AD5791_18 [ADI]

Voltage Output DAC;
AD5791_18
型号: AD5791_18
厂家: ADI    ADI
描述:

Voltage Output DAC

文件: 总27页 (文件大小:915K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1 ppm 20-Bit, 1 LSB INL,  
Voltage Output DAC  
Data Sheet  
AD5791  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
V
CC  
DD  
REFPF REFPS  
1 ppm resolution  
1 ppm INL  
6.8kΩ 6.8kΩ  
R1  
AD5791  
7.5 nV/√Hz noise spectral density  
0.19 LSB long-term linearity stability  
<0.05 ppm/°C temperature drift  
1 µs settling time  
A1  
R
IOV  
CC  
FB  
R
FB  
INV  
SDIN  
SCLK  
SYNC  
SDO  
INPUT  
SHIFT  
20  
20  
20-BIT  
DAC  
DAC  
REG  
V
OUT  
REGISTER  
AND  
CONTROL  
LOGIC  
1.4 nV-sec glitch impulse  
Operating temperature range: −40°C to +125°C  
20-lead TSSOP package  
Wide power supply range up to 16.5 V  
35 MHz Schmitt triggered digital interface  
1.8 V compatible digital interface  
6kΩ  
LDAC  
CLR  
POWER-ON-RESET  
AND CLEAR LOGIC  
RESET  
DGND  
V
AGND  
V
V
REFNF REFNS  
SS  
Figure 1.  
APPLICATIONS  
Medical instrumentation  
Test and measurement  
Industrial control  
High end scientific and aerospace instrumentation  
Table 1. Complementary Devices  
Part No.  
Description  
AD8675  
Ultra precision, 36 V, 2.8 nV/√Hz rail-to-rail  
output op amp  
AD8676  
Ultra precision, 36 V, 2.8 nV/√Hz dual rail-to-  
rail output op amp  
ADA4898-1  
High voltage, low noise, low distortion, unity  
gain stable, high speed op amp  
Table 2. Related Device  
Part No.  
Description  
AD5781  
18-bit, 0.5 LSB INL, voltage output DAC  
GENERAL DESCRIPTION  
The AD57911 is a single 20-bit, unbuffered voltage-output digital-  
to-analog converter (DAC) that operates from a bipolar supply of  
up to 33 V. T h e AD5791 accepts a positive reference input in the  
range 5 V to VDD − 2.5 V and a negative reference input in the  
range VSS + 2.5 V to 0 V. T h e AD5791 offers a relative accuracy  
specification of 1 LSB max, and operation is guaranteed  
monotonic with a 1 LSB differential nonlinearity (DNL)  
maximum specification.  
output powers up to 0 V and in a known output impedance  
state and remains in this state until a valid write to the device  
takes place. The device provides an output clamp feature that  
places the output in a defined load state.  
PRODUCT HIGHLIGHTS  
1. 1 ppm Accuracy.  
2. Wide Power Supply Range up to 16.5 V.  
3. Operating Temperature Range: −40°C to +125°C.  
4. Low 7.5 nV/√Hz Noise Spectral Density.  
5. Low 0.05 ppm/°C Temperature Drift.  
The device uses a versatile 3-wire serial interface that operates  
at clock rates up to 35 MHz and that is compatible with  
standard serial peripheral interface (SPI), QSPI™,  
MICROWIRE™, and DSP interface standards. The device  
incorporates a power-on reset circuit that ensures the DAC  
1 Protected by U.S. Patent No. 7,884,747. Other patents pending.  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2010–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5791  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Serial Interface............................................................................ 19  
Hardware Control Pins.............................................................. 20  
On-Chip Registers...................................................................... 21  
AD5791 Features ............................................................................ 24  
Power-On to 0 V......................................................................... 24  
Power-Up Sequence ................................................................... 24  
Configuring the AD5791 .......................................................... 24  
DAC Output State ...................................................................... 24  
Linearity Compensation............................................................ 24  
Output Amplifier Configuration.............................................. 24  
Applications Information.............................................................. 26  
Typical Operating Circuit ......................................................... 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 19  
DAC Architecture....................................................................... 19  
REVISION HISTORY  
8/2011—Rev. 0 to Rev. A  
4/2018—Rev. D to Rev. E  
Change to Features Section..............................................................1  
Changes to Specifications Section, Table 3 ....................................3  
Deleted t14 Timing Specification in Table 4, Renumbered  
Subsequent Timing Parameters Sequentially ................................5  
Changes to Figure 2 and Figure 3....................................................6  
Changes to Figure 4...........................................................................7  
Changes to Figure 42...................................................................... 16  
Changes to Figure 43...................................................................... 16  
Added Figure 44, Figure 45, and Figure 46, Renumbered  
Sequentially ..................................................................................... 16  
Change to Figure 49 ....................................................................... 19  
Added Power-Up Sequence Section and Figure 50; Renumbered  
Sequentially ..................................................................................... 24  
7/2013—Rev. C to Rev. D  
Change to Table 4 ............................................................................. 5  
Deleted Figure 4, Renumbered Sequentially................................. 7  
Deleted Daisy-Chain Operation Section and Figure 51............ 21  
11/2011—Rev. B to Rev. C  
Added Figure 48; Renumbered Sequentially .............................. 17  
Change to Ideal Transfer Function Equation.............................. 22  
7/2010—Revision 0: Initial Version  
9/2011—Rev. A to Rev. B  
Added Patent Note ........................................................................... 1  
Changes to Table 3............................................................................ 3  
Changes to OPGND Description Column, Table 12................. 23  
Change to Figure 51 ....................................................................... 25  
Rev. E | Page 2 of 27  
 
Data Sheet  
AD5791  
SPECIFICATIONS  
VDD = 12.5 V to 16.5 V, VSS = −16.5 V to −12.5 V, VREFP = 10 V, VREFN = −10 V, VCC = 2.7 V to +5.5 V, IOVCC = 1.71 V to 5.5 V,  
RL = unloaded, CL = unloaded, all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
A, B Version1  
Parameter  
STATIC PERFORMANCE2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Resolution  
20  
Bits  
LSB  
Integral Nonlinearity Error (Relative Accuracy) −1  
0.25  
+1  
B version, VREFP = +10 V, VREFN = −10 V,  
TA = 0°C to 105°C  
−1.5  
−1.5  
−3  
0.25  
0.5  
1
+1.5  
+1.5  
+3  
LSB  
LSB  
LSB  
LSB  
B version, VREFP = +10 V, VREFN = −10 V  
B version, VREFP = 10 V, VREFN = 0 V3  
B version, VREFP = 5 V, VREFN = 0 V3  
A version4  
−4  
2
+4  
Differential Nonlinearity Error  
Linearity Error Long Term Stability5  
Full-Scale Error  
−1  
−1.5  
−2.5  
0.5  
0.75  
1
+1  
+1.5  
+2.5  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
VREFP = 5 V, VREFN = 0 V  
0.16  
After 500 hours at TA = 125°C  
After 1000 hours at TA = 125°C  
After 1000 hours at TA = 100°C  
VREFP = +10 V, VREFN = −10 V3  
VREFP = 10 V, VREFN = 0 V3  
0.19  
0.11  
0.1  
0.25  
0.8  
0.1  
0.25  
0.8  
−7  
+7  
−11  
−21  
−4  
−4  
−6  
+11  
+21  
+4  
+4  
+6  
VREFP = 5 V, VREFN = 0 V3  
VREFP = +10 V, VREFN = −10 V3, TA = 0°C to 105°C  
VREFP = 10 V, VREFN = 0 V3, TA = 0°C to 105°C  
VREFP = 5 V, VREFN = 0 V3, TA = 0°C to 105°C  
Full-Scale Error Temperature Coefficient  
Zero-Scale Error  
0.02  
0.1  
0.15  
0.75  
0.1  
0.15  
0.75  
0.04  
0.3  
0.4  
0.4  
0.3  
0.4  
ppm FSR/°C  
LSB  
LSB  
LSB  
LSB  
−7  
+7  
VREFP = +10 V, VREFN = −10 V3  
−10  
−21  
−4  
−4  
−6  
+10  
+21  
+4  
+4  
+6  
VREFP = 10 V, VREFN = 0 V3  
VREFP = 5 V, VREFN = 0 V3  
VREFP = +10 V, VREFN = −10 V3, TA = 0°C to 105°C  
VREFP = 10 V, VREFN = 0 V3, TA = 0°C to 105°C  
VREFP = 5 V, VREFN = 0 V3, TA = 0°C to 105°C  
LSB  
LSB  
Zero-Scale Error Temperature Coefficient3  
Gain Error  
ppm FSR/°C  
ppm FSR  
ppm FSR  
ppm FSR  
ppm FSR  
ppm FSR  
ppm FSR  
ppm FSR/°C  
%
−6  
+6  
VREFP = +10 V, VREFN = −10 V3  
−10  
−20  
−6  
−6  
−7  
+10  
+20  
+6  
+6  
+7  
VREFP = 10 V, VREFN = 0 V3  
VREFP = 5 V, VREFN = 0 V3  
VREFP = +10 V, VREFN = −10 V3, TA = 0°C to 105°C  
VREFP = 10 V, VREFN = 0 V3, TA = 0°C to 105°C  
VREFP = 5 V, VREFN = 0 V3, TA = 0°C to 105°C  
0.4  
0.04  
0.01  
Gain Error Temperature Coefficient3  
R1, RFB Matching  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
VREFN  
VREFP  
V
Output Slew Rate  
Output Voltage Settling Time  
50  
1
V/µs  
µs  
10 V step to 0.02%, using the AD845 buffer  
in unity-gain mode  
1
µs  
500 code step to 1 LSB6  
Output Noise Spectral Density  
Output Voltage Noise  
7.5  
7.5  
7.5  
1.1  
nV/√Hz  
nV/√Hz  
nV/√Hz  
µV p-p  
at 1 kHz, DAC code = midscale  
at 10 kHz, DAC code = midscale  
At 100 kHz, DAC code = midscale  
DAC code = midscale, 0.1 Hz to 10 Hz  
bandwidth7  
Rev. E | Page 3 of 27  
 
AD5791  
Data Sheet  
A, B Version1  
Parameter  
Min  
Typ  
3.1  
1.7  
1.4  
9.1  
3.6  
1.9  
45  
Max  
Unit  
Test Conditions/Comments  
Midscale Glitch Impulse8  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
kΩ  
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
VREFP = 5 V, VREFN = 0 V  
VREFP = +10 V, VREFN = −10 V, see Figure 42  
VREFP = 10 V, VREFN = 0 V, see Figure 43  
VREFP = 5 V, VREFN = 0 V, see Figure 44  
On removal of output ground clamp  
MSB Segment Glitch Impulse8  
Output Enabled Glitch Impulse  
Digital Feedthrough  
DC Output Impedance (Normal Mode)  
DC Output Impedance (Output Clamped  
to Ground)  
0.4  
3.4  
6
kΩ  
Spurious Free Dynamic Range  
Total Harmonic Distortion  
REFERENCE INPUTS3  
100  
97  
dB  
dB  
1 kHz tone, 10 kHz sample rate  
1 kHz tone, 10 kHz sample rate  
VREFP Input Range  
VREFN Input Range  
DC Input Impedance  
5
VDD − 2.5 V  
0
V
VSS + 2.5 V  
5
6.6  
15  
kΩ  
pF  
VREFP, VREFN, code dependent,  
typical at midscale code  
Input Capacitance  
VREFP, VREFN  
LOGIC INPUTS3  
Input Current9  
−1  
+1  
0.3 × IOVCC  
µA  
V
V
Input Low Voltage, VIL  
Input High Voltage, VIH  
IOVCC = 1.71 V to 5.5 V  
IOVCC = 1.71 V to 5.5 V  
0.7 × IOVCC  
Pin Capacitance  
LOGIC OUTPUT (SDO)3  
Output Low Voltage, VOL  
Output High Voltage, VOH  
High Impedance Leakage Current  
High Impedance Output Capacitance  
5
3
pF  
0.4  
1
V
V
µA  
pF  
IOVCC = 1.71 V to 5.5 V, sinking 1 mA  
IOVCC = 1.71 V to 5.5 V, sourcing 1 mA  
IOVCC − 0.5 V  
POWER REQUIREMENTS  
All digital inputs at DGND or IOVCC  
VDD  
VSS  
VCC  
7.5  
VDD − 33  
2.7  
VSS + 33  
−2.5  
5.5  
V
V
V
IOVCC  
1.71  
5.5  
V
IOVCC ≤ VCC  
IDD  
ISS  
ICC  
IOICC  
4.2  
4
5.2  
4.9  
900  
140  
mA  
mA  
µA  
µA  
µV/V  
µV/V  
dB  
dB  
600  
52  
0.6  
0.6  
95  
95  
SDO disabled  
VDD 10%, VSS = 15 V  
VSS 10%, VDD = 15 V  
VDD 200 mV, 50 Hz/60 Hz, VSS = −15 V  
∆VSS 200 mV, 50 Hz/60 Hz, VDD = 15 V  
DC Power Supply Rejection Ratio3, 10  
AC Power Supply Rejection Ratio3  
1 Temperature range: −40°C to +125°C, typical at +25°C and VDD = +15 V, VSS = −15 V, VREFP = +10 V, VREFN = −10 V.  
2 Performance characterized with AD8676BRZ voltage reference buffers and AD8675ARZ output buffer.  
3 Guaranteed by design and characterization, not production tested.  
4 Valid for all voltage reference spans.  
5 Linearity error refers to both INL error and DNL error, either parameter can be expected to drift by the amount specified after the length of time specified.  
6 AD5791 configured in X2 gain mode, 25 pF compensation capacitor on AD797.  
7 Includes noise contribution from AD8676BRZ voltage reference buffers.  
8 The AD5791 is configured in bias compensation mode with a low-pass RC filter on the output. R = 300 Ω, C = 143 pF.(total capacitance seen by the output buffer, lead  
capacitance, and so forth).  
9 Current flowing in an individual logic pin.  
10 Includes PSRR of AD8676BRZ voltage reference buffers.  
Rev. E | Page 4 of 27  
Data Sheet  
AD5791  
TIMING CHARACTERISTICS  
VCC = 2.7 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 4.  
Limit1  
Parameter  
IOVCC = 1.71 V to 3.3 V  
40  
IOVCC = 3.3 V to 5.5 V Unit  
28  
Test Conditions/Comments  
SCLK cycle time  
2
t1  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
ns typ  
ns min  
ns typ  
ns min  
92  
15  
9
60  
10  
5
SCLK cycle time (readback mode)  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge hold time  
Minimum SYNC high time  
t2  
t3  
t4  
5
5
t5  
2
2
t6  
48  
8
40  
6
t7  
SYNC rising edge to next SCLK falling edge ignore  
Data setup time  
Data hold time  
LDAC falling edge to SYNC falling edge  
SYNC rising edge to LDAC falling edge  
LDAC pulse width low  
t8  
t9  
9
7
7
12  
13  
20  
14  
130  
130  
50  
140  
0
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
10  
16  
11  
130  
130  
50  
140  
0
LDAC falling edge to output response time  
SYNC rising edge to output response time (LDAC tied low)  
CLR pulse width low  
CLR pulse activation time  
SYNC falling edge to first SCLK rising edge  
65  
62  
0
60  
45  
0
ns max SYNC rising edge to SDO tristate (CL = 50 pF)  
ns max SCLK rising edge to SDO valid (CL = 50 pF)  
ns min  
ns typ  
ns typ  
SYNC rising edge to SCLK rising edge ignore  
RESET pulse width low  
35  
150  
35  
150  
RESET pulse activation time  
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVCC) and timed from a voltage level of (VIL + VIH)/2.  
2 Maximum SCLK frequency is 35 MHz for write mode and 16 MHz for readback and daisy-chain modes.  
Rev. E | Page 5 of 27  
 
AD5791  
Data Sheet  
t1  
t7  
SCLK  
1
2
24  
t3  
t2  
t6  
t4  
t5  
SYNC  
SDIN  
t9  
t8  
DB23  
DB0  
t12  
t10  
t11  
LDAC  
t13  
V
V
OUT  
OUT  
t14  
t15  
CLR  
t16  
V
OUT  
t21  
RESET  
t22  
V
OUT  
Figure 2. Write Mode Timing Diagram  
t20  
t1  
t17  
t7  
SCLK  
1
2
24  
1
2
24  
t3  
t2  
t6  
t17  
t5  
t5  
t4  
SYNC  
SDIN  
t9  
t8  
DB23  
DB0  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
t18  
t19  
DB23  
DB0  
SDO  
REGISTER CONTENTS CLOCKED OUT  
Figure 3. Readback Mode Timing Diagram  
Rev. E | Page 6 of 27  
 
Data Sheet  
AD5791  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Transient currents of up to  
100 mA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter  
VDD to AGND  
VSS to AGND  
VDD to VSS  
VCC to DGND  
IOVCC to DGND  
Rating  
−0.3 V to +34 V  
−34 V to +0.3 V  
−0.3 V to +34 V  
−0.3 V to +7 V  
−0.3 V to VCC + 0.3 V or +7 V  
(whichever is less)  
This device is a high performance integrated circuit with an  
ESD rating of 1.5 kV, and it is ESD sensitive. Proper precautions  
should be taken for handling and assembly.  
Digital Inputs to DGND  
−0.3 V to IOVCC + 0.3 V or  
+7 V (whichever is less)  
ESD CAUTION  
VOUT to AGND  
VREFPF to AGND  
VREFPS to AGND  
VREFNF to AGND  
VREFNS to AGND  
DGND to AGND  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
VSS − 0.3 V to + 0.3 V  
VSS − 0.3 V to + 0.3 V  
−0.3 V to +0.3 V  
Operating Temperature Range, TA  
Industrial  
Storage Temperature Range  
Maximum Junction Temperature,  
TJ max  
−40°C to + 125°C  
−65°C to +150°C  
150°C  
Power Dissipation  
TSSOP Package  
(TJ max − TA)/θJA  
θJA Thermal Impedance  
θJC Thermal Impedance  
Lead Temperature  
Soldering  
143°C/W  
45°C/W  
JEDEC industry standard  
J-STD-020  
ESD (Human Body Model)  
1.5 kV  
Rev. E | Page 7 of 27  
 
 
AD5791  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
INV  
R
FB  
2
V
AGND  
OUT  
3
V
V
REFPS  
SS  
AD5791  
TOP VIEW  
(Not to Scale)  
4
V
V
REFPF  
REFNS  
5
V
V
REFNF  
DD  
6
RESET  
CLR  
DGND  
SYNC  
SCLK  
SDIN  
SDO  
7
8
LDAC  
9
V
CC  
CC  
10  
IOV  
Figure 4. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
INV  
VOUT  
VREFPS  
Connection to Inverting Input of External Amplifier. See the AD5791 Features section for further details.  
Analog Output Voltage.  
Positive Reference Sense Voltage Input. A voltage range of 5 V to VDD − 2.5 V can be connected. A unity gain  
amplifier must be connected at this pin in conjunction with the VREFPF pin. See the AD5791 Features section for  
further details.  
4
5
VREFPF  
Positive Reference Force Voltage Input. A voltage range of 5 V to VDD − 2.5 V can be connected. A unity gain  
amplifier must be connected at this pin in conjunction with the VREFPS pin. See the AD5791 Features section for  
further details.  
Positive Analog Supply Connection. A voltage range of 7.5 V to 16.5 V can be connected, VDD should be decoupled  
to AGND.  
VDD  
6
7
RESET  
CLR  
Active Low Reset Logic Input Pin. Asserting this pin returns the AD5791 to its power-on status.  
Active Low Clear Logic Input Pin. Asserting this pin sets the DAC register to a user defined value (see Table 13) and  
updates the DAC output. The output value depends on the DAC register coding that is being used, either binary  
or twos complement.  
8
LDAC  
Active Low Load DAC Logic Input Pin. This is used to update the DAC register and consequently, the analog  
output. When tied permanently low, the output is updated on the rising edge of SYNC. If LDAC is held high during  
the write cycle, the input register is updated, but the output update is held off until the falling edge of LDAC. The  
LDAC pin should not be left unconnected.  
9
VCC  
Digital Supply Connection. A voltage range of 2.7 V to 5.5 V can be connected. VCC should be decoupled to DGND.  
10  
IOVCC  
Digital Interface Supply Pin. Digital threshold levels are referenced to the voltage applied to this pin. A voltage in  
the range of 1.71 V to 5.5 V can be connected. IOVCC should not be allowed to exceed VCC.  
11  
12  
SDO  
SDIN  
Serial Data Output Pin. Data is clocked out on the rising edge of the serial clock input.  
Serial Data Input Pin. This device has a 24-bit shift register. Data is clocked into the register on the falling edge of  
the serial clock input.  
13  
14  
SCLK  
SYNC  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can  
be transferred at clock rates of up to 35 MHz.  
Active Low Digital Interface Synchronization Input Pin. This is the frame synchronization signal for the input data.  
When SYNC is low, it enables the input shift register, and data is then transferred in on the falling edges of the  
following clocks. The input shift register is updated on the rising edge of SYNC.  
15  
16  
DGND  
VREFNF  
Ground Reference Pin for Digital Circuitry.  
Negative Reference Force Voltage Input. A voltage range of VSS + 2.5 V to 0 V can be connected. A unity gain  
amplifier must be connected at this pin, in conjunction with the VREFNS pin. See the AD5791 Features section for  
further details.  
17  
18  
VREFNS  
Negative Reference Sense Voltage Input. A voltage range of VSS + 2.5 V to 0 V can be connected. A unity gain  
amplifier must be connected at this pin, in conjunction with the VREFNF pin. See the AD5791 Features section for  
further details.  
Negative Analog Supply Connection. A voltage range of −16.5 V to −2.5 V can be connected. VSS should be  
decoupled to AGND.  
VSS  
19  
20  
AGND  
RFB  
Ground Reference Pin for Analog Circuitry.  
Feedback Connection for External Amplifier. See the AD5791 Features section for further details.  
Rev. E | Page 8 of 27  
 
Data Sheet  
AD5791  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.8  
0.6  
0.4  
T
T
T
= +125°C  
= +25°C  
= –40°C  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
A
A
A
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
V
V
V
V
= +10V  
= –10V  
= +15V  
V
V
V
V
= +10V  
= 0V  
= +15V  
REFP  
REFN  
REFP  
REFN  
T
T
T
= –40°C  
= +125°C  
= +25°C  
A
A
A
DD  
SS  
DD  
SS  
= –15V  
= –15V  
–0.8  
0
200000  
400000  
600000  
800000  
1000000  
0
200000  
400000  
600000  
800000  
1000000  
DAC CODE  
DAC CODE  
Figure 5. Integral Nonlinearity Error vs. DAC Code, 10 V Span  
Figure 8. Integral Nonlinearity Error vs. DAC Code, 10 V Span, X2 Gain Mode  
1.5  
1.0  
T
T
T
= +125°C  
= +25°C  
= –40°C  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
A
A
A
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
V
V
V
V
= +10V  
= –10V  
= +15V  
REFP  
REFN  
0.8  
0.6  
DD  
SS  
1.0  
= –15V  
0.4  
0.5  
0
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
V
V
V
V
= +10V  
= 0V  
= +15V  
REFP  
REFN  
–1.0  
–1.5  
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
DD  
SS  
= –15V  
0
200000  
400000  
600000  
800000  
1000000  
0
200000  
400000  
600000  
800000  
1000000  
DAC CODE  
DAC CODE  
Figure 6. Integral Nonlinearity Error vs. DAC Code, 10 V Span  
Figure 9. Differential Nonlinearity Error vs. DAC Code, 10 V Span  
2.5  
1.5  
V
V
V
V
= +10V  
= 0V  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
REFP  
REFN  
DD  
SS  
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
2.0  
1.5  
= +15V  
= –15V  
1.0  
0.5  
1.0  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
V
V
V
V
= +5V  
= 0V  
= +15V  
= –15V  
REFP  
REFN  
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
DD  
SS  
0
200000  
400000  
600000  
800000  
1000000  
0
200000  
400000  
600000  
800000  
1000000  
DAC CODE  
DAC CODE  
Figure 10. Differential Nonlinearity Error vs. DAC Code, 10 V Span  
Figure 7. Integral Nonlinearity Error vs. DAC Code, 5 V Span  
Rev. E | Page 9 of 27  
 
 
 
AD5791  
Data Sheet  
2.0  
1.5  
1.0  
1.0  
0.5  
±10V SPAN MAX DNL  
+5V SPAN MAX DNL  
+10V SPAN MIN DNL  
+10V SPAN MAX DNL  
±10V SPAN MIN DNL  
+5V SPAN MIN DNL  
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
V
V
V
V
= +5V  
= 0V  
= +15V  
= –15V  
REFP  
REFN  
DD  
SS  
0.5  
0
0
–0.5  
–0.5  
–1.0  
–1.5  
AD8676 REFERENCE BUFFERS  
–1.0 AD8675 OUTPUT BUFFER  
V
V
= +15V  
= –15V  
DD  
SS  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–1.5  
–55  
–2.0  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
0
200000  
400000  
600000  
800000  
1000000  
TEMPERATURE (°C)  
DAC CODE  
Figure 14. Differential Nonlinearity Error vs. Temperature  
Figure 11. Differential Nonlinearity Error vs. DAC Code, 5 V Span  
1.0  
0.6  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
T
T
T
= +25°C  
= –40°C  
= +125°C  
A
A
A
INL MAX  
0.8  
0.6  
0.5  
0.4  
V
V
V
V
= +10V  
= 0V  
= +15V  
REFP  
REFN  
DD  
SS  
= –15V  
0.4  
0.3  
0.2  
T
V
V
= 25°C  
A
0.2  
= +10V  
REFP  
REFN  
= –10V  
0
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
0.1  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
INL MIN  
–0.1  
–0.2  
–0.3  
0
200000  
400000  
600000  
800000  
1000000  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
DAC CODE  
V
/|V | (V)  
DD SS  
Figure 12. Differential Nonlinearity Error vs. DAC Code, 10 V Span,  
X2 Gain Mode  
Figure 15. Integral Nonlinearity Error vs. Supply Voltage, 10 V Span  
1.5  
2.0  
±10V SPAN MAX INL  
+5V SPAN MAX INL  
+10V SPAN MIN INL  
+10V SPAN MAX INL  
±10V SPAN MIN INL  
+5V SPAN MIN INL  
INL MAX  
1.5  
1.0  
0.5  
0
1.0  
T
V
V
= 25°C  
A
0.5  
0
= +5V  
REFP  
REFN  
= 0V  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
DD  
SS  
INL MIN  
V
V
= +15V  
= –15V  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
(V)  
V
TEMPERATURE (°C)  
DD  
–2.5 –3.9 –5.3 –6.7 –9.1 –10.5 –12.9 –14.2 –15.5 –16.5  
(V)  
V
SS  
Figure 13. Integral Nonlinearity Error vs. Temperature  
Figure 16. Integral Nonlinearity Error vs. Supply Voltage, 5 V Span  
Rev. E | Page 10 of 27  
Data Sheet  
AD5791  
0.4  
0.6  
T
V
V
= 25°C  
A
DNL MAX  
= +5V  
REFP  
REFN  
0.3  
= 0V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
0.2  
0.1  
T
V
V
= 25°C  
A
= +10V  
= –10V  
REFP  
REFN  
0
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.1  
–0.2  
–0.3  
DNL MIN  
–0.4  
12.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
(V)  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
V
DD  
–2.5 –3.9 –5.3 –6.7 –9.1 –10.5 –12.9 –14.2 –15.5 –16.5  
(V)  
V
/|V | (V)  
DD SS  
V
SS  
Figure 17. Differential Nonlinearity Error vs. Supply Voltage, 10 V Span  
Figure 20. Zero-Scale Error vs. Supply Voltage, 5 V Span  
0.4  
0.20  
0.15  
0.10  
0.05  
0
T
V
V
= 25°C  
A
= +10V  
DNL MAX  
REFP  
REFN  
= –10V  
0.2  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
0
T
V
V
= 25°C  
A
= +5V  
–0.2  
–0.4  
REFP  
REFN  
= 0V  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.6  
–0.8  
–0.05  
–0.10  
DNL MIN  
–1.0  
–0.15  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
(V)  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
V
DD  
–2.5 –3.9 –5.3 –6.7 –9.1 –10.5 –12.9 –14.2 –15.5 –16.5  
(V)  
V
/|V | (V)  
DD SS  
V
SS  
Figure 18. Differential Nonlinearity Error vs. Supply Voltage, 5 V Span  
Figure 21. Midscale Error vs. Supply Voltage, 10 V Span  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
T
V
V
= 25°C  
A
= +10V  
= –10V  
REFP  
REFN  
0.2  
0.1  
0
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
T = 25°C  
A
V
V
= +5V  
= 0V  
REFP  
REFN  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.6  
–0.7  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
(V)  
V
V
/|V | (V)  
DD  
–2.5 –3.9 –5.3 –6.7 –9.1 –10.5 –12.9 –14.2 –15.5 –16.5  
(V)  
DD SS  
V
SS  
Figure 19. Zero-Scale Error vs. Supply Voltage, 10 V Span  
Figure 22. Midscale Error vs. Supply Voltage, 5 V Span  
Rev. E | Page 11 of 27  
AD5791  
Data Sheet  
–0.015  
T
0.10  
0.05  
0
= 25°C  
A
T
V
V
= 25°C  
A
V
V
= +10V  
= –10V  
REFP  
REFN  
–0.035  
–0.055  
–0.075  
–0.095  
= +5V  
REFP  
REFN  
= 0V  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
–0.115  
–0.135  
–0.155  
–0.175  
–0.195  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
V
(V)  
V
/|V | (V)  
DD  
–2.5 –3.9 –5.3 –6.7 –9.1 –10.5 –12.9 –14.2 –15.5 –16.5  
(V)  
DD SS  
V
SS  
Figure 23. Full-Scale Error vs. Supply Voltage, 10 V Span  
Figure 26. Gain Error vs. Supply Voltage, 5 V Span  
0.6  
0.4  
0.25  
INL MAX  
0.20  
0.15  
0.10  
0.05  
0
0.2  
0
T
V
V
= 25°C  
A
= +15V  
= –15V  
DD  
SS  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
T
V
V
= 25°C  
–0.2  
A
= +5V  
= 0V  
REFP  
REFN  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.4  
–0.6  
INL MIN  
–0.05  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
(V)  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
DD  
–2.5 –3.9 –5.3 –6.7 –9.1 –10.5 –12.9 –14.2 –15.5 –16.5  
(V)  
V
| (V)  
REFP  
REFN  
V
SS  
Figure 24. Full-Scale Error vs. Supply Voltage, 5 V Span  
Figure 27. Integral Nonlinearity Error vs. Reference Voltage  
–0.30  
–0.35  
0.4  
T
V
V
= 25°C  
A
DNL MAX  
= +10V  
= –10V  
0.3  
0.2  
0.1  
REFP  
REFN  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.40  
–0.45  
T
V
V
= 25°C  
A
0
–0.1  
–0.2  
= +15V  
= –15V  
DD  
SS  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.50  
–0.55  
–0.3  
–0.4  
–0.5  
–0.6  
–0.60  
–0.65  
DNL MIN  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
/|V | (V)  
V
| (V)  
DD SS  
REFP  
REFN  
Figure 25. Gain Error vs. Supply Voltage, 10 V Span  
Figure 28. Differential Nonlinearity Error vs. Reference Voltage  
Rev. E | Page 12 of 27  
Data Sheet  
AD5791  
0.60  
–0.30  
–0.35  
T
= 25°C  
A
V
V
= +15V  
= –15V  
DD  
SS  
0.55  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–0.40  
–0.45  
–0.50  
–0.55  
–0.60  
0.50  
0.45  
T
V
V
= 25°C  
A
= +15V  
= –15V  
DD  
SS  
0.40  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
0.35  
0.30  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
| (V)  
V
| (V)  
REFP  
REFN  
REFP  
REFN  
Figure 29. Zero-Scale Error vs. Reference Voltage  
Figure 32. Gain Error vs. Reference Voltage  
2.0  
0.15  
0.10  
0.05  
AD8676 REFERENCE BUFFERS  
1.5 AD8675 OUTPUT BUFFER  
±10V SPAN  
+10V SPAN  
+5V SPAN  
V
V
= +15V  
= –15V  
DD  
SS  
1.0  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
T
V
V
= 25°C  
–0.05  
A
= +15V  
= –15V  
DD  
SS  
–0.10  
–0.15  
–0.20  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
V
| (V)  
TEMPERATURE (°C)  
REFP  
REFN  
Figure 30. Midscale Error vs. Reference Voltage  
Figure 33. Full-Scale Error vs. Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1
0.15  
±10V SPAN  
+10V SPAN  
+5V SPAN  
0.10  
0.05  
0
–0.05  
0.8  
0.6  
0.4  
0.2  
0
T
V
V
= 25°C  
= +15V  
A
–0.10  
–0.15  
–0.20  
DD  
= –15V  
SS  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
V
V
= +15V  
= –15V  
DD  
SS  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
V
| (V)  
TEMPERATURE (°C)  
REFP  
REFN  
Figure 31. Full-Scale Error vs. Reference Voltage  
Figure 34. Midscale Error vs. Temperature  
Rev. E | Page 13 of 27  
AD5791  
Data Sheet  
5
5
4
T
= 25°C  
A
±10V SPAN  
+10V SPAN  
+5V SPAN  
4
I
DD  
3
2
3
2
1
1
0
0
–1  
–2  
–1  
–2  
–3  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
–3  
–4  
–5  
I
SS  
V
V
= +15V  
= –15V  
DD  
SS  
–4  
–5  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
V
/V (V)  
TEMPERATURE (°C)  
DD SS  
Figure 35. Zero-Scale Error vs. Temperature  
Figure 38. Power Supply Currents vs. Power Supply Voltages  
4
3
±10V SPAN  
+10V SPAN  
+5V SPAN  
AD8676 REFERENCE BUFFERS  
AD8675 OUTPUT BUFFER  
V
V
= +15V  
= –15V  
DD  
SS  
2
1
V
V
V
V
= +15V  
= –15V  
DD  
SS  
0
= +10V  
= –10V  
REFP  
REFN  
3
–1  
AD8676 REFERENCE BUFFERS  
OUTPUT UNBUFFERED  
LOAD = 10M||20pF  
–2  
–3  
–4  
–5  
4
CH3 5V  
CH4 5V  
200ns  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
Figure 36. Gain Error vs. Temperature  
Figure 39. Rising Full-Scale Voltage Step  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
IOV = 5V, LOGIC VOLTAGE  
CC  
INCREASING  
T
= 25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
SS  
IOV = 5V, LOGIC VOLTAGE  
CC  
= +10V  
= –10V  
REFP  
REFN  
DECREASING  
IOV = 3V, LOGIC VOLTAGE  
CC  
AD8676 REFERENCE BUFFERS  
OUTPUT UNBUFFERED  
LOAD = 10M||20pF  
INCREASING  
IOV = 3V, LOGIC VOLTAGE  
CC  
DECREASING  
3
4
CH3 5V  
CH4 5V  
200ns  
0
1
2
3
4
5
6
LOGIC INPUT VOLTAGE (V)  
Figure 40. Falling Full-Scale Voltage Step  
Figure 37. IOICC vs. Logic Input Voltage  
Rev. E | Page 14 of 27  
Data Sheet  
AD5791  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
3.0  
2.6  
2.2  
±10V V  
REF  
OUTPUT GAIN OF 1  
BIAS COMPENSATION MODE  
20pF COMPENSATION CAPACITOR  
RC LOW-PASS FILTER  
5V V  
REF  
OUTPUT GAIN OF 1  
BIAS COMPENSATION MODE  
20pF COMPENSATION CAPACITOR  
RC LOW-PASS FILTER  
NEGATIVE CODE  
CHANGE  
POSITIVE CODE  
CHANGE  
1.8  
1.4  
1.0  
0.6  
9.6  
0.2  
9.4  
0
–0.2  
1
2
3
4
5
TIME (µs)  
CODE  
Figure 41. 500 Code Step Settling Time  
Figure 44. 6 MSB Segment Glitch Energy for +5 V VREF  
10  
9
40  
30  
5V V  
REF  
OUTPUT GAIN OF 1  
BIAS COMPENSATION MODE  
20pF COMPENSATION CAPACITOR  
RC LOW-PASS FILTER  
±10V V  
REF  
OUTPUT GAIN OF 1  
BIAS COMPENSATION MODE  
20pF COMPENSATION CAPACITOR  
RC LOW-PASS FILTER  
NEGATIVE CODE  
CHANGE  
8
7
6
5
4
3
2
1
0
20  
10  
POSITIVE CODE  
CHANGE  
0
C
C
C
C
= 143pF + 0pF  
X
X
X
X
–10  
–20  
= 143pF + 220pF  
= 143pF + 470pF  
= 143pF + 1,000pF  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
TIME (µs)  
CODE  
Figure 42. 6 MSB Segment Glitch Energy for 10 V VREF  
Figure 45. Midscale Peak-to-Peak Glitch for 10 V  
800  
4.0  
3.5  
T
V
V
V
V
= 25°C  
= +15V  
= –15V  
10V V  
REF  
OUTPUT GAIN OF 1  
BIAS COMPENSATION MODE  
20pF COMPENSATION CAPACITOR  
A
MIDSCALE CODE LOADED  
OUTPUT UNBUFFERED  
AD8676 REFERENCE BUFFERS  
DD  
SS  
600  
400  
= +10V  
= –10V  
REFP  
REFN  
POSITIVE CODE  
RC LOW-PASS FILTER  
CHANGE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
NEGATIVE CODE  
CHANGE  
200  
0
–200  
–400  
–600  
0
1
2
3
4
5
6
7
8
9
10  
TIME (Seconds)  
CODE  
Figure 46. Voltage Output Noise, 0.1 Hz to 10 Hz Bandwidth  
Figure 43. 6 MSB Segment Glitch Energy for +10 V VREF  
Rev. E | Page 15 of 27  
 
 
 
AD5791  
Data Sheet  
100  
350  
300  
250  
200  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
= –10V  
REFP  
REFN  
= +10V  
= –10V  
REFP  
REFN  
CODE = MIDSCALE  
AD8675 OUTPUT BUFFER  
10  
150  
100  
50  
0
–50  
–1  
1
0.1  
0
1
2
3
4
5
6
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TIME (µs)  
Figure 47. Noise Spectral Density vs. Frequency  
Figure 48. Glitch Impulse on Removal of Output Clamp  
Rev. E | Page 16 of 27  
 
Data Sheet  
AD5791  
TERMINOLOGY  
Relative Accuracy  
Midscale Error Temperature Coefficient  
Relative accuracy, or integral nonlinearity (INL), is a measure of  
the maximum deviation, in LSB, from a straight line passing  
through the endpoints of the DAC transfer function. A typical  
INL error vs. code plot is shown in Figure 5.  
Midscale error temperature coefficient is a measure of the  
change in midscale error with a change in temperature. It is  
expressed in ppm FSR/°C.  
Output Slew Rate  
Differential Nonlinearity (DNL)  
Slew rate is a measure of the limitation in the rate of change of  
the output voltage. The slew rate of the AD5791 output voltage  
is determined by the capacitive load presented to the VOUT pin. The  
capacitive load in conjunction with the 3.4 kΩ output impedance  
of the AD5791 set the slew rate. Slew rate is measured from 10%  
to 90% of the output voltage change and is expressed in V/µs.  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic. A  
typical DNL error vs. code plot is shown in Figure 9.  
Linearity Error Long Term Stability  
Output Voltage Settling Time  
Linearity error long term stability is a measure of the stability of  
the linearity of the DAC over a long period of time. It is specified  
in LSB for a time period of 500 hours and 1000 hours at an  
elevated ambient temperature.  
Output voltage settling time is the amount of time it takes for  
the output voltage to settle to a specified level for a specified  
change in voltage. For fast settling applications, a high speed  
buffer amplifier is required to buffer the load from the 3.4 kΩ  
output impedance of the AD5791, in which case it is the  
amplifier that determines the settling time.  
Zero-Scale Error  
Zero-scale error is a measure of the output error when zero-scale  
code (0x00000) is loaded to the DAC register. Ideally, the output  
voltage should be VREFNS. Zero-scale error is expressed in LSBs.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is specified as the area of the glitch in nV-sec and is  
measured when the digital input code is changed by 1 LSB at  
the major carry transition (see Figure 42).  
Zero-Scale Error Temperature Coefficient  
Zero-scale error temperature coefficient is a measure of the  
change in zero-scale error with a change in temperature. It is  
expressed in ppm FSR/°C.  
Output Enabled Glitch Impulse  
Full-Scale Error  
Output enabled glitch impulse is the impulse injected into the  
analog output when the clamp to ground on the DAC output is  
removed. It is specified as the area of the glitch in nV-sec (see  
Figure 48).  
Full-scale error is a measure of the output error when full-  
scale code (0x3FFFF) is loaded to the DAC register. Ideally,  
the output voltage should be VREFPS − 1 LSB. Full-scale error is  
expressed in LSBs.  
Digital Feedthrough  
Full-Scale Error Temperature Coefficient  
Full-scale error temperature coefficient is a measure of the  
change in full-scale error with a change in temperature. It is  
expressed in ppm FSR/°C.  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC but is measured when the DAC output is not updated. It is  
specified in nV-sec and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s, and vice versa.  
Gain Error  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from ideal,  
expressed in ppm of the full-scale range.  
Spurious Free Dynamic Range (SFDR)  
Spurious free dynamic range is the usable dynamic range of a  
DAC before spurious noise interferes or distorts the fundamental  
signal. It is measured by the difference in amplitude between  
the fundamental and the largest harmonically or nonharmonically  
related spur from dc to full Nyquist bandwidth (half the DAC  
sampling rate, or fS/2). SFDR is measured when the signal is a  
digitally generated sine wave.  
Gain Error Temperature Coefficient  
Gain error temperature coefficient is a measure of the change in  
gain error with a change in temperature. It is expressed in ppm  
FSR/°C.  
Midscale Error  
Midscale error is a measure of the output error when midscale  
code (0x20000) is loaded to the DAC register. Ideally, the output  
voltage should be (VREFPS − VREFNS)/2 +VREFNS. Midscale error is  
expressed in LSBs.  
Total Harmonic Distortion (THD)  
Total harmonic distortion is the ratio of the rms sum of the  
harmonics of the DAC output to the fundamental value Only  
the second to fifth harmonics are included.  
Rev. E | Page 17 of 27  
 
AD5791  
Data Sheet  
DC Power Supply Rejection Ratio  
AC Power Supply Rejection Ratio (AC PSRR)  
DC power supply rejection ratio is a measure of the rejection of  
the output voltage to dc changes in the power supplies applied  
to the DAC. It is measured for a given dc change in power  
supply voltage and is expressed in µV/V.  
AC power supply rejection ratio is a measure of the rejection of  
the output voltage to ac changes in the power supplies applied  
to the DAC. It is measured for a given amplitude and frequency  
change in power supply voltage and is expressed in decibels.  
Rev. E | Page 18 of 27  
Data Sheet  
AD5791  
THEORY OF OPERATION  
R
R
R
V
The AD5791 is a high accuracy, fast settling, single, 20-bit,  
serial input, voltage output DAC. It operates from a VDD supply  
voltage of 7.5 V to 16.5 V and a VSS supply of −16.5 V to −2.5 V.  
Data is written to the AD5791 in a 24-bit word format via a 3-wire  
serial interface. The AD5791 incorporates a power-on reset  
circuit that ensures the DAC output powers up to 0 V with the  
OUT  
..........  
2R  
.....................  
.....................  
2R  
E0  
2R  
S1  
2R  
S13  
2R  
2R  
2R  
S0  
..........  
E61  
E62  
V
REFPF  
V
REFPS  
V
REFNF  
V
REFNS  
14-BIT R-2R LADDER  
SIX MSBs DECODED INTO  
63 EQUAL SEGMENTS  
VOUT pin clamped to AGND through a ~6 kΩ internal resistor.  
Figure 49. DAC Ladder Structure  
DAC ARCHITECTURE  
The architecture of the AD5791 consists of two matched DAC  
sections. A simplified circuit diagram is shown in Figure 49.  
The six MSBs of the 20-bit data-word are decoded to drive 63  
switches, E0 to E62. Each of these switches connects one of 63  
matched resistors to either the VREFP or VREFN voltage. The  
remaining 14 bits of the data-word drive the S0 to S13 switched  
of a 14-bit voltage mode R-2R ladder network. To ensure  
performance to specification, the reference inputs must be force  
sensed with external amplifiers.  
SERIAL INTERFACE  
The AD5791 has a 3-wire serial interface (  
, SCLK, and  
SYNC  
SDIN) that is compatible with SPI, QSPI, and MICROWIRE  
interface standards, as well as most DSPs (see Figure 2 for a  
timing diagram).  
Input Shift Register  
The input shift register is 24 bits wide. Data is loaded into the  
device MSB first as a 24-bit word under the control of a serial  
clock input, SCLK, which can operate at up to 50 MHz. The  
W
input register consists of a R/ bit, three address bits, and  
twenty register bits as shown in Table 7. The timing diagram for  
this operation is shown in Figure 2.  
Table 7. Input Shift Register Format  
MSB  
LSB  
DB23  
DB22  
DB21  
Register address  
DB20  
DB19  
DB0  
Register data  
R/W  
Table 8. Decoding the Input Shift Register  
R/W  
Register Address  
Description  
X1  
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No operation (NOP; used in readback operations  
Write to the DAC register  
Write to the control register  
Write to the clearcode register  
Write to the software control register  
Read from the DAC register  
Read from the control register  
Read from the clearcode register  
1 X is don’t care.  
Rev. E | Page 19 of 27  
 
 
 
 
 
 
AD5791  
Data Sheet  
Standalone Operation  
HARDWARE CONTROL PINS  
LDAC  
The serial interface works with both a continuous and noncon-  
tinuous serial clock. A continuous SCLK source can be used  
Load DAC Function (  
)
After data has been transferred into the input register of the  
DAC, there are two ways to update the DAC register and DAC  
output. Depending on the status of both  
of two update modes is selected: synchronous DAC updating or  
asynchronous DAC updating  
SYNC  
only if  
In gated clock mode, a burst clock containing the exact number  
SYNC  
is held low for the correct number of clock cycles.  
SYNC  
LDAC  
and  
, one  
of clock cycles must be used, and  
must be taken high  
after the final clock to latch the data. The first falling edge of  
SYNC  
starts the write cycle. Exactly 24 falling clock edges must  
Synchronous DAC Update  
SYNC  
be applied to SCLK before  
is brought high again. If  
th  
LDAC  
In this mode,  
the input shift register. The DAC output is updated on the rising  
SYNC  
is held low while data is being clocked into  
SYNC  
is brought high before the 24 falling SCLK edge, the  
data written is invalid. If more than 24 falling SCLK edges are  
SYNC  
edge of  
Asynchronous DAC Update  
LDAC  
.
applied before  
invalid. The input shift register is updated on the rising edge of  
SYNC SYNC  
is brought high, the input data is also  
. For another serial transfer to take place,  
must be  
In this mode,  
into the input shift register. The DAC output is asynchronously  
LDAC SYNC  
is held high while data is being clocked  
brought low again. After the end of the serial data transfer, data  
is automatically transferred from the input shift register to the  
addressed register. Once the write cycle is complete, the output  
updated by taking  
The update now occurs on the falling edge of  
RESET  
low after  
has been taken high.  
LDAC  
.
LDAC  
SYNC  
can be updated by taking  
low while  
is high.  
Reset Function (  
The AD5791 can be reset to its power-on state by two means:  
RESET  
)
Readback  
The contents of all the on-chip registers can be read back via the  
SDO pin. Table 8 outlines how the registers are decoded. After a  
register has been addressed for a read, the next 24 clock cycles  
clock the data out on the SDO pin. The clocks must be applied  
either by asserting the  
pin or by utilizing the software  
RESET  
RESET control function (see Table 14). If the  
used, it should be hardwired to IOVCC.  
pin is not  
SYNC  
SYNC  
while  
is low. When  
is returned high, the SDO pin  
CLR  
Asynchronous Clear Function (  
)
is placed in tristate. For a read of a single register, the NOP  
function can be used to clock out the data. Alternatively, if more  
than one register is to be read, the data of the first register to be  
addressed can be clocked out at the same time the second register  
to be read is being addressed. The SDO pin must be enabled to  
complete a readback operation. The SDO pin is enabled by  
default.  
CLR  
The  
pin is an active low clear that allows the output to  
be cleared to a user defined value. The 20-bit clear code value  
is programmed to the clearcode register (see Table 13). It is  
necessary to maintain  
to complete the operation (see Figure 2).When the  
is returned high the output remains at the clear value (if  
CLR  
low for a minimum amount of time  
CLR  
signal  
LDAC  
is high) until a new value is loaded to the DAC register. The  
CLR  
output cannot be updated with a new value while the  
pin is  
low. A clear operation can also be performed by setting the CLR  
bit in the software control register (see Table 14).  
Rev. E | Page 20 of 27  
 
Data Sheet  
AD5791  
Table 9. Hardware Control Pins Truth Table  
LDAC  
CLR  
RESET  
Function  
X1  
X1  
0
0
1
X1  
X1  
0
1
0
1
0
1
0
0
The AD5791 is in reset mode. The device cannot be programmed.  
The AD5791 is returned to its power-on state. All registers are set to their default values.  
The DAC register is loaded with the clearcode register value and the output is set accordingly.  
The output is set according to the DAC register value.  
The DAC register is loaded with the clearcode register value and the output is set accordingly.  
The output is set according to the DAC register value.  
The output remains at the clear code value.  
The output remains set according to the DAC register value.  
The output remains at the clear code value.  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
The DAC register is loaded with the clearcode register value and the output is set accordingly.  
The DAC register is loaded with the clearcode register value and the output is set accordingly.  
The output remains at the clear code value  
The output is set according to the DAC register value.  
1 X is don’t care.  
ON-CHIP REGISTERS  
DAC Register  
Table 10 outlines how data is written to and read from the DAC register.  
Table 10. DAC Register  
MSB  
LSB  
DB23  
R/W  
DB22  
DB21  
DB20  
DB19  
DB0  
DAC register data  
20-bits of data  
Register address  
0
R/W  
0
1
The following equation describes the ideal transfer function of the DAC:  
VREFP VREFN ×D  
(
)
VOUT  
=
+VREFN  
2
20 1  
where:  
V
V
REFN is the negative voltage applied at the VREFN input pins.  
REFP is the positive voltage applied at the VREFP input pins.  
D is the 20-bit code programmed to the DAC.  
Rev. E | Page 21 of 27  
 
 
AD5791  
Data Sheet  
Control Register  
The control register controls the mode of operation of the AD5791.  
Table 11. Control Register  
MSB  
LSB  
DB23 DB22 DB21 DB20 DB19…DB11 DB10  
DB9 DB8 DB7 DB6 DB5  
Control register data  
SDODIS BIN/2sC DACTRI OPGND RBUF Reserved  
DB4  
DB3  
DB2  
DB1  
DB0  
Register address  
W
R/  
R/  
0
1
0
Reserved  
Reserved  
LIN COMP  
W
Table 12. Control Register Functions  
Function  
Reserved  
RBUF  
Description  
These bits are reserved and should be programmed to zero.  
Output amplifier configuration control.  
0: internal amplifier, A1, is powered up and Resistor RFB and R1 are connected in series as shown in Figure 53. This allows  
an external amplifier to be connected in a gain of two configurations. See the AD5791 Features section for further details.  
1: (default) internal amplifier, A1, is powered down and Resistor RFB and R1 are connected in parallel as shown in Figure 52 so  
that the resistance between the RFB and INV pins is 3.4 kΩ, equal to the resistance of the DAC. This allows the RFB and INV pins to  
be used for input bias current compensation for an external unity gain amplifier. See the AD5791 Features section for  
further details.  
OPGND  
Output ground clamp control.  
0: DAC output clamp to ground is removed and the DAC is placed in normal mode.  
1: (default) DAC output is clamped to ground through a ~6 kΩ resistance, and the DAC is placed in tristate mode.  
Resetting the device puts the DAC in OPGND mode, where the output ground clamp is enabled and the DAC is tristated.  
Setting the OPGND bit to 1 in the control register overrules any write to the DACTRI bit.  
DACTRI  
DAC tristate control.  
0: DAC is in normal operating mode.  
1: (default) DAC is in tristate mode.  
BIN/2sC  
SDODIS  
LIN COMP  
DAC register coding select.  
0: (default) DAC register uses twos complement coding.  
1: DAC register uses offset binary coding.  
SDO pin enable/disable control.  
0: (default) SDO pin is enabled.  
1: SDO pin is disabled (tristate).  
Linearity error compensation for varying reference input spans. See the AD5791 Features section for further details.  
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
(Default) reference input span up to 10 V.  
Reference input span between 10 V and 12 V.  
Reference input span between 12 V and 16 V.  
Reference input span between16 V and 19 V.  
Reference input span between 19 V and 20 V.  
W
R/  
Read/write select bit.  
0: AD5791 is addressed for a write operation.  
1: AD5791 is addressed for a read operation.  
Clearcode Register  
The clearcode register sets the value to which the DAC output is set when the  
pin or CLR bit is asserted. The output value depends  
CLR  
on the DAC coding that is being used, either binary or twos complement. The default register value is 0.  
Table 13. Clearcode Register  
MSB  
LSB  
DB23  
R/W  
DB22  
DB21  
DB20  
DB19  
DB0  
Clearcode register data  
20-bits of data  
Register address  
1
R/W  
0
1
Rev. E | Page 22 of 27  
 
 
Data Sheet  
AD5791  
Software Control Register  
This is a write only register in which writing a 1 to a particular bit has the same effect as pulsing the corresponding pin low.  
Table 14. Software Control Register  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB3  
Reserved  
DB2  
Software control register data  
RESET  
CLR1  
DB1  
DB0  
LDAC2  
W
R/  
Register address  
0
0
1
0
1
LDAC  
CLR  
The CLR function has no effect if the  
The LDAC function has no effect if the  
pin is low.  
pin is low.  
2
Table 15. Software Control Register Functions  
Function  
Description  
LDAC  
Setting this bit to a 1 updates the DAC register and consequently the DAC output.  
CLR  
Setting this bit to a 1 sets the DAC register to a user defined value (see Table 13) and updates the DAC output. The output  
value depends on the DAC register coding that is being used, either binary or twos complement.  
RESET  
Setting this bit to a 1 returns the AD5791 to its power-on state.  
Rev. E | Page 23 of 27  
 
AD5791  
Data Sheet  
AD5791 FEATURES  
POWER-ON TO 0 V  
LINEARITY COMPENSATION  
The AD5791 contains a power-on reset circuit that, as well as  
resetting all registers to their default values, controls the output  
voltage during power-up. Upon power-on the DAC is placed in  
tristate (its reference inputs are disconnected) and its output is  
clamped to ground through a ~6 kΩ resistor. The DAC remains  
in this state until programmed otherwise via the control  
register. This is a useful feature in applications where it is  
important to know the state of the DAC output while it is in the  
process of powering up.  
The integral nonlinearity (INL) of the AD5791 can vary according  
to the applied reference voltage span, the LIN COMP bits of  
the control register can be programmed to compensate for  
this variation in INL. The specifications in this data sheet are  
obtained with LIN COMP = 0000 for reference spans up to  
and including 10 V and with LIN COMP = 1100 for a reference  
span of 20 V. The default value of the LIN COMP bits is 0000.  
Intermediate LIN COMP values can be programmed for reference  
spans between 10 V and 20 V as shown in Table 12.  
POWER-UP SEQUENCE  
OUTPUT AMPLIFIER CONFIGURATION  
To power up the device in a known safe state, power up the VDD  
supply before powering up the VCC supply. This step ensures  
that VCC does not come up while VDD is unpowered during  
power-on. If the device cannot be powered-up in a safe state,  
connect an external Schottky diode across the VDD and VCC  
supplies as shown in Figure 50.  
There are a number of different ways that an output amplifier  
can be connected to the AD5791, depending on the voltage  
references applied and the desired output voltage span.  
Unity Gain Configuration  
Figure 51 shows an output amplifier configured for unity gain,  
in this configuration the output spans from VREFN to VREFP  
.
V
V
CC  
DD  
V
REFP  
1/2 AD8676  
V
V
CC  
DD  
V
REFPF  
V
REFPS  
AD5791  
R
R1  
R
FB  
FB  
A1  
6.8k6.8kΩ  
AD8675,  
INV  
OUT  
ADA4898-1  
Figure 50. Schottky Diode Connection  
20-BIT  
DAC  
V
V
OUT  
CONFIGURING THE AD5791  
After power-on the AD5791 must be configured to put it into  
normal operating mode before programming the output. To do  
this, the control register must be programmed. The DAC is  
removed from tristate by clearing the DACTRI bit, and the  
output clamp is removed by clearing the OPGND bit. At this  
point, the output goes to VREFN, unless an alternative value is  
first programmed to the DAC register.  
AD5791  
V
REFNF  
V
REFNS  
1/2 AD8676  
V
REFN  
Figure 51. Output Amplifier in Unity Gain Configuration  
A second unity gain configuration for the output amplifier is  
one that removes an offset from the input bias currents of the  
amplifier. It does this by inserting a resistance in the feedback  
path of the amplifier that is equal to the output resistance of the  
DAC. The DAC output resistance is 3.4 kΩ, by connecting R1  
and RFB in parallel, a resistance equal to the DAC resistance is  
available on chip. Because the resistors are all on one piece of  
silicon, they are temperature coefficient matched. To enable this  
mode of operation the RBUF bit of the control register must be  
set to Logic 1. Figure 52 shows how the output amplifier is  
connected to the AD5791. In this configuration, the output  
amplifier is in unity gain and the output spans from VREFN to  
VREFP. This unity gain configuration allows a capacitor to be placed  
in the amplifier feedback path to improve dynamic performance.  
DAC OUTPUT STATE  
The DAC output can be placed in one of three states, controlled  
by the DACTRI and OPGND bits of the control register, as  
shown in Table 16.  
Table 16. AD5791 Output State Truth Table  
DACTRI OPGND Output State  
0
0
1
1
0
1
0
1
Normal operating mode  
Output is clamped via ~6 kΩ to AGND  
Output is in tristate  
Output is clamped via ~6 kΩ to AGND  
Rev. E | Page 24 of 27  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
AD5791  
V
REFP  
2 × VREFN − VREFP to VREFP. This configuration is used to generate  
a bipolar output span from a single ended reference input with  
1/2 AD8676  
V
V
REFN = 0 V. For this mode of operation, the RBUF bit of the  
control register must be cleared to Logic 0.  
V
REFPS  
REFPF  
V
REFP  
R
FB  
6.8kΩ  
INV  
10pF  
R
R1 6.8kΩ  
FB  
1/2 AD8676  
V
V
OUT  
20-BIT  
DAC  
V
REFPF  
REFPS  
V
OUT  
AD8675,  
ADA4898-1  
R
R
R
1
FB  
FB  
A1  
6.8kΩ 6.8kΩ  
10pF  
AD5791  
V
V
REFNS  
REFNF  
INV  
OUT  
V
OUT  
20-BIT  
DAC  
1/2 AD8676  
V
AD8675,  
ADA4898-1  
V
REFN  
AD5791  
V
V
REFNS  
REFNF  
Figure 52. Output Amplifier in Unity Gain with Amplifier Input Bias Current  
Compensation  
1/2 AD8676  
Gain of Two Configuration  
V
= 0V  
REFN  
Figure 53 shows an output amplifier configured for a gain of  
two. The gain is set by the internal matched 6.8 kΩ resistors,  
which are exactly twice the DAC resistance, having the effect of  
removing an offset from the input bias current of the external  
amplifier. In this configuration, the output spans from  
Figure 53. Output Amplifier in Gain of Two Configuration  
Rev. E | Page 25 of 27  
 
 
AD5791  
Data Sheet  
APPLICATIONS INFORMATION  
TYPICAL OPERATING CIRCUIT  
Figure 54. Typical Operating Circuit  
must be used on the reference inputs. Because the output  
impedance of the AD5791 is 3.4 kΩ, an output buffer is  
required for driving low resistive, high capacitance loads.  
Figure 54 shows a typical operating circuit for the AD5791  
using an AD8676 for reference buffers and an AD8675 as an  
output buffer. To meet the specified linearity, force sense buffers  
Rev. E | Page 26 of 27  
 
 
 
Data Sheet  
AD5791  
OUTLINE DIMENSIONS  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
Figure 55. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD5791BRUZ  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
INL  
1.5 LSB  
4 LSB  
Package Description  
20-Lead TSSOP  
20-Lead TSSOP  
Package Option  
RU-20  
RU-20  
AD5791ARUZ  
EVAL-AD5791SDZ  
Evaluation Board  
1
Z = RoHS Compliant Part.  
©2010–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08964-0-4/18(E)  
Rev. E | Page 27 of 27  
 
 

相关型号:

AD579JN

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD579KN

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD579TD

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD579TD/883B

IC 2-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP32, SIDE BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI

AD579ZJN

Analog-to-Digital Converter, 10-Bit
ETC

AD579ZKN

IC 2-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP32, SIDE BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI

AD579ZTD

Analog-to-Digital Converter, 10-Bit
ETC

AD579ZTD/883B

IC 2-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP32, SIDE BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI

AD580

High Precision 2.5 V IC Reference
ADI

AD580*

High Precision 2.5 V IC Reference
ETC

AD5801

Piezo-Electric Actuator Controller
ADI

AD58012

Tape and Reel Packaging
ADI