  
1: Mask Temperature Warning ALARM  
Activation.  
[4] OVER_TEMP_ALARM_MASK (R/W)  
Over-Temperature Fault Alarm Mask  
0: Normal Operation.  
1: Mask Over Temperature ALARM Activation.  
Table 35. Bit Descriptions for ALARM_CONFIG  
Bits Bit Name  
Description  
Reset Access  
7
BACKGROUND_CRC_ALARM_MASK  
Background CRC alarm mask. When this bit is set, the ALARM pin does  
not activate for background CRC errors.  
0x0  
R/W  
0: normal operation.  
1: mask background CRC ALARM activation.  
6
IREF_FAULT_ALARM_MASK  
External IREF resistor fault alarm mask. When this bit is set, the ALARM pin  
does not activate for external reference current generation resistor faults.  
0: normal operation.  
0x0  
R/W  
1: mask IREF fault ALARM activation.  
Rev. 0 | Page 44 of 59  
Data Sheet  
AD5770R  
Bits Bit Name  
Description  
Reset Access  
5
NEGATIVE_CHANNEL0_ALARM_MASK Negative Voltage Channel 0 fault alarm mask. When this bit is set, the  
ALARM pin does not activate when a negative voltage is multiplexed to  
the MUX_OUT pin due to monitoring Channel 0.  
0x0  
R/W  
0: normal operation.  
1: mask negative Channel 0 ALARM activation.  
4
3
OVER_TEMP_ALARM_MASK  
Overtemperature fault alarm mask. When this bit is set, the ALARM pin  
does not activate for an overtemperature fault occurrence.  
0: normal operation.  
0x0  
0x0  
R/W  
R/W  
1: mask overtemperature ALARM activation.  
TEMP_WARNING_ALARM_MASK  
Overtemperature warning alarm mask. When this bit is set, the ALARM  
pin does not activate for an overtemperature warning occurrence.  
0: normal operation.  
1: mask temperature warning ALARM activation.  
2
1
0
BACKGROUND_CRC_EN  
THERMAL_SHUTDOWN_EN  
OPEN_DRAIN_EN  
Background CRC enable. When this bit is set, a CRC of the memory map  
contents is periodically computed by the device.  
0: disable background CRC.  
1: enable background CRC.  
Thermal shutdown enable. When this bit is set, the AD5770R goes into  
thermal shutdown in the event of an overtemperature fault.  
0: disable thermal shutdown (not recommended).  
1: enable thermal shutdown.  
0x1  
0x1  
0x0  
R/W  
R/W  
R/W  
Open-drain ALARM enable. When this bit is set, the ALARM pin is  
configured as an open-drain output.  
0: ALARM open-drain disable.  
1: ALARM open-drain enable.  
Address: 0x1D, Reset: 0x00, Name: OUTPUT_FILTER_CH0  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] RESERVED  
[3:0] OUTPUT_FILTER_RESISTOR0 (R/W)  
Output Filter Resistor Setup Channel 0  
0000: 60 Ω.  
0101: 5.6 kΩ.  
0110: 11.2 kΩ.  
0111: 22.2 kΩ.  
1000: 44.4 KΩ.  
1001: 104 KΩ.  
Table 36. Bit Descriptions for OUTPUT_FILTER_CH0  
Bits Bit Name  
Description  
Reset Access  
[7:4] Reserved  
Reserved.  
0x0  
0x0  
R
[3:0] OUTPUT_FILTER_RESISTOR0 Output Filter Resistor Setup Channel 0. These bits select the internal variable  
resistor to be used for the output filter on Channel 0. The output filter resistor  
creates a resistor capacitor filter with the external capacitor connected to the  
CDAMP_IDAC0 pin.  
R/W  
0000: 60 Ω.  
0101: 5.6 kΩ.  
0110: 11.2 kΩ.  
0111: 22.2 kΩ.  
1000: 44.4 kΩ.  
1001: 104 kΩ.  
Rev. 0 | Page 45 of 59  
AD5770R  
Data Sheet  
Address: 0x1E, Reset: 0x00, Name: OUTPUT_FILTER_CH1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] RESERVED  
[3:0] OUTPUT_FILTER_RESISTOR1 (R/W)  
Output Filter Resistor Setup Channel 1  
0000: 60 Ω.  
0101: 5.6 kΩ.  
0110: 11.2 kΩ.  
0111: 22.2 kΩ.  
1000: 44.4 kΩ.  
1001: 104 kΩ.  
Table 37. Bit Descriptions for OUTPUT_FILTER_CH1  
Bits Bit Name  
Description  
Reset Access  
[7:4] Reserved  
Reserved.  
0x0  
0x0  
R
[3:0] OUTPUT_FILTER_RESISTOR1 Output Filter Resistor Setup Channel 1. These bits select the internal variable  
resistor to be used for the output filter on Channel 1. The output filter resistor  
creates a resistor capacitor filter with the external capacitor connected to the  
CDAMP_IDAC1 pin.  
R/W  
0000: 60 Ω.  
0101: 5.6 kΩ.  
0110: 11.2 kΩ.  
0111: 22.2 kΩ.  
1000: 44.4 kΩ.  
1001: 104 kΩ.  
Address: 0x1F, Reset: 0x00, Name: OUTPUT_FILTER_CH2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] RESERVED  
[3:0] OUTPUT_FILTER_RESISTOR2 (R/W)  
Output Filter Resistor Setup Channel 2  
0000: 60 Ω.  
0101: 5.6 KΩ.  
0110: 11.2 kΩ.  
0111: 22.2 kΩ.  
1000: 44.4 kΩ.  
1001: 104 kΩ.  
Table 38. Bit Descriptions for OUTPUT_FILTER_CH2  
Bits Bit Name  
Description  
Reset Access  
[7:4] Reserved  
Reserved.  
0x0  
0x0  
R
[3:0] OUTPUT_FILTER_RESISTOR2 Output Filter Resistor Setup Channel 2. These bits select the internal variable  
resistor to be used for the output filter on Channel 2. The output filter resistor  
creates a resistor capacitor filter with the external capacitor connected to the  
CDAMP_IDAC2 pin.  
R/W  
0000: 60 Ω.  
0101: 5.6 kΩ.  
0110: 11.2 kΩ.  
0111: 22.2 kΩ.  
1000: 44.4 kΩ.  
1001: 104 kΩ.  
Rev. 0 | Page 46 of 59  
Data Sheet  
AD5770R  
Address: 0x20, Reset: 0x00, Name: OUTPUT_FILTER_CH3  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] RESERVED  
[3:0] OUTPUT_FILTER_RESISTOR3 (R/W)  
Output Filter Resistor Setup Channel 3  
0000: 60 Ω.  
0101: 5.6 kΩ.  
0110: 11.2 kΩ.  
0111: 22.2 kΩ.  
1000: 44.4 kΩ.  
1001: 104 kΩ.  
Table 39. Bit Descriptions for OUTPUT_FILTER_CH3  
Bits Bit Name  
Description  
Reset Access  
[7:4] Reserved  
Reserved.  
0x0  
0x0  
R
[3:0] OUTPUT_FILTER_RESISTOR3 Output Filter Resistor Setup Channel 3. These bits select the internal variable  
resistor to be used for the output filter on Channel 3. The output filter resistor  
creates a resistor capacitor filter with the external capacitor connected to the  
CDAMP_IDAC3 pin.  
R/W  
0000: 60 Ω.  
0101: 5.6 kΩ.  
0110: 11.2 kΩ.  
0111: 22.2 kΩ.  
1000: 44.4 kΩ.  
1001: 104 kΩ.  
Address: 0x21, Reset: 0x00, Name: OUTPUT_FILTER_CH4  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] RESERVED  
[3:0] OUTPUT_FILTER_RESISTOR4 (R/W)  
Output Filter Resistor Setup Channel 4  
0000: 60 Ω.  
0101: 5.6 kΩ.  
0110: 11.2 kΩ.  
0111: 22.2 kΩ.  
1000: 44.4 kΩ.  
1001: 104 kΩ.  
Table 40. Bit Descriptions for OUTPUT_FILTER_CH4  
Bits Bit Name  
Description  
Reset Access  
[7:4] Reserved  
Reserved.  
0x0  
0x0  
R
[3:0] OUTPUT_FILTER_RESISTOR4 Output Filter Resistor Setup Channel 4. These bits select the internal variable  
resistor to be used for the output filter on Channel 4. The output filter resistor  
creates a resistor capacitor filter with the external capacitor connected to the  
CDAMP_IDAC4 pin.  
R/W  
0000: 60 Ω.  
0101: 5.6 kΩ.  
0110: 11.2 kΩ.  
0111: 22.2 kΩ.  
1000: 44.4 kΩ.  
1001: 104 kΩ.  
Rev. 0 | Page 47 of 59  
AD5770R  
Data Sheet  
Address: 0x22, Reset: 0x00, Name: OUTPUT_FILTER_CH5  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] RESERVED  
[3:0] OUTPUT_FILTER_RESISTOR5 (R/W)  
Output Filter Resistor Setup Channel 5  
0000: 60 Ω.  
0101: 5.6 kΩ.  
0110: 11.2 kΩ.  
0111: 22.2 kΩ.  
1000: 44.4 kΩ.  
1001: 104 kΩ.  
Table 41. Bit Descriptions for OUTPUT_FILTER_CH5  
Bits Bit Name  
Description  
Reset Access  
[7:4] Reserved  
Reserved.  
0x0  
0x0  
R
[3:0] OUTPUT_FILTER_RESISTOR5 Output Filter Resistor Setup Channel 5. These bits select the internal variable  
resistor to be used for the output filter on Channel 5. The output filter resistor  
creates a resistor capacitor filter with the external capacitor connected to the  
CDAMP_IDAC5 pin.  
R/W  
0000: 60 Ω.  
0101: 5.6 kΩ.  
0110: 11.2 kΩ.  
0111: 22.2 kΩ.  
1000: 44.4 kΩ.  
1001: 104 kΩ.  
Address: 0x23, Reset: 0x00, Name: MONITOR_SETUP  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] MON_FUNCTION (R/W)  
Monitor Function Setup  
0: Disable.  
[3:0] MON_CH (R/W)  
Monitor Channel Setup  
0: Channel 0.  
1: Voltage Monitoring.  
10: Current Monitoring.  
11: Temperature Monitoring.  
1: Channel 1.  
10: Channel 2.  
11: Channel 3.  
100: Channel 4.  
101: Channel 5.  
[5] MUX_BUFFER (R/W)  
Multiplexer Buffer Setup  
0: Bypass.  
[4] IB_EXT_EN (R/W)  
1: Enable.  
Temperature Diode External Bias  
Current Enable  
0: Internal Bias Current.  
1: External Bias Current.  
Table 42. Bit Descriptions for MONITOR_SETUP  
Bits Bit Name  
Description  
Reset Access  
[7:6] MON_FUNCTION Monitor function setup. These bits configure which on-chip diagnostic function is selected.  
0x0  
R/W  
0: disable.  
1: voltage monitoring.  
10: current monitoring.  
11: temperature monitoring.  
5
4
MUX_BUFFER  
IB_EXT_EN  
Multiplexer buffer setup. When this bit is set, the multiplexer buffer is enabled and used to  
buffer the multiplexer output. Clearing this bit disables the buffer and bypasses it.  
0: bypass.  
1: enable.  
0x0  
0x0  
R/W  
R/W  
Temperature diode external bias current enable. When this bit is set, an internal bias current  
for the temperature monitoring diode is shut off. This bias current must then be supplied  
externally.  
0: internal bias current.  
1: external bias current.  
Rev. 0 | Page 48 of 59  
Data Sheet  
AD5770R  
Bits Bit Name  
Description  
Reset Access  
[3:0] MON_CH  
Monitor channel setup. These bits select the channel to be monitored when output voltage  
or output current diagnostics are enabled.  
0x0  
R/W  
0: Channel 0.  
1: Channel 1.  
10: Channel 2.  
11: Channel 3.  
100: Channel 4.  
101: Channel 5.  
Address: 0x24, Reset: 0x00, Name: STATUS  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] BACKGROUND_CRC_STATUS (R)  
[0] TEMP_WARNING (R)  
Background CRC Status  
Overtemperature Warning Status  
[6:4] RESERVED  
[1] OVER_TEMP (R)  
Overtemperature Fault Status  
[3] IREF_FAULT (R)  
External IREF Resistor Fault Status  
[2] NEGATIVE_CHANNEL0 (R)  
Negative Voltage Channel 0 Status  
Table 43. Bit Descriptions for STATUS  
Bits Bit Name Description  
Reset Access  
7
BACKGROUND_CRC_STATUS Background CRC status. Read only status bit. When this bit is high, this signifies  
that a background CRC of the memory map has failed and a memory bit may  
have inadvertently flipped.  
0x0  
R
0: normal.  
1: background CRC error activated.  
[6:4] Reserved  
Reserved.  
0x0  
0x0  
R
R
3
2
1
IREF_FAULT  
External IREF resistor fault status. Read only status bit. When this bit is set, a fault  
has been detected with the external reference current generation resistor, and  
the internal resistor has been switched to avoid damage to the device.  
0: normal.  
1: IREF fault activated.  
NEGATIVE_CHANNEL0  
OVER_TEMP  
Negative Voltage Channel 0 status. Read only status bit. When this bit is set, a  
fault has been detected due to a negative voltage being multiplexed to the  
MUX_OUT pin when monitoring Channel 0.  
0: normal.  
1: negative Channel 0 activated.  
0x0  
0x0  
R
R
Overtemperature fault status. Read only status bit. When this bit is set, an  
overtemperature fault occurrence has been detected. An overtemperature fault  
occurs when the internal die temperature reaches approximately 145°C. A reset  
command must be issued to the device to clear this bit.  
0: normal.  
1: overtemperature activated.  
0
TEMP_WARNING  
Overtemperature warning status. Read only status bit. When this bit is set, an  
overtemperature warning occurrence has been detected. An overtemperature  
warning occurs when the internal die temperature reaches approximately 125°C. This  
bit is automatically cleared when the internal die temperature returns below 120°C.  
0x0  
R
0: normal.  
1: temperature warning activated.  
Rev. 0 | Page 49 of 59  
AD5770R  
Data Sheet  
Address: 0x25, Reset: 0x00, Name: HW_LDAC  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] HW_LDAC_MASK_CH0 (R/W)  
Hardware LDAC Mask Channel 0  
0: No Operation.  
[5] HW_LDAC_MASK_CH5 (R/W)  
Hardware LDAC Mask Channel 5  
0: No Operation.  
1: Mask LDAC on Channel 0.  
1: Mask LDAC on Channel 5.  
[1] HW_LDAC_MASK_CH1 (R/W)  
Hardware LDAC Mask Channel 1  
0: No Operation.  
[4] HW_LDAC_MASK_CH4 (R/W)  
Hardware LDAC Mask Channel 4  
0: No Operation.  
1: Mask LDAC on Channel 1.  
1: Mask LDAC on Channel 4.  
[2] HW_LDAC_MASK_CH2 (R/W)  
Hardware LDAC Mask Channel 2  
0: No Operation.  
[3] HW_LDAC_MASK_CH3 (R/W)  
Hardware LDAC Mask Channel 3  
0: No Operation.  
1: Mask LDAC on Channel 2.  
1: Mask LDAC on Channel 3.  
Table 44. Bit Descriptions for HW_LDAC  
Bits Bit Name  
Description  
Reset Access  
[7:6] RESERVED  
Reserved.  
0x0  
R
5
4
3
2
1
0
HW_LDAC_MASK_CH5 Hardware LDAC Mask Channel 5. When this bit is set, activity on the LDAC pin is ignored for 0x0  
R/W  
Channel 5.  
0: no operation.  
1: mask LDAC on Channel 5.  
HW_LDAC_MASK_CH4 Hardware LDAC Mask Channel 4. When this bit is set, activity on the LDAC pin is ignored for 0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
Channel 4.  
0: no operation.  
1: mask LDAC on Channel 4.  
HW_LDAC_MASK_CH3 Hardware LDAC Mask Channel 3. When this bit is set, activity on the LDAC pin is ignored for 0x0  
Channel 3.  
0: no operation.  
1: mask LDAC on Channel 3.  
HW_LDAC_MASK_CH2 Hardware LDAC Mask Channel 2. When this bit is set, activity on the LDAC pin is ignored for 0x0  
Channel 2.  
0: no operation.  
1: mask LDAC on Channel 2.  
HW_LDAC_MASK_CH1 Hardware LDAC Mask Channel 1. When this bit is set, activity on the LDAC pin is ignored for 0x0  
Channel 1.  
0: no operation.  
1: mask LDAC on Channel 1.  
HW_LDAC_MASK_CH0 Hardware LDAC Mask Channel 0. When this bit is set, activity on the LDAC pin is ignored for 0x0  
Channel 0.  
0: no operation.  
1: mask LDAC on Channel 0.  
Address: 0x26, Reset: 0x00, Name: CH0_DAC_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] DAC_DATA0[5:0] (R/W)  
Channel 0 DAC Data  
[1:0] RESERVED  
Table 45. Bit Descriptions for CH0_DAC_LSB  
Bits  
[7:2]  
[1:0]  
Bit Name  
DAC_DATA0[5:0]  
RESERVED  
Description  
Reset  
0x0  
Access  
R/W  
R
Channel 0 DAC data. These bits are the DAC code loaded into the DAC register for IDAC0.  
Reserved.  
0x0  
Rev. 0 | Page 50 of 59  
Data Sheet  
AD5770R  
Address: 0x27, Reset: 0x00, Name: CH0_DAC_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] DAC_DATA0[13:6] (R/W)  
Channel 0 DAC Data  
Table 46. Bit Descriptions for CH0_DAC_MSB  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
DAC_DATA0[13:6]  
Channel 0 DAC data. These bits are the DAC code loaded into the DAC register for IDAC0.  
0x0  
R/W  
Address: 0x28, Reset: 0x00, Name: CH1_DAC_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] DAC_DATA1[5:0] (R/W)  
Channel 1 DAC Data  
[1:0] RESERVED  
Table 47. Bit Descriptions for CH1_DAC_LSB  
Bits  
[7:2]  
[1:0]  
Bit Name  
DAC_DATA1[5:0]  
Reserved  
Description  
Reset  
0x0  
0x0  
Access  
R/W  
R
Channel 1 DAC data. These bits are the DAC code loaded into the DAC register for IDAC1.  
Reserved.  
Address: 0x29, Reset: 0x00, Name: CH1_DAC_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] DAC_DATA1[13:6] (R/W)  
Channel 1 DAC Data  
Table 48. Bit Descriptions for CH1_DAC_MSB  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
DAC_DATA1[13:6]  
Channel 1 DAC data. These bits are the DAC code loaded into the DAC register for IDAC1.  
0x0  
R/W  
Address: 0x2A, Reset: 0x00, Name: CH2_DAC_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] DAC_DATA2[5:0] (R/W)  
Channel 2 DAC Data  
[1:0] RESERVED  
Table 49. Bit Descriptions for CH2_DAC_LSB  
Bits  
[7:2]  
[1:0]  
Bit Name  
DAC_DATA2[5:0]  
Reserved  
Description  
Reset  
0x0  
Access  
R/W  
R
Channel 2 DAC Data. These bits are the DAC code loaded into the DAC register for IDAC2.  
Reserved.  
0x0  
Address: 0x2B, Reset: 0x00, Name: CH2_DAC_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] DAC_DATA2[13:6] (R/W)  
Channel 2 DAC Data  
Table 50. Bit Descriptions for CH2_DAC_MSB  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
DAC_DATA2[13:6]  
Channel 2 DAC data. These bits are the DAC code loaded into the DAC register for IDAC2.  
0x0  
R/W  
Rev. 0 | Page 51 of 59  
AD5770R  
Data Sheet  
Address: 0x2C, Reset: 0x00, Name: CH3_DAC_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] DAC_DATA3[5:0] (R/W)  
Channel 3 DAC Data  
[1:0] RESERVED  
Table 51. Bit Descriptions for CH3_DAC_LSB  
Bits  
[7:2]  
[1:0]  
Bit Name  
DAC_DATA3[5:0]  
Reserved  
Description  
Reset  
0x0  
Access  
R/W  
R
Channel 3 DAC data. These bits are the DAC code loaded into the DAC register for IDAC3.  
Reserved.  
0x0  
Address: 0x2D, Reset: 0x00, Name: CH3_DAC_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] DAC_DATA3[13:6] (R/W)  
Channel 3 DAC Data  
Table 52. Bit Descriptions for CH3_DAC_MSB  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
DAC_DATA3[13:6]  
Channel 3 DAC data. These bits are the DAC code loaded into the DAC register for IDAC3.  
0x0  
R/W  
Address: 0x2E, Reset: 0x00, Name: CH4_DAC_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] DAC_DATA4[5:0] (R/W)  
Channel 4 DAC Data  
[1:0] RESERVED  
Table 53. Bit Descriptions for CH4_DAC_LSB  
Bits  
[7:2]  
[1:0]  
Bit Name  
DAC_DATA4[5:0]  
Reserved  
Description  
Reset  
0x0  
0x0  
Access  
R/W  
R
Channel 4 DAC data. These bits are the DAC code loaded into the DAC register for IDAC4.  
Reserved.  
Address: 0x2F, Reset: 0x00, Name: CH4_DAC_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] DAC_DATA4[13:6] (R/W)  
Channel 4 DAC Data  
Table 54. Bit Descriptions for CH4_DAC_MSB  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
DAC_DATA4[13:6]  
Channel 4 DAC data. These bits are the DAC code loaded into the DAC register for  
IDAC4.  
0x0  
R/W  
Address: 0x30, Reset: 0x00, Name: CH5_DAC_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] DAC_DATA5[5:0] (R/W)  
Channel 5 DAC Data  
[1:0] RESERVED  
Table 55. Bit Descriptions for CH5_DAC_LSB  
Bits  
[7:2]  
[1:0]  
Bit Name  
DAC_DATA5[5:0]  
Reserved  
Description  
Reset  
0x0  
Access  
R/W  
R
Channel 5 DAC data. These bits are the DAC code loaded into the DAC register for IDAC5.  
Reserved.  
0x0  
Rev. 0 | Page 52 of 59  
Data Sheet  
AD5770R  
Address: 0x31, Reset: 0x00, Name: CH5_DAC_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] DAC_DATA5[13:6] (R/W)  
Channel 5 DAC Data  
Table 56. Bit Descriptions for CH5_DAC_MSB  
Bits  
[7:0]  
Bit Name  
DAC_DATA5[13:6]  
Description  
Reset  
0x0  
Access  
R/W  
Channel 5 DAC data. These bits are the DAC code loaded into the DAC register for IDAC5.  
Address: 0x32, Reset: 0x00, Name: DAC_PAGE_MASK_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] DAC_PAGE_MASK[5:0] (R/W)  
[1:0] RESERVED  
Page Mask DAC Data  
Table 57. Bit Descriptions for DAC_PAGE_MASK_LSB  
Bits Bit Name  
Description  
Reset Access  
[7:2] DAC_PAGE_MASK[5:0] Page mask DAC data. Following a write to this register, the DAC code loaded into this  
register is copied into the DAC register of any channels selected in the CH_SELECT register.  
0x0  
R/W  
[1:0] Reserved  
Reserved.  
0x0  
R
Address: 0x33, Reset: 0x00, Name: DAC_PAGE_MASK_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] DAC_PAGE_MASK[13:6] (R/W)  
Page Mask DAC Data  
Table 58. Bit Descriptions for DAC_PAGE_MASK_MSB  
Bits Bit Name  
Description  
Reset Access  
0x0 R/W  
[7:0] DAC_PAGE_MASK[13:6] Page mask DAC data. Following a write to this register, the DAC code loaded into this  
register is copied into the DAC register of any channels selected in the CH_SELECT register.  
Address: 0x34, Reset: 0x00, Name: CH_SELECT  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] SEL_CH0 (R/W)  
Select Channel 0  
0: No Operation.  
1: Copy to Channel 0.  
[5] SEL_CH5 (R/W)  
Select Channel 5  
0: No Operation.  
1: Copy to Channel 5.  
[1] SEL_CH1 (R/W)  
Select Channel 1  
0: No Operation.  
1: Copy to Channel 1.  
[4] SEL_CH4 (R/W)  
Select Channel 4  
0: No Operation.  
1: Copy to Channel 4.  
[2] SEL_CH2 (R/W)  
Select Channel 2  
0: No Operation.  
1: Copy to Channel 2.  
[3] SEL_CH3 (R/W)  
Select Channel 3  
0: No Operation.  
1: Copy to Channel 3.  
Table 59. Bit Descriptions for CH_SELECT  
Bits Bit Name  
Description  
Reset Access  
[7:6] Reserved  
Reserved.  
0x0  
0x0  
R
5
SEL_CH5  
Select Channel 5. When this bit is set, data written to the INPUT_PAGE_MASK register is copied to  
the INPUT_DATA5 bits and data written to the DAC_PAGE_MASK register is copied to the  
DAC_DATA5 bits.  
R/W  
0: no operation.  
1: copy to Channel 5.  
Rev. 0 | Page 53 of 59  
AD5770R  
Data Sheet  
Bits Bit Name  
Description  
Reset Access  
4
3
2
1
0
SEL_CH4  
SEL_CH3  
SEL_CH2  
SEL_CH1  
SEL_CH0  
Select Channel 4. When this bit is set, data written to the INPUT_PAGE_MASK register is copied to  
the INPUT_DATA4 bits and data written to the DAC_PAGE_MASK register is copied to the  
DAC_DATA4 bits.  
0: no operation.  
1: copy to Channel 4.  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
Select Channel 3. When this bit is set, data written to the INPUT_PAGE_MASK register is copied to  
the INPUT_DATA3 bits and data written to the DAC_PAGE_MASK register is copied to the  
DAC_DATA3 bits.  
0: no operation.  
1: copy to Channel 3.  
Select Channel 2. When this bit is set, data written to the INPUT_PAGE_MASK register is copied to  
the INPUT_DATA2 bits and data written to the DAC_PAGE_MASK register is copied to the  
DAC_DATA2 bits.  
0: no operation.  
1: copy to Channel 2.  
Select Channel 1. When this bit is set, data written to the INPUT_PAGE_MASK register is copied to  
the INPUT_DATA1 bits and data written to the DAC_PAGE_MASK register is copied to the  
DAC_DATA1 bits.  
0: no operation.  
1: copy to Channel 1.  
Select Channel 0. When this bit is set, data written to the INPUT_PAGE_MASK register is copied to  
the INPUT_DATA0 bits and data written to the DAC_PAGE_MASK register is copied to the  
DAC_DATA0 bits.  
0: no operation.  
1: copy to Channel 0.  
Address: 0x35, Reset: 0x00, Name: INPUT_PAGE_MASK_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] INPUT_PAGE_MASK[5:0] (R/W)  
[1:0] RESERVED  
Input Data Page Mask  
Table 60. Bit Descriptions for INPUT_PAGE_MASK_LSB  
Bits Bit Name  
Description  
Reset Access  
[7:2] INPUT_PAGE_MASK[5:0] Input data page mask. Following a write to this register, the DAC code loaded into this  
0x0  
R/W  
register is copied into the input register of any channels selected in the CH_SELECT  
register.  
[1:0] Reserved  
Reserved.  
0x0  
R
Address: 0x36, Reset: 0x00, Name: INPUT_PAGE_MASK_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] INPUT_PAGE_MASK[13:6] (R/W)  
Input Data Page Mask  
Table 61. Bit Descriptions for INPUT_PAGE_MASK_MSB  
Bits Bit Name  
Description  
Reset Access  
0x0 R/W  
[7:0] INPUT_PAGE_MASK[13:6] Input data page mask. Following a write to this register, the DAC code loaded into  
this register is copied into the input register of any channels selected in the CH_SELECT  
register.  
Rev. 0 | Page 54 of 59  
Data Sheet  
AD5770R  
Address: 0x37, Reset: 0x00, Name: SW_LDAC  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5] SW_LDAC_CH5 (W)  
Software LDAC Channel 5  
0: No Operation.  
[0] SW_LDAC_CH0 (W)  
Software LDAC Channel 0  
0: No Operation.  
1: Load DAC 0.  
1: Load DAC 5.  
[1] SW_LDAC_CH1 (W)  
Software LDAC Channel 1  
0: No Operation.  
[4] SW_LDAC_CH4 (W)  
Software LDAC Channel 4  
0: No Operation.  
1: Load DAC 1.  
1: Load DAC 4.  
[2] SW_LDAC_CH2 (W)  
Software LDAC Channel 2  
0: No Operation.  
[3] SW_LDAC_CH3 (W)  
Software LDAC Channel 3  
0: No Operation.  
1: Load DAC 2.  
1: Load DAC 3.  
Table 62. Bit Descriptions for SW_LDAC  
Bits Bit Name  
Description  
Reset Access  
[7:6] Reserved  
Reserved.  
0x0  
0x0  
R
5
4
3
2
1
0
SW_LDAC_CH5 Software LDAC Channel 5. Setting this bit transfers content from the INPUT_DATA5 bits to the  
W
DAC_DATA5 bits. This bit automatically resets after a write to the SW_LDAC register.  
0: no operation.  
1: load DAC_DATA5.  
SW_LDAC_CH4 Software LDACChannel 4. Setting this bit transfers content from the INPUT_DATA4 bits to the  
0x0  
0x0  
0x0  
0x0  
0x0  
W
W
W
W
W
DAC_DATA4 bits. This bit automatically resets after a write to the SW_LDAC register.  
0: no operation.  
1: load DAC_DATA4.  
SW_LDAC_CH3 Software LDAC Channel 3. Setting this bit transfers content from the INPUT_DATA3 bits to the  
DAC_DATA3 bits. This bit automatically resets after a write to the SW_LDAC register.  
0: no operation.  
1: load DAC_DATA3.  
SW_LDAC_CH2 Software LDAC Channel 2. Setting this bit transfers content from the INPUT_DATA2 bits to the  
DAC_DATA2 bits. This bit automatically resets after a write to the SW_LDAC register.  
0: no operation.  
1: load DAC_DATA2.  
SW_LDAC_CH1 Software LDACChannel 1. Setting this bit transfers content from the INPUT_DATA1 bits to the  
DAC_DATA1 bits. This bit automatically resets after a write to the SW_LDAC register.  
0: no operation.  
1: load DAC_DATA1.  
SW_LDAC_CH0 Software LDAC Channel 0. Setting this bit transfers content from the INPUT_DATA0 bits to the  
DAC_DATA0 bits. This bit automatically resets after a write to the SW_LDAC register.  
0: no operation.  
1: load DAC_DATA0.  
Address: 0x38, Reset: 0x00, Name: CH0_INPUT_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] INPUT_DATA0[5:0] (R/W)  
Input Data Channel 0  
[1:0] RESERVED  
Table 63. Bit Descriptions for CH0_INPUT_LSB  
Bits Bit Name Description  
Reset  
0x0  
Access  
R/W  
R
[7:2] INPUT_DATA0[5:0]  
[1:0] Reserved  
Input Data Channel 0. These bits are the DAC code loaded into the input register for IDAC0.  
Reserved.  
0x0  
Rev. 0 | Page 55 of 59  
AD5770R  
Data Sheet  
Address: 0x39, Reset: 0x00, Name: CH0_INPUT_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] INPUT_DATA0[13:6] (R/W)  
Input Data Channel 0  
Table 64. Bit Descriptions for CH0_INPUT_MSB  
Bits Bit Name Description  
[7:0] INPUT_DATA0[13:6] Input Data Channel 0. These bits are the DAC code loaded into the input register for IDAC0.  
Reset Access  
0x0  
R/W  
Address: 0x3A, Reset: 0x00, Name: CH1_INPUT_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] INPUT_DATA1[5:0] (R/W)  
Input Data Channel 1  
[1:0] RESERVED  
Table 65. Bit Descriptions for CH1_INPUT_LSB  
Bits Bit Name Description  
Reset  
0x0  
0x0  
Access  
R/W  
R
[7:2] INPUT_DATA1[5:0]  
[1:0] Reserved  
Input Data Channel 1. These bits are the DAC code loaded into the input register for IDAC1.  
Reserved.  
Address: 0x3B, Reset: 0x00, Name: CH1_INPUT_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] INPUT_DATA1[13:6] (R/W)  
Input Data Channel 1  
Table 66. Bit Descriptions for CH1_INPUT_MSB  
Bits Bit Name Description  
[7:0] INPUT_DATA1[13:6] Input Data Channel 1. These bits are the DAC code loaded into the input register for IDAC1.  
Reset Access  
0x0  
R/W  
Address: 0x3C, Reset: 0x00, Name: CH2_INPUT_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] INPUT_DATA2[5:0] (R/W)  
Input Data Channel 2  
[1:0] RESERVED  
Table 67. Bit Descriptions for CH2_INPUT_LSB  
Bits Bit Name Description  
Reset  
0x0  
Access  
R/W  
R
[7:2] INPUT_DATA2[5:0]  
[1:0] Reserved  
Input Data Channel 2. These bits are the DAC code loaded into the input register for IDAC2.  
Reserved.  
0x0  
Address: 0x3D, Reset: 0x00, Name: CH2_INPUT_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] INPUT_DATA2[13:6] (R/W)  
Input Data Channel 2  
Table 68. Bit Descriptions for CH2_INPUT_MSB  
Bits Bit Name Description  
[7:0] INPUT_DATA2[13:6] Input Data Channel 2. These bits are the DAC code loaded into the input register for IDAC2.  
Reset Access  
0x0 R/W  
Rev. 0 | Page 56 of 59  
Data Sheet  
AD5770R  
Address: 0x3E, Reset: 0x00, Name: CH3_INPUT_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] INPUT_DATA3[5:0] (R/W)  
Input Data Channel 3 MSB  
[1:0] RESERVED  
Table 69. Bit Descriptions for CH3_INPUT_LSB  
Bits Bit Name  
Description  
Reset Access  
[7:2] INPUT_DATA3[5:0]  
[1:0] Reserved  
Input Data Channel 3. These bits are the DAC code loaded into the input register for IDAC3.  
Reserved.  
0x0  
0x0  
R/W  
R
Address: 0x3F, Reset: 0x00, Name: CH3_INPUT_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] INPUT_DATA3[13:6] (R/W)  
Input Data Channel 3 MSB  
Table 70. Bit Descriptions for CH3_INPUT_MSB  
Bits Bit Name Description  
Reset Access  
[7:0] INPUT_DATA3[13:6] Input Data Channel 3. These bits are the DAC code loaded into the input register for  
IDAC3.  
0x0  
R/W  
Address: 0x40, Reset: 0x00, Name: CH4_INPUT_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] INPUT_DATA4[5:0] (R/W)  
[1:0] RESERVED  
Input Data Channel 4  
Table 71. Bit Descriptions for CH4_INPUT_LSB  
Bits Bit Name Description  
Reset  
0x0  
0x0  
Access  
R/W  
R
[7:2] INPUT_DATA4[5:0]  
[1:0] Reserved  
Input Data Channel 4. These bits are the DAC code loaded into the input register for IDAC4.  
Reserved.  
Address: 0x41, Reset: 0x00, Name: CH4_INPUT_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] INPUT_DATA4[13:6] (R/W)  
Input Data Channel 4  
Table 72. Bit Descriptions for CH4_INPUT_MSB  
Bits Bit Name Description  
[7:0] INPUT_DATA4[13:6] Input Data Channel 4. These bits are the DAC code loaded into the input register for IDAC4.  
Reset Access  
0x0  
R/W  
Address: 0x42, Reset: 0x00, Name: CH5_INPUT_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] INPUT_DATA5[5:0] (R/W)  
Input Data Channel 5  
[1:0] RESERVED  
Table 73. Bit Descriptions for CH5_INPUT_LSB  
Bits Bit Name Description  
Reset  
0x0  
Access  
R/W  
R
[7:2] INPUT_DATA5[5:0]  
[1:0] Reserved  
Input Data Channel 5. These bits are the DAC code loaded into the input register for IDAC5.  
Reserved.  
0x0  
Rev. 0 | Page 57 of 59  
AD5770R  
Data Sheet  
Address: 0x43, Reset: 0x00, Name: CH5_INPUT_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] INPUT_DATA5[13:6] (R/W)  
Input Data Channel 5  
Table 74. Bit Descriptions for CH5_INPUT_MSB  
Bits Bit Name Description  
[7:0] INPUT_DATA5[13:6] Input Data Channel 5. These bits are the DAC code loaded into the input register for IDAC5.  
Reset Access  
0x0  
R/W  
Address: 0x44, Reset: 0x3F, Name: RESERVED  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:6] RESERVED0[7:6] (R)  
RESERVED  
[5:0] RESERVED1 (R)  
RESERVED  
Table 75. Bit Descriptions for RESERVED  
Bits  
[7:6]  
[0:5]  
Bit Name  
RESERVED0  
RESERVED1  
Description  
Reserved  
Reserved  
Reset  
0x0  
0x1  
Access  
R
R
Rev. 0 | Page 58 of 59  
Data Sheet  
AD5770R  
OUTLINE DIMENSIONS  
4.080  
4.040 SQ  
4.000  
7
6
5
4
3
2
1
A
BALL A1  
IDENTIFIER  
B
C
D
E
F
3.00 REF  
SQ  
G
0.50  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.390  
0.360  
0.330  
0.660  
0.600  
0.540  
END VIEW  
COPLANARITY  
0.05  
0.360  
0.320  
0.280  
SEATING  
PLANE  
0.270  
0.240  
0.210  
Figure 78. 49-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-49-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +105°C  
Package Description  
Package Option  
CB-49-5  
AD5770RBCBZ-RL7  
EVAL-AD5770RSDZ  
49-Ball Wafer Level Chip Scale Packaging [WLCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16128-0-2/19(0)  
Rev. 0 | Page 59 of 59  
 
 
 

相关型号:

AD578

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD5780

System Ready, 20-Bit, ±2LSB INL
ADI

AD5780ACPZ

System Ready, 18-Bit ±1 LSB INL
ADI

AD5780ACPZ-REEL7

System Ready, 18-Bit ±1 LSB INL
ADI

AD5780BCPZ

System Ready, 18-Bit ±1 LSB INL
ADI

AD5780BCPZ-REEL7

System Ready, 18-Bit ±1 LSB INL
ADI

AD5780_18

Voltage Output DAC
ADI

AD5781

System Ready, 20-Bit, ±2LSB INL
ADI

AD5781ARUZ

True 18-Bit, Voltage Output DAC ±0.5 LSB INL, ±0.5 LSB DNL
ADI

AD5781ARUZ-REEL7

True 18-Bit, Voltage Output DAC ±0.5 LSB INL, ±0.5 LSB DNL
ADI

AD5781BRUZ

True 18-Bit, Voltage Output DAC ±0.5 LSB INL, ±0.5 LSB DNL
ADI

AD5781BRUZ-REEL7

True 18-Bit, Voltage Output DAC ±0.5 LSB INL, ±0.5 LSB DNL
ADI