AD5781SRUZ-EP [ADI]

True 18-Bit, Voltage Output DAC ±0.5 LSB INL, ±0.5 LSB DNL;
AD5781SRUZ-EP
型号: AD5781SRUZ-EP
厂家: ADI    ADI
描述:

True 18-Bit, Voltage Output DAC ±0.5 LSB INL, ±0.5 LSB DNL

文件: 总28页 (文件大小:873K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
System Ready, 20-Bit, 2ꢀSB ꢁIꢀ,  
Voltage Output DAC  
Data Sheet  
AD5790  
FEATURES  
FUNCTIONAꢀ BꢀOCK DIAGRAM  
V
V
V
REFP  
CC  
DD  
Single 20-bit voltage output DAC, 2 ꢀSB INꢀ  
8 nV/√Hz output noise spectral density  
0.1 ꢀSB long-term linearity error stability  
0.018 ppm/°C gain error temperature coefficient  
2.5 μs output voltage settling time  
6.8k6.8kΩ  
R1  
A1  
R
IOV  
CC  
FB  
R
FB  
INV  
SDIN  
SCLK  
SYNC  
SDO  
INPUT  
SHIFT  
20  
20  
20-BIT  
DAC  
DAC  
REG  
V
OUT  
REGISTER  
AND  
3.5 nV-sec midscale glitch impulse  
CONTROL  
LOGIC  
Integrated precision reference buffers  
Operating temperature range: −40°C to +125°C  
4 mm × 5 mm ꢀFCSP package  
Wide power supply range of up to 16.5 V  
35 MHz Schmitt-triggered digital interface  
1.8 V compatible digital interface  
6kΩ  
LDAC  
CLR  
POWER-ON-RESET  
AND CLEAR LOGIC  
RESET  
AD5790  
DGND  
V
AGND  
V
REFN  
SS  
Figure 1.  
APPꢀICATIONS  
Table 1. Related Devices  
Part No.  
AD5791  
AD5780  
Description  
Medical instrumentation  
Test and measurement  
Industrial control  
Scientific and aerospace instrumentation  
Data acquisition systems  
Digital gain and offset adjustment  
Power supply control  
20-bit, 1 LSB accurate DAC  
18-bit, 1 LSB ꢀIL, voltage output DAC ,  
buffered reference inputs  
18-bit, 1 LSB ꢀIL, voltage Output DAC ,  
unbuffered reference inputs  
16-bit, 0ꢁ5 LSB ꢀIL, voltage Output DAC  
AD5781  
AD5760  
AD5541A/AD5542A 16-bit, 1 LSB accurate 5 V DAC  
GENERAꢀ DESCRIPTION  
The AD57901 is a single 20-bit, unbuffered voltage-output DAC  
that operates from a bipolar supply of up to 33 V. The AD5790  
PRODUCT HIGHꢀIGHTS  
1. 20-bit resolution.  
accepts a positive reference input in the range of 5 V to VDD  
2. Wide power supply range of up to 1ꢁ.5 V.  
3. −40°C to +125°C operating temperature range.  
4. ꢀow 8 nV/√Hz noise.  
2.5 V and a negative reference input in the range of VSS + 2.5 V  
to 0 V. The AD5790 offers a relative accuracy specification of  
2 ꢀSB maximum range, and operation is guaranteed mono-  
tonic with a −1 ꢀSB to +3 ꢀSB DNꢀ specification.  
5. ꢀow 0.018 ppm/°C gain error temperature coefficient.  
COMPANION PRODUCTS  
The part uses a versatile 3-wire serial interface that operates at  
clock rates of up to 35 MHz and is compatible with standard  
SPI, QSPI™, MICROWIRE™, and DSP interface standards.  
Reference buffers are also provided on chip. The part incorpo-  
rates a power-on reset circuit that ensures the DAC output  
powers up to 0 V in a known output impedance state and  
remains in this state until a valid write to the device takes place.  
The part provides a disable feature that places the output in a  
defined load state. The part provides an output clamp feature  
that places the output in a defined load state.  
Output Amplifier Buffer: AD8ꢁ75, ADA4898-1, ADA4004-1  
External Reference: ADR445  
DC-to-DC Design Tool: ADIsimPower™  
Additional companion products on the AD5790 product page  
1 Protected by UꢁSꢁ Patent Ioꢁ 7,884,747ꢁ  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2011-2012 Analog Devices, Inc. All rights reserved.  
 
 
AD5790  
Data Sheet  
TABꢀE OF COITEITS  
Features .............................................................................................. 1  
DAC Architecture....................................................................... 19  
Serial Interface............................................................................ 19  
Standalone Operation................................................................ 20  
Hardware Control Pins.............................................................. 20  
On-Chip Registers...................................................................... 21  
AD5790 Features ............................................................................ 24  
Power-On to 0 V......................................................................... 24  
Configuring the AD5790 .......................................................... 24  
DAC Output State ...................................................................... 24  
Output Amplifier Configuration.............................................. 24  
Applications Information.............................................................. 2ꢁ  
Typical Operating Circuit ......................................................... 2ꢁ  
Evaluation Board........................................................................ 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Companion Products....................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 18  
Theory of Operation ...................................................................... 19  
REVISION HISTORY  
2/12—Rev. A to Rev. B  
Deleted ꢀinearity Compensation Section ................................... 24  
12/11—Rev. 0 to Rev. A  
Changes to Table 1............................................................................ 1  
Changes to Table 2............................................................................ 4  
Changes to Figure 48...................................................................... 17  
Changes to DAC Register Section................................................ 21  
Changes to Table 11........................................................................ 22  
Updated Outline Dimensions....................................................... 28  
11/11—Revision 0: Initial Version  
Revꢁ B | Page 2 of 28  
 
Data Sheet  
AD5790  
SPECꢁFꢁCATꢁOIS  
VDD = 12.5 V to 1ꢁ.5 V, VSS = −1ꢁ.5 V to −12.5 V, VREFP = 10 V, VREFN = −10 V, VCC = 2.7 V to +5.5 V, IOVCC = 1.71 V to 5.5 V,  
R= unloaded, C= unloaded, TMIN to TMAX, unless otherwise noted.  
Table 2.  
B Version1  
Parameter  
STATꢀC PERFORMAICE2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Resolution  
ꢀntegral Ionlinearity Error (Relative  
Accuracy)  
20  
−2  
Bits  
LSB  
1ꢁ2  
+2  
VREFP = +10 V, VREFI = −10 V, TA = 0°C to 105°C  
VREFP = +10 V, VREFI = −10 V, TA =−40°C to +105°C  
−3  
−4  
−1  
−1  
1ꢁ2  
1ꢁ2  
+3  
+4  
+2  
+3  
LSB  
LSB  
LSB  
LSB  
VREFx  
VREFP = +10 V, VREFI = −10 V, TA = 0°C to 105°C  
VREFx 10 V, +10 V, and +5 V  
= 10 V, +10 V, and +5 V  
Differential Ionlinearity Error  
=
Long-Term Linearity Error Stability3  
Full-Scale Error  
0ꢁ1  
3ꢁ8  
2ꢁ7  
1ꢁ8  
3ꢁ8  
2ꢁ7  
1ꢁ8  
0ꢁ026  
1ꢁ3  
0ꢁ7  
0ꢁ9  
1ꢁ3  
0ꢁ7  
0ꢁ9  
0ꢁ025  
2ꢁ3  
1ꢁ9  
0ꢁ9  
2ꢁ3  
2ꢁ9  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
LSB  
LSB  
LSB  
After 750 hours at TA = 135°C  
VREFP = +10 V, VREFI = −10 V  
VREFP = 10 V, VREFI = 0 V  
−12  
−22  
−40  
−9  
−12  
−22  
+12  
+22  
+40  
+9  
+12  
+22  
VREFP = 5 V, VREFI = 0 V  
VREFP = +10 V, VREFI = −10 V, TA = 0°C to 105°C  
VREFP = 10 V, VREFI = 0 V, TA = 0°C to 105°C  
VREFP = 5 V, VREFI = 0 V, TA = 0°C to 105°C  
VREFP = +10 V, VREFI = −10 V  
VREFP = +10 V, VREFI = −10 V  
VREFP = 10 V, VREFI = 0 V  
Full-Scale Error Temperature Coefficient  
Zero-Scale Error  
−19  
−40  
−82  
−8  
−13  
−22  
+19  
+40  
+82  
+8  
+13  
+22  
VREFP = 5 V, VREFI = 0 V  
VREFP = +10 V, VREFI = −10 V, TA = 0°C to 105°C  
VREFP = 10 V, VREFI = 0 V, TA = 0°C to 105°C  
VREFP = 5 V, VREFI = 0 V, TA = 0°C to 105°C  
VREFP = +10 V, VREFI = −10 V  
VREFP = +10 V, VREFI = −10 V  
VREFP = 10 V, VREFI = 0 V  
LSB  
Zero-Scale Error Temperature Coefficient  
Gain Error  
ppm/°C  
ppm FSR  
ppm FSR  
ppm FSR  
ppm FSR  
ppm FSR  
ppm FSR  
ppm/°C  
%
−19  
−35  
−68  
−9  
−15  
−22  
+19  
+35  
+68  
+9  
+15  
+22  
VREFP = 5 V, VREFI = 0 V  
VREFP = +10 V, VREFI = −10 V, TA = 0°C to 105°C  
VREFP = 10 V, VREFI = 0 V, TA = 0°C to 105°C  
VREFP = 5 V, VREFI = 0 V, TA = 0°C to 105°C  
VREFP = +10 V, VREFI = −10 V  
0ꢁ9  
0ꢁ018  
0ꢁ015  
Gain Error Temperature Coefficient  
R1, RFB Matching  
OUTPUT CHARACTERꢀSTꢀCS  
Output Voltage Range  
VREFI  
VREFP  
V
Output Voltage Settling Time  
2ꢁ5  
μs  
10 V step to 0ꢁ02%, using the ADA4898-1 buffer  
in unity-gain mode  
3ꢁ5  
8
8
1ꢁ1  
14  
3ꢁ5  
4
14  
3ꢁ5  
4
μs  
500 code step to 1 LSB4  
Output Ioise Spectral Density  
nV/√Hz  
nV/√Hz  
μV p-p  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
At 1 kHz, DAC code = midscale  
At 10 kHz, DAC code = midscale  
DAC code = midscale, 0ꢁ1 Hz to 10 Hz bandwidth  
VREFP = +10 V, VREFI = −10 V  
Output Voltage Ioise  
Midscale Glitch ꢀmpulse4  
VREFP = 10 V, VREFI = 0 V  
VREFP = 5 V, VREFI = 0 V  
MSB Segment Glitch ꢀmpulse4  
VREFP = +10 V, VREFI = −10 V, see Figure 43  
V
REFP = 10 V, VREFI = 0 V, see Figure 44  
REFP = 5 V, VREFI = 0 V, see Figure 45  
V
Revꢁ B | Page 3 of 28  
 
AD5790  
Data Sheet  
B Version1  
Parameter  
Min  
Typ  
57  
0ꢁ27  
3ꢁ4  
6
Max  
Unit  
nV-sec  
nV-sec  
kΩ  
Test Conditions/Comments  
Output Enabled Glitch ꢀmpulse  
Digital Feedthrough  
DC Output ꢀmpedance (Iormal Mode)  
DC Output ꢀmpedance (Output  
Clamped to Ground)  
On removal of output ground clamp  
kΩ  
REFEREICE ꢀIPUTS  
VREFP ꢀnput Range  
VREFI ꢀnput Range  
ꢀnput Bias Current  
5
VDD − 2ꢁ5  
0
+20  
+4  
V
V
nA  
VSS + 2ꢁ5  
−20  
−4  
−0ꢁ63  
−0ꢁ63  
1
TA = 0°C to 105°C  
VREFP, VREFI  
ꢀnput Capacitance  
pF  
LOGꢀC ꢀIPUTS  
ꢀnput Current5  
ꢀnput Low Voltage, VꢀL  
−1  
+1  
0ꢁ3 × ꢀOVCC  
μA  
V
ꢀOVCC = 1ꢁ71 V to 5ꢁ5 V  
ꢀOVCC = 1ꢁ71 V to 5ꢁ5 V  
ꢀnput High Voltage, VꢀH  
0ꢁ7 × ꢀOVCC  
V
Pin Capacitance  
5
3
pF  
LOGꢀC OUTPUT (SDO)  
Output Low Voltage, VOL  
Output High Voltage, VOH  
High ꢀmpedance Leakage Current  
0ꢁ4  
1
V
V
μA  
pF  
ꢀOVCC = 1ꢁ71 V to 5ꢁ5 V, sinking 1 mA  
ꢀOVCC = 1ꢁ71 V to 5ꢁ5 V, sourcing 1 mA  
ꢀOVCC − 0ꢁ5  
High ꢀmpedance Output Capacitance  
POWER REQUꢀREMEITS  
All digital inputs at DGID or ꢀOVCC  
VDD  
VSS  
VCC  
7ꢁ5  
VDD − 33  
2ꢁ7  
VSS + 33  
−2ꢁ5  
5ꢁ5  
V
V
V
ꢀOVCC  
1ꢁ71  
5ꢁ5  
V
ꢀOVCC ≤ VCC  
DD  
SS  
CC  
ꢀOꢀCC  
10ꢁ3  
−10  
600  
52  
7ꢁ5  
1ꢁ5  
90  
14  
mA  
mA  
μA  
μA  
μV/V  
μV/V  
dB  
dB  
−14  
900  
140  
SDO disabled  
∆VDD 10%, VSS = −15 V  
∆VSS 10%, VDD = 15 V  
∆VDD 200 mV, 50 Hz/60 Hz, VSS = −15 V  
∆VSS 200 mV, 50 Hz/60 Hz, VDD = 15 V  
DC Power Supply Rejection Ratio  
AC Power Supply Rejection Ratio  
90  
1 Temperature range: −40°C to +125°C, typical conditions: TA = +25°C, VDD = +15 V, VSS = −15 V, VREFP = +10 V, VREFI = −10 Vꢁ  
2 Performance characterized with the AD8675ARZ output bufferꢁ  
3 Linearity error refers to both ꢀIL error and DIL error, either parameter can be expected to drift by the amount specified after the length of time specifiedꢁ  
4 The AD5790 is configured in unity-gain mode with a low-pass RC filter on the outputꢁ R = 300 Ω, C = 143 pF (total capacitance seen by the output buffer, lead  
capacitance, and so forth)ꢁ  
5 Current flowing in an individual logic pinꢁ  
Revꢁ B | Page 4 of 28  
 
Data Sheet  
AD5790  
TIMING CHARACTERISTICS  
VCC = 2.7 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
ꢀimit1  
Parameter  
Unit  
Test Conditions/Comments  
IOVCC = 1.71 V to 3.3 V  
IOVCC = 3.3 V to 5.5 V  
2
t1  
40  
92  
15  
9
28  
60  
10  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
ns typ  
ns min  
ns typ  
ns min  
SCLK cycle time  
SCLK cycle time (readback and daisy-chain modes)  
SCLK high time  
t2  
t3  
t4  
SCLK low time  
5
5
SYIC to SCLK falling edge setup time  
SCLK falling edge to SYIC rising edge hold time  
Minimum SYIC high time  
t5  
2
2
t6  
48  
8
40  
6
t7  
SYIC rising edge to next SCLK falling edge ignore  
Data setup time  
Data hold time  
LDAC falling edge to SYIC falling edge  
SYIC rising edge to LDAC falling edge  
LDAC pulse width low  
t8  
t9  
9
7
7
12  
13  
20  
14  
130  
130  
50  
140  
0
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
10  
16  
11  
130  
130  
50  
140  
0
LDAC falling edge to output response time  
SYIC rising edge to output response time (LDAC tied low)  
CLR pulse width low  
CLR pulse activation time  
SYIC falling edge to first SCLK rising edge  
65  
62  
0
60  
45  
0
ns max SYIC rising edge to SDO tristate (CL = 50 pF)  
ns max SCLK rising edge to SDO valid (CL = 50 pF)  
ns min  
ns typ  
ns typ  
SYIC rising edge to SCLK rising edge ignore  
RESET pulse width low  
35  
150  
35  
150  
RESET pulse activation time  
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of ꢀOVCC) and timed from a voltage level of (VꢀL + VꢀH)/2ꢁ  
2 Maximum SCLK frequency is 35 MHz for write mode and 16 MHz for readback and daisy-chain modesꢁ  
Revꢁ B | Page 5 of 28  
 
 
AD5790  
Data Sheet  
t1  
t7  
SCLK  
1
2
24  
t3  
t2  
t6  
t4  
t5  
SYNC  
SDIN  
t9  
t8  
DB23  
DB0  
t12  
t10  
t11  
LDAC  
t13  
V
V
OUT  
OUT  
t14  
t15  
CLR  
t16  
V
OUT  
t21  
RESET  
t22  
V
OUT  
Figure 2. Write Mode Timing Diagram  
t20  
t1  
t17  
t7  
SCLK  
1
2
24  
1
2
24  
t3  
t2  
t6  
t17  
t5  
t5  
t4  
SYNC  
SDIN  
t9  
t8  
DB23  
DB0  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
t18  
t19  
DB23  
DB0  
SDO  
REGISTER CONTENTS CLOCKED OUT  
Figure 3. Readback Mode Timing Diagram  
Revꢁ B | Page 6 of 28  
 
Data Sheet  
AD5790  
t20  
t1  
t17  
SCLK  
26  
1
2
24  
25  
48  
t3  
t2  
t6  
t5  
t4  
SYNC  
SDIN  
t9  
t8  
DB23  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N – 1  
t19  
INPUT WORD FOR DAC N  
t18  
DB0  
DB0  
DB23  
SDO  
INPUT WORD FOR DAC N  
UNDEFINED  
Figure 4. Daisy-Chain Mode Timing Diagram  
Revꢁ B | Page 7 of 28  
AD5790  
Data Sheet  
ABSOꢀUTE MAXꢁMUM RATꢁIGS  
TA = 25°C, unless otherwise noted.  
Transient currents of up to 100 mA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
VDD to AGID  
VSS to AGID  
VDD to VSS  
VCC to DGID  
ꢀOVCC to DGID  
Rating  
−0ꢁ3 V to +34 V  
−34 V to +0ꢁ3 V  
−0ꢁ3 V to +34 V  
−0ꢁ3 V to +7 V  
−0ꢁ3 V to VCC + 3 V or +7 V  
(whichever is less)  
−0ꢁ3 V to ꢀOVCC + 0ꢁ3 V or  
+7 V (whichever is less)  
−0ꢁ3 V to VDD + 0ꢁ3 V  
−0ꢁ3 V to VDD + 0ꢁ3 V  
VSS − 0ꢁ3 V to + 0ꢁ3 V  
−0ꢁ3 V to +0ꢁ3 V  
This device is a high performance integrated circuit with an  
ESD rating of <1.ꢁ kV, and it is ESD sensitive. Proper  
precautions must be taken for handling and assembly.  
Digital ꢀnputs to DGID  
VOUT to AGID  
VREFP to AGID  
VREFI to AGID  
DGID to AGID  
ESD CAUTION  
Operating Temperature Range, TA  
ꢀndustrial  
Storage Temperature Range  
Maximum Junction Temperature,  
TJ max  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Power Dissipation  
LFCSP Package  
(TJ max − TA)/θJA  
θJA Thermal ꢀmpedance  
Lead Temperature  
Soldering  
31ꢁ0°C/W  
JEDEC industry standard  
J-STD-020  
ESD (Human Body Model)  
1ꢁ6 kV  
Revꢁ B | Page 8 of 28  
 
Data Sheet  
AD5790  
PꢁI COIFꢁGURATꢁOI AID FUICTꢁOI DESCRꢁPTꢁOIS  
V
AGND  
1
2
3
19  
18  
17  
16  
15  
OUT  
V
V
SS  
REFP  
V
V
DD  
SS  
AD5790  
TOP VIEW  
(Not to Scale)  
V
RESET 4  
V
REFN  
5
DGND  
DD  
CLR 6  
LDAC 7  
14 SYNC  
13  
SCLK  
NOTES  
THIS PIN.  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO  
2. NEGATIVE ANALOG SUPPLY CONNECTION (V ).  
SS  
A VOLTAGE IN THE RANGE OF –16.5 V TO –2.5 V  
CAN BE CONNECTED. V SHOULD BE DECOUPLED  
SS  
CTRICALLY  
TO AGND. THE PADDLE CAN BE LEFT ELE  
UNCONNECTED PROVIDED THAT A SUPPLY  
CONNECTION IS MADE AT THE VSS PINS. IT IS  
RECOMMENDED THAT THE PADDLE BE THER  
CONNECTED TO A COPPER PLANE FOR ENHANCED  
THERMAL PERFORMANCE.  
MALLY  
Figure 5. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VOUT  
Analog Output Voltageꢁ  
2
VREFP  
Positive Reference Voltage ꢀnputꢁ A voltage in the range of 5 V to VDD − 2ꢁ5 V can be connectedꢁ  
3, 5  
VDD  
Positive Analog Supply Connectionꢁ A voltage in the range of 7ꢁ5 V to 16ꢁ5 V can be connectedꢁ VDD must be  
decoupled to AGIDꢁ  
4
6
RESET  
CLR  
Active Low Resetꢁ Asserting this pin returns the AD5790 to its power-on statusꢁ  
Active Low ꢀnputꢁ Asserting this pin sets the DAC register to a user defined value (see Table 12) and updates the  
DAC outputꢁ The output value depends on the DAC register coding that is being used, either binary or twos  
complementꢁ  
7
LDAC  
Active Low Load DAC Logic ꢀnputꢁ This is used to update the DAC register and, consequently, the analog outputꢁ  
SYIC LDAC  
When tied permanently low, the output is updated on the rising edge of  
ꢁ ꢀf  
is held high during the  
LDAC  
write cycle, the input register is updated, but the output update is held off until the falling edge of  
LDAC  
ꢁ The  
pin should not be left unconnectedꢁ  
Digital Supplyꢁ Voltage range is from 2ꢁ7 V to 5ꢁ5 Vꢁ VCC should be decoupled to DGIDꢁ  
8
9
VCC  
ꢀOVCC  
Digital ꢀnterface Supplyꢁ Digital threshold levels are referenced to the voltage applied to this pinꢁ Voltage range is  
from 1ꢁ71 V to 5ꢁ5 V  
10, 21, 22, 23  
11  
12  
DIC  
SDO  
SDꢀI  
Do Iot Connectꢁ Do not connect to these pinsꢁ  
Serial Data Outputꢁ  
Serial Data ꢀnputꢁ This device has a 24-bit input shift registerꢁ Data is clocked into the register on the falling edge  
of the serial clock inputꢁ  
13  
14  
SCLK  
SYIC  
Serial Clock ꢀnputꢁ Data is clocked into the input shift register on the falling edge of the serial clock inputꢁ Data  
can be transferred at rates of up to 35 MHzꢁ  
Level-Triggered Control ꢀnput (Active Low)ꢁ This is the frame synchronization signal for the input dataꢁ When  
SYIC  
goes low, it enables the input shift register, and data is then transferred in on the falling edges of the  
SYIC  
following clocksꢁ The DAC is updated on the rising edge of  
15  
16  
17, 18  
DGID  
VREFI  
VSS  
Ground Reference Pin for Digital Circuitryꢁ  
Iegative Reference Voltage ꢀnputꢁ  
Iegative Analog Supply Connectionꢁ A voltage in the range of −16ꢁ5 V to −2ꢁ5 V can be connectedꢁ VSS must be  
decoupled to AGIDꢁ  
19  
20  
AGID  
RFB  
Ground Reference Pin for Analog Circuitryꢁ  
Feedback Connection for External Amplifierꢁ See the AD5790 Features section for further detailsꢁ  
ꢀnverting ꢀnput Connection for External Amplifierꢁ See the AD5790 Features section for further detailsꢁ  
Iegative Analog Supply Connection (VSS)ꢁ A voltage in the range of −16ꢁ5 V to −2ꢁ5 V can be connectedꢁ VSS must  
be decoupled to AGIDꢁ The paddle can be left electrically unconnected provided that a supply connection is  
made at the VSS pinsꢁ ꢀt is recommended that the paddle be thermally connected to a copper plane for enhanced  
thermal performanceꢁ  
24  
ꢀIV  
VSS  
EPAD  
Revꢁ B | Page 9 of 28  
 
AD5790  
Data Sheet  
TYPꢁCAꢀ PERFORMAICE CHARACTERꢁSTꢁCS  
AD8675 OUTPUT BUFFER  
2.0  
1.5  
AD8675 OUTPUT BUFFER  
= 25°C  
T
= 25°C  
1.25  
A
T
A
0.75  
1.0  
0.5  
0.25  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–0.25  
–0.75  
–1.25  
–1.75  
V
V
V
V
= +10V  
= –10V  
REFP  
REFN  
DD  
SS  
V
= +5V  
= 0V  
REFP  
REFN  
DD  
SS  
V
V
V
= +15V  
= +15V  
= –15V  
= –15V  
0
200000  
400000  
600000  
DAC CODE  
800000 1000000 1200000  
0
200000  
400000  
600000  
800000 1000000 1200000  
DAC CODE  
Figure 6. Integral Nonlinearity Error vs. DAC Code, 1ꢀ V Span  
Figure 9. Integral Nonlinearity Error vs. DAC Code, 5 V Span, ×2 Gain Mode  
2.5  
2.0  
AD8675 OUTPUT BUFFER  
= 25°C  
AD8675 OUTPUT BUFFER  
A
T
A
T
= 25°C  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
V
V
V
V
= +10V  
= 0V  
REFP  
REFN  
DD  
SS  
V
V
V
V
= +10V  
= –10V  
REFP  
REFN  
DD  
SS  
= +15V  
= +15V  
= –15V  
= –15V  
0
200000  
400000  
600000  
DAC CODE  
800000 1000000 1200000  
0
200000  
400000  
600000  
800000 1000000 1200000  
DAC CODE  
Figure 1ꢀ. Differential Nonlinearity Error vs. DAC Code, 1ꢀ V Span  
Figure 7. Integral Nonlinearity Error vs. DAC Code, 1ꢀ V Span  
2.0  
2.0  
AD8675 OUTPUT BUFFER  
A
AD8675 OUTPUT BUFFER  
= 25°C  
T
= 25°C  
T
A
1.5  
1.0  
1.5  
1.0  
0.5  
0
0.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
–0.5  
–1.0  
–1.5  
V
V
V
V
= +10V  
= 0V  
REFP  
REFN  
DD  
SS  
V
V
V
V
= +5V  
= 0V  
REFP  
REFN  
DD  
SS  
= +15V  
= +15V  
= –15V  
= –15V  
0
200000  
400000  
600000  
800000 1000000 1200000  
0
200000  
400000  
600000  
800000 1000000 1200000  
DAC CODE  
DAC CODE  
Figure 11. Differential Nonlinearity Error vs. DAC Code, 1ꢀ V Span  
Figure 8. Integral Nonlinearity Error vs. DAC Code, 5 V Span  
Revꢁ B | Page 10 of 28  
 
 
 
Data Sheet  
AD5790  
3.0  
±10V SPAN MAX DNL  
+10V SPAN MAX DNL  
+5V SPAN MAX DNL  
±10V SPAN MIN DNL  
+10V SPAN MIN DNL  
+5V SPAN MIN DNL  
AD8675 OUTPUT BUFFER  
= 25°C  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
V
V
= +5V  
= 0V  
REFP  
REFN  
DD  
SS  
T
A
= +15V  
= –15V  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
–0.5  
–1.0  
–0.2  
–40  
–20  
0
20  
40  
60  
80  
100  
0
200000  
400000  
600000  
800000 1000000 1200000  
TEMPERATURE (°C)  
DAC CODE  
Figure 15. Differential Nonlinearity Error vs. Temperature  
Figure 12. Differential Nonlinearity Error vs. DAC Code, 5 V Span  
1.5  
2.5  
AD8675 OUTPUT BUFFER  
= 25°C  
V
V
V
V
= +5V  
= 0V  
REFP  
REFN  
DD  
SS  
T
A
INL MAX  
= +15V  
= –15V  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.5  
T
= 25°C  
A
V
V
= +10V  
0
REFP  
REFN  
= –10V  
AD8675 OUTPUT BUFFER  
–0.5  
–1.0  
–1.5  
INL MIN  
15.5  
–0.5  
–1.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
16.0  
16.5  
0
200000  
400000  
600000  
800000 1000000 1200000  
V
/|V | (V)  
DD  
SS  
DAC CODE  
Figure 16. Integral Nonlinearity Error vs. Supply Voltage, 1ꢀ V Span  
Figure 13. Differential Nonlinearity Error vs. DAC Code, 5 V Span, ×2 Gain  
Mode  
1.8  
2.5  
±10V SPAN MAX INL  
+10V SPAN MAX INL  
+5V SPAN MAX INL  
±10V SPAN MIN INL  
+10V SPAN MIN INL  
+5V SPAN MIN INL  
INL MAX  
1.3  
2.0  
1.5  
0.8  
0.3  
–0.2  
–0.7  
–1.2  
–1.7  
–2.2  
T
= 25°C  
1.0  
A
V
= 5V  
REFP  
REFN  
V
= 0V  
0.5  
AD8675 OUTPUT BUFFER  
V
V
= +15V  
= –15V  
DD  
SS  
0
AD8675 OUTPUT BUFFER  
INL MIN  
–0.5  
–1.0  
–1.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
–40  
–20  
0
20  
40  
60  
80  
100  
V
TEMPERATURE (°C)  
DD SS  
Figure 17. Integral Nonlinearity Error vs. Supply Voltage, 5 V Span  
Figure 14. Integral Nonlinearity Error vs. Temperature  
Revꢁ B | Page 11 of 28  
AD5790  
Data Sheet  
1.4  
1.2  
1.0  
11  
9
T
V
V
= 25°C  
A
= 5V  
REFP  
REFN  
DNL MAX  
= 0V  
AD8675 OUTPUT BUFFER  
7
T
= 25°C  
0.8  
0.6  
0.4  
0.2  
0
5
A
V
= +10V  
REFP  
REFN  
V
= –10V  
AD8675 OUTPUT BUFFER  
3
1
–1  
–3  
–5  
DNL MIN  
15.0  
–0.2  
12.5  
13.0  
13.5  
14.0  
14.5  
15.5  
16.0  
16.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
V
/|V | (V)  
V
DD SS  
DD SS  
Figure 18. Differential Nonlinearity Error vs. Supply Voltage, 1ꢀ V Span  
Figure 21. Zero-Scale Error vs. Supply Voltage, 5 V Span  
1.4  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
T
= 25°C  
DNL MAX  
A
V
V
= +10V  
= –10V  
REFP  
REFN  
1.2  
AD8675 OUTPUT BUFFER  
1.0  
0.8  
T
= 25°C  
A
0.6  
0.4  
0.2  
0
V
V
= 5V  
REFP  
REFN  
= 0V  
AD8675 OUTPUT BUFFER  
DNL MIN  
–0.2  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
V
DD SS  
V
/|V | (V)  
DD SS  
Figure 19. Differential Nonlinearity Error vs. Supply Voltage, 5 V Span  
Figure 22. Midscale Error vs. Supply Voltage, 1ꢀ V Span  
10  
8
T
V
V
= 25°C  
A
T
V
V
= 25°C  
A
= +10V  
REFP  
REFN  
= 5V  
1.0  
0.5  
REFP  
REFN  
= –10V  
= 0V  
AD8675 OUTPUT BUFFER  
AD8675 OUTPUT BUFFER  
6
4
0
2
0
–0.5  
–1.0  
–1.5  
–2.0  
–2  
–4  
–6  
–8  
–10  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
V
/|V | (V)  
DD SS  
V
/|V | (V)  
DD SS  
Figure 2ꢀ. Zero-Scale Error vs. Supply Voltage, 1ꢀ V Span  
Figure 23. Midscale Error vs. Supply Voltage, 5 V Span  
Revꢁ B | Page 12 of 28  
Data Sheet  
AD5790  
2.0  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
T
= 25°C  
A
V
V
= +10V  
REFP  
REFN  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
= –10V  
AD8675 OUTPUT BUFFER  
T
= 25°C  
A
V
V
= 5V  
REFP  
= 0V  
REFN  
AD8675 OUTPUT BUFFER  
7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
V
V
/|V | (V)  
DD SS  
DD SS  
Figure 27. Gain Error vs. Supply Voltage, 5 V Span  
Figure 24. Full-Scale Error vs. Supply Voltage, 1ꢀ V Span  
1.25  
0.75  
8
T
= 25°C  
A
V
V
= 5V  
INL MAX  
REFP  
6
4
= 0V  
REFN  
AD8675 OUTPUT BUFFER  
2
0.25  
T
= 25°C  
A
V
V
= +15V  
DD  
0
= –15V  
SS  
AD8675 OUTPUT BUFFER  
–0.25  
–0.75  
–1.25  
–1.75  
–2  
–4  
–6  
–8  
–10  
–12  
INL MIN  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
V
| (V)  
DD SS  
REFP  
REFN  
Figure 28. Integral Nonlinearity Error vs. Reference Voltage  
Figure 25. Full-Scale Error vs. Supply Voltage, 5 V Span  
1.5  
1.0  
0.5  
0
1.15  
T
= 25°C  
A
V
V
= +10V  
REFP  
INL MAX  
= –10V  
REFN  
0.95  
0.75  
AD8675 OUTPUT BUFFER  
T
= 25°C  
A
DD  
SS  
0.55  
V
V
= +15V  
= –15V  
AD8675 OUTPUT BUFFER  
0.35  
0.15  
INL MIN  
–0.5  
–0.05  
–0.25  
–1.0  
12.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
V
| (V)  
REFP  
REFN  
V
/|V | (V)  
DD SS  
Figure 26. Gain Error vs. Supply Voltage, 1ꢀ V Span  
Figure 29. Differential Nonlinearity Error vs. Reference Voltage  
Revꢁ B | Page 13 of 28  
AD5790  
Data Sheet  
–4.0  
–4.5  
–5.0  
–5.5  
–6.0  
–6.5  
–7.0  
–7.5  
T
V
V
= 25°C  
A
T
= 25°C  
DD  
SS  
–0.1  
–0.3  
–0.5  
–0.7  
–0.9  
–1.1  
–1.3  
–1.5  
A
V
V
= +15V  
= –15V  
DD  
SS  
= +15V  
= –15V  
AD8675 OUTPUT BUFFER  
AD8675 OUTPUT BUFFER  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
| (V)  
REFP  
REFN  
V
| (V)  
REFP  
REFN  
Figure 3ꢀ. Zero-Scale Error vs. Reference Voltage  
Figure 33. Gain Error vs. Reference Voltage  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
T
V
V
= 25°C  
= +15V  
REFN  
A
V
V
= +15V  
= –15V  
DD  
SS  
REFP  
= –15V  
AD8675 OUTPUT BUFFER  
AD8675 OUTPUT BUFFER  
±10V SPAN  
+10V SPAN  
+5V SPAN  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
V
| (V)  
REFP  
REFN  
Figure 31. Midscale Error vs. Reference Voltage  
Figure 34. Full-Scale Error vs. Temperature  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3
2
V
V
= +15V  
T
= 25°C  
= +15V  
SS  
±10V SPAN  
+10V SPAN  
+5V SPAN  
DD  
SS  
A
DD  
= –15V  
V
V
= –15V  
AD8675 OUTPUT BUFFER  
AD8675 OUTPUT BUFFER  
1
0
–1  
–2  
–3  
–4  
–5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
–40  
–20  
0
20  
40  
60  
80  
100  
V
| (V)  
REFP  
REFN  
TEMPERATURE (°C)  
Figure 32. Full-Scale Error vs. Reference Voltage  
Figure 35. Midscale Error vs. Temperature  
Revꢁ B | Page 14 of 28  
Data Sheet  
AD5790  
0.010  
0.008  
0.006  
0.004  
0.002  
0
5
V
V
= +15V  
±10V SPAN  
+10V SPAN  
+5V SPAN  
DD  
SS  
= –15V  
3
1
AD8675 OUTPUT BUFFER  
I
DD  
–1  
–3  
–5  
–7  
–9  
–11  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
I
SS  
–40  
–20  
0
20  
40  
60  
80  
100  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
V
/V (V)  
TEMPERATURE (°C)  
DD SS  
Figure 39. Power Supply Currents vs. Power Supply Voltages  
Figure 36. Zero-Scale Error vs. Temperature  
0
–2  
6
4
V
V
= +15V  
= –15V  
±10V SPAN  
+10V SPAN  
+5V SPAN  
DD  
SS  
AD8675 OUTPUT BUFFER  
2
–4  
0
–6  
–2  
–4  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–10  
–1  
0
1
2
3
4
5
–40  
–20  
0
20  
40  
60  
80  
100  
TIME (µs)  
TEMPERATURE (°C)  
Figure 37. Gain Error vs. Temperature  
Figure 4ꢀ. Rising Full-Scale Voltage Step  
6
4
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
IOV = 5V, LOGIC VOLTAGE  
CC  
INCREASING  
T
= 25°C  
A
IOV = 5V, LOGIC VOLTAGE  
CC  
DECREASING  
IOV = 3V, LOGIC VOLTAGE  
CC  
2
INCREASING  
IOV = 3V, LOGIC VOLTAGE  
CC  
0
DECREASING  
–2  
–4  
–6  
–8  
–10  
–1  
0
1
2
3
4
5
0
1
2
3
4
5
6
TIME (µs)  
LOGIC INPUT VOLTAGE (V)  
Figure 41. Falling Full-Scale Voltage Step  
Figure 38. IOICC vs. Logic Input Voltage  
Revꢁ B | Page 15 of 28  
AD5790  
Data Sheet  
10  
9
8
7
6
5
4
3
2
1
6
5
4
3
2
1
0
V
V
= 5V  
= 0V  
NEGATIVE  
POSITIVE  
REFP  
REFN  
UNITY GAIN MODE  
ADA4898-1  
RC LOW-PASS FILTER  
V
V
= +10V  
= –10V  
REFP  
REFN  
RC LOW-PASS FILTER  
UNITY GAIN MODE  
ADA4898-1  
0
–1  
0
1
2
3
4
5
TIME (µs)  
CODE  
Figure 42. 5ꢀꢀ Code Step Settling Time  
Figure 45. 6 MSB Segment Glitch Energy for 5 V VREF  
55  
25  
±10V SPAN  
+10V SPAN  
+5V SPAN  
NEGATIVE  
POSITIVE  
V
V
= +10V  
= –10V  
V
V
= +10V  
= –10V  
REFP  
REFN  
REFP  
REFN  
45  
35  
UNITY GAIN MODE  
RC LOW-PASS FILTER  
UNITY GAIN MODE  
ADA4898-1  
ADA4898-1  
20  
15  
10  
5
RC LOW-PASS FILTER  
NEGATIVE CODE  
CHANGE  
POSITIVE CODE  
CHANGE  
25  
15  
5
–5  
–15  
–25  
0
1
0
1
2
3
TIME (µs)  
CODE  
Figure 43. 6 MSB Segment Glitch Energy for 1ꢀ V VREF  
Figure 46. Midscale Peak-to-Peak Glitch for 1ꢀ V  
800  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 10V  
= 0V  
T
V
V
V
V
= 25°C  
REFP  
REFN  
A
MIDSCALE CODE LOADED  
OUTPUT UNBUFFERED  
AD8676 REFERENCE BUFFERS  
= +15V  
= –15V  
DD  
SS  
UNITY GAIN MODE  
600  
400  
ADA4898-1  
= +10V  
= –10V  
REFP  
REFN  
RC LOW-PASS FILTER  
NEGATIVE  
POSITIVE  
200  
0
–200  
–400  
–600  
0
1
2
3
4
5
6
7
8
9
10  
TIME (Seconds)  
CODE  
Figure 44. 6 MSB Segment Glitch Energy for 1ꢀ V VREF  
Figure 47. Voltage Output Noise, ꢀ.1 Hz to 1ꢀ Hz Bandwidth  
Revꢁ B | Page 16 of 28  
 
 
 
Data Sheet  
AD5790  
200  
180  
160  
140  
120  
100  
80  
100  
V
V
V
V
= +15V  
= –15V  
REFP  
REFN  
V
V
V
V
= +15V  
DD  
SS  
DD  
SS  
= –15V  
= +10V  
= –10V  
= +10V  
REFP  
REFN  
= –10V  
UNITY GAIN  
ADA4898-1  
10  
60  
40  
20  
0
1
–20  
0.1  
1
10  
100  
1k  
10k  
0
1
2
3
4
5
6
FREQUENCY (Hz)  
TIME (µs)  
Figure 48. Noise Spectral Density vs. Frequency  
Figure 49. Glitch Impulse on Removal of Output Clamp  
Revꢁ B | Page 17 of 28  
 
AD5790  
Data Sheet  
TERMꢁIOꢀOGY  
Output Voltage Settling Time  
Relative Accuracy  
Output voltage settling time is the amount of time it takes for  
the output voltage to settle to a specified level for a specified  
change in voltage. For fast settling applications, a high speed  
buffer amplifier is required to buffer the load from the 3.4 kΩ  
output impedance of the AD5790, in which case, it is the  
amplifier that determines the settling time.  
Relative accuracy, or integral nonlinearity (INꢀ), is a measure of  
the maximum deviation, in ꢀSB, from a straight line passing  
through the endpoints of the DAC transfer function. A typical  
INꢀ error vs. code plot is shown in Figure ꢁ.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 ꢀSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 ꢀSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic. A  
typical DNꢀ error vs. code plot is shown in Figure 10.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is specified as the area of the glitch in nV-s and is  
measured when the digital input code is changed by 1 ꢀSB at  
the major carry transition. See Figure 49.  
Long-Term Linearity Error Stability  
ꢀinearity error long-term stability is a measure of the stability of  
the linearity of the DAC over a long period of time. It is speci-  
fied in ꢀSB for a time period of 500 hours and 1000 hours at an  
elevated ambient temperature.  
Output Enabled Glitch Impulse  
Output enabled glitch impulse is the impulse injected into the  
analog output when the clamp to ground on the DAC output is  
removed. It is specified as the area of the glitch in nV-sec (see  
Figure 49).  
Zero-Scale Error  
Zero-scale error is a measure of the output error when zero-scale  
code (0x00000) is loaded to the DAC register. Ideally, the output  
voltage should be VREFN. Zero-scale error is expressed in ꢀSBs.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC but is measured when the DAC output is not updated. It is  
specified in nV-sec and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s, and vice versa.  
Zero-Scale Error Temperature Coefficient  
Zero-scale error temperature coefficient is a measure of the  
change in zero-scale error with a change in temperature. It is  
expressed in ppm FSR/°C.  
Total Harmonic Distortion (THD)  
Full-Scale Error  
Total harmonic distortion is the ratio of the rms sum of the  
harmonics of the DAC output to the fundamental value. Only  
the second to fifth harmonics are included.  
Full-scale error is a measure of the output error when full-scale  
code (0x3FFFF) is loaded to the DAC register. Ideally, the  
output voltage should be VREFP − 1 ꢀSB. Full-scale error is  
expressed in ꢀSBs.  
DC Power Supply Rejection Ratio  
DC power supply rejection ratio is a measure of the rejection of  
the output voltage to dc changes in the power supplies applied  
to the DAC. It is measured for a given dc change in power  
supply voltage and is expressed in μV/V.  
Full-Scale Error Temperature Coefficient  
Full-scale error temperature coefficient is a measure of the  
change in full-scale error with a change in temperature. It is  
expressed in ppm FSR/°C.  
AC Power Supply Rejection Ratio (AC PSRR)  
Gain Error  
AC power supply rejection ratio is a measure of the rejection of  
the output voltage to ac changes in the power supplies applied  
to the DAC. It is measured for a given amplitude and frequency  
change in power supply voltage and is expressed in decibels.  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal, expressed in ppm of the full-scale range.  
Gain Error Temperature Coefficient  
Gain error temperature coefficient is a measure of the change  
in gain error with a change in temperature. It is expressed in  
ppm FSR/°C.  
Midscale Error  
Midscale error is a measure of the output error when midscale  
code (0x20000) is loaded to the DAC register. Ideally, the output  
voltage should be (VREFP − VREFN)/2 + VREFN. Midscale error is  
expressed in ꢀSBs.  
Revꢁ B | Page 18 of 28  
 
Data Sheet  
AD5790  
THEORY OF OPERATꢁOI  
R
R
R
The AD5790 is a high accuracy, fast settling, single, 20-bit,  
serial input, voltage-output DAC. It operates from a VDD supply  
voltage of 7 V to 1ꢁ.5 V and a VSS supply of −1ꢁ.5 V to -2.5 V.  
Data is written to the AD5790 in a 24-bit word format via a 3-wire  
serial interface. The AD5790 incorporates a power-on reset  
circuit that ensures the DAC output powers up to 0 V with the  
V
OUT  
..........  
.........  
.....................  
.....................  
2R  
S13  
2R  
2R  
E0  
2R  
S0  
2R  
S1  
2R  
E62  
E61  
V
REFP  
V
REFN  
VOUT pin clamped to AGND through a ~ꢁ kΩ internal resistor.  
14-BIT R-2R LADDER  
SIX MSBs DECODED INTO  
63 EQUAL SEGMENTS  
DAC ARCHITECTURE  
Figure 5ꢀ. DAC Ladder Structure  
The architecture of the AD5790 consists of two matched DAC  
sections. A simplified circuit diagram is shown in Figure 50.  
The six MSBs of the 20-bit data-word are decoded to drive  
ꢁ3 switches, E0 to Eꢁ2. Each of these switches connects one of  
ꢁ3 matched resistors to either the buffered VREFP or buffered  
VREFN voltage. The remaining 14 bits of the data-word drive  
Switches S0 to S13 of a 14-bit voltage mode R-2R ladder  
network.  
SERIAꢀ INTERFACE  
The AD5790 has a 3-wire serial interface (  
, SCꢀK, and  
SYNC  
SDIN) that is compatible with SPI, QSPI, and MICROWIRE  
interface standards, as well as most DSPs (see Figure 2 for a  
timing diagram).  
Input Shift Register  
The input shift register is 24 bits wide. Data is loaded into the  
device MSB first as a 24-bit word under the control of a serial  
clock input, SCꢀK, which can operate at up to 35 MHz. The  
W
input register consists of a R/ bit, three address bits and  
20 data bits as shown in Table ꢁ. The timing diagram for this  
operation is shown in Figure 2.  
Table 6. Input Shift Register Format  
MSB  
ꢀSB  
DB23  
DB22  
DB21  
Register address  
DB20  
DB19 to DB0  
R/W  
Register data  
Table 7. Decoding the Input Shift Register  
R/W  
X1  
0
0
0
0
1
1
Register Address  
Description  
0
0
0
0
1
0
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Io operation (IOP)ꢁ Used in readback operationsꢁ  
Write to the DAC registerꢁ  
Write to the control registerꢁ  
Write to the clearcode registerꢁ  
Write to the software control registerꢁ  
Read from the DAC registerꢁ  
Read from the control registerꢁ  
Read from the clearcode registerꢁ  
1
1 X is don’t careꢁ  
Revꢁ B | Page 19 of 28  
 
 
 
 
AD5790  
Data Sheet  
STANDAꢀONE OPERATION  
AD5790*  
CONTROLLER  
The serial interface works with both a continuous and noncon-  
tinuous serial clock. A continuous SCꢀK source can be used  
DATA OUT  
SERIAL CLOCK  
CONTROL OUT  
SDIN  
SCLK  
SYNC  
SYNC  
only if  
In gated clock mode, a burst clock containing the exact number  
SYNC  
is held low for the correct number of clock cycles.  
DATA IN  
SDO  
of clock cycles must be used, and  
must be taken high  
after the final clock to latch the data. The first falling edge of  
SDIN  
SYNC  
starts the write cycle. Exactly 24 falling clock edges must  
AD5790*  
SYNC  
be applied to SCꢀK before  
SYNC  
is brought high again. If  
th  
is brought high before the 24 falling SCꢀK edge, the  
SCLK  
SYNC  
data written is invalid. If more than 24 falling SCꢀK edges are  
SYNC  
applied before  
invalid.  
is brought high, the input data is also  
SDO  
SYNC  
must be brought  
The input shift register is updated on the rising edge of  
SYNC  
.
For another serial transfer to take place,  
SDIN  
low again. After the end of the serial data transfer, data is  
automatically transferred from the input shift register to the  
addressed register. When the write cycle is complete, the output  
AD5790*  
SCLK  
SYNC  
ꢀDAC  
SYNC  
can be updated by taking  
low while  
is high.  
Daisy-Chain Operation  
SDO  
For systems that contain several devices, the SDO pin can be  
used to daisy chain several devices together. Daisy-chain mode  
can be useful in system diagnostics and in reducing the number  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 51. Daisy-Chain Block Diagram  
SYNC  
of serial interface lines. The first falling edge of  
write cycle. SCꢀK is continuously applied to the input shift  
SYNC  
starts the  
Readback  
The contents of all the on-chip registers can be read back via  
the SDO pin. Table 7 outlines how the registers are decoded.  
After a register has been addressed for a read, the next 24 clock  
cycles clock the data out on the SDO pin. The clocks must be  
register when  
is low. If more than 24 clock pulses are  
applied, the data ripples out of the shift register and appears on  
the SDO line. This data is clocked out on the rising edge of  
SCꢀK and is valid on the falling edge. By connecting the SDO  
of the first device to the SDIN input of the next device in the  
chain, a multidevice interface is constructed. Each device in the  
system requires 24 clock pulses. Therefore, the total number of  
clock cycles must equal 24 × N, where N is the total number of  
AD5790 devices in the chain. When the serial transfer to all  
SYNC  
SYNC  
applied while  
is low. When  
is returned high, the  
SDO pin is placed in tristate. For a read of a single register, the  
NOP function can be used to clock out the data. Alternatively,  
if more than one register is to be read, the data of the first  
register to be addressed can be clocked out at the same time  
the second register to be read is being addressed. The SDO pin  
must be enabled to complete a readback operation. The SDO  
pin is enabled by default.  
SYNC  
devices is complete,  
is taken high. This latches the input  
data in each device in the daisy chain and prevents any further  
data from being clocked into the input shift register. The serial  
clock can be a continuous or a gated clock.  
HARDWARE CONTROꢀ PINS  
SYNC  
A continuous SCꢀK source can be used only if  
is held  
LDAC  
Load DAC Function (  
)
low for the correct number of clock cycles. In gated clock mode,  
a burst clock containing the exact number of clock cycles must  
After data has been transferred into the input register of the  
DAC, there are two ways to update the DAC register and DAC  
SYNC  
be used, and  
latch the data.  
must be taken high after the final clock to  
SYNC  
ꢀDAC  
output. Depending on the status of both  
and  
, one  
of two update modes is selected: synchronous DAC update or  
asynchronous DAC update.  
In any one daisy-chain sequence, do not mix writes to the DAC  
register with writes to any of the other registers. All writes to the  
daisy-chained parts must be either writes to the DAC registers  
or writes to the control, clearcode, or software control register.  
Synchronous DAC Update  
ꢀDAC  
In this mode,  
the input shift register. The DAC output is updated on the rising  
SYNC  
is held low while data is being clocked into  
edge of  
.
Revꢁ B | Page 20 of 28  
 
Data Sheet  
AD5790  
CꢀR  
pin is  
Asynchronous DAC Update  
output cannot be updated with a new value while the  
low. A clear operation can also be performed by setting the CꢀR  
bit in the software control register (see Table 13).  
ꢀDAC  
In this mode,  
into the input shift register. The DAC output is asynchronously  
ꢀDAC SYNC  
is held high while data is being clocked  
updated by taking  
The update now occurs on the falling edge of  
RESET  
low after  
has been taken high.  
ON-CHIP REGISTERS  
DAC Register  
ꢀDAC  
.
Table 9 outlines how data is written to and read from the DAC  
register.  
Reset Function (  
The AD5790 can be reset to its power-on state by two means:  
RESET  
)
The following equation describes the ideal transfer function of  
the DAC:  
either by asserting the  
control function (see Table 13). If the  
hardwire it to IOVCC  
Asynchronous Clear Function (CLR)  
pin or by using the software reset  
RESET  
pin is not used,  
.
(
VREFP VREFN × D  
)
VOUT  
where:  
=
+VREFN  
220  
CꢀR  
The  
pin is an active low clear that allows the output to  
be cleared to a user defined value. The 20-bit clear code value  
is programmed to the clearcode register (see Table 12). It is  
V
V
REFN is the negative voltage applied at the VREFN input pin.  
REFP is the positive voltage applied at the VREFP input pin.  
CꢀR  
D is the 20-bit code programmed to the DAC.  
necessary to maintain  
to complete the operation (see Figure 2).When the  
is returned high the output remains at the clear value (if  
low for a minimum amount of time  
CꢀR  
signal  
ꢀDAC  
is high) until a new value is loaded to the DAC register. The  
Table 8. Hardware Control Pins Truth Table  
ꢀDAC  
CꢀR  
RESET  
Function  
X1  
X1  
0
0
1
X1  
X1  
0
1
0
1
0
1
0
0
The AD5790 is in reset modeꢁ The device cannot be programmedꢁ  
The AD5790 is returned to its power-on stateꢁ All registers are set to their default valuesꢁ  
The DAC register is loaded with the clearcode register value and the output is set accordinglyꢁ  
The output is set according to the DAC register valueꢁ  
The DAC register is loaded with the clearcode register value and the output is set accordinglyꢁ  
The output is set according to the DAC register valueꢁ  
The output remains at the clearcode register valueꢁ  
The output remains set according to the DAC register valueꢁ  
The output remains at the clearcode register valueꢁ  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
The DAC register is loaded with the clearcode register value and the output is set accordinglyꢁ  
The DAC register is loaded with the clearcode register value and the output is set accordinglyꢁ  
The output remains at the clearcode register valueꢁ  
The output is set according to the DAC register valueꢁ  
1 X is don’t careꢁ  
Table 9. DAC Register  
MSB  
ꢀSB  
DB23  
R/W  
DB22  
DB21  
DB20  
DB19 to DB0  
Register address  
0
DAC register data  
20 bits of data  
R/W  
0
1
Revꢁ B | Page 21 of 28  
 
 
 
AD5790  
Data Sheet  
Clearcode Register  
The clearcode register sets the value to which the DAC output is  
set when the pin or CꢀR bit in the software control register  
Control Register  
The control register controls the mode of operation of the  
AD5790.  
CꢀR  
is asserted. The output value depends on the DAC coding that is  
being used, either binary or twos complement. The default  
register value is 0.  
Table 10. Control Register  
MSB  
ꢀSB  
DB23 DB22 DB21 DB20 DB19 to DB11 DB10  
DB9 DB8 DB7 DB6 DB5  
Control register data  
SDODꢀS BꢀI/2sC DACTRꢀ OPGID RBUF Reserved  
DB4  
DB3  
DB2  
DB1  
DB0  
W
Register address  
R/  
R/  
W
0
1
0
Reserved  
Reserved  
0000  
Table 11. Control Register Functions  
Bit Name  
Reserved  
RBUF  
Description  
These bits are reserved and should be programmed to zeroꢁ  
Output amplifier configuration controlꢁ  
0: the internal amplifier, A1, is powered up and Resistors RFB and R1 are connected in series, as shown in Figure 54ꢁ This  
allows an external amplifier to be connected in a gain of two configurationꢁ See the AD5790 Features section for further  
detailsꢁ  
1: (default) the internal amplifier, A1, is powered down and Resistors RFB and R1 are connected in parallel, as shown in Figure 53,  
so that the resistance between the RFB and ꢀIV pins is 3ꢁ4 kΩ, equal to the resistance of the DACꢁ This allows the RFB and ꢀIV  
pins to be used for input bias current compensation for an external unity-gain amplifierꢁ See the AD5790 Features section  
for further detailsꢁ  
OPGID  
Output ground clamp controlꢁ  
0: the DAC output clamp to ground is removed and the DAC is placed in normal modeꢁ  
1: (default) the DAC output is clamped to ground through a ~6 kΩ resistance, and the DAC is placed in tristate modeꢁ  
Resetting the part puts the DAC in OPGID mode, where the output ground clamp is enabled and the DAC is tristatedꢁ  
Setting the OPGID bit to 1 in the control register overrules any write to the DACTRꢀ bitꢁ  
DACTRꢀ  
BꢀI/2sC  
SDODꢀS  
R/W  
DAC tristate controlꢁ  
0: the DAC is in normal operating modeꢁ  
1: (default) DAC is in tristate modeꢁ  
DAC register coding selectionꢁ  
0: (default) the DAC register uses twos complement codingꢁ  
1: the DAC register uses offset binary codingꢁ  
SDO pin enable/disable controlꢁ  
0: (default) the SDO pin is enabledꢁ  
1: the SDO pin is disabled (tristate)ꢁ  
Read/write select bitꢁ  
0: AD5790 is addressed for a write operationꢁ  
1: AD5790 is addressed for a read operationꢁ  
Table 12. Clearcode Register  
MSB  
ꢀSB  
DB23  
R/W  
DB22  
DB21  
DB20  
DB19 to DB0  
Register address  
1
Clearcode register data  
20 bits of data  
R/W  
0
1
Revꢁ B | Page 22 of 28  
 
Data Sheet  
AD5790  
Software Control Register  
This is a write only register in which writing a 1 to a particular bit has the same effect as pulsing the corresponding pin low.  
Table 13. Software Control Register  
MSB  
ꢀSB  
DB23  
R/W  
0
DB22  
DB21  
DB20  
DB19 to DB3  
DB2  
Software control register data  
Reset  
CLR1  
DB1  
DB0  
LDAC2  
Register address  
0
1
0
Reserved  
1
LDAC  
CLR  
The CLR function has no effect when the  
The LDAC function has no effect when the  
pin is lowꢁ  
pin is lowꢁ  
2
Table 14. Software Control Register Functions  
Bit Name  
Description  
LDAC  
Setting this bit to 1 updates the DAC register and consequently the DAC outputꢁ  
CLR  
Setting this bit to 1 sets the DAC register to a user defined value (see Table 12) and updates the DAC outputꢁ The output  
value depends on the DAC register coding that is being used, either binary or twos complementꢁ  
Reset  
Setting this bit to 1 returns the AD5790 to its power-on stateꢁ  
Revꢁ B | Page 23 of 28  
 
 
 
AD5790  
Data Sheet  
AD5790 FEATURES  
A second unity-gain configuration for the output amplifier is  
one that removes an offset from the input bias currents of the  
amplifier. It does this by inserting a resistance in the feedback  
path of the amplifier that is equal to the output resistance of the  
DAC. The DAC output resistance is 3.4 kΩ. By connecting R1  
and RFB in parallel, a resistance equal to the DAC resistance is  
available on chip. Because the resistors are all on one piece of  
silicon, they are temperature coefficient matched. To enable this  
mode of operation the RBUF bit of the control register must be  
set to ꢀogic 1. Figure 53 shows how the output amplifier is  
connected to the AD5790. In this configuration, the output  
amplifier is in unity gain and the output spans from VREFN to  
POWER-ON TO 0 V  
The AD5790 contains a power-on reset circuit that, as well as  
resetting all registers to their default values, controls the output  
voltage during power-up. Upon power-on, the DAC is placed in  
tristate (its reference inputs are disconnected), and its output is  
clamped to AGND through a ~ꢁ kΩ resistor. The DAC remains  
in this state until programmed otherwise via the control register.  
This is a useful feature in applications where it is important to  
know the state of the DAC output while it is in the process of  
powering up.  
CONFIGURING THE AD5790  
VREFP. This unity-gain configuration allows a capacitor to be placed  
After power-on, the AD5790 must be configured to put it into  
normal operating mode before programming the output. To do  
this, the control register must be programmed. The DAC is  
removed from tristate by clearing the DACTRI bit, and the  
output clamp is removed by clearing the OPGND bit. At this  
point, the output goes to VREFN, unless an alternative value is  
first programmed to the DAC register.  
in the amplifier feedback path to improve dynamic performance.  
V
REFP  
R
FB  
R
6.8k  
R1  
6.8kΩ  
FB  
10pF  
INV  
OUT  
V
OUT  
V
20-BIT  
DAC  
DAC OUTPUT STATE  
AD8675  
ADA4898-1  
ADA4004-1  
The DAC output can be placed in one of three states, controlled  
by the DACTRI and OPGND bits of the control register, as  
shown in Table 15.  
AD5790  
V
= 0V  
REFN  
Figure 53. Output Amplifier in Unity Gain with Amplifier Input Bias Current  
Compensation  
Table 15. Output State Truth Table  
DACTRI OPGND Output State  
0
0
1
1
0
1
0
1
Iormal operating mode  
Output is clamped via ~6 kΩ to AGID  
Output is in tristate  
Output is clamped via ~6 kΩ to AGID  
OUTPUT AMPꢀIFIER CONFIGURATION  
There are a number of different ways that an output amplifier  
can be connected to the AD5790, depending on the voltage  
references applied and the desired output voltage span.  
Unity-Gain Configuration  
Figure 52 shows an output amplifier configured for unity gain.  
In this configuration, the output spans from VREFN to VREFP  
.
V
REFP  
6.8k6.8kΩ  
R1  
R
FB  
A1  
AD8675  
ADA4898-1  
ADA4004-1  
R
FB  
INV  
OUT  
V
20-BIT  
DAC  
V
OUT  
AD5790  
V
REFN  
Figure 52. Output Amplifier in Unity-Gain Configuration  
Revꢁ B | Page 24 of 28  
 
 
 
 
 
Data Sheet  
AD5790  
V
REFP  
Gain of Two Configuration (×2 Gain Mode)  
Figure 54 shows an output amplifier configured for a gain of  
two. The gain is set by the internal matched ꢁ.8 kΩ resistors,  
which are exactly twice the DAC resistance, having the effect of  
removing an offset from the input bias current of the external  
amplifier. In this configuration, the output spans from 2 ×  
6.8k6.8kΩ  
R1  
R
FB  
A1  
R
10pF  
FB  
INV  
OUT  
V
OUT  
V
20-BIT  
DAC  
AD8675  
ADA4898-1  
ADA4004-1  
V
REFN − VREFP to VREFP. This configuration is used to generate a  
bipolar output span from a single ended reference input with  
REFN = 0 V. For this mode of operation, the RBUF bit of the  
control register must be cleared to ꢀogic 0.  
AD5790  
V
V
REFN  
Figure 54. Output Amplifier in Gain of Two Configuration  
Revꢁ B | Page 25 of 28  
 
AD5790  
Data Sheet  
APPꢀꢁCATꢁOIS ꢁIFORMATꢁOI  
TYPICAꢀ OPERATING CIRCUIT  
5 5 0 9 - 0 2 1 3  
Figure 55. Typical Operating Circuit  
Revꢁ B | Page 26 of 28  
 
 
Data Sheet  
AD5790  
Figure 55 shows a typical operating circuit for the AD5790  
using an AD8ꢁ75 as an output buffer. Because the output  
impedance of the AD5790 is 3.4 kΩ, an output buffer is  
required for driving low resistive, high capacitive loads.  
The evaluation board interfaces to the USB port of a PC. Soft-  
ware is available with the evaluation board to allow the user to  
easily program the AD5790. The software runs on any PC that  
has Microsoft® Windows® XP (SP2), or Vista (32-bit or ꢁ4-bit),  
or Windows 7 installed. The AD5790 user guide, UG-342, is  
available, which gives full details on the operation of the  
evaluation board.  
EVAꢀUATION BOARD  
An evaluation board is available for the AD5790 to aid  
designers in evaluating the high performance of the part  
with minimum effort. The AD5790 evaluation kit includes  
a populated and tested AD5790 printed circuit board (PCB).  
Revꢁ B | Page 27 of 28  
 
AD5790  
Data Sheet  
OUTꢀꢁIE DꢁMEISꢁOIS  
2.75  
2.65  
2.50  
4.00 BSC  
PIN 1  
PIN 1  
INDICATOR  
(Chamfer 0.225)  
INDICATOR  
20  
24  
19  
1
0.50  
BSC  
5.00 BSC  
3.75  
3.65  
3.50  
EXPOSED  
PAD  
13  
7
12  
8
0.50  
0.40  
0.30  
TOP VIEW  
BOTTOM VIEW  
1.00  
0.90  
0.80  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.25  
0.20  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
Figure 56. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 5 mm Body, Very Thin Quad  
(CP-24-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD5790BCPZ  
AD5790BCPZ-RL7  
EVAL-AD5790SDZ  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
INꢀ  
4 LSB  
4 LSB  
Package Description  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
Evaluation Board  
Package Option  
CP-24-5  
CP-24-5  
1 Z = RoHS Compliant Partꢁ  
©2011-2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10239-0-2/12(B)  
Revꢁ B | Page 28 of 28  
 
 
 

相关型号:

AD5781_18

True 18-Bit, Voltage Output DAC
ADI

AD578JD

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578JN

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578K

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578KD

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578KN

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578L

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578LD

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578LN

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578SD

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD578SD/883B

Analog-to-Digital Converter, 12-Bit
ETC

AD578SN

Analog-to-Digital Converter, 12-Bit
ETC