AD5940BCBZ-RL7 [ADI]

High Precision, Impedance, and Electrochemical Front End;
AD5940BCBZ-RL7
型号: AD5940BCBZ-RL7
厂家: ADI    ADI
描述:

High Precision, Impedance, and Electrochemical Front End

文件: 总130页 (文件大小:1952K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Precision, Impedance, and  
Electrochemical Front End  
AD5940  
Data Sheet  
Fast power-up and power-down analog blocks for duty  
FEATURES  
Analog input  
cycling  
Programmable AFE sequencer to minimize workload of  
host controller  
6 kB SRAM to preprogram AFE sequences  
Ultra low power potentiostat channel: 6.5 μA of current  
consumption when powered on and all other blocks in  
hibernate mode  
16-bit, 800 kSPS ADC  
Voltage, current, and impedance measurement capability  
Internal and external current and voltage channels  
Ultralow leakage switch matrix and input mux  
Input buffers and programmable gain amplifier  
Voltage DACs  
Smart sensor synchronization and data collection  
Cycle accurate control of sensor measurement  
Sequencer controlled GPIOs  
Dual output voltage DAC with an output range of 0.2 V  
to 2.4 V  
12-bit VBIAS0 output to bias potentiostat  
6-bit VZERO0 output to bias TIA  
On-chip peripherals  
SPI serial input/output  
Ultra low power: 1 μA  
Wake-up timer  
1 high speed, 12-bit DAC  
Interrupt controller  
Power  
2.8 V to 3.6 V supply  
Output range to sensor: 607 mV  
Programmable gain amplifier on output with gain  
settings of 2 and 0.05  
1.82 V input/output compliant  
Power-on reset  
Amplifiers, accelerators, and references  
1 low power, low noise potentiostat amplifier suitable for  
potentiostat bias in electrochemical sensing  
1 low noise, low power TIA, suitable for measuring sensor  
current output  
50 pA to 3 mA range  
Programmable load and gain resistors for sensor output  
Analog hardware accelerators  
Hibernate mode with low power DAC and potentiostat  
amplifier powered up to maintain sensor bias  
Package and temperature range  
3.6 mm × 4.2 mm, 56-ball WLCSP  
Fully specified for operating temperature range of −40°C  
to +85°C  
Digital waveform generator  
Receive filters  
Complex impedance measurement (DFT) engine  
1 high speed TIA to handle wide bandwidth input signals  
from 0.015 Hz up to 200 kHz  
APPLICATIONS  
Electrochemical measurements  
Electrochemical gas sensors  
Potentiostat/amperometric/voltammetry/cyclic  
voltammetry  
Digital waveform generator for generation of sinusoid and  
trapezoid waveforms  
Bioimpedance applications  
Skin impedance  
2.5 V and 1.82 V internal reference voltage sources  
System level power savings  
Body impedance  
Continuous glucose monitoring  
Battery impedance  
SIMPLIFIED BLOCK DIAGRAM  
POTENTIOSTAT:  
AMPLIFIER AND DAC  
WAVEFORM  
GENERATOR  
ADC FIFO  
AND MMR  
CURRENT  
CHANNELS  
DFT  
16-BIT  
ADC  
VOLTAGE  
CHANNELS  
DIGITAL  
FILTERS  
DATA FIFO  
INTERNAL  
CHANNELS  
SLEEP/WAKEUP  
TIMER  
LDOs  
SEQUENCER  
TEMPERATURE  
CHANNEL  
INTERRUPTION  
GENERATOR  
VOLTAGE  
REFERENCES  
GPIOs  
SPI  
IMPEDANCE ENGINE  
AMPLIFIERS AND DAC  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
AD5940  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Avoiding Incoherency Errors Between Excitation and  
Measurement Frequencies During Impedance Measurements  
....................................................................................................... 41  
Applications....................................................................................... 1  
Simplified Block Diagram ............................................................... 1  
Revision History ............................................................................... 3  
Functional Block Diagram .............................................................. 4  
General Description......................................................................... 5  
Specifications..................................................................................... 6  
ADC RMS Noise Specifications ............................................... 15  
SPI Timing Specifications ......................................................... 15  
Absolute Maximum Ratings.......................................................... 17  
Thermal Resistance .................................................................... 17  
ESD Caution................................................................................ 17  
Pin Configuration and Function Descriptions........................... 18  
Typical Performance Characteristics ........................................... 20  
Reference Test Circuit................................................................ 22  
Theory of Operation ...................................................................... 23  
Configuration Registers............................................................. 23  
Silicon Identification...................................................................... 26  
Identification Registers.............................................................. 26  
Low Power DAC ............................................................................. 27  
Low Power DAC Switch Options ............................................. 27  
Relationship Between the 12-Bit and 6-Bit Outputs.............. 29  
Low Power DAC Use Cases....................................................... 29  
Low Power DAC Circuit Registers........................................... 30  
Low Power Potentiostat ................................................................. 33  
Low Power TIA ............................................................................... 34  
Low Power TIA Protection Diodes .......................................... 34  
Using an External RTIA ............................................................... 34  
High Speed DAC Calibration Options.................................... 42  
High Speed DAC Circuit Registers.......................................... 43  
High Speed TIA Circuits ............................................................... 46  
High Speed TIA Configuration................................................ 46  
High Speed TIA Circuit Registers............................................ 48  
High Performance ADC Circuit................................................... 50  
ADC Circuit Overview.............................................................. 50  
ADC Circuit Diagram ............................................................... 50  
ADC Circuit Features ................................................................ 51  
ADC Circuit Operation............................................................. 51  
ADC Transfer Function............................................................. 51  
ADC Low Power Current Input Channel ............................... 52  
Selecting Inputs to ADC Mux .................................................. 52  
ADC Postprocessing .................................................................. 52  
Internal Temperature Sensor Channel .................................... 53  
Sinc2 Filter (50 Hz/60 Hz Mains Filter).................................. 53  
ADC Calibration ........................................................................ 53  
ADC Circuit Registers............................................................... 54  
ADC Calibration Registers ....................................................... 59  
ADC Digital Postprocessing Registers (Optional) ................ 65  
ADC Statistics Registers............................................................ 66  
Programmable Switch Matrix....................................................... 68  
Switch Descriptions ................................................................... 68  
Recommended Configuration in Hibernate Mode ............... 68  
Options for Controlling All Switches ...................................... 68  
Programmable Switches Registers ........................................... 71  
Precision Voltage References ........................................................ 81  
Recommended Switch Settings for Various Operating  
Modes........................................................................................... 34  
High Power and Low Power Buffer Control Register—  
BUFSENCON ............................................................................. 81  
Low Power TIA Circuits Registers ........................................... 37  
High Speed DAC Circuits.............................................................. 40  
High Speed DAC Output Signal Generation.......................... 40  
Power Modes of the High Speed DAC Core........................... 40  
High Speed DAC Filter Options............................................... 40  
High Speed DAC Output Attenuation Options ..................... 41  
High Speed DAC Excitation Amplifier ................................... 41  
Sequencer ........................................................................................ 83  
Sequencer Features..................................................................... 83  
Sequencer Overview .................................................................. 83  
Sequencer Commands............................................................... 83  
Sequencer Operation ................................................................. 85  
Sequencer and FIFO Registers ................................................. 87  
Waveform Generator...................................................................... 92  
Waveform Generator Features.................................................. 92  
Waveform Generator Operation .............................................. 92  
Coupling an AC Signal from the High Speed DAC to the DC  
Level Set by the Low Power DAC............................................. 41  
Rev. 0 | Page 2 of 130  
Data Sheet  
AD5940  
Using the Waveform Generator with the Low Power DAC ..92  
Waveform Generator Registers .................................................93  
SPI Interface.....................................................................................96  
Overview ......................................................................................96  
SPI Pins.........................................................................................96  
SPI Operation ..............................................................................96  
Command Byte............................................................................96  
Writing to and Reading from Registers ...................................96  
Reading Data from the Data FIFO ...........................................97  
Sleep and Wake-Up Timer .............................................................98  
Sleep and Wake-Up Timer Features .........................................98  
Sleep and Wake-Up Timer Overview.......................................98  
Configuring a Defined Sequence Order ..................................98  
Recommended Sleep and Wake-Up Timer Operation..........98  
Sleep and Wake-Up Timer Registers........................................99  
Interrupts....................................................................................... 103  
Interrupt Controller Interupts................................................ 103  
Configuring the Interrupts ..................................................... 103  
Custom Interrupts.................................................................... 103  
External Interrupt Configuration .......................................... 103  
Interrupt Registers ................................................................... 104  
External Interrupt Configuration Registers ......................... 109  
Digital Inputs/Outputs ................................................................ 113  
Digital Inputs/Outputs Features............................................. 113  
Digital Inputs/Outputs Operation..........................................113  
GPIO Registers..........................................................................114  
System Resets.................................................................................117  
Analog Die Reset Registers......................................................117  
Power Modes .................................................................................118  
Active High Power Mode (>80 kHz)......................................118  
Active Low Power Mode (<80 kHz) .......................................118  
Hibernate Mode ........................................................................118  
Shutdown Mode........................................................................118  
Low Power Mode ......................................................................118  
Power Modes Registers ............................................................118  
Clocking Architecture ..................................................................121  
Clock Features ...........................................................................121  
Clock Architecture Registers...................................................121  
Applications Information.............................................................125  
EDA Bioimpedance Measurement Using a Low Bandwidth  
Loop............................................................................................125  
Body Impedance Analysis (BIA) Measurement Using a High  
Bandwidth Loop........................................................................126  
High Precision Potentiosat Configuration ............................127  
Using the AD5940, AD8232, and AD8233 for Bioimpedance  
and Electrocardiogram (ECG) Measurements .....................128  
Smart Water/Liquid Quality AFE...........................................129  
Outline Dimensions......................................................................130  
Ordering Guide .........................................................................130  
REVISION HISTORY  
3/2019—Revision 0: Initial Version  
Rev. 0 | Page 3 of 130  
 
AD5940  
Data Sheet  
FUNCTIONAL BLOCK DIAGRAM  
VREF_2V5 VREF_1V82 AVDD_REG AVDD AGND_REF XTALI XTALO  
AGND  
VREF_2V5  
V
BIAS  
0.92V INTERNAL  
RCAL0  
RCAL1  
CE0  
+
AMP  
HP  
DUAL  
PRECISION  
V
BIAS  
OUTPUTS  
BUF  
REFERENCE  
V
16MHz/32MHz  
XTAL  
DRIVER  
OSC  
POR  
12-BIT  
VDAC  
ZERO  
REF  
BUF  
RE0  
V
0.92V  
LP REF  
BIAS0  
CE0  
LP  
BUF  
LPF0  
+
V
ZERO  
1.8V LP 1.8V HP  
LPTIA  
LDO  
LDO  
SE0  
MISO  
MOSI  
SCLK  
CS  
RE0  
R
TIA0  
V
ZERO0  
SE0  
R
GAIN 1/1.5/  
2/4/9  
fC = 50kHz/100kHz/  
250kHz  
TIA0  
SPI  
1.8V  
DE0  
16-BIT ADC  
160kSPS/  
400kSPS  
AVDD/2  
VDE0  
RC0_0  
RC0_1  
BUF  
PGA  
BUF  
AAF  
LOW BANDWIDTH AFE LOOP  
RC0_0  
RC0_1  
RC0_2  
V
ZERO0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
V
BIAS0  
COARSE OFFSET  
CORRECTION  
VREF_1V82  
RCF  
V
DACP  
EXCITATION DACN  
+
12-BIT  
VDAC  
AIN0  
AIN1  
AIN2  
VCE0  
VRE0  
CE0  
ADC FIFO  
AND MMR  
AMPLIFIER  
LOOP  
P
N
WAVEFORM  
GENERATOR  
BIAS  
DFT  
V
ZERO  
AIN0  
AINx  
RE0  
AIN3/BUF_VREF1V8  
AIN4/LPF0  
AIN6  
CLOCK  
GENERATOR  
DIGITAL  
FILTERS  
16MHz  
OSC  
COMMAND  
FIFO  
V
ZERO  
+
R
R
LOAD02  
LOAD03  
HPTIA  
T
VREF_2V5/2  
VREF_1V82  
SE0  
DE0  
AFE1  
AFE2  
AFE3  
AFE4  
32kHz  
OSC  
WAKE-UP  
TIMER  
SEQUENCER  
DNC  
DNC  
DNC  
INTERRUPT  
GENERATOR  
R
GPIO  
CRC  
TIA2  
HIGH BANDWIDTH AFE LOOP  
TEMPERATURE  
SENSOR  
DIGITAL  
VBIAS_CAP  
AD5940  
DVD_REG_1V8  
DGND DVDD  
RESET IOVDD  
Figure 2.  
Rev. 0 | Page 4 of 130  
 
Data Sheet  
AD5940  
GENERAL DESCRIPTION  
The AD5940 is a high precision, low power analog front end (AFE)  
designed for portable applications that require high precision,  
electrochemical-based measurement techniques, such as amper-  
ometric, voltammetric, or impedance measurements. The  
AD5940 is designed for skin impedance and body impedance  
measurements, and works with the AD8233 AFE in a complete  
bioelectric or biopotential measurement system. The AD5940 is  
designed for electrochemical toxic gas sensing.  
The current inputs include two TIAs with programmable gain  
and load resistors for measuring different sensor types. The first  
TIA, referred to as the low power TIA, measures low bandwidth  
signals. The second TIA, referred to as the high speed TIA,  
measures high bandwidth signals up to 200 kHz.  
An ultralow leakage, programmable switch matrix connects the  
sensor to the internal analog excitation and measurement blocks.  
This matrix provides an interface for connecting external RTIAs  
and calibration resistors. The matrix can also be used to  
multiplex multiple electronic measurement devices to the same  
wearable electrodes.  
The AD5940 consists of two high precision excitation loops  
and one common measurement channel, which enables a wide  
capability of measurements of the sensor under test. The first  
excitation loop consists of an ultra low power, dual output string,  
digital-to-analog converter (DAC), and a low power, low noise  
potentiostat. One output of the DAC controls the noninverting  
input of the potentiostat, and the other output controls the  
noninverting input of the transimpedance amplifier (TIA). This  
low power excitation loop is capable of generating signals from  
dc to 200 Hz.  
A precision 1.82 V and 2.5 V on-chip reference source is available.  
The internal ADC and DAC circuits use this on-chip reference  
source to ensure low drift performance for the 1.82 V and 2.5 V  
peripherals.  
The AD5940 measurement blocks can be controlled via direct  
register writes through the serial peripheral interface (SPI)  
interface, or, alternatively, by using a preprogrammable sequencer,  
which provides autonomous control of the AFE chip. 6 kB of  
static random access memory (SRAM) is partitioned for a deep  
data first in, first out (FIFO) and command FIFO. Measurement  
commands are stored in the command FIFO and measurement  
results are stored in the data FIFO. A number of FIFO related  
interrupts are available to indicate when the FIFO is full.  
The second excitation loop consists of a 12-bit DAC, referred to  
as the high speed DAC. This DAC is capable of generating high  
frequency excitation signals up to 200 kHz.  
The AD5940 measurement channel features a 16-bit, 800 kSPS,  
multichannel successive approximation register (SAR) analog-  
to-digital converter (ADC) with input buffers, a built in antialias  
filter, and a programmable gain amplifier (PGA). An input mux  
in front of the ADC allows the user to select an input channel  
for measurement. These input channels include multiple  
external current inputs, external voltage inputs, and internal  
channels. The internal channels allow diagnostic measurements  
of the internal supply voltages, die temperature, and reference  
voltages.  
A number of general-purpose inputs/outputs (GPIOs) are  
available and are controlled using the AFE sequencer, which  
allows cycle accurate control of multiple external sensor devices.  
The AD5940 operates from a 2.8 V to 3.6 V supply and is  
specified over a temperature range of −40°C to +85°C. The  
AD5940 is packaged in a 56-lead, 3.6 mm × 4.2 mm WLCSP  
package.  
Rev. 0 | Page 5 of 130  
 
AD5940  
Data Sheet  
SPECIFICATIONS  
AVDD = DVDD = 2.8 V to 3.6 V; the maximum difference between supplies = 0.3 V; IOVDD = 1.8 V 10% and 2.8 V to 3.6 V; the ADC  
reference, excitation, DAC, and amplifier = 1.82 V, internal reference; low power DAC reference = 2.5 V, internal reference; TA = −40°C to  
+85°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
BASIC ADC SPECIFICATIONS  
Pseudo differential mode measured relative to  
ADC bias voltage (voltage on VBIAS_CAP pin,  
1.11 V), unless otherwise noted; specifications  
based on high speed mode, unless otherwise  
noted; ADC voltage channel calibrated in  
production with PGA gain = 1.5; AFE die clock  
for the analog domain (ACLK) = 32 MHz or  
16 MHz, unless otherwise noted  
High speed mode; decimation factor = 4  
Normal mode; decimation factor = 4  
Number of data bits  
Data Rate1  
fSAMPLE  
400  
200  
kSPS  
kSPS  
Bits  
Resolution1  
16  
Integral Nonlinearity1  
Normal Mode  
INL  
−4  
2.0  
2.0  
+4  
LSB  
LSB  
PGA gain = 1.5, 1.82 V internal reference,  
1 LSB = 1.82 V ÷ 215 ÷ PGA gain  
PGA gain = 9, 1.82 V internal reference  
−5.6  
DNL  
+4.7  
Differential Nonlinearity1  
Normal Mode  
−0.99  
0.9  
6
+2.5  
LSB  
LSB  
PGA gain = 1.5, 1.82 V internal reference; 1 LSB =  
1.82 V ÷ 215 ÷ PGA gain, no missing codes  
PGA gain = 1.5, low power mode, ADC input =  
0.9 V; ADC output data rate = 200 kSPS; 1 LSB =  
1.82 V ÷ 215  
DC Code Distribution2  
6
6
LSB  
LSB  
Input channel is low power TIA = 1 µA, RTIA =  
512 kΩ, RLOAD = 10 Ω ADC output data rate =  
200 kSPS  
Input channel is high speed TIA = 1 µA, RTIA  
=
10 kΩ, RLOAD = 100 Ω ADC output data rate =  
200 kSPS  
ADC ENDPOINT ERRORS  
Offset Error  
Low Power Mode  
−600  
200  
+600  
µV  
PGA gain = 1.5, low power mode, all channels  
except AIN3  
−620  
−1.1  
200  
0.5  
3
2
400  
+880  
+1.4  
µV  
PGA gain = 1.5, AIN3 only  
PGA gain = 1.5  
Using 1.82 V internal reference  
Matching compared to AIN3  
PGA gain = 1.5, Excluding internal channels and  
AIN3; both negative and positive full scale;  
error at both endpoints  
3
High Power Mode1,  
mV  
µV/°C  
LSB  
µV  
Drift1  
Offset Matching  
Full-Scale Error  
−1000  
+800  
-1000  
−2.2  
1000  
+1.82  
0.751  
µV  
mV  
% of  
full-  
PGA gain = 1.5. AIN3 only  
PGA gain = 1.5  
AVDD/2, DVDD/2, VBIAS_CAP, VREF_2V5,  
VREF_1V82, AVDD_REG  
High Power Mode1,3  
Internal Channels  
0.9  
0.21  
scale  
µV/°C  
LSB  
Gain Drift1  
Gain Error Matching  
PGA Mismatch Error1  
−3  
1
3
+3  
Full-scale error drift minus offset error drift  
Mismatch from channel to channel  
ADC offset and gain calibration with a gain  
value of 1.5  
PGA Gain = 1 to 1.5  
PGA Gain =1.5 to 2  
PGA Gain = 2 to 4  
PGA Gain = 4 to 9  
−0.2  
−0.2  
−0.3  
−0.55  
+0.1  
+0.1  
+0.2  
+0.2  
+0.3  
+0.3  
+0.8  
+0.55  
%
%
%
%
Rev. 0 | Page 6 of 130  
 
 
Data Sheet  
AD5940  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ADC DYNAMIC PERFORMANCE  
fIN = 20 kHz sine wave, fSAMPLE = 200 kSPS; using  
AINx voltage input channels; PGA gain = 1.5  
Signal-to-Noise Ratio  
SNR  
Includes distortion and noise components  
PGA gain = 1, 1.5, and 2  
PGA gain = 4  
80  
76  
dB  
dB  
70  
dB  
dB  
dB  
dB  
PGA gain = 9  
Total Harmonic Distortion1  
Peak Harmonic or Spurious Noise1  
Channel to Channel Crosstalk1  
Noise (RMS)4  
THD  
−84  
−86  
−86  
Measured on adjacent channels  
See  
Table 2  
µV rms  
800  
400  
nV/√Hz  
nV/√Hz  
Chop on  
Chop off  
ADC INPUT  
Input Voltage Ranges1  
Input to ADC mux  
Voltage applied to any input pin  
Pseudo differential voltage between  
0.2  
2.1  
V
V
VBIAS_CAP pin and analog input from ADC mux  
−0.9  
−0.9  
−0.6  
−0.3  
−0.133  
0.00005  
+0.9  
+0.9  
+0.6  
+0.3  
+0.133  
3000  
V
V
V
V
V
µA  
Gain = 1  
Gain = 1.5  
Gain = 2  
Gain = 4  
Gain = 9  
Input Current Range1  
Low power TIA and high speed TIA current  
input channel ranges  
Common Mode Range1  
Leakage Current  
0.2  
−1.5  
1.1  
0.5  
2.1  
+1.5  
V
nA  
AIN0, AIN1, AIN2, AIN3/BUF_VREF1V82,  
AIN4/LPF0, AIN6, CE0, RE0 and SE0  
2
2
DE0 pin only  
AIN0, AIN1, AIN2, AIN3, AIN4, AIN6, CE0, RE0,  
SE0, and DE0  
During ADC acquisition  
3 programmable settings  
Input Current1  
−8  
+8  
nA  
pF  
Input Capacitance  
Antialias Filter 3 dB Frequency Range  
40  
Mode 0  
Mode 1  
Mode 2  
50  
100  
250  
kHz  
kHz  
kHz  
ADC Channel Switch Settling Time  
Time delay required after switching ADC input  
channel; excludes sinc3 settling time  
Antialias Filter −3 dB Cutoff  
Frequency  
250 kHz1  
100 kHz1  
50 kHz1  
20  
40  
60  
µs  
µs  
µs  
DISCRETE FOURIER TRANSFORM (DFT)-  
BASED IMPEDANCE MEASUREMENTS1  
With High Bandwidth Loop  
For impedance (Z) of 1000 Ω (0.1% tolerant  
resistor), excitation frequency = 0.1 Hz to 200 kHz,  
sine amplitude = 10 mV rms, RTIA = 5 kΩ; RCAL  
=
200 Ω;1% accurate tempco 5 ppm/°C; single DFT  
measurement; DFT using 8192 ADC samples;  
Hanning on; HSDACCON, Bits[8:1] = 0x1B for low  
power mode and impedance measurements  
≤80 kHz; HSDACCON, Bits[8:1] = 0x7 for high  
power mode and impedance measurements  
≥80 kHz  
Accuracy  
Magnitude  
−1.25  
−0.3  
0.2  
0.2  
1
+1.25  
+0.3  
%
%
%
20 kHz to 200 kHz  
10 Hz to 20 kHz  
1 Hz to <10 Hz  
Phase  
0.1  
Degrees  
Rev. 0 | Page 7 of 130  
AD5940  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Three-Resistor Star Cell  
Accuracy  
R1 = R2 = R3 = 2.2 Ω (see Figure 14); 0.1 Hz to  
200 kHz  
Magnitude  
Phase  
0.ꢀ  
0.ꢀ  
%
Degrees  
Accuracy  
R1 = R2 = R3 = 100 Ω connected (see Figure 14);  
0.1 kHz to 200 kHz  
Magnitude  
Phase  
0.2  
0.2  
%
Degrees  
With High Bandwidth Loop, ꢀ0 kHz,  
4-Wire Isolated  
For Z = 1 kΩ (0.1% tolerant resistor); excitation  
frequency = ꢀ0 kHz; sine amplitude = 0.6 V p-p;  
RTIA = 1 kΩ; CTIA = 32 pF; Isolation Capacitor 1  
(CISO1) = 1ꢀ nF; Isolation Capacitor 2 (CISO2) =  
Isolation Capacitor 3 (CISO3) = Isolation Capacitor 4  
(CISO4) = 470 nF; current-limiting resistor (RLIMIT) =  
1 kΩ  
Accuracy  
Device to device repeatability for three devices  
at ꢀ0 kHz  
Magnitude  
Phase  
0.26  
1
%
Percentage error  
Degrees  
With Low Bandwidth Loop  
For Z = 100 kΩ; excitation frequency = 100 Hz; sine  
amplitude = 1.1 V p-p; RTIA = 100 kΩ; CTIA = 100 nF;  
CISO1 = 1ꢀ nF; CISO2 = 470 nF; RLIMIT = 1000 Ω  
Frequency Range  
Accuracy  
1
300  
Hz  
Device to device repeatability for three devices  
at 100 Hz  
Magnitude  
Precision  
Magnitude  
0.3  
%
Ω
Percentage error  
6.ꢀ3  
Standard deviation  
High Speed Loop  
See Figure 14; valid for impedance  
spectroscopy, voltammetry, and pulse tests  
Allowed External Load  
Capacitance1  
100  
pF  
R2 + R3 ≤ 100 Ω; R1 ≤ 100 Ω  
ꢀ0  
40  
pF  
pF  
R2 + R3 ≤ ꢀ00 Ω; R1 ≤ 100 Ω  
R2 + R3 ≤ 1600 Ω; R1 ≤ 800 Ω; frequency ≥ 1 kHz  
Excitation Amplifier Bandwidth  
Impedance Frequency Range  
LOW POWER TIA AND POTENTIOSTAT  
Input Bias Current1  
3
MHz  
200000 Hz  
0.01ꢀ  
TIA Amplifier, SE0 Pin  
80  
20  
ꢀ0  
1
200  
1ꢀ0  
1ꢀ0  
pA  
pA  
μV  
μV/°C  
PA  
Offset Voltage1  
Offset Voltage Drift vs. Temperature  
Noise  
Unity-gain mode; V p-p in 0.1 Hz to 10 Hz range  
Normal mode (LPTIACON0, Bit 2 = 0)  
Half power mode (LPTIACON0, Bit 2 = 1)  
Normal mode (LPTIACON0, Bits[4:3] = 00); from  
CE0  
High current mode (LPTIACON0, Bits[4:3] = 01  
or 11 from CE0  
1.6  
2
μV  
μV  
μA  
Potentiostat Source/Sink Current1  
−7ꢀ0  
−3  
+7ꢀ0  
+3  
mA  
DC PSRR  
70  
dB  
At RE0 pin; RTIA = 2ꢀ6 kΩ; RLOAD = 10 Ω  
Input Common-Mode Range1  
300  
300  
300  
AVDD – mV  
600  
AVDD – mV  
400  
AVDD − mV  
400  
Output Voltage Range1  
Normal mode (LPTIACON0, Bits[4:3] = 00;  
sink/source = 7ꢀ0 μA  
High current mode (LPTIACON0, Bits[4:3] = 01 or  
11); sink/source = 3 mA  
Overcurrent Limit Protection  
20  
mA  
Amplifiers try to limit source/sink current to this  
value via internal clamp  
Rev. 0 | Page 8 of 130  
Data Sheet  
AD5940  
Parameter  
Allowed Duration of Overcurrent Limit1  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
5
sec  
User must limit duration of overcurrent condition  
to less than 5 sec or risk damaging amplifier  
Allowed Frequency of Overcurrent  
Conditions1  
Short-Circuit Protection  
PROGRAMMABLE RESISTORS  
Low Power TIA RLOAD on SE0 Inputs1  
0 Ω RLOAD Accuracy  
1
Per hour  
mA  
12  
When amplifier output is shorted to ground  
0.01  
9.8  
28  
0.08  
11.7  
33.8  
55  
0.15  
13.5  
39  
10 Ω RLOAD Accuracy  
30 Ω RLOAD Accuracy  
50 Ω RLOAD Accuracy  
48  
63  
100 Ω RLOAD Accuracy  
88  
110  
130  
Drift over Temperature  
200  
400  
ppm/°C  
ppm/°C  
10 Ω, 30 Ω, 100 Ω, 1500 Ω, 3000 Ω, and 3500 Ω  
50 Ω  
Low Power TIA RTIA on SE0 Input1  
Accuracy  
−5  
+15  
130  
%
User programmable; includes 1 kΩ, 2 kΩ, 3 kΩ,  
4 kΩ, 6 kΩ, 8 kΩ, 10 kΩ, 16 kΩ, 20 kΩ, 22 kΩ, 30 kΩ,  
40 kΩ, 64 kΩ, 100 kΩ, 128 kΩ, 160 kΩ, 192 kΩ,  
256 kΩ, and 512 kΩ  
115  
120  
200 Ω setting with RLOAD = 100 Ω  
Drift over Temperature  
Mismatch Error1  
100  
ppm/°C  
Error when moving up or down one RTIA value  
512 kΩ to 2 kΩ range excluding 40 kΩ  
40 kΩ (up to 48 kΩ, down to 32 kΩ)  
200 Ω  
−0.6  
−3.5  
+0.2  
+0.5  
20  
+0.6  
+3.5  
%
%
%
High Speed TIA RTIA on SE0 Input  
Accuracy  
20  
%
User programmable; includes 100 Ω, 200 Ω, 1 kΩ,  
5 kΩ, 10 kΩ, 20 kΩ, 40 kΩ, 80 kΩ, and 160 kΩ  
Drift  
200  
ppm/°C  
High Speed TIA RLOAD on SE0 Input1  
User programmable; includes 10 Ω, 30 Ω, 50 Ω,  
and 100 Ω  
Accuracy  
Drift  
High Speed TIA RTIA on DE0 Input1  
102  
110  
160  
116  
Fixed 100 Ω target setting  
ppm/°C  
User programmable; includes 0.1 kΩ, 0.2 kΩ,  
1.5 kΩ, 10 kΩ, 20 kΩ, 40 kΩ, 80 kΩ, and 160 kΩ  
Accuracy  
120  
230  
135  
250  
20  
150  
280  
%
100 Ω setting  
200 Ω setting  
1 kΩ, 5 kΩ, 10 kΩ, 20 kΩ, 40 kΩ, 80 kΩ, and  
160 kΩ  
Drift over Temperature  
350  
200  
ppm/°C  
ppm/°C  
100 Ω and 200 Ω settings  
1 kΩ, 5 kΩ, 10 kΩ, 20 kΩ, 40 kΩ, 80 kΩ, and  
160 kΩ  
High Speed TIA RTIA Mismatch Error on  
DE01  
Error introduced when moving up or down one  
RTIA value  
−3.5  
−25  
+1  
2
+3.5  
+5  
%
%
160 kΩ to 5 kΩ range  
1 kΩ, 200 Ω, and 100 Ω  
Load resistor on the DE0 pin (RLOAD_DE0  
0 Ω setting  
10 Ω setting  
High Speed TIA RLOAD on DE0 Input1  
Accuracy  
)
0.001  
5
0.15  
11  
26.5  
32.6  
15  
0.2  
37.6  
25  
%
30 Ω setting  
50 Ω, and 100 Ω settings  
10 Ω setting  
Drift over Temperature  
%/°C  
ppm/°C  
200  
Excludes RLOAD = 0 Ω and 10 Ω  
HIGH SPEED TIA  
Bias Current  
Maximum Current Sink/Source1  
1
nA  
mA  
−3  
+3  
Ensure RTIA selection generates an output  
voltage of < 900 mV with PGA gain = 1  
Rev. 0 | Page 9 of 130  
AD5940  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Input Common-Mode Range1  
300  
AVDD − mV  
700  
AVDD − mV  
400  
Output Voltage Range1  
200  
Overcurrent Limit Protection1  
17  
mA  
Amplifier attempts to limit the source/sink  
current to this value via the internal clamp;  
tested with RLOAD = 0 Ω and RTIA = 100 Ω  
Allowed Duration of Overcurrent  
Limit1  
Allowed Frequency of Overcurrent  
Conditions  
5
1
sec  
Per hour  
Short-Circuit Protection  
12  
mA  
V
When amplifier output is shorted to ground  
LOW POWER, ON-CHIP VOLTAGE  
REFERENCE  
2.5  
0.47 µF from VREF_2V5 to AGND; reference is  
measured with low power voltage DAC and  
output amplifier enabled  
Accuracy  
5
mV  
µV p-p  
ppm/°C  
TA = 25°C  
Noise1  
60  
10  
Reference Temperature Coefficient1, 8  
−25  
+25  
PSRR  
DC  
AC5  
70  
48  
dB  
dB  
AC 1 kHz; 50 mV p-p ripple applied to AVDD  
supply  
HIGH POWER, ON-CHIP VOLTAGE  
REFERENCE  
Accuracy  
Reference Temperature Coefficient1  
1.82  
5
V
0.47 µF from VREF_1V82 to AGND; reference is  
measured with ADC enabled  
TA = 25 °C  
5
+20  
mV  
ppm/°C  
−20  
PSRR  
DC6  
AC  
85  
60  
dB  
dB  
DC; variation due to AVDD supply changes  
AC; 1 kHz, 50 mV p-p ripple applied to AVDD  
supply  
ADC Common-Mode Reference Source  
1.11  
V
470 nF from bias capacitor on ADC (VBIAS_CAP)  
to AGND; reference is measured with ADC  
enabled  
Accuracy  
5
mV  
TA = 25°C  
Reference Temperature Coefficient1  
DC Power Supply Rejection Ratio  
AC Power Supply Rejection Ratio  
−20  
PSRR  
PSRR  
+20  
ppm/°C  
dB  
dB  
80  
60  
DC variation due to AVDD supply changes  
AC 1 kHz, 50 mV p-p ripple applied to AVDD  
supply  
LOW POWER, DUAL OUTPUT DAC  
VBIAS0 specifications derived from  
(VBIAS0 AND VZERO0  
)
measurements taken with potentiostat in  
unity-gain mode and measured at CE0; VZERO0  
specifications derived from measurements at  
VZERO0; dual output low power DAC  
Resolution1  
12-Bit Mode  
6-Bit Mode  
Number of data bits  
12  
6
Bits  
Bits  
Relative Accuracy1  
INL  
12-Bit Mode  
6-Bit Mode  
−3.5  
−3.5  
1
0.5  
+3  
+2  
LSB  
LSB  
1 LSB = 2.2 V/(212 − 1)  
1 LSB = 2.2 V/26  
Differential Nonlinearity1  
12-Bit Mode  
6-Bit Mode  
Offset Error1  
DNL  
−0.99  
−0.5  
−7  
+2.5  
+0.5  
+7  
LSB  
LSB  
mV  
Guaranteed monotonic, 1 LSB = 2.2 V/(212 − 1)  
Guaranteed monotonic, 1 LSB = 2.2 V/26  
VBIAS0/VZERO0 in 12-bit mode; 2.5 V internal  
reference, DAC output code = 0x000; Target  
0x000 code = 200 mV  
3.9  
−2  
0.2  
5
+2.6  
mV  
Differential offset voltage of VBIAS0 referred to  
VZERO0  
VBIAS0 or VZERO0 referred to AGND  
Drift  
µV/°C  
Rev. 0 | Page 10 of 130  
Data Sheet  
AD5940  
Parameter  
Differential Offset VBIAS0 to VZERO0 ≈ 0 V1  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
4
μV/°C  
Differential offset voltage of VBIAS0 referred to  
VZERO0; −40°C to +60°C range; LPDACDAT0 =  
0x1A680  
Differential Offset VBIAS0 to VZERO0  
±600 mV1  
10  
μV/°C  
Differential offset voltage of VBIAS0 referred to  
VZERO0, −40°C to +60°C range; LPDACDAT0 =  
0x1AAE0  
12-bit mode, DAC code = 0xFFF with target  
voltage of 2.4 V  
Gain Error1  
±0.2  
10  
±0.5  
%
Drift  
ppm/°C  
Using internal low power reference  
Analog Outputs  
Output Voltage Range1  
LSB size = 2.2/(212 − 1); the input common-  
mode voltage of the low power potentiostat  
amplifier and low power TIA = AVDD – 600 mV  
12-Bit Outputs  
6-Bit Outputs  
0.2  
2.4  
V
AVDD ≥ 2.8 V  
LSB size is 2.2/26; the input common-mode  
voltage of the low power potentiostat amplifier  
and low power TIA = AVDD – 600 mV  
0.2  
0.2  
400  
2.366  
2.3  
V
V
mV  
AVDD ≥ 2.8 V  
AVDD < 2.8V  
A minimum headroom between AVDD and  
VBIAS0/VZERO0 output voltage, increases to 600 mV  
if connected to low power TIA or low power  
low power potentiostat amplifiers  
AVDD to VBIAS0/VZERO0 Headroom Voltage1  
Output Impedance1  
DAC AC Characteristics  
Output Settling Time  
1.65  
1.5  
MΩ  
sec  
Settled to ±2 LSB12 with 0.1 μF load for ¼ of full  
scale to ¾ of full scale  
Output Settling Time  
Glitch Energy  
500  
±5  
μs  
nV/sec  
Settled to ±2 LSB12; no load  
1 LSB change when the maximum number of  
bits changes simultaneously in the LPDACDAT0  
register; switch to external capacitors on  
VBIAS0/VZERO0 opened; no capacitors on CE0 and  
RC0_x pins  
EXCITATION DAC/PGA/  
RECONSTRUCTION FILTER  
Use HSDACDAT register range of 0x200 to  
0xE00; specified for gain = 2 (HSDACCON, Bit 12  
and Bit 0 = 0); for gain =0.05 (HSDACCON,  
Bit 12 and Bit 0 = 1)  
DAC  
Common-Mode Voltage Range1  
0.2  
12  
AVDD  
− 0.6  
V
Set by the negative node of the excitation  
amplifier  
1 LSB = 293 μV × programmable gain  
Gain = 2  
Gain = 0.05  
Gain = 2  
Resolution1  
Differential Nonlinearity1  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
DNL  
INL  
−0.99  
+1.25  
±20  
±3  
±20  
±3  
±±  
±2  
±8  
±0.6  
Integral Nonlinearity1  
Gain = 0.05  
Gain = 2  
Full-Scale Error1, ±  
Positive  
600  
630  
15.1  
−640  
−15.1  
650  
mV  
mV  
mV  
mV  
Gain = 2, DAC code = 0xE00  
Gain = 0.05, DAC code = 0xE00  
Gain = 2, DAC code = 0x200  
Gain = 0.05, DAC code = 0x200  
Negative  
−660  
−620  
Gain Error Drift  
Gain = 2  
Gain = 0.05  
11.5  
0.33  
μV/°C  
μV/°C  
Offset Error (Midscale)  
Measured at an output of the excitation loop  
across RCAL; DAC code = 0x800  
±25  
±0.5  
mV  
mV  
Gain = 2  
Gain = 0.05  
Rev. 0 | Page 11 of 130  
AD5940  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Offset Error Drift  
Gain = 2  
Gain = 0.05  
DC PSRR  
40  
5
70  
μV/°C  
μV/°C  
dB  
DC variation due to AVDD supply changes  
PGA, Programmable Gain  
0.05  
2
Gain  
Reconstruction Filter  
3 dB Corner Frequency Accuracy  
Allowed External Load Capacitance  
<80 kHz (Low Power Mode)  
>80 kHz (High Power Mode)  
Overcurrent Limit Protection1  
5
%
Programmable to 50 kHz, 100 kHz, and 250 kHz  
SE0, DE0, AINx, and RCAL0/RCAL1 pins  
100  
80  
pF  
pF  
mA  
15  
Amplifier attempts to limit the source/sink  
current to this value via the internal clamp  
Allowed Duration of Overcurrent  
Limit1  
Allowed Frequency of Overcurrent  
Conditions1  
5
1
sec  
Per hour  
mA  
Short-Circuit Protection  
10  
When amplifier output is shorted to ground  
Switches on analog front end before ADC mux  
Characterized with a voltage sweep from 0 V to  
AVDD; production tested at 1.82 V  
SWITCH MATRIX  
On Resistance1  
RON  
Current Carrying Switches  
40  
30  
35  
1
370  
530  
80  
52  
70  
5
Ω
Ω
Ω
kΩ  
pA  
pA  
Tx/TR1 switches, except T5 and T7  
T5 and T7 switches only  
Dx/DR0 switches  
Nx/Nxx and Px/Pxx switches  
Analog input pin used for test driven to 0.2 V  
Analog input pin used for test driven to 0.2 V  
Noncurrent Carrying Switches  
DC Off Leakage  
DC On Leakage1  
2000  
TEMPERATURE SENSOR  
Resolution  
Accuracy  
0.3  
2
°C  
°C  
Measurement taken immediately after exiting  
hibernate mode; user single-point calibration  
required  
POWER-ON RESET  
POR Trip Level  
Power-On  
Power-Down1  
POR Hysteresis1  
POR  
Refers to voltage on DVDD pin  
1.59  
1.799  
1.62  
1.8  
10  
1.72  
1.801  
V
V
mV  
ms  
Delay Between POR Power-On and  
Power-Down Trip Levels1  
110  
1
After DVDD passes POR power-on trip level,  
DVDD must remain at or above power-down  
level for this period  
External Reset  
Minimum Pulse Width1  
μs  
Minimum pulse width required on external  
reset pin to trigger a reset  
WAKE-UP TIMER  
Shortest Duration  
Longest Duration  
DIGITAL INPUTS  
Input Leakage Current1  
Logic 1 GPIO  
31.25  
32  
μs  
sec  
1
5
nA  
nA  
pF  
Voltage input high (VIH ) = IOVDD, pull-up resistor  
disabled  
Voltage input low (VIL ) = 0 V, pull-up resistor  
disabled  
Logic 0 GPIO  
1
10  
Input Capacitance  
Pin Capacitance  
XTALI  
10  
10  
10  
pF  
pF  
XTALO  
Rev. 0 | Page 12 of 130  
Data Sheet  
AD5940  
Parameter  
GPIO Input Voltage  
Low  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
VINL  
0.25 ×  
IOVDD  
V
V
High  
VINH  
0.57 ×  
IOVDD  
XTALI Input Voltage  
Low  
High  
VINL  
VINH  
1.1  
1.7  
V
V
LOGIC INPUTS  
GPIO Input Voltage1  
Low  
VINL  
VINH  
0.25 ×  
IOVDD  
V
High  
0.57 ×  
V
IOVDD  
30  
Pull-Up Current1  
LOGIC OUTPUTS  
GPIO Output Voltage1, 8  
High  
130  
μA  
Input voltage (VIN) = 0 V; DVDD = 3.6 V  
All digital outputs, excluding XTALO  
VOH  
VOL  
IOVDD  
− 0.4  
V
Source current (ISOURCE) = 2 mA  
Low  
0.35  
100  
V
Sink current (ISINK) = 2 mA  
VIN = 3.3 V  
Pull-Down Current1  
GPIO Short-Circuit Current  
30  
μA  
mA  
V
11.5  
1.8  
PIN SUPPLY RANGE FOR 1.8 V  
INPUT/OUTPUT1  
1.62  
1.98  
Input Voltage  
Low  
VINL  
0.3 ×  
pin  
supply  
0.7 ×  
pin  
V
V
High  
VINH  
supply  
Output Voltage  
Low  
High  
VOL  
VOH  
0.45  
Pin  
V
V
ISINK = 1.0 mA  
ISOURCE = 1.0 mA  
supply  
− 0.5  
OSCILLATORS  
Internal System Oscillator  
16 or  
32  
MHz  
Accuracy  
16 MHz Mode  
32 MHz Mode  
0.5  
0.5  
3
3
%
%
External Crystal Oscillator  
16  
32  
MHz  
Can be selected in place of the internal  
oscillator  
Leakage  
500  
590  
nA  
XTALI/XTALO pins  
Logic Inputs, XTALI Only  
Input Low Voltage  
Input High Voltage  
XTALI Input Capacitance  
XTALO Output Capacitance  
32 kHz Internal Oscillators  
Accuracy  
VINL  
VINH  
1.1  
1.7  
8
8
32.768  
5
V
V
pF  
pF  
kHz  
%
Used for watchdog timers and wake-up timers  
15  
EXTERNAL INTERRUPTS  
Pulse Width1  
Level Triggered  
Edge Triggered  
7
1
ns  
ns  
Rev. 0 | Page 13 of 130  
AD5940  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
POWER REQUIREMENTS  
Power Supply Voltage Range (AVDD  
to AGND, DVDD to DGND, and IOVDD  
to DGND)  
2.8  
3.3  
3.6  
V
IOVDD9  
1.62  
1.8  
0.56  
8.5  
1.98  
0.74  
V
mA  
μA  
AVDD Current  
Hibernate Mode  
Analog peripheral in idle mode  
Only low power DAC, PAs, low power reference,  
low power TIA and 32 kHz oscillator active  
6.5  
1.8  
μA  
μA  
Only low power DACs, PA, low power reference,  
and 32 kHz oscillator active; PA and low power  
TIA in half power mode  
Lowest power mode; only wake-up timer  
active; all analog peripherals powered down  
Impedance Measurement Modes  
Impedance Spectroscopy Mode  
9.1  
mA  
μA  
When ac impedance engine, ADC and  
sequencer are active  
50 kHz excitation signal; DFT enabled with DFT  
sample number = 2048; 1 Hz output data rate  
(ODR)  
When low power loop creates sine wave at  
100 Hz and the receive channel and DFT engineis  
duty cycled, with DFT sample number = 16, gives  
4 Hz ODR  
50 kHz Impedance Measurement  
100 Hz Impedance Measurement  
106  
65  
μA  
Additional Power Supply Currents  
ADC  
1.5  
mA  
ADC frequency (fADC) = 200 kSPS, ADC clock is  
16 MHz  
3.45  
0.3  
0.9  
mA  
mA  
fADC = 400 kSPS, ADC clock is 32 MHz  
Low power mode  
High power mode  
Includes excitation amplifier and  
instrumentation amplifier  
High Speed TIA  
High Speed DAC  
2.2  
4.5  
550  
1.65  
2.3  
mA  
mA  
μA  
μA  
μA  
Low power mode  
High power mode  
DFT Hardware Accelerator  
Low Power Reference  
Low Power DACs for VZERO0 and VBIAS0  
Low power DAC powered up, excluding load  
current  
Low Power TIA and PA  
2
1
μA  
μA  
Per amplifier, normal mode  
Per amplifier, half power mode  
Processor clock = 16 MHz  
Wake-up time to allow communication on SPI  
bus  
START-UP TIME  
AFE Wake-Up  
30  
80  
ms  
μs  
ADC Wake-Up1  
180  
Time delay required on exiting hibernate mode  
before starting ADC conversions  
1 Guaranteed by design, not production tested.  
2 Code distribution can be reduced if ADC output rate is reduced by using sinc2 filter option.  
3 ADC offset and gain not calibrated for high power mode in production. User calibration can eliminate this error.  
4 Noise can be reduced if ADC sample rate is reduced using the sinc2 filter.  
5 See Figure 6 for details.  
6 See Figure 8 for details.  
7 High speed DAC offset calibration can remove this error. See the High Speed DAC Calibration Options section for details.  
8 Measured using the box method  
9 IOVDD can optionally be powered from a 1.8 V supply rail.  
Rev. 0 | Page 14 of 130  
Data Sheet  
AD5940  
To calculate the rms bits, use the following equation:  
ADC RMS NOISE SPECIFICATIONS  
log2 ((2 × Input Range)/RMS Noise)  
Table 2 provides the rms noise specifications for the ADC with  
different ADC digital filter settings. The internal 1.82 V  
reference is used for all measurements. Table 3 provides the rms  
and peak-to-peak effective bits based on the noise results in  
Table 2 for various PGA gain settings (peak-to-peak effective  
bits results are shown in parentheses).  
where:  
Input Range is the input voltage range to the ADC  
RMS Noise is the rms of the noise.  
To calculate the peak-to-peak effective bits, use the following  
equation:  
log2 ((2 × Input Range)/(6.6 × RMS Noise))  
Table 2. ADC RMS Noise  
Update  
Rate (Hz)  
Sinc3 Oversampling  
Rate (OSR)  
Gain = 1 rms  
Noise (μV)  
Gain = 1.5 rms  
Noise (μV)  
Gain = 2 rms  
Noise (μV)  
Gain = 4 rms  
Noise (μV)  
Gain = 9 rms  
Noise (μV)  
Sinc2 OSR  
Not applicable  
22  
200,000  
9090  
900  
4
4
5
72.43  
29.29  
24.0  
49.732  
19.59  
17.11  
37.83  
10.4  
12.832  
18.93  
6.687  
6.416  
8.62  
4.42  
1.018  
178  
Table 3. ADC Effective Bits Based on RMS Noise  
Update Rate (Hz)  
Sinc3 OSR Sinc2 OSR  
Gain = 1  
Gain = 1.5  
Gain = 2  
Gain = 4  
Gain = 9  
200,000  
9090  
900  
4
4
5
Not applicable  
22  
178  
14.6 (11.9 p-p)  
15 (13.18 p-p)  
15 (13.47 p-p)  
15 (12.4 p-p)  
15 (13.8 p-p)  
15 (13.96 p-p) 15 (13.8 p-p)  
14.95 (12.23 p-p)  
15 (14.09 p-p)  
14.95 (12.23 p-p)  
15 (13.73 p-p)  
15 (13.79 p-p)  
14.9 (12.15 p-p)  
15 (13.15 p-p)  
15 (15 p-p)  
SPI TIMING SPECIFICATIONS  
MOSI and MISO are launched on the falling edge of SCLK and sampled on the rising edge of SCLK by the host and the AD5940, respectively.  
IOVDD = 2.8 V − 3.6 V and 1.8V 10 ꢀ  
Table 4.  
Parameter  
Time  
190  
5
Unit  
Description  
t1  
ns maximum  
ns minimum  
ns minimum  
ns minimum  
ns minimum  
ns maximum  
ns minimum  
ns minimum  
ns minimum  
ns minimum  
μs typical  
CS falling edge to MISO setup time  
CS low to SCLK setup time  
SCLK high time  
SCLK low time  
SCLK period  
SCLK falling edge to MISO delay  
MOSI to SCLK rising edge setup time  
MOSI to SCLK rising edge hold time  
SCLK falling edge to hold time CS  
CS high time  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
40  
40  
62.5  
27  
5
5
19  
80  
22  
t10  
tWK  
AD5940 wake-up time (not shown in Figure 3)  
Rev. 0 | Page 15 of 130  
 
 
 
 
 
AD5940  
Data Sheet  
SPI Timing Diagram  
CS  
t10  
t2  
t3 t4  
t5  
t9  
SCLK  
t1  
t6  
MISO  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
BIT 7  
BIT 0  
X
BIT 7  
t8  
t7  
MOSI  
7
6
5
4
3
2
1
0
7
7
Figure 3. SPI Interface Timing Diagram  
Rev. 0 | Page 16 of 130  
 
Data Sheet  
AD5940  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 5.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Close attention to  
PCB thermal design is required.  
Parameter  
Rating  
AVDD to AGND  
DVDD to DGND  
IOVDD to DGND  
Analog Input Voltage to AGND  
Digital Input Voltage to DGND  
Digital Output Voltage to DGND  
AGND to DGND  
Total GPIOx Pins Current  
Positive  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
−0.3 V to AVDD +0.3V  
−0.3 V to DVDD +0.3V  
−0.3 V to DVDD +0.3V  
−0.3 V to +0.3 V  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure.  
θJC is the junction to case thermal resistance.  
Table 6. Thermal Resistance1  
Package Type  
θJA  
θJC  
Unit  
0 mA to 30 mA  
−30 mA to 0 mA  
−65°C to +150°C  
−40°C to +85°C  
CB-56-3  
33.0702  
0.0642  
°C/W  
Negative  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board. See  
JEDEC JESD51.  
Storage Temperature Range  
Operating Temperature Range  
Reflow Profile  
Moisture Sensitivity Level 3 (MSL3)  
Junction Temperature  
Electrostatic Discharge (ESD)  
Human Body Model (HBM)  
ESD CAUTION  
J-STD 020E (JEDEC)  
150°C  
2 kV  
1 kV  
Field Induced Charged Device  
Model (FICDM)  
Machine Model (MM)  
100 V  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 17 of 130  
 
 
 
AD5940  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD5940  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
1
2
3
4
5
6
7
8
A
B
C
AFE4  
AFE3  
AIN2  
AVDD  
VREF_1V82  
SE0  
CE0  
RE0  
AIN4/  
LPF0  
AIN3/  
BUF_VREF1V8  
RCAL1  
RCAL0  
AFE1  
AFE2  
AIN1  
DNC  
DE0  
V
RC0_1  
RC0_0  
ZERO0  
AGND  
AIN6  
RC0_2  
V
BIAS0  
D
E
VBIAS_CAP  
GPIO2  
AIN0  
DNC  
DNC  
AGND_REF  
DGND  
GPIO1  
DGND  
VREF_2V5  
MOSI  
AVDD_REG  
MISO  
GPIO3  
AGND  
DGND  
F
RESET  
DNC  
AVDD  
DVDD  
GPIO6  
GPIO7  
GPIO0  
XTALI  
GPIO5  
XTALO  
CS  
SCLK  
DNC  
DVDD_  
REG_1V8  
G
IOVDD  
GPIO4  
ANALOG POWER/GROUND  
DIGITAL POWER/GROUND  
DIGITAL  
XTAL  
ANALOG  
REFERENCE  
DNC = DO NOT CONNECT.  
Figure 4. Pin Configuration  
Table 7. Pin Function Descriptions  
Input/Output  
Pin No.  
Mnemonic  
Supply  
Analog  
Analog  
Analog  
Supply  
Analog  
Analog  
Description  
A1  
A2  
A3  
A4  
A5  
A6  
AFE4  
AFE3  
AIN2  
AVDD  
VREF_1V82  
SE0  
Uncommitted Analog Front End Pin 4.  
Uncommitted Analog Front End Pin 3.  
Uncommitted Analog Input Pin 2. This pin connects to the switch matrix.  
Analog Circuit Power. Short this pin to Pin F2 (AVDD).  
1.82 V Reference Decoupling Capacitor Pin.  
Sense Electrode Input Pin for High Bandwidth and Low Bandwidth Loop Circuits.  
This pin connects to the switch matrix.  
A7  
A8  
CE0  
RE0  
Analog  
Analog  
Counter Electrode Input Pin for High Bandwidth and Low Bandwidth Loop Circuits.  
This pin connects to the switch matrix.  
Reference Electrode Input Pin for High Bandwidth and Low Bandwidth Loop  
Circuits. This pin connects to positive node of the switch matrix.  
Terminal B of Calibration Resistor (RCAL). Connect this pin to the switch matrix.  
B1  
B2  
B3  
B4  
RCAL1  
AFE1  
AIN1  
Analog  
Analog  
Analog  
Analog  
Uncommitted Analog Front End Pin 1.  
Uncommitted Analog Input Pin 1. This pin connects to the switch matrix.  
Uncommitted Analog Input Pin 4 (AIN4).  
AIN4/LPF0  
Low Power TIA Output Low-Pass Filter Capacitor Pin (LPF0).  
Uncommitted Analog Input Pin 3 (AIN3).  
B5  
AIN3/BUF_VREF1V8 Analog  
1.82 V Reference Buffered Output (BUF_VREF1V8). This pin connects to the switch  
matrix.  
B6  
B7  
DE0  
VZERO0  
Analog  
Analog  
Analog Input Pin. This pin connects to the input and output of the high speed TIA.  
Low Power, Dual-Output DAC Zero Voltage Output Pin.  
Rev. 0 | Page 18 of 130  
 
Data Sheet  
AD5940  
Input/Output  
Supply  
Pin No.  
Mnemonic  
Description  
B8  
RC0_1  
Analog  
Low Power TIA Reconstruction Filter 0 Feedback Pin 1. This pin is connected to the  
output of the low power TIA.  
C1  
C2  
C3, D3  
C4  
C5  
C6  
C7  
C8  
RCAL0  
AFE2  
DNC  
AGND  
AIN6  
RC0_2  
VBIAS0  
Analog  
Analog  
Analog  
Ground  
Analog  
Analog  
Analog  
Analog  
Terminal A of Calibration Resistor. Connect this pin to the switch matrix.  
Uncommitted Analog Front End Pin 2.  
Do Not Connect. Do not connect to this pin.  
Analog Ground. Short this pin to Pin E3 (AGND).  
Uncommitted Analog Input Pin 6.  
Low Power TIA Reconstruction Filter 0 Pin 2. This pin can be left open (optional).  
Low Power, Dual-Output DAC Bias Voltage Output Pin.  
Low Power TIA Feedback Pin. This pin is connected to the feedback of the low  
power TIA.  
RC0_0  
D1  
D2  
VBIAS_CAP  
AIN0  
Analog  
Analog  
Not applicable  
Ground  
Digital  
VBIAS0 Decoupling Capacitor Pin.  
Uncommitted Analog Input Pin 0. This pin connects to the switch matrix.  
Do Not Connect. Do not connect to this pin.  
Analog Reference Ground.  
D4, G1, G8 DNC  
D5  
D6  
AGND_REF  
GPIO1  
General-Purpose Input/Output Pin 1.  
input/output  
D7  
D8  
E1  
VREF_2V5  
AVDD_REG  
GPIO2  
Analog  
Supply  
Digital  
2.5 V Analog Reference Decoupling Capacitor Pin.  
Analog Regulator Decoupling Capacitor Pin.  
General-Purpose Input/Output Pin 2.  
input/output  
E2  
GPIO3  
Digital  
General-Purpose Input/Output Pin 3.  
input/output  
E3  
E4 to E6  
E7  
E8  
F1  
AGND  
DGND  
MOSI  
Ground  
Ground  
Digital input  
Digital output  
Digital input  
Supply  
Analog Ground. Short this pin to Pin C4.  
Digital Ground  
SPI Master Output, Slave Input.  
SPI Master Input Slave Output.  
Reset Pin, Active Low.  
MISO  
RESET  
AVDD  
DVDD  
GPIO6  
F2  
F3  
F4  
Analog 3.3 V Circuit Power.  
Digital Circuit Power.  
General-Purpose Input/Output Pin 6.  
Supply  
Digital  
input/output  
F5  
F6  
F7  
GPIO0  
GPIO5  
CS  
Digital  
input/output  
Digital  
input/output  
General-Purpose Input/Output Pin 0.  
General-Purpose Input/Output Pin 5.  
SPI Chip Select.  
Digital  
input/output  
F8  
SCLK  
IOVDD  
DVDD_REG_1V8  
GPIO7  
Digital input  
Supply  
Analog  
SPI Clock.  
G2  
G3  
G4  
Digital Input/Output Supply Pin. DVDD (Pin F3) must be driven before IOVDD is enabled.  
1.8 V Digital Regulator Decoupling Capacitor Pin.  
General-Purpose Input/Output Pin 7.  
Digital  
input/output  
G5  
G6  
G7  
XTALI  
XTALO  
GPIO4  
Digital Input  
Digital Output  
Digital  
16 MHz External Crystal Input Pin.  
16 MHz External Crystal Output Pin.  
General-Purpose Input/Output Pin 4.  
input/output  
Rev. 0 | Page 19 of 130  
AD5940  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
1.110530  
1.110528  
1.110526  
1.110524  
1.110522  
1.110520  
1.110518  
1.110516  
1.110514  
1.110512  
1.110510  
1.110508  
1.110506  
1.110504  
1.110502  
1.110500  
1.110498  
1.110496  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100  
1k  
10k  
100k  
1M  
10M  
10  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 5. Magnitude vs. Frequency, ADC 1.82 V Voltage Reference AC PSRR  
Figure 8. High Power Reference vs. Supply Voltage,  
1.11 V Voltage Reference DC PSRR  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1.820950  
1.820948  
1.820946  
1.820944  
1.820942  
1.820940  
1.820938  
1.820936  
1.820934  
1.820932  
1.820930  
1.820928  
1.820926  
1.820924  
1.820922  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
10  
100  
1k  
10k  
100k  
1M  
10M  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 6. Magnitude vs. Frequency, Low Power 2.5 V Voltage Reference  
AC PSRR  
Figure 9. High Power Reference vs. Supply Voltage,  
ADC 1.82 V Voltage Reference DC PSRR  
2.49976  
2.49974  
2.49972  
2.49970  
2.49968  
2.49966  
2.49964  
2.49962  
2.49960  
2.49958  
2.49956  
2.49954  
2.49952  
2.49950  
2.49948  
2.49946  
6
5
4
3
2
1
0
–1  
–2  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
SUPPLY VOLTAGE (V)  
RE0 PIN VOLTAGE (V)  
Figure 7. Low Power Reference (2.5 V) vs. Supply Voltage,  
DC PSRR  
Figure 10. Low Power Potentiostat Input Bias Current (IBIAS) vs. RE0 Pin  
Voltage  
Rev. 0 | Page 20 of 130  
 
 
 
Data Sheet  
AD5940  
40  
0.3  
0.2  
20  
0
0.1  
–20  
–40  
–60  
–80  
–100  
0
–0.1  
–0.2  
–0.3  
SE0 = 200mV  
SE0 = 1100mV  
SE0 = 2100mV  
BOARD1 ERROR  
BOARD2 ERROR  
BOARD3 ERROR  
–120  
–140  
100k  
300k  
500k  
800k  
1M  
2M  
4M  
8M  
10M  
–40  
25  
60  
85  
IMPEDANCE (Ω)  
TEMPERATURE (°C)  
Figure 11. Low Power TIA Input Bias Current (IBIAS) vs. Temperature  
Figure 13. Electrodermal Activity (EDA) Measurement Relative Error  
vs. Impedance  
2
0
–2  
–4  
–6  
–8  
–10  
–12  
RE0 = 200mV  
RE0 = 1100mV  
RE0 = 2100mV  
–14  
–16  
–40  
25  
60  
85  
TEMPERATURE (°C)  
Figure 12. Low Power Potentiostat  
Input Bias Current vs. Temperature  
Rev. 0 | Page 21 of 130  
AD5940  
Data Sheet  
REFERENCE TEST CIRCUIT  
C1  
D
EXCITATION  
BUFFER  
N
P
EXTERNAL  
SENSOR  
MODEL  
R1  
R2  
R3  
C2  
AD5940  
+
HSTIA  
T
Figure 14. High Speed Loop Connected to Sensor (R1, R2, and R3), C1 and C2 Represent Capacitance to Ground  
Rev. 0 | Page 22 of 130  
 
 
Data Sheet  
AD5940  
THEORY OF OPERATION  
The main blocks of the AD5940 are as follows:  
Programmable switch matrix. The input switching of the  
AD5940 allows full configurability in the connections of  
the external sensors (see the Programmable Switch Matrix  
section).  
Programmable sequencer (see the Sequencer section).  
SPI interface.  
Waveform generator designed to create sinusoid and  
trapezoid waveforms up to 200 kHz (see the Waveform  
Generator section).  
Interrupt sources that output to a GPIOx pin to alert the  
host controller that an interrupt event occurred (see the  
Interrupts).  
Low power, dual-output, string DAC used to set the sensor  
bias voltage and low frequency excitation. Supports  
chronoamperometric and voltammetry electrochemical  
techniques.  
Low power potentiostat that applies the bias voltage to the  
sensor.  
Low power TIA that performs low bandwidth current  
measurements.  
High speed DAC and amplifier designed to generate  
excitation signals for impedance measurements up to  
200 kHz.  
Digital inputs/outputs (see the Digital Inputs/Outputs  
section).  
High speed TIA that supports wider signal bandwidth  
measurements.  
High performance ADC circuit (see the High Performance  
ADC Circuit section).  
CONFIGURATION REGISTERS  
Table 8. Configuration Registers Summary  
Address  
Name  
Description  
Reset  
Access  
R/W  
R/W  
0x00002000  
0x000022F0  
AFECON  
PMBW  
AFE configuration register  
Power modes configuration register  
0x00080000  
0x00088800  
Configuration Register—AFECON  
Address 0x00002000, Reset: 0x00080000, Name: AFECON  
Table 9. Bit Descriptions for AFECON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:22] Reserved  
Reserved.  
0x0  
0x0  
R
21  
DACBUFEN  
Enables the dc DAC buffer. This bit enables the buffer for the high impedance  
output of the dc DAC.  
R/W  
0
1
Disables the dc DAC buffer.  
Enables the dc DAC buffer.  
20  
19  
DACREFEN  
High speed DAC reference enable.  
Reference disable. Clear to 0 to disable the high speed DAC reference.  
Reference enable. Set to 1 to enable the high speed DAC reference.  
0x0  
0x1  
R/W  
R/W  
0
1
ALDOILIMITEN  
Analog low dropout (LDO) regulator current limiting. This bit enables AFE  
analog LDO buffer current limiting. If enabled, this feature limits the current  
drawn from the battery while charging the capacitor on the AVDD_REG pin.  
0
1
Analog LDO buffer current limiting enabled.  
Analog LDO buffer current limiting disabled.  
Reserved.  
[18:17] Reserved  
0x0  
0x0  
R
R/W  
16  
SINC2EN  
ADC output 50 Hz/60 Hz filter enable. This bit enables the 50 Hz/60 Hz supply  
rejection filter.  
0
1
Supply rejection filter disabled. Disables sinc2 (50 Hz/60 Hz digital filter).  
Disable this bit for impedance measurements.  
Supply rejection filter enabled. Enables sinc2 (50 Hz/60 Hz digital filter).  
15  
DFTEN  
DFT hardware accelerator enable. This bit enables the DFT hardware  
acceleration block.  
0x0  
R/W  
0
1
DFT hardware accelerator disabled.  
DFT hardware accelerator enabled.  
Rev. 0 | Page 23 of 130  
 
 
AD5940  
Data Sheet  
Bits  
14  
Bit Name  
WAVEGENEN  
Settings Description  
Waveform generator enable. This bit enables the waveform generator.  
Reset Access  
0x0  
R/W  
0
Waveform generator disabled. The waveform generator includes a sinusoid  
wave and a trapezoid wave.  
1
Waveform generator enabled.  
13  
12  
TEMPCONVEN  
ADC temperature sensor convert enable. This bit enables the temperature  
reading. If this bit is set to 1, a temperature reading is initiated. When the  
temperature conversion is complete, the result available in the TEMPSENSDAT  
register.  
Temperature reading disabled.  
Temperature reading enabled.  
ADC temperature sensor channel enable. This bit enables the temperature sensor.  
Temperature sensor disabled. The temperature sensor is powered down.  
Temperature sensor enabled. The temperature sensor is powered up.  
Temperature readings are not performed unless TEMPCONVEN = 1.  
0x0  
R/W  
0
1
TEMPSENSEN  
0x0  
R/W  
0
1
11  
10  
TIAEN  
High speed TIA enable. This bit enables the high speed TIA.  
High speed TIA disabled.  
High speed TIA enabled.  
0x0  
0x0  
R/W  
R/W  
0
1
INAMPEN  
Excitation instrumentation amplifier enable. This bit enables the instrumentation  
amplifier.  
0
1
Programmable instrumentation amplifier disabled.  
Programmable instrumentation amplifier enabled.  
9
EXBUFEN  
Excitation buffer enable. This bit enables the excitation buffer to drive the  
resistance being measured.  
0x0  
R/W  
0
1
Excitation buffer disabled.  
Excitation buffer enabled.  
8
7
ADCCONVEN  
ADCEN  
ADC conversion start enable.  
ADC idle. The ADC is powered on, but is not converting.  
ADC conversions enabled.  
ADC power enable. This bit enables the ADC.  
ADC disabled. The ADC is powered off.  
ADC enabled. The ADC is powered on. The ADCCONVEN bit must be set to 1 to  
start conversions.  
0x0  
0x0  
R/W  
R/W  
0
1
0
1
6
DACEN  
High speed DAC enable. This bit enables the high speed DAC, the corresponding  
reconstruction filter, and the attenuator. This bit only enables the analog block  
and does not include the DAC waveform generator.  
0x0  
R/W  
0
1
High speed DAC disabled.  
High speed DAC enabled.  
5
HSREFDIS  
Reserved  
High speed reference disable. This bit is the power-down signal of the high  
power reference. Set this bit to 1 to power down the reference.  
High power reference enabled.  
High power reference disabled.  
Reserved.  
0x0  
0x0  
R/W  
R
0
1
[4:0]  
Rev. 0 | Page 24 of 130  
Data Sheet  
AD5940  
Power Mode Configuration Register—PMBW  
Address 0x000022F0, Reset: 0x00088800, Name: PMBW  
The power mode configuration register, PMBW, configures the high and low power system modes for the high speed DAC and ADC circuits.  
Table 10. Bit Descriptions for PMBW Register  
Bits  
Bit Name Settings Description  
Reset  
0x8880  
0x0  
Access  
R
R/W  
[31:4] Reserved  
[3:2]  
Reserved.  
SYSBW  
System bandwidth configure. The reconstruction filter of the high speed DAC and the  
antialias filter bandwidth configuration of the ADC are configured by a single register.  
00 No action for system configuration. The reconstruction filter and antialias filter are  
automatically configured according to the waveform generator frequency.  
Waveform generator frequency = 50 kHz, reconstruction filter and antialias filter  
cutoff = 5 kHz.  
Waveform generator frequency = 50 kHz to 100 kHz, reconstruction filter and antialias  
filter cutoff = 100 kHz.  
Waveform generator frequency = 100 kHz to 200 kHz, reconstruction filter and antialias  
filter cutoff = 250 kHz.  
01 Sets cutoff frequency to 50 kHz, −3 dB bandwidth.  
10 Sets cutoff frequency to 100 kHz, −3 dB bandwidth.  
11 Sets cutoff frequency to 250 kHz, −3 dB bandwidth.  
Reserved.  
1
0
Reserved  
SYSHS  
0x0  
0x0  
R
R/W  
Sets the high speed DAC and ADC in high power mode.  
0
1
Low power mode. Clear this bit for impedance measurements of <80 kHz.  
High speed mode. Set this bit for impedance measurements of >80 kHz.  
Rev. 0 | Page 25 of 130  
AD5940  
Data Sheet  
SILICON IDENTIFICATION  
The AD5940 contains a chip ID register and a hardware  
revision register.  
always equal to 0x4144. The CHIPID register contains the  
device identifier (Bits[15:4] and silicon revision number  
(Bits[3:0]). The device identifier changes with silicon revision.  
These registers can be read by software to allow users to  
determine the revision of the silicon currently in use. ADIID is  
IDENTIFICATION REGISTERS  
Table 11. Identification Registers Summary  
Address  
Name  
ADIID  
CHIPID  
Description  
Reset  
Access  
0x00000400  
0x00000404  
Analog Devices Inc., identification register  
Chip identification register  
0x4144  
0x5502  
R
R
Analog Devices, Inc., Identification Register—ADIID  
Address 0x00000400, Reset: 0x4144, Name: ADIID  
Table 12. Bit Descriptions for ADIID Register  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
ADIID  
Analog Devices identifier. Always equal to 0x4144.  
0x4144  
R
Chip Identification Register—CHIPID  
Address 0x00000404, Reset: 0x5502, Name: CHIPID  
Table 13. Bit Descriptions for CHIPID Register  
Bits  
[15:4]  
[3:0]  
Bit Name  
Part ID  
Revision  
Settings  
Description  
Device identifier  
Silicon revision number  
Reset  
0x550  
0x3  
Access  
R
R
Rev. 0 | Page 26 of 130  
 
 
Data Sheet  
AD5940  
LOW POWER DAC  
The ultra low power DAC is a dual output string DAC that sets  
the bias voltage of the sensor. There are two output resolution  
formats: 12-bit resolution (VBIAS0) and 6-bit resolution (VZERO0).  
If the system clock is 16 MHz, LPDACDAT0 takes 10 clock cycles  
to update. If system clock is 32 kHz, LPDACDAT0 takes one clock  
cycle to update. Take these values into consideration when  
using the sequencer.  
In normal operation, the 12-bit output sets the voltage on the  
reference electrode and counter electrode pins, RE0 and CE0,  
via the potentiostat circuit. This voltage can also be sent to the  
The following code demonstrates how to correctly set the  
LPDACDAT0 value:  
V
BIAS0 pin by configuring the SW12 switch (see Figure 19). An  
SEQ_WR(REG_AFE_LPDACDAT0, 0x1234);  
external filtering capacitor can be connected to the VBIAS0 pin.  
SEQ_WAIT(10); // Wait 10 clocks for LPDADAT0  
to update  
The 6-bit output sets the voltage to the positive low power TIA  
internal node that connects to the ADC mux, LPTIA_P. The  
voltage on the sense electrode is equal to this pin. This voltage is  
referred to as VZERO0 and can be connected to the VZERO0 pin by  
configuring the SW13 switch (see Figure 19). In diagnostic  
mode, the VZERO0 output can also be connected to the high  
speed TIA by setting Bit 5 in the LPDACCON0 register to 1.  
SEQ_SLP();  
Optionally, the waveform generator described in the Waveform  
Generator section can be used as the DAC codes source for the  
low power DAC. When using the waveform generator with the  
low power DAC, ensure that the settling time specification of  
the low power DAC is not violated. The system clock source  
must be the 32 kHz oscillator. This feature is provided for ultra  
low power, always on, low frequency measurements, such as  
skin impedance measurements where the excitation signal is  
approximately 100 Hz and system power consumption needs to  
be <100 μA.  
The low power DAC reference source is a low power, 2.5 V  
reference.  
The low power DACs are made up of two 6-bit string DACs.  
The main 6-bit string DAC provides the VZERO0 DAC output,  
and is made up of 63 resistors. Each resistor is the same value.  
LOW POWER DAC SWITCH OPTIONS  
The main 6-bit string with the 6-bit subDAC provides the VBIAS0  
DAC output. In 12-bit mode, the MSBs select a resistor from the  
main string DAC. The top end of this resistor is selected as the  
top of the 6-bit subDAC, and the bottom end of the selected  
resistor is connected to the bottom of the 6-bit subDAC string,  
as shown in Figure 16.  
There are a number of switch options available that allow the  
user to configure the low power DAC for various modes of  
operation. These switches facilitate different use cases, such as  
electrochemical impedance spectroscopy. Figure 15 shows the  
available switches, labeled SW0 to SW4. These switches are  
controlled either automatically via Bit 5 in the LPDACCON0  
register, or individually via the LPDACSW0 register  
The resistor matching between the 12-bit and 6-bit DACs  
means 64 LSB12 (VBIAS0) is equal to one LSB6 (VZERO0).  
When LPDACCON0, Bit 5, is cleared, the switches are configured  
for normal mode. The SW2 switch and the SW3 switch are  
closed and the SW0, SW1, and SW4 switches are open. When  
LPDACCON0, Bit 5, is set, the switches are configured for  
diagnostic mode. The SW0 switch and the SW4 switch are  
closed and the remaining switches are open. This feature is  
designed for electrochemical use cases, such as continuous  
glucose measurement where, in normal mode, the low power  
TIA measures the sense electrode. Then, in diagnostic mode,  
the high speed TIA measures the sense electrode. By switching  
the VZERO0 voltage output from the low power TIA to the high  
speed TIA, the effective bias on the sensor, VBIAS0 − VZERO0, is  
unaffected. Using the high speed TIA facilitates high bandwidth  
measurements, such as impedance, ramp, and cyclic  
voltammetry.  
The output voltage range is not rail to rail. Rather, it ranges  
from 0.2 V to 2.4 V for the 12-bit output of the low power DAC.  
Therefore, the LSB value of the 12-bit output (12-BIT_  
DAC_LSB) is  
2.2 V  
212 1  
12-BIT_DAC_LSB =  
= 537.2 µV  
The 6-bit output range is from 0.2 V to 2.366 V. This range is  
not 0.2 V to 2.4 V because there is a voltage drop across R1 in  
the resistor string (see Figure 16). The LSB value of the 6-bit  
output (6-BIT_DAC_LSB) is  
6-BIT_DAC_LSB = 12-BIT_DAC_LSB × 64 = 34.38 mV  
To set the output voltage of the 12-bit DAC, write to  
LPDACDAT0, Bits[11:0]. To set the 6-bit DAC output voltage,  
write to LPDACDAT0, Bits[17:12].  
Use the LPDACSW0 register to control the switches individually.  
LPDACSW0, Bit 5, must be set to 1. Then, each switch can be  
individually controlled via LPDACSW0, Bits[4:0].  
Rev. 0 | Page 27 of 130  
 
 
AD5940  
Data Sheet  
VREF  
LPDACCON0  
[3]  
12-BIT  
0
1
SW4  
SW3  
V
BIAS  
+
PA  
LOW  
POWER  
DAC  
LPTIASW0  
[12]  
V
PIN  
BIAS0  
V
ZERO  
6-BIT  
0
1
+
LPTIA  
LPTIASW0  
[13]  
SW2  
SW1  
V
ZERO0  
PIN  
LPDACCON0  
[4]  
+
HSTIA  
SW0  
Figure 15. Low Power DAC Switches  
MAIN DAC  
VREF_2.5V  
TO TOP  
MUX  
2.4V  
TO BOTTOM  
MUX  
R1  
TO TOP  
MUX  
2.366V  
TO BOTTOM  
MUX  
SUB DAC  
SET BY  
LPDACDAT0  
[5:0]  
63R1  
TO TOP  
MUX  
62R1  
61R1  
TO BOTTOM  
MUX  
63R2  
62R2  
12-BIT DAC  
SELECTS 6MSBs  
VIA VOLTAGE  
ACROSS ONE  
OF THE MAIN  
DAC RESISTORS  
(LPDACDAT0DAT[11:6])  
12-BIT  
DAC  
OUTPUT  
MAIN  
DAC  
STRING  
(6-BITS)  
6-BIT DAC  
OUTPUT  
SET BY  
LPDACDAT0  
[11:0]  
SET BY  
LPDACDAT0  
[17:12]  
TO TOP  
MUX  
2R2  
R2  
TO BOTTOM  
MUX  
3R1  
2R1  
TO TOP  
MUX  
TO BOTTOM  
MUX  
TO TOP  
MUX  
1R1  
TO BOTTOM  
MUX  
0.2V  
Figure 16. Low Power DAC Resistor String  
Rev. 0 | Page 28 of 130  
 
 
Data Sheet  
AD5940  
RELATIONSHIP BETWEEN THE 12-BIT AND 6-BIT  
OUTPUTS  
V
BIAS  
+
DUAL  
OUTPUT  
DAC  
CE0  
RE0  
SE0  
PA  
V
ZERO  
The 12-bit and 6-bit outputs are mostly independent. However,  
the selected 12-bit value does have a loading effect on the 6-bit  
output that must be compensated for in user code, particularly  
when the 12-bit output level is greater than the 6-bit output.  
SENSOR  
When the 12-bit output is less than the 6-bit output,  
12-Bit DAC Output Voltage = 0.2 V + (LPDACDAT0,  
Bits[11:0] × 12-BIT_LSB_DAC)  
+
LPTIA  
6-Bit DAC Output Voltage = 0.2 V + (LPDACDAT0,  
Bits[17:12] × 6-BIT_LSB_DAC) – 12-BIT_LSB_DAC)  
R
TIA  
When the 12-bit output is ≥ the 6-bit output,  
Figure 17. Electrochemical Standard Configuration  
12-Bit DAC Output Voltage = 0.2 V + (LPDACDAT0,  
Bits[11:0] × 12-BIT_LSB_DAC)  
Electrochemical Impedance Spectroscopy  
6-Bit DAC Output Voltage = 0.2 V + (LPDACDAT0,  
Bits[17:12] × 6-BIT_LSB_DAC)  
In many electrochemical applications, there is significant value  
in carrying out a diagnostic measurement. A typical diagnostic  
technique is to carry out an impedance measurement on the  
sensor. For some sensor types, the dc bias on the sensor must be  
maintained during the impedance measurement. The AD5940  
facilitates this dc bias. To perform this measurement, set  
LPDACCON0, Bit 5 = 1. VZERO0 voltage is set to the input of the  
high speed TIA and the high speed DAC generates an ac signal.  
The level of the ac signal is set via the VBIAS0 voltage output of  
the low power DAC, and the voltage on SE0 is maintained by  
Therefore, in user code, it is recommended to add the  
following:  
12BITCODE = LPDACDAT0 [11:0];  
6BITCODE = LPDACDAT0 [17:12];  
if (12BITCODE < (6BITCODE *64))  
LPDACDAT [11:0] = (12BITCODE – 1);  
This code ensures that the 12-bit output voltage is equal to the  
6-bit output voltage when LPDACDAT0, Bits[11:0] = 64 ×  
LPDACDAT0, Bits[17:12].  
V
ZERO0 voltage. The high speed DAC dc buffers must also be  
enabled by setting AFECON, Bit 21.  
Low Power DAC in 4-Wire Isolated Impedance  
Measurements  
LOW POWER DAC USE CASES  
Electrochemical Amperometric Measurement  
For 4-wire isolated impedance measurements, such as body  
impedance measurements, a high frequency sinusoidal wave-  
form is applied to the sensor via the high speed DAC. A common-  
mode voltage is set across the sensor using the low power DAC  
6-bit output voltage, VZERO, and the low power TIA. This config-  
uration sets the common-mode voltage between AIN2 and AIN3  
(see Figure 18). To enable this common-mode voltage setup,  
SWMUX, Bit 3, must be set to 1. The VBIAS0 voltage output of  
the low power DAC also sets the common-mode voltage for the  
high speed DAC excitation buffer.  
In an electrochemical measurement, the 12-bit output sets the  
voltage on the reference electrode pin via the potentiostat circuit  
shown in Figure 17. The voltage on the CE0 pin and RE0 pin is  
referred to as VBIAS0. The 6-bit output sets the bias voltage on the  
LPTIA_P node; this output sets the voltage on the sense  
electrode pin, SE0. This voltage is referred to as VZERO0. The bias  
voltage on the sensor effectively becomes the difference  
between the 12-bit output and the 6-bit output.  
Rev. 0 | Page 29 of 130  
 
 
 
AD5940  
Data Sheet  
WAVEFORM  
GENERATOR  
HSDAC  
GAIN  
C
C
D5  
ISO1  
R
R
R
LIMIT  
ACCESS1  
CE0  
EXCITATION  
BUFFER  
N
P
P5  
V
BIAS  
ISO3  
AIN2  
ACCESS3  
LPDAC0  
V
ZERO  
SEQUENCER  
R
FILTER  
+
LSTIA  
10MΩ  
AIN4/  
LPF0  
C
LPF  
UNKNOWN Z  
16MHz  
OSC  
VCM  
10MΩ  
C
C
ISO4  
R
R
AIN3  
AIN1  
ACCESS4  
ADC/  
800kHz  
DFT = 2048  
FIFO  
N2  
1.1V  
+
HSTIA_P  
ISO2  
HSTIA  
ACCESS2  
T2  
T9  
R
TIA  
AD5940  
C
TIA  
Figure 18. Low Power DACs Used in a 4-Wire Impedance Measurement (HSTIA_P = Positive Output of High Speed TIA)  
LOW POWER DAC CIRCUIT REGISTERS  
Table 14. Low Power TIA and Low Power DAC Registers Summary  
Address  
Name  
Description  
Reset  
Access  
R/W  
R/W  
R/W  
R/W  
0x00002128  
0x00002124  
0x00002050  
0x0000235C  
0x00002120  
LPDACCON0  
LPDACSW0  
LPREFBUFCON  
SWMUX  
Low power DAC configuration register  
Low power DAC switch control register  
Low power reference configuration register  
Common-mode switch mux select register  
Low power DAC data output register  
0x00000002  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
LPDACDAT0  
R/W  
LPDACCON0 Register—LPDACCON0  
Address 0x00002128, Reset: 0x00000002, Name: LPDACCON0  
Table 15. Bit Descriptions for LPDACCON0 Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:7] Reserved  
Reserved.  
0x0  
0x0  
R
R/W  
6
5
WAVETYPE  
DACMDE  
Low power DAC data source. This bit determines the DAC waveform type.  
Direct from LPDACDAT0.  
Waveform generator.  
0
1
Low power DAC switch settings. This bit is the control bit for the low power DAC  
output switches.  
0x0  
R/W  
0
1
Low power DAC switches set for normal mode (default). Clear this bit to 0 for normal  
output switch operation. See the Low Power DAC section for more information.  
Low power DAC switches set for diagnostic mode. Set this bit to 1 for diagnostic  
mode switch settings. See the Low Power DAC section for more information.  
4
3
2
VZEROMUX  
VBIASMUX  
REFSEL  
VZERO0 voltage mux select. This bit selects the DAC output that connects to the VZERO0  
node. Ensure that the same value is written to the VBIASMUX bit.  
VZERO0, 6-bit (default). Clear this bit to 0 for the VZERO0 voltage output to be 6-bit.  
VZERO0, voltage 12-bit. Set this bit to 1 for the VZERO0 voltage output to be 12-bit.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
0
1
VBIAS0 voltage mux select. This bit selects the low power DAC output that connects  
to the VBIAS0 node. Ensure that the same value is written to the VZEROMUX bit.  
Output, 12-bit (default). The 12-bit DAC is connected to VBIAS0 voltage.  
Output, 6-bit. The 6-bit DAC is connected to VBIAS0 voltage.  
Low power DAC reference select.  
0
1
0
1
Selects the low power 2.5 V reference as the low power DAC reference source.  
Selects AVDD as the low power DAC reference source.  
Rev. 0 | Page 30 of 130  
 
 
Data Sheet  
AD5940  
Bits  
1
Bit Name  
PWDEN  
Settings Description  
Low power DAC power-down. This bit powers down the control bit for the low  
Reset Access  
0x1  
R/W  
power DAC.  
0
1
Low Power DAC powered on. Clear this bit to 0 to power on the low power DAC.  
Low Power DAC powered off (default). Powers down the low power DAC and opens  
all switches on the low power DAC output.  
0
RSTEN  
Enable writes to low power DAC. Enables writes to LPDACDAT0 register.  
0x0  
R/W  
0
1
Disables low power DAC writes (default). If this bit is cleared to 0, LPDACDAT0 is  
always 0. Writes to LPDACDAT0 are disabled.  
Enables low power DAC writes. Set this bit to 1 to enable writes to LPDACDAT0.  
Low Power DAC Switch Control Register—LPDACSW0  
Address 0x00002124, Reset: 0x00000000, Name: LPDACSW0  
Table 16. Bit Descriptions for LPDACSW0 Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:6] Reserved  
Reserved.  
0x0  
0x0  
R
5
4
LPMODEDIS  
Switch control. This bit controls the switches connected to the output of the low  
power DAC.  
R/W  
0
1
Low power DAC switch controlled by LPDACCON0, Bit 5 (default). Clear this bit to 0  
to control the switches connected to the output of the low power DAC via  
LPDACCON0, Bit 5.  
Low power DAC switches override. Set this bit to 1 to overrides LPDACCON0, Bit 5. The  
switches connected to the Low Power DAC output are controlled via LPDACSW0,  
Bits[4:0].  
Low power DAC SW4 switch control.  
Disconnects the direct connection of the VBIAS0 DAC output to the positive input of  
low power Amplifier 0 (default).  
Connects the VBIAS0 DAC voltage output directly to the positive input of low power  
Amplifier 0.  
Low power DAC SW3 switch control.  
Disconnects the VBIAS0 DAC voltage output from the low-pass filter/VBIAS0 pin.  
Connects the VBIAS0 DAC voltage output to the low-pass filter/VBIAS0 pin (default).  
Low power DAC SW2 switch control.  
Disconnects the VZERO0 DAC voltage output from the low-pass filter/VZERO0 pin.  
Connects the VZERO0 DAC voltage output to the low-pass filter/VZERO0 pin (default).  
Low power DAC SW1 switch control.  
SW4  
0x0  
0x1  
R/W  
0
1
3
2
1
SW3  
SW2  
SW1  
0
1
R/W  
R/W  
R/W  
0
1
0x1  
0x0  
0
1
Disconnects the direct connection of the VZERO0 DAC voltage output to the low  
power TIA positive input (default).  
Connects the VZERO0 DAC voltage output directly to the low power TIA positive  
input.  
0
SW0  
Low power DAC SW0 switch control.  
0x0  
0
1
Disconnects the VZERO0 DAC voltage output from the high speed TIA positive input  
(default).  
Connects the VZERO0 DAC voltage output to the high speed TIA positive input.  
R/W  
Low Power DAC Data Output Register—LPDACDAT0  
Address 0x00002120, Reset: 0x00000000, Name: LPDACDAT0  
Table 17. Bit Descriptions for LPDACDAT0 Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:18] Reserved  
[17:12] DACIN6  
Reserved.  
0x0  
0x0  
R
Low power DAC 6-bit output data register (1 LSB = 34.375 mV). A value between 0  
R/W  
and 0x3F sets the 6-bit output voltage.  
0
Sets output voltage to 0.2 V.  
111111 Sets output voltage to 2.366 V.  
Rev. 0 | Page 31 of 130  
AD5940  
Data Sheet  
Bits  
[11:0]  
Bit Name  
DACIN12  
Settings Description  
Reset Access  
Low power DAC 12-bit output data register (1 LSB = 537 µV). A value between 0 and 0x0  
0xFFF sets the 12-bit output voltage.  
Sets output voltage to 0.2 V.  
0xFFF Sets output voltage to 2.4 V.  
R/W  
0
Low Power Reference Control Register—LPREFBUFCON  
Address 0x00002050, Reset: 0x00000000, Name: LPREFBUFCON  
Table 18. Bit Descriptions for LPREFBUFCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:2] Reserved  
Reserved.  
0x0  
0x0  
R
R/W  
1
0
LPBUF2P5DIS  
Low power output band gap buffer. This bit is normally cleared to enable the  
low power reference buffer.  
Enables the low power 2.5 V buffer.  
Powers down the low power 2.5 V buffer.  
0
1
LPREFDIS  
Low power band gap power-down bit. This bit is normally cleared to enable the  
low power reference.  
0x0  
R/W  
0
1
Low power reference enabled.  
Low power reference powered down.  
Common-Mode Switch Mux Register—SWMUX  
Address 0x0000235C, Reset: 0x00000000, Name: SWMUX  
Table 19. Bit Descriptions for SWMUX Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:4] Reserved  
Reserved.  
0x0  
0x0  
R
R/W  
3
CMMUX  
Common-mode resistor select for AIN2 pin and AIN3 pin.  
0
1
Common-mode switch off.  
Enables the common-mode switches with a 10 MΩ resistor to set up the common-mode  
voltage on the AIN2 and AIN3 pins. The voltage is driven by the low power TIA and the  
AIN4/LPF0 pin.  
[2:0]  
Reserved  
Reserved.  
0x0  
R/W  
Rev. 0 | Page 32 of 130  
Data Sheet  
AD5940  
LOW POWER POTENTIOSTAT  
The potentiostat can also be used a standard buffer output to  
The AD5940 has a low power potentiostat that sets and controls  
the bias voltage of an electrochemical sensor. Typically, the  
output of the potentiostat is connected to CE0. The noninverting  
input is connected to VBIAS0 voltage and the inverting input is  
connected to RE0 as shown in Figure 17. For an electrochemical  
cell, the potentiostat maintains the bias voltage on the reference  
electrode (RE0) by sourcing or sinking current through the  
counter electrode (CE0).  
output VBIAS0 voltage onto CE0. To achieve this, the inverting  
input is connected to the output of the potentiostat by closing  
the SW10 switch, as shown in Figure 19.  
The output of the potentiostat can be connected to various  
package pins through the switch matrix (see the Programmable  
Switch Matrix section for details). There are a number of  
configurable switch options around the potentiostat to provide  
numerous configuration options (see Figure 19).  
Rev. 0 | Page 33 of 130  
 
AD5940  
Data Sheet  
LOW POWER TIA  
The AD5940 has a low power TIA channel that amplifies small  
current inputs to voltages to be measured by the ADC. The load  
resistor and gain resistor are internal and programmable. Select the  
Current-Limit Feature of the Low Power TIA and PA  
In addition to the protection diode, the low power TIA also has  
a built in current limiting feature. If the current sourced or sunk  
from the low power TIA is greater than the overcurrent limit  
protection specified in Table 1, the amplifiers clamp the current  
to this limit. If a sensor attempts to source or sink more than  
the overcurrent limit during startup, the amplifier clamps the  
output current. Do not use this feature more frequently or for  
longer than specified in Table 1.  
RTIA value that maximizes the ADC input range of 900 mV  
when PGA gain is 1 or 1.5. Refer to the Specifications section  
for the maximum voltage for other PGA settings.  
To calculate the required gain resistor, use the following  
equation:  
0.9 V  
RTIA  
IMAX  
=
Low Power TIA Force/Sense Feature  
The LPTIACON0[9:5] bits select different gain resistor values  
for the low power TIA, labeled as RTIA in Figure 19. The force  
and sense connections shown on the feedback path of the low  
power TIA are used to avoid voltage (I × R) drops on the switches,  
where:  
MAX is the expected full-scale input current.  
TIA is the required gain resistor.  
I
R
There are a number of switches around the low power TIA  
circuitry. The LPTIASW0 register configures these switches.  
Figure 19 shows the available switches. When the TIAGAIN bits  
(Bits[9:5]) in the LPTIACON0 register are set, these switches  
are closed automatically. When these switches are closed, there  
is a force/sense circuit with a low-pass filter resistor (RLPF) and a  
capacitor on the AIN4/LPF0 pin that acts as a resistor-capacitor  
(RC) delay circuit. The LPTIA0_P_LPF0 connects the output of  
the low power TIA low-pass filter to the ADC mux. Analog  
Devices recommends that the LPTIA0_P_LPF0 mux option be  
selected as the ADC input when using the low power TIA. It is  
recommended to connect a 100 nF capacitor between the  
RC0_0 pin and the RC0_1 pin to stabilize the low power TIA.  
which select different RTIA settings for the internal RTIA  
.
USING AN EXTERNAL RTIA  
To use an external RTIA resistor, take the following steps:  
1. Connect an external RTIA resistor across the RC0_0 pin and  
the RC0_1 pin.  
2. Clear LPTIACON0, Bits[9:5] = 0 to disconnect the internal  
RTIA resistor from the TIA output terminal.  
3. Close the SW9 switch by setting LPTIASW0, Bit 9 = 1.  
When using the internal RTIA reisistor, open the SW9 switch.  
4. Connect an external capacitor in parallel with an external  
RTIA resistor to maintain loop stability. The recommended  
value of this external capacitor is 100 nF.  
LOW POWER TIA PROTECTION DIODES  
RECOMMENDED SWITCH SETTINGS FOR VARIOUS  
OPERATING MODES  
Back to back protection diodes are connected in parallel with  
the RTIA resistor. These diodes are connected or disconnected by  
closing or opening SW0, controlled by LPTIASW0, Bit 0.These  
diodes are intended for use when switching RTIA gain settings to  
amplify small currents to prevent saturation of the TIA. These  
diodes have a leakage current specification dependent on the  
voltage across the diodes. If the differential voltage across the  
diodes is >200 mV, leakage can be >1 nA. If the voltage is  
>500 mV, leakage can be >1 μA.  
Table 20 describes the recommended switch settings in the low  
power potentiostat loop for various measurement types. For all  
measurement types, setting the switch to 1 closes the switch and  
setting the switch to 0 opens the switch. LPTIASW0[13:0]  
controls SW13 to SW0, as shown in Figure 19.  
Rev. 0 | Page 34 of 130  
 
 
 
 
Data Sheet  
AD5940  
Table 20. Recommended Switch Settings in Low Power Potentiostat Loop  
LPDACCON0,  
Bit 5  
LPDACSW0,  
Bits[5:0]  
LPTIASW0,  
Bits[13:0]  
Measurement Name  
Description  
Amperometric Mode  
0
0xXX1  
0x302C or 0b11  
0000 0010 1100  
Normal dc current measurement. External  
capacitors to the VBIAS0 and VZERO0 DACs are  
connected.  
Normal dc current measurement with the low  
power TIA back to back diode protection enabled.  
External capacitors to VBIAS0 and VZERO0 are  
connected.  
Normal dc current measurement with short  
switch protection enabled. SW1 is closed to  
connect the SE input to the output of the low  
power TIA. External capacitors to VBIAS0 and VZERO0  
are connected. This setting is useful if the external  
sensor must be charged after a power-up and  
many currents are flowing in and out of the SE0  
pin.  
Amperometric mode with SW6 configured to set  
sensorson the RE0 and SE0 electrodes to the VBIAS0  
level. Potentiostat inverting and low power TIA  
noninverting inputs shorted. This mode gives the  
best noise performance for zero bias voltage  
sensors.  
Amperometric Mode with  
Diode Protection  
0
0xXX1  
0x302D or 0b11  
0000 0010 1101  
Amperometric Mode with  
Short Switch Enabled  
0
0
0xXX1  
0x302E or 0b11  
0000 0010 1110  
Amperometric Mode for  
Zero Biased Sensor  
0xXX1  
0x306C or 0b11  
0000 0110 1100  
Amperometric Mode for  
Two-Lead Sensor  
Chronoamperometry (Low  
Power Pulse Test) Using  
Low Power TIA  
0
1
0xXX1  
0x32  
0x342C or 0b11  
0100 0010 1100  
0x0014 or 0b00  
0000 0001 0100  
Amperometric mode with SW10 closed to short  
CE0 to RE0 internally.  
VBIAS0 output generates pulse to CE0 electrode.  
Capacitors on low power DACs are disconnected.  
Low power TIA measures SE0 current response.  
Chronoamperometry (Full  
Power Pulse Test) Using  
High Speed TIA on SE0  
Voltammetry (Full Power  
Pulse Test) Using High  
Speed TIA  
1
1
0x31  
0x31  
0x0094 or 0b00  
0000 1001 0100  
VBIAS0 output generates pulse to CE0 electrode.  
Capacitors on VBIAS0 and VZERO0 are disconnected.  
High speed TIA measures SE0 current response.  
0x0094 or 0b00  
0000 1001 0100  
VBIAS0 output generates pulse to CE0 electrode.  
Capacitors on VBIAS0 and VZERO0 are disconnected.  
High speed TIA measures SE0 or DE0 current  
response. High speed TIA resistors and switches  
are configured separately.  
Potentiostat in unity-gain mode, output to CE0  
pin. Low power TIA in unity-gain mode, output to  
RC0_1 pin. This mode is useful for checking the  
VBIAS0 or VZERO0 DAC outputs.  
Potentiostat and Low  
Power TIA in Unity-Gain  
Mode (Test Mode)  
0
0xXX1  
0x04A4 or 0b00  
0100 1010 0100  
1 0xXX = don’t care.  
Rev. 0 | Page 35 of 130  
 
AD5940  
Data Sheet  
V
V
VREF_2V5  
AIN4_LPF0  
BIAS0  
ZERO0  
LPDACSW0[3]  
LPDACSW0[1]  
SW12  
SW13  
LPBUF  
RE0  
OPEN: LPDACCON0[5] = 1  
AND LPDACSW0[4] = 0  
LPDACCON0[3]  
12-BIT  
SW15  
+
PA  
CE0  
LPDAC0  
V
ZERO0  
SW2  
6-BIT  
LPREF  
LPDACCON0[4]  
SW3  
SW8  
LPDACSW0[2]  
SW10  
SW6  
10k  
10kΩ  
RE0  
SE0  
SW4  
+
LPTIA0_P  
_LPF0  
SW11  
R
LOAD  
LPTIA  
SW5  
SW9  
R
LPF  
LPTIACON0  
[12:10]  
LPTIACON0  
[15:13]  
SW7  
ADC  
MUX  
R
TIA  
SW1  
LPTIACON0  
[9:5]  
FORCE/SENSE  
RC0_0  
RC0_1  
SW0  
ADCVBIAS_CAP (1.11V)  
VZERO0  
TSWFULLCON[4]  
T5  
LPDACSW0[0]  
1
HSTIA  
SE0  
TSWFULLCON[4]  
T7  
1
FOR DETAILS ON THE HSTIA, SEE THE HSTIA CIRCUITS CHAPTER OF THIS DOCUMENT.  
Figure 19. Low Bandwidth Loop Switches  
Rev. 0 | Page 36 of 130  
 
Data Sheet  
AD5940  
LOW POWER TIA CIRCUITS REGISTERS  
Table 21. Low Power TIA and DAC Registers Summary  
Address  
0x000020E4  
0x000020EC  
Name  
LPTIASW0  
LPTIACON0  
Description  
Low power TIA switch configuration  
Low power TIA control bits, Channel 0  
Reset  
0x00000000  
0x00000003  
Access  
R/W  
R/W  
Low Power TIA Switch Configuration Register—LPTIASW0  
Address 0x000020E4, Reset: 0x00000000, Name: LPTIASW0  
Table 22. Bit Descriptions for LPTIASW0 Register  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
[31:16] Reserved  
Reserved.  
0x0  
0x0  
R
15  
RECAL  
SW15 switch control, active high.  
Opens switch.  
Closes switch.  
R/W  
0
1
14  
13  
Reserved  
SW13  
Reserved.  
SW13 switch control, active high.  
Opens switch.  
0x0  
0x0  
R/W  
R/W  
0
1
Closes switch.  
12  
11  
10  
9
SW12  
SW11  
SW10  
SW9  
SW8  
SW7  
SW6  
SW5  
SW4  
SW3  
SW2  
SW12 switch control, active high.  
Opens switch.  
Closes switch.  
SW11 switch control, active high.  
Opens switch.  
Closes switch.  
SW10 switch control, active high.  
Opens switch.  
Closes switch.  
SW9 switch control, active high.  
Opens switch.  
Closes switch.  
SW8 switch control, active high.  
Opens switch.  
Closes switch.  
SW7 switch control, active high.  
Opens switch.  
Closes switch.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
0
1
0
1
0
1
8
0
1
7
0
1
6
SW6 switch control, active high.  
Opens switch.  
Closes switch.  
SW5 switch control, active high.  
Opens switch.  
Closes switch.  
SW4 switch control, active high.  
Opens switch.  
Closes switch.  
SW3 switch control, active high.  
Opens switch.  
Closes switch.  
0
1
5
0
1
4
0
1
3
0
1
2
SW2 switch control, active high.  
Opens switch.  
Closes switch.  
0
1
Rev. 0 | Page 37 of 130  
 
AD5940  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
1
SW1  
SW1 switch control, active high.  
Opens switch.  
Closes switch.  
0x0  
R/W  
0
1
0
SW0  
SW0 switch control, active high.  
Opens switch.  
Closes switch.  
0x0  
R/W  
0
1
Low Power TIA Control Bits, Channel 0 Register—LPTIACON0  
Address 0x000020EC, Reset: 0x00000003, Name: LPTIACON0  
Table 23. Bit Descriptions for LPTIACON0 Register  
Bits  
Bit Name Settings Description  
Reset Access  
[31:16] Reserved  
[15:13] TIARF  
Reserved.  
0x0  
R
R/W  
These bits set the low-pass filter resistor (RLPF) and configure the low power TIA output 0x0  
low-pass filter cutoff frequency.  
0
1
Disconnects the TIA output from the low-pass filter pin (LPF0), which is useful for  
diagnostics where a fast response is required from the ADC. This setting disconnects  
the low power TIA output from the low-pass filter capacitor.  
Bypass resistor; 0 Ω option.  
10 20 kΩ.  
11 100 kΩ.  
100 200 kΩ.  
101 400 kΩ.  
110 600 kΩ.  
111 1 MΩ; recommended value for optimal dc current measurement performance. This  
setting is the lowest cutoff frequency setting for the low-pass filter.  
[12:10] TIARL  
These bits set RLOAD  
.
0x0  
R/W  
0
1
0 Ω.  
10 Ω.  
10 30 Ω.  
11 50 Ω.  
100 100 Ω.  
101 1.6 kΩ; RTIA must be ≥ 2 kΩ.  
110 3.1 kΩ; RTIA must be ≥ 4 kΩ.  
111 3.6 kΩ; RTIA must be ≥ 4 kΩ.  
[9:5]  
TIAGAIN  
These bits set the RTIA  
.
0x0  
R/W  
0
1
Disconnects the RTIA  
.
200 Ω. The RTIA is combination of RLOAD and a fixed series 110 Ω. Assumes RLOAD = 10 Ω.  
Set by the TIARL bits. RTIA = 100 Ω − RLOAD + 110 Ω. The fixed overall RTIA = 200 Ω.  
10 1 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 1 kΩ. If RLOAD > 100 Ω, RTIA = 1 kΩ −  
(RLOAD − 100 Ω).  
11 2 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 2 kΩ. If RLOAD > 100 Ω. RTIA = 2 kΩ −  
(RLOAD − 100 Ω).  
100 3 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 3 kΩ. If RLOAD > 100 Ω. RTIA = 3 kΩ −  
(RLOAD − 100 Ω).  
101 4 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 4 kΩ. If RLOAD > 100 Ω. RTIA = 4 kΩ −  
(RLOAD − 100 Ω).  
110 6 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 6 kΩ. If RLOAD > 100 Ω. RTIA = 6 kΩ −  
(RLOAD − 100 Ω).  
111 8 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 8 kΩ. If RLOAD > 100 Ω. RTIA = 8 kΩ −  
(RLOAD − 100 Ω).  
1000 10 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 10 kΩ. If RLOAD > 100 Ω. RTIA  
10 kΩ − (RLOAD − 100 Ω).  
=
Rev. 0 | Page 38 of 130  
Data Sheet  
AD5940  
Bits  
Bit Name Settings Description  
Reset Access  
1001 12 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 12 kΩ. If RLOAD > 100 Ω. RTIA  
12 kΩ − (RLOAD − 100 Ω).  
=
1010 16 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 16 kΩ. If RLOAD > 100 Ω. RTIA  
16 kΩ − (RLOAD − 100 Ω).  
=
1011 20 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 20 kΩ. If RLOAD > 100 Ω. RTIA  
20 kΩ − (RLOAD − 100 Ω).  
1100 24 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 24 kΩ. If RLOAD > 100 Ω. RTIA  
24 kΩ − (RLOAD − 100 Ω).  
1101 30 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 30 kΩ. If RLOAD > 100 Ω. RTIA  
30 kΩ − (RLOAD − 100 Ω).  
1110 32 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 32 kΩ. If RLOAD > 100 Ω. RTIA  
32 kΩ − (RLOAD − 100 Ω).  
=
=
=
=
1111 40 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 40 kΩ. If RLOAD >100 Ω. RTIA  
40 kΩ − (RLOAD − 100 Ω).  
=
10000 48 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 48 kΩ. If RLOAD > 100 Ω. RTIA  
48 kΩ − (RLOAD − 100 Ω).  
10001 64 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 64 kΩ. If RLOAD > 100 Ω. RTIA  
64 kΩ − (RLOAD − 100 Ω).  
10010 85 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 85 kΩ. If RLOAD > 100 Ω. RTIA  
85 kΩ − (RLOAD − 100 Ω).  
10011 96 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 96 kΩ. If RLOAD > 100 Ω. RTIA  
96 kΩ − (RLOAD − 100 Ω).  
=
=
=
=
10100 100 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 100 kΩ. If RLOAD > 100 Ω. RTIA  
100 kΩ − (RLOAD − 100 Ω).  
10101 120 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 120 kΩ. If RLOAD > 100 Ω. RTIA  
120 kΩ − (RLOAD − 100 Ω).  
10110 128 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 128 kΩ. If RLOAD > 100 Ω. RTIA  
128 kΩ − (RLOAD − 100 Ω).  
10111 160 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 160 kΩ. If RLOAD > 100 Ω. RTIA  
160 kΩ − (RLOAD − 100 Ω).  
11000 196 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 196 kΩ. If RLOAD > 100 Ω. RTIA  
196 kΩ − (RLOAD − 100 Ω).  
11001 256 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 256 kΩ. If RLOAD > 100 Ω. RTIA  
256 kΩ − (RLOAD − 100 Ω).  
11010 512 kΩ. If RLOAD ≤ 100 Ω, RTIA = (100 Ω − RLOAD) + 512 kΩ. If RLOAD > 100 Ω. RTIA  
512 kΩ − (RLOAD − 100 Ω).  
=
=
=
=
=
=
=
[4:3]  
IBOOST  
Current boost control.  
00 Normal mode.  
0x0  
R/W  
01 Increase amplifier output stage current to quickly charge external capacitor load. This  
setting is intended for use with high current sensors.  
10 Double TIA and PA overall quiescent current and increase amplifier bandwidth. This  
setting is useful for diagnostic tests.  
11 Double TIA and PA overall quiescent current and increase output stage current. This  
setting increases amplifier bandwidth and output current capability.  
2
HALFPWR  
Half power mode select. This control bit reduces the active power consumption of the 0x0  
TIA and PA for Sensor Channel 0.  
R/W  
0
1
Normal mode (default).  
Reduces PA and TIA current by half.  
1
0
PAPDEN  
TIAPDEN  
PA power-down. Low power Potentiostat power-down control bit.  
Power-up.  
Power-down.  
0x1  
0x1  
R/W  
R/W  
0
1
TIA power-down. Low power TIA power-down control bit.  
0
1
Power-up.  
Power-down.  
Rev. 0 | Page 39 of 130  
AD5940  
Data Sheet  
HIGH SPEED DAC CIRCUITS  
The 12-bit high speed DAC generates an ac excitation signal  
when measuring the impedance of an external sensor. Control  
the DAC output signal directly by writing to a data register or  
by using the automated waveform generator block. The high  
speed DAC signal is fed to an excitation amplifier designed  
specifically to couple the ac signal on top of the normal dc  
bias voltage of a sensor.  
High Power Mode  
High power mode increases the bandwidth supported by the  
high speed DAC amplifiers. Use high power mode when the  
high speed DAC frequency is greater than 80 kHz. To enter high  
power mode, a number of register writes are required.  
To configure the high speed DAC for high power mode, take  
the following steps:  
HIGH SPEED DAC OUTPUT SIGNAL GENERATION  
1. Set the PMBW register, Bit 0 = 1. Power consumption is  
increased, but the output signal bandwidth increases to a  
maximum of 200 kHz. In high power mode, the system  
clock to the DAC and the ADC is 32 MHz.  
2. Ensure that CLKSEL, Bits[1:0] select a 32 MHz clock  
source. For example, to select internal high speed oscillator  
set CLKSEL, Bits[1:0] (SYSCLKSEL) = 00. Ensure that the  
system clock divide ratio is 1 (CLKCON0, Bits[5:0] = 0  
or 1).  
There are two ways of setting the output voltage of the high  
speed DAC:  
A direct write to the DAC code register, HSDACDAT. This  
is a 12-bit register where the most significant bit (MSB) is a  
sign bit. Writing 0x800 results in a 0 V output. Writing  
0x200 results in negative full-scale, and writing 0xE00  
results in positive full-scale.  
Use the automatic waveform generator. The waveform  
generator can be programmed to generate fixed frequency,  
fixed amplitude signals including, sine, trapezoid and  
square wave signals. If the user selects the sine wave, options  
exist to adjust the offset and phase of the output signal.  
3. If the internal high speed oscillator is selected as the system  
clock source, ensure that the 32 MHz option is selected.  
Clear HSOSCCON, Bit 2 = 0.  
Hibernate Mode  
When the AD5940 enters hibernate mode, the clocks to the  
high speed DAC circuits are clock gated to save power. When in  
active mode and the high speed DAC is not in use, disable the  
clocks to save power.  
POWER MODES OF THE HIGH SPEED DAC CORE  
The reference source of the high speed DAC is an internal  
1.82 V precision reference voltage (VREF_1V82 pin). There are  
three basic modes of operation for the high speed DAC that trade  
off between power consumption vs. output speed: low power  
mode, high power mode, and hibernate mode. The high speed  
DAC can also be placed into hibernate mode when inactive.  
HIGH SPEED DAC FILTER OPTIONS  
The output stage of the high speed DAC features a configurable  
reconstruction filter. The configuration of the reconstruction  
filter is dependent on the output signal frequency of the DAC.  
Low Power Mode  
Low power mode is used when the high speed DAC output  
signal frequency is <80 kHz.  
Bits[3:2] in the PMBW register configure the 3 dB cutoff  
frequency of the reconstruction filter. Ensure that the cutoff  
frequency is higher than the required DAC output frequency.  
When configuring the high speed DAC for low power mode,  
take the following steps:  
PMBW, Bits[3:2] = 01 for optimal performance if the DAC  
update frequency is ≤50 kHz.  
PMBW, Bits[3:2] = 10 for optimal performance if the DAC  
update rate is ≤100 kHz.  
PMBW, Bits[3:2] = 11 for optimal performance if the DAC  
update rate is up to 250 kHz.  
1. Clear the PMBW register (Bit 0 = 0).  
2. In this mode, the system clock to the high speed DAC and  
the ADC is 16 MHz.  
3. Ensure that CLKSEL, Bits[1:0] = 0 to select a 16 MHz,  
internal, high frequency oscillator clock source. Ensure the  
system clock divide ratio is 1 (CLKCON0, Bits[5:0] = 0  
or 1.  
4. If the internal high speed oscillator is selected as the system  
clock source, ensure that the 16 MHz option is selected. Set  
HSOSCCON, Bit 2 = 1.  
V
FROM  
BIAS  
LOW POWER DAC  
DAC CODE DIRECT  
HIGH  
OUTPUT  
D
+
PROGRAMMABLE  
GAIN  
RECONSTRUCTION  
FILTER  
EXCITATION  
AMPLIFIER  
SPEED  
DAC  
AMPLIFIER  
WAVEFORM  
GENERATOR  
V
FROM  
ZERO  
LOW POWER DAC  
Figure 20. High Speed DAC Block  
Rev. 0 | Page 40 of 130  
 
 
 
 
Data Sheet  
AD5940  
HIGH SPEED DAC OUTPUT ATTENUATION  
OPTIONS  
V
BIAS0  
BIAS VOLTAGE  
(UP TO 600mV)  
Scaling options to modify the output signal amplitude to the  
sensor are present for the high speed DAC output. The output of  
the 12-bit DAC string is ±±33 mꢀ before any attenuation or  
gain. At the DAC output, there is a gain stage of 1 or 3.2. At the  
PGA stage, there are gain options of 2 or 3.25. Table 28  
describes the available gain options and the corresponding  
output voltage ranges.  
V
ZERO0  
Figure 22. Sensor Excitation Signal  
COUPLING AN AC SIGNAL FROM THE HIGH SPEED  
DAC TO THE DC LEVEL SET BY THE LOW POWER  
DAC  
The AD5943 contains a low power potentiostat channel to  
configure an electrochemical sensor. In normal operation, the  
bias voltage of the sensor between the RE3 and SE3 electrodes is  
set by the low power DAC outputs, ꢀBIAS3 and ꢀZERO3, where  
HIGH SPEED DAC EXCITATION AMPLIFIER  
Figure 21 illustrates the operation of the excitation amplifier  
and its connection to the switch matrix. There are four inputs to  
the excitation amplifier: DACP, DACN, positive (P), and  
negative (N). The high speed DAC is a differential output DAC  
where the positive and negative inputs feed directly to the  
excitation amplifier. The voltage difference between these two  
outputs sets the peak-to-peak voltage on the output waveform.  
The P and N inputs maintain the stability of the excitation  
amplifier by providing a feedback path from the sensor, and set  
the common-mode for the high speed DAC output. Under  
normal circumstances, the common mode is set by the ꢀZERO3  
output connected to the N input. There is also an option to  
apply a dc bias voltage to the sensor and couple an ac signal  
onto this bias, as shown in Figure 22.  
BIAS3 sets the bias to the potentiostat and the voltage on the  
CE3 pin. ꢀZERO3 sets the bias voltage on the low power TIA and the  
SE3 pin. The high speed DAC circuit is not used. However, for  
ac impedance measurements, the output of the excitation  
amplifier must be connected to the CE3 pin. The potentiostat  
must be disconnected so that the entire signal comes from the  
excitation amplifier output. The high speed TIA is connected to  
the SE3 pin and the low power TIA is disconnected. The sensor  
bias must then be set by the high speed TIA and the excitation  
amplifier.  
To set the sensor bias, take the following steps:  
An option is available if the sensor requires a bias voltage  
between the counter and sense electrode. ꢀBIAS3 sets the voltage  
on the counter electrode (the common-mode voltage of the  
high speed DAC) and ꢀZERO3 sets the voltage on the sense  
electrode. ꢀZERO3 must be connected to the positive terminal on  
the high speed TIA (HSTIACON, Bits[1:3] = 31). The dc buffers  
of the DAC must also be enabled by setting AFECON, Bit 21.  
With this configuration, a waveform can be achieved, as shown  
in Figure 22. The bias across the sensor is effectively the  
1. The ZERO3 output of the low power DAC must be  
connected to the noninverting input of the high speed TIA  
(HSTIACON, Bits[1:3] = 31), which sets the voltage on the  
SE3 pin, or whichever pin is connected to the inverting  
input of the high speed TIA via the switch matrix.  
2. The DAC dc buffers must be enabled (AFECON, Bit 21 = 1).  
Figure 21 shows the connection of the dc buffers to the  
excitation amplifier. These buffers enable the low power  
DAC outputs to drive the required bias voltage to the  
excitation amplifier and the high speed TIA.  
difference between ꢀBIAS3 and ꢀZERO3  
.
±. The dc bias is the difference between ꢀBIAS3 and ꢀZERO3  
.
Note that the high speed DAC signal chain must never be used  
in conjunction with the low power TIA. The high speed DAC  
can become unstable, leading to incorrect measurements.  
AVOIDING INCOHERENCY ERRORS BETWEEN  
EXCITATION AND MEASUREMENT FREQUENCIES  
DURING IMPEDANCE MEASUREMENTS  
The following settings are recommended to avoid incoherency  
errors between excitation and measurement frequencies during  
impedance measurements:  
R
R
DACP  
DACN  
D
+
12-BIT  
DAC  
PGA  
RCF  
The Hanning window is always on (DFTCON, Bit 3 = 1).  
In low power mode, the high speed DAC update rate is  
16 MHz or 27 MHz (HSDACCON, Bits[8:1] = 3x1B). In  
high power mode, the high speed DAC update rate is  
±2 MHz or 7 MHz (HSDACCON, Bits[8:1] = 3x7).  
In low power mode, the ADC sampling rate is 833 kSPS  
(high frequency oscillator = 16 MHz). In high power  
mode, the ADC sampling rate is 1.6 MSPS (high frequency  
oscillator = ±2 MHz).  
P
N
2R  
2R  
+
+
V
BIAS0  
AFECON[21]  
+
+
V
ZERO0  
DAC DC BUFFERS  
Figure 21. High Speed DAC Excitation Amplifier  
Rev. 0 | Page 41 of 130  
 
 
 
 
 
 
AD5940  
Data Sheet  
Note that disabling the Hanning window can result in degraded  
performance.  
The gain calibration is optional and adjusts the peak-to-peak  
voltage swing. Alternatively, adjust the voltage swing by  
changing the maximum and/or minimum DAC code.  
HIGH SPEED DAC CALIBRATION OPTIONS  
The high speed DAC transfer function is shown in Figure 23.  
Figure 24 shows how the common-mode voltage is set by the  
noninverting input of the high speed TIA. This voltage must be  
set by the low power DAC VZERO0 output or by the internal  
1.11 V ADC VBIAS0 voltage.  
The high speed DAC is not calibrated during production testing  
by Analog Devices. This section describes the steps to calibrate  
the high speed DAC for all gain settings and in both high power  
and low power modes.  
Calibrate the high speed DAC if the DAC is needed to generate  
an excitation signal to a sensor. If an offset error exists on the  
excitation signal, and a current or voltage output requires  
measurement, the excitation signal can exceed the headroom of  
the selected TIA, ADC input buffer, or PGA setting.  
DAC CODES  
OUTPUT VOLTAGE  
0xE00  
(POSITIVE  
FULL SCALE)  
DAC VOLTAGE =  
COMMON-MODE VOLTAGE  
POSITIVE FULL SCALE  
OFFSET ERROR  
Figure 24 shows the circuit diagram for high speed DAC  
calibration. A precision external resistor, RCAL, is required  
between the RCAL0 pin and the RCAL1 pin. To calibrate the  
offset, the differential voltage measured across the RCAL resistor  
must be 0 V.  
0x800  
(ZERO SCALE)  
DAC VOLTAGE =  
COMMON-MODE VOLTAGE  
0x200  
(NEGATIVE  
FULL SCALE)  
DAC VOLTAGE =  
COMMON-MODE VOLTAGE  
NEGATIVE FULL SCALE  
Calibrate the high speed DAC with the required bit settings  
(HSDACCON, Bit 12 and Bit 0). For example, if the DAC is  
calibrated with HSDACCON, Bit 12 = 0 and HSDACCON,  
Bit 0 = 0, and the user changes HSDACCON, Bit 12 to 1, an  
offset error is introduced. Either the DACOFFSET register or  
DACOFFSETHS register must be recalibrated for the new  
output range.  
Figure 23. High Speed DAC Transfer Function  
The AD5940 software development kit includes sample  
functions that demonstrate how to use the ADC to measure the  
differential voltage across the RCAL resistor and how to adjust the  
appropriate calibration register until the differential voltage is  
~0 V. The AD5940 software development kit is available for  
download from the AD5940 product page.  
PMBW[0]  
PMBW[0]  
0
1
0
1
DACOFFSETATTEN  
DACOFFSETATTENHS  
DACOFFSET  
DACOFFSETHS  
VREF_1V82  
1.0V  
G = 1 OR G = 0.2  
HSDACCON[0]  
fC = 50kHz/100kHz/  
HSDACCON[0]  
0
1
DACGAIN  
250kHz  
P
+
HIGH SPEED  
DAC  
HSDACDAT[11:0]  
RCAL0  
D
EXCITATION  
AMP  
PGA  
RCF  
N
0.2V  
G = 1 OR 0.25  
HSDACCON  
[12]  
R
DAC CLK  
CAL  
RCAL1  
NEGATIVE NODE  
ADC MEASURES  
DIFFERENTIAL VOLTAGE  
BETWEEN P-NODES AND  
N-NODES TO CALIBRATE DAC  
HSTIACON[1:0]  
SETS  
POSITIVE  
NODE  
VBIAS_CAP  
(1.11V)  
COMMON-MODE  
VOLTAGE  
MUX  
NEGATIVE  
ADC  
V
NODE  
ZERO  
TO ADC  
MUX  
+
HSTIA  
Figure 24. High Speed DAC Calibration  
Rev. 0 | Page 42 of 130  
 
 
 
Data Sheet  
AD5940  
HIGH SPEED DAC CIRCUIT REGISTERS  
Table 24. High Speed DAC Control Registers Summary  
Address  
Name  
Description  
Reset  
Access  
R/W  
R/W  
0x00002010  
0x00002048  
HSDACCON  
HSDACDAT  
High speed DAC configuration  
High speed DAC code register  
0x0000001E  
0x00000800  
High Speed DAC Configuration Register—HSDACCON  
Address 0x00002010, Reset: 0x0000001E, Name: HSDACCON  
Table 25. Bit Descriptions for HSDACCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:13] Reserved  
Reserved.  
0x0  
0x0  
R
R/W  
12  
INAMPGNMDE  
Excitation amplifier gain control. This bit selects the gain of the excitation amplifier.  
0
1
Gain = 2.  
Gain = 0.25.  
Reserved.  
[11:9]  
[8:1]  
Reserved  
Rate  
0x0  
0xF  
R/W  
R/W  
DAC update rate. DAC update rate = ACLK/HSDACCON, Bits[8:1]. ACLK can be a  
high speed oscillator at 16 MHz or 32 MHz, or a low power oscillator at 32 kHz.  
0
ATTENEN  
PGA stage gain attenuation. Enable the PGA attenuator at the output of the DAC.  
DAC attenuator disabled. Gain of 1 mode.  
DAC attenuator enabled. Gain of 0.2 mode.  
0x0  
R/W  
0
1
High Speed DAC Code Register—HSDACDAT  
Address 0x00002048, Reset: 0x00000800, Name: HSDACDAT  
Table 26. Bit Descriptions for HSDACDAT Register  
Bits  
[31:12] Reserved  
[11:0] DACDAT  
Bit Name Settings Description  
Reset  
0x0  
0x800 R/W  
Access  
R
Reserved.  
DAC code, written directly to the DAC. The minimum code is 0x200 and the maximum  
code is 0xE00. Midscale (0x800) corresponds to an output voltage of 0 V.  
Table 27. High Speed DAC Calibration Registers Summary  
Address  
Name  
Description  
Reset  
Access  
0x00002230  
0x00002260  
0x00002264  
0x00002268  
0x000022B8  
0x000022BC  
CALDATLOCK  
DACGAIN  
DACOFFSETATTEN  
DACOFFSET  
DACOFFSETATTENHS  
DACOFFSETHS  
Calibration data lock register  
DAC gain register  
DAC offset with attenuator enabled (low power mode) register  
DAC offset with attenuator disabled (low power mode) register  
DAC offset with attenuator enabled (high speed mode) register  
DAC offset with attenuator disabled (high speed mode) register  
0xDE87A5A0  
0x00000800  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 28. High Speed DAC Calibration Register Assignment  
Relevant Calibration Registers  
Low Power Mode and  
High Speed Mode  
HSDACCON Register  
Bit Settings  
Typical Output Range (mV),  
Code 0x200 to Code 0xE00  
Low Power Mode High Speed Mode  
DACOFFSET  
DACOFFSET  
DACOFFSETHS  
DACOFFSETHS  
DACGAIN  
DACGAIN  
Bit 12 = 0 and Bit 0 = 0  
Bit 12 = 1 and Bit 0 = 0  
Bit 12 = 1 and Bit 0 = 1  
Bit 12 = 0 and Bit 0 = 1  
607  
75  
15.14  
121.2  
DACOFFSETATTEN DACOFFSETATTENHS DACGAIN  
DACOFFSETATTEN DACOFFSETATTENHS DACGAIN  
Rev. 0 | Page 43 of 130  
 
 
AD5940  
Data Sheet  
Calibration Data Lock Register—CALDATLOCK  
Address 0x00002230, Reset: 0xDE87A5A0, Name: CALDATLOCK  
Table 29. Bit Descriptions for CALDATLOCK Register  
Bits  
Bit Name Settings  
Description  
Reset  
Access  
[31:0] Key  
Password for the calibration data registers. This password prevents the  
overwriting of data after the calibration phase.  
0xDE87A5A0 R/W  
Write this value to unlock the calibration registers.  
0xDE87A5AF  
DAC Gain Register—DACGAIN  
Address 0x00002260, Reset: 0x00000800, Name: DACGAIN  
Protected by CALDATLOCK. Valid for all settings of HSDACCON, Bit 12 and HSDACCON, Bit 0.  
Table 30. Bit Descriptions for DACGAIN  
Bits  
Bit Name  
Reserved  
Value  
Settings  
Description  
Reset  
0x0  
Access  
[31:12]  
[11:0]  
Reserved.  
R
High speed DAC gain correction factor. Unsigned number.  
0x800  
R/W  
0x000 Maximum negative gain adjustment occurs.  
0x800 No gain adjustment.  
0xFFF Maximum positive gain adjustment occurs.  
DAC Offset with Attenuator Enabled (Low Power Mode) Register—DACOFFSETATTEN  
Address 0x00002264, Reset: 0x00000000, Name: DACOFFSETATTEN  
The LSB adjustment is typically 4.9 μV for HSDACCON. Bit 12 = 1 and HSDACCON, Bit 0 = 1. The LSB adjustment is typically 24.7 μV  
for HSDACCON, Bit 12 = 1 and HSDACON, Bit 0 = 0.  
Table 31. Bit Descriptions for DACOFFSETATTEN  
Bits  
[31:12] Reserved  
[11:0] Value  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
DAC offset correction factor. This value is a signed number represented in twos  
complement format with 0.5 LSB precision. Used when the attenuator is enabled.  
R/W  
0x7FF 210 − 0.5. Maximum positive adjustment that results in a positive full scale/2 − 0.5 LSB  
adjustment.  
0x001 0.5. Results in a 0.5 LSB adjustment.  
0x000 0. No offset adjustment.  
0xFFF −0.5. Results in a −0.5 LSB adjustment.  
0x800 −210. Maximum negative adjustment that results in negative full scale/2 adjustment.  
DAC Offset with Attenuator Disabled (Low Power Mode Register)—DACOFFSET  
Address 0x00002268, Reset: 0x00000000, Name: DACOFFSET  
The LSB adjustment is typically 197.7 μV for HSDACCON, Bit 12 = 0 and HSDACCON, Bit 0 = 0. The LSB adjustment is typically  
39.5 μV for HSDACCON, Bit 12 = 0 and HSDACCON, Bit 0 = 1.  
Table 32. Bit Descriptions for DACOFFSET Register  
Bits  
[31:12] Reserved  
[11:0] Value  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
R/W  
DAC offset correction factor. This value is a signed number represented in twos  
complement format with 0.5 LSB precision. Used when the attenuator is disabled.  
0x7FF 210 − 0.5. Maximum positive adjustment that results in a positive full scale/2 − 0.5 LSB  
adjustment.  
0x001 0.5. Results in a 0.5 LSB adjustment.  
0x000 0. No offset adjustment.  
0xFFF −0.5. Results in a −0.5 LSB adjustment.  
0x800 −210. Maximum negative adjustment that results in negative full scale/2 adjustment.  
Rev. 0 | Page 44 of 130  
Data Sheet  
AD5940  
DAC Offset with Attenuator Enabled (High Speed Mode Register)—DACOFFSETATTENHS  
Address 0x000022B8, Reset: 0x00000000, Name: DACOFFSETATTENHS  
Protected by CALDATLOCK. The LSB adjustment is typically 4.9 μV for HSDACCON, Bit 12 = 1 and HSDACCON, Bit 0 = 1. The LSB  
adjustment is typically 24.7 μV for HSDACCON, Bit 12 = 1 and HSDACCON, Bit 0 = 0.  
Table 33. Bit Descriptions for DACOFFSETATTENHS Register  
Bits  
[31:12] Reserved  
[11:0] Value  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
R/W  
DAC offset correction factor. This value is a signed number represented in twos  
complement format with 0.5 LSB precision. Used when the attenuator is enabled.  
0x7FF 210 − 0.5. Maximum positive adjustment that results in a positive full scale/2 − 0.5 LSB  
adjustment.  
0x001 0.5. Results in a 0.5 LSB adjustment.  
0x000 0. No offset adjustment.  
0xFFF −0.5. Results in a −0.5 LSB adjustment.  
0x800 −210. Maximum negative adjustment that results in negative full scale/2 adjustment.  
DAC Offset with Attenuator Disabled (High Speed Mode Register)—DACOFFSETHS  
Address 0x000022BC, Reset: 0x00000000, Name: DACOFFSETHS  
Protected by CALDATLOCK. The LSB adjustment is typically 197.7 μV for HSDACCON, Bit 12 = 0 and HSDACCON, Bit 0 = 0. The LSB  
adjustment is typically 39.5 μV for HSDACCON, Bit 12 = 0 and HSDACCON, Bit 0 = 1.  
Table 34. Bit Descriptions for DACOFFSETHS  
Bits  
[31:12] Reserved  
[11:0] Value  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
DAC offset correction factor. This value is a signed number represented in twos  
complement format with 0.5 LSB precision. Used when the attenuator is disabled.  
R/W  
0x7FF 210 − 0.5. Maximum positive adjustment that results in a positive full scale/2 − 0.5 LSB  
adjustment.  
0x001 0.5. Results in a 0.5 LSB adjustment.  
0x000 0. No offset adjustment.  
0xFFF −0.5. Results in a −0.5 LSB adjustment.  
0x800 −210. Maximum negative adjustment that results in negative full scale/2 adjustment.  
Rev. 0 | Page 45 of 130  
AD5940  
Data Sheet  
HIGH SPEED TIA CIRCUITS  
The high speed TIA measures wide bandwidth input signals up  
to 200 kHz.  
N6  
NL  
TR1  
HIGH SPEED  
T1  
T2  
The output of the high speed TIA is connected to the main ADC  
mux, where this output can be programmed as the ADC input  
channel.  
TRANSIMPEDANCE  
AMPLIFIER  
HSTIA  
OUTPUT  
T3  
T4  
T5  
+
Tx/TR1  
SWITCHES  
This block is designed for impedance measurements in  
conjunction with the high speed DAC and excitation amplifier.  
HSRTIACON[3:0]  
R
TIA  
R
TIA INPUT  
LOAD02  
T9  
HSRTIACON[12:5]  
HIGH SPEED TIA CONFIGURATION  
SE0  
AIN0  
AIN1  
AIN2  
The high speed TIA is disabled by default and is turned on by  
setting AFECON [11] = 1. The high speed TIA has programmable  
flexibility built into the input signal selection, gain resistor  
selection, input load resistor selection, and common-mode  
voltage source.  
C
TIA  
SW6  
T10  
AIN4  
HSRTIACON[4]  
TIA_DE0  
R
R
LOAD_DE0  
DE0  
DE0RESCON[7:0]  
SWITCH AND RLOAD  
CONTROLLED BY  
DE0RESCON[7:0]  
Input Signal Selection  
The input signal options are as follows:  
Figure 25. High Speed TIA Switches  
The SE0 input pin.  
The AIN0, AIN1, AIN2, and AIN3/BUF_VREF1V8  
input pins.  
The DE0 input pin, which has its own RLOAD/RTIA options  
and is user programmable.  
External RTIA Selection  
The high speed TIA has the option of selecting an external gain  
resistor instead of the internal RTIA gain options. To perform this  
selection, connect one end of the resistor to the DE0 pin and  
connect the other end to AIN0, AIN1, AIN2, or AIN3/  
BUF_VREF1V8. The DE0 pin must be connected to the output  
of the high speed TIA.  
Gain Resistor Selection  
The gain resistor (RTIA) options are 50 Ω to 160 kΩ for the DE0  
input, and 200 Ω to 160 kΩ for all other input pins.  
To use the DE0 pin for the external RTIA value, set the following  
register values:  
Load Resistor Selection  
DE0RESCON = 0x97.  
HSRTIACON, Bits[3:0] = 0xF.  
The load resistor (RLOAD) options are as follows:  
RLOAD02 and RLOAD04 are fixed 100 Ω for SE0 and AFE3.  
For the DE0 pin, RLOAD is programmable. The user can  
select values from 0 Ω, 10 Ω, 30 Ω, 50 Ω, and 100 Ω.  
AIN0, AIN1, AIN2, or AIN3/BUF_VREF1V8 (whichever pin  
the resistor is connected to) must be connected to the inverting  
input of the high speed TIA (see the Programmable Switch  
Matrix section). When DE0RESCON = 0x97, the RLOAD_DE0 and  
Common-Mode Voltage Selection  
The high speed TIA common-mode voltage setting, on the positive  
input to the high speed TIA amplifier, is configurable. The  
configuration options are as follows:  
R
R
TIA_DE0 resistors are short circuit, which means that the external  
TIA is connected directly to the output of the high speed TIA.  
HIGH SPEED  
TRANSIMPEDANCE  
AMPLIFIER  
T1  
Internal 1.11 V reference source, which is the same as the  
VBIAS_CAP pin voltage.  
AIN1  
T2  
HSTIA  
OUTPUT  
+
T3  
Low power DAC output (VZERO0).  
T4  
T5  
T9  
HSRTIACON[3:0]  
Figure 25 shows the high speed TIA connections to the switch  
matrix and external pins. Note the extra load and gain resistors,  
R
TIA  
EXTERNAL  
RTIA  
HSRTIACON[12:5]  
RLOAD_DE0 and RTIA_DE0, respectively, available on the DE0 pin.  
T10  
C
TIA  
DE0RESCON  
R
DE0  
LOAD_DE0  
DE0RESCON[7:0]  
DE0RESCON[7:0]  
Figure 26. Connecting External RTIA to the High Speed TIA  
Rev. 0 | Page 46 of 130  
 
 
 
 
Data Sheet  
AD5940  
Table 35. High Speed TIA Resistor Options on the DE0 Input  
DE0RESCON, Bits[7:0] Setting  
RLOAD_DE0 Resistor Value (Ω)  
RTIA_DE0 Resistor Value  
50 Ω  
100 Ω  
200 Ω  
1.1 kΩ  
0x00  
0x18  
0x38  
0x58  
0x60  
0x68  
0x70  
0x78  
0x80  
0x88  
0x9  
0
0
0
0
0
0
0
0
5.1 kΩ  
10.1 kΩ  
20.1 kΩ  
40.1 kΩ  
80.1 kΩ  
160.1 kΩ  
50 Ω  
0
0
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
0x21  
0x39  
0x59  
0x61  
0x69  
0x71  
0x79  
0x81  
0x89  
0x12  
0x2A  
0x4A  
0x5A  
0x62  
0x6A  
0x72  
0x7A  
0x82  
0x8A  
0x1B  
0x33  
0x4B  
0x5B  
0x63  
0x6B  
0x73  
0x7B  
0x83  
0x8B  
0x34  
0x3C  
0x54  
0x5C  
0x64  
0x6C  
0x74  
0x7C  
0x84  
0x8C  
100 Ω  
190 Ω  
1.09 kΩ  
5.09 kΩ  
10.09 kΩ  
20.09 kΩ  
40.09 kΩ  
80.09 kΩ  
160.09 kΩ  
50 Ω  
100 Ω  
210 Ω  
1.07 kΩ  
5.07 kΩ  
10.07 kΩ  
20.07 kΩ  
40.07 kΩ  
80.07 kΩ  
160.07 kΩ  
50 Ω  
100 Ω  
190 Ω  
1.05 kΩ  
5.05 kΩ  
10.05 kΩ  
20.05 kΩ  
40.05 kΩ  
80.05 kΩ  
160.05 kΩ  
50 Ω  
100 Ω  
200 Ω  
1 kΩ  
5 kΩ  
10 kΩ  
20 kΩ  
40 kΩ  
80 kΩ  
160 kΩ  
Rev. 0 | Page 47 of 130  
AD5940  
Data Sheet  
HIGH SPEED TIA CIRCUIT REGISTERS  
Table 36. High Speed TIA Registers Summary  
Address  
Name  
Description  
Reset  
Access  
R/W  
R/W  
0x000020F0  
0x000020F8  
0x000020FC  
HSRTIACON  
DE0RESCON  
HSTIACON  
High speed RTIA configuration  
DE0 high speed TIA resistors configuration  
High speed TIA configuration  
0x0000000F  
0x000000FF  
0x00000000  
R/W  
High Speed RTIA Configuration Register—HSRTIACON  
Address 0x000020F0, Reset: 0x0000000F, Name: HSRTIACON  
This register controls the high speed RTIA, current protection diode, and feedback capacitor  
Table 37. Bit Descriptions for HSRTIACON Register  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
[31:13] Reserved  
Reserved.  
0x0  
0x0  
R
R/W  
[12:5]  
CTIACON  
Configure capacitor in parallel with RTIA. This capacitor stabilizes the amplifier  
loop. When this bit is set, the capacitor is added in parallel with the RTIA  
resistor.  
0
1
1 pF.  
2 pF.  
10 4 pF.  
100 8 pF.  
1000 16 pF.  
10000 2 pF.  
100000 Not used.  
1000000 Not used.  
4
TIASW6CON  
RTIACON  
SW6 switch control. Use the SW6 switch to select whether or not to use the diode  
in parallel with RTIA  
SW6 off, diode is not in parallel with RTIA  
SW6 on, diode is in parallel with RTIA  
0x0  
0xF  
R/W  
R/W  
.
0
1
.
.
[3:0]  
Configure general RTIA value. To use this RTIA resistor, close the T9 switch (SWCON,  
Bit 17) and open the T10 switch (SWCON, Bit 17).  
0000 RTIA = 200 Ω.  
0001 RTIA = 1 kΩ.  
0010 RTIA = 5 kΩ.  
0011 RTIA = 10 kΩ.  
0100 RTIA = 20 kΩ.  
0101 RTIA = 40 kΩ.  
0110 RTIA = 80 kΩ.  
0111 RTIA = 160 kΩ.  
1000 to 1111 RTIA is open.  
DE0 High Speed TIA Resistors Configuration Register—DE0RESCON  
Address 0x000020F8, Reset: 0x000000FF, Name: DE0RESCON  
Table 38. Bit Descriptions for DE0RESCON Register  
Bits  
[31:8] Reserved  
[7:0] DE0RCON  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
R
RLOAD_DE0 and RTIA_DE0 setting. To use this RLOAD_DE0 and RTIA_DE0 setting, open the T9  
0xFF  
R/W  
switch, close the T10 switch, and set the RTIA resistor values (see Table 35).  
Rev. 0 | Page 48 of 130  
 
Data Sheet  
AD5940  
High Speed TIA Configuration Register—HSTIACON  
Address 0x000020FC, Reset: 0x00000000, Name: HSTIACON  
Table 39. Bit Descriptions for HSTIACON Register  
Bits  
[31:2] Reserved  
[1:0] VBIASSEL  
Bit Name  
Settings Description  
Reset  
0x0  
0x0  
Access  
R
R/W  
Reserved.  
Select high speed TIA positive input.  
00 VBIAS_CAP pin 1.11 V voltage source.  
01 VZERO0 output from low power DAC.  
10 Reserved.  
11 Reserved.  
Rev. 0 | Page 49 of 130  
AD5940  
Data Sheet  
HIGH PERFORMANCE ADC CIRCUIT  
The ADC uses a precision, low drift, factory calibrated 1.82 V  
reference. An external reference source can also be connected to  
the VREF_1V8 pin.  
ADC CIRCUIT OVERVIEW  
The AD5940 implements a 16-bit, 800 kSPS, multichannel SAR  
ADC. The ADC operates from a 2.8 V to 3.6 V power supply. The  
host microcontroller interfaces to the ADC via the sequencer or  
directly through the SPI interface.  
ADC conversions are triggered by writing directly to the ADC  
control register via the SPI interface, or by writing to the ADC  
control register via the sequencer.  
An ultralow leakage switch matrix is used for sensor connection  
and can also be used to multiplex multiple electronic measurement  
devices to the same wearable electrodes.  
ADC CIRCUIT DIAGRAM  
Figure 27 shows the ADC core architecture. Figure 27 excludes  
input buffering, gain stages, and output postprocessing.  
IN+  
SWITCHES CONTROL  
MSB  
LSB  
SW+  
32,768C 16,384C  
4C  
4C  
2C  
2C  
C
C
C
C
BUSY  
REF  
CONTROL  
LOGIC  
COMP  
GND  
OUTPUT CODE  
32,768C 16,384C  
MSB  
LSB  
SW–  
CNV  
IN–  
Figure 27. ADC Core Block Diagram (IN+, REF, GND, and IN− are Internal Nodes)  
V
ZERO  
+
LPTIA0  
SE0  
AIN4/  
LPF0  
R
LPF  
R
+
TIA  
FRONTEND  
ADC  
BUFFER  
PREBUFFER  
GAIN = 1/1.5/2/4/9  
PGA  
HSTIA  
+
+
16-BIT ADC  
800kSPS/  
1600kSPS  
POSTPROCESSING BLOCKS:  
OFFSET/GAIN CALIBRATION,  
DIGITAL FILTERS (SINC3/SINC2)  
SECOND-  
ORDER  
ANTIALIAS  
FILTER  
R
TIA  
+
+
VOLTAGE INPUTS:  
AIN0 TO AIN6  
VOLTAGE INPUTS:  
DE0, SE0, CE0, RE0, V  
,
ZERO0  
V
BIAS0  
VOLTAGE INPUTS:  
HIGH SPEED DAC  
EXCITATION AMP,  
POSITIVE AND  
NEGATIVE NODES  
VOLTAGE INPUTS:  
INTERNAL CHANNELS:  
TEMP SENSORS,  
INTERNAL VREFERENCES  
POWER SUPPLY VOLTAGES  
Figure 28. Basic Diagram of ADC Input Channel  
Rev. 0 | Page 50 of 130  
 
 
 
 
Data Sheet  
AD5940  
To support a range of current and voltage based input ranges,  
the ADC front end provides a PGA and a TIA. The PGA  
supports gains of 1, 1.5, 2, 4, and 9. The low power TIA supports  
programmable gain resistors ranging from 200 Ω to 512 kΩ.  
The high speed TIA used for impedance measurement supports  
programmable gain resistors ranging from 200 Ω to 160 kΩ.  
ADC CIRCUIT FEATURES  
An input multiplexer, located in front of the high speed,  
multichannel, 16-bit ADC, enables the measurement of a  
number of external and internal channels. These channels  
include the following:  
Two low power current measurement channels. These  
channels measure the low current outputs of the connected  
sensor through the SE0 pin or DE0 pin. The current  
channels feed into a programmable load resistor.  
One low power TIA. The low power TIA has its own  
programmable gain resistor to convert very small currents  
to a voltage signal that can be measured by the ADC. The  
low power current channel can be configured to sample  
with or without a low-pass filter in place.  
By default, the reference source of the ADC is a precision, low  
drift, internal 1.82 V reference source. Optionally, an external  
reference can be connected to the VREF_1.82V pin and the  
AGND_REF pin.  
The ADC supports averaging and digital filtering options. The  
user can trade off speed vs. precision by using these options.  
The highest ADC update rate is 800 kHz in normal mode and  
1.6 MHz in high speed mode, with no digital filtering. The  
ADC filtering options also include a 50 Hz/60 Hz mains power  
supply filter. With this filter enabled, the ADC update rate is  
typically 900 Hz.  
One high speed current input channel for performing  
impedance measurements up to 200 kHz. The high speed  
current channel has a dedicated high speed TIA with a  
programmable gain resistor.  
The ADC supports a number of post processing features, including  
a DFT engine intended for impedance measurements to remove  
the processing requirements from the host microcontroller.  
Minimum, maximum, and mean value detection is also supported.  
Multiple external voltage inputs.  
Six dedicated voltage input channels: AIN0, AIN1,  
AIN2, AIN3/BUF_VREF1V8, AIN4/LPF0, and AIN6.  
The sensor electrode pins, SE0, DE0, RE0, and CE0,  
can also be measured as ADC voltage pins. Divide by  
2 options are available on the CE0 pin.  
ADC CIRCUIT OPERATION  
The SAR ADC is based on a charge redistribution DAC. The  
capacitive DAC consists of two identical arrays of 16 binary  
weighted capacitors that are connected to the two inputs of the  
comparator.  
Internal ADC channels.  
AVDD, DVDD, and AVDD_REG power supply  
measurement channels.  
The ADC block operates from the 16 MHz clock in normal  
operation and samples at 800 kSPS. The postprocessing sinc3 and  
sinc2 filters reduce this output sampling rate. It is recommended to  
use a sinc3 oversampling rate of 4, which gives an output data  
rate of 200 kSPS.  
ADC, high speed DAC, and low power reference  
voltage sources.  
Internal die temperature sensor.  
Two low power DAC output voltages, VBIAS0 and  
VZERO0  
.
For high power mode, the 32 MHz oscillator must be selected as  
the ADC clock source. The ADC maximum update rate is  
1.6 MSPS with higher power consumption, which is only  
required for impedance measurements in the >80 kHz range.  
ADC result post processing features.  
Digital filters (sinc2 and sinc3) and 50 Hz/60 Hz  
power supply rejection. The sinc2 and sinc3 filters  
have programmable oversampling rates to allow the  
user to trade off conversion speed vs. noise  
performance.  
Discrete Fourier transform (DFT), used with  
impedance measurements to automatically calculate  
magnitude and phase values.  
ADC TRANSFER FUNCTION  
The transfer function in Figure 29 shows the ADC output codes  
on the y-axis vs. the differential voltage into the ADC.  
In Figure 29, the ADC negative input channel is the 1.11 V  
voltage source.  
Programmable averaging of ADC results to separate  
the sinc2 and sinc3 filters.  
Programmable statistics option for calculating mean  
and variance automatically.  
The positive input channel is any voltage input to the ADC after  
the TIA or PGA and/or input buffer stages.  
Multiple calibration options to support system calibration  
of the current, voltage, and temperature channels.  
The ADC input stage provides an input buffer to support low  
input current leakage specifications on all channels.  
Rev. 0 | Page 51 of 130  
 
 
 
AD5940  
Data Sheet  
V
ZERO  
R
LPF  
+
0xFFFF  
0xC000  
R
LOAD  
LPTIA  
SE0  
R
TIA  
0x8000  
AIN4/  
LPF0  
Figure 30. Low Power TIA Current Input Channel to the ADC  
0x4000  
0x0000  
SELECTING INPUTS TO ADC MUX  
For optimum ADC operation, the following are the  
recommended mux inputs based on measurement type:  
0.2V  
1.1V  
2.0V  
Figure 29. Ideal ADC Transfer Function, Output Codes vs. Voltage Input  
Voltage measurement  
Calculate the input voltage, VIN, with the following equation:  
Positive mux select = CE0, RE0, SE0, DE0, and AINx  
Negative mux select = VBIAS_CAP pin  
DC current measurement on low power TIA  
Positive mux select = low-pass filter of low power TIA  
Negative mux select =LPTIA_N node  
AC or higher bandwidth current measurements on the low  
power TIA  
Positive mux select = LPTIA_P node  
MUXSEL_N = LPTIA_N node  
Current and impedance measurement on the high speed TIA  
1.835 V  
PGA _G  
ADCDAT 0x8000  
VIN =  
VBIAS _CAP  
215  
where:  
PGA_G is the PGA gain and is selectable as 1, 1.5, 2, 4, or 9.  
ADCDAT is the raw ADC code in the ADCDAT register.  
VBIAS_CAP is the voltage of the VBIAS_CAP pin, typically  
1.11 V.  
ADC LOW POWER CURRENT INPUT CHANNEL  
Figure 30 shows the low power TIA input current channel. The  
ADC measures the output voltage of the low power TIA.  
MUXSEL_P = positive high speed TIA input  
MUXSEL_N = negative high speed TIA input  
The positive inputs can be selected via ADCCON, Bits[5:0].  
The negative input is nominally selected to be the 1.11 V  
reference source. Perform this selection by setting ADCCON,  
Bits[12:8] = 01000 for VBIAS_CAP.  
ADC POSTPROCESSING  
The AD5940 provides many digital filtering and averaging  
options to improve signal-to-noise performance and overall  
measurement accuracy. Figure 31 shows an overview of the  
postprocessing filter options.  
An optional programmable gain stage can be selected to amplify  
the positive voltage input. The instrumentation amplifier is  
enabled via AFECON, Bit 10. The gain setting is configured via  
ADCCON, Bits[18:16].  
The processing filter options include the following:  
Digital filtering (sinc2 or sinc3) and 50 Hz or 60 Hz power  
supply rejection.  
The output of the gain stage goes through an antialias filter. The  
cutoff frequency of the antialias filter is set by PMBW, Bits[3:2].  
Set the cutoff frequency to suit the input signal bandwidth.  
DFT used with impedance measurements to automatically  
calculate magnitude and phase values.  
Programmable averaging of ADC results.  
Programmable statistics option for calculating mean and  
variance automatically.  
The ADC output code is calibrated with an offset and gain  
correction factor. This digital adjustment factor occurs  
automatically. The offset and gain correction register used  
depends on the ADC input channel selected.  
Sinc3 Filter  
See the Low Power TIA section for details on how to configure  
the RLOAD, RTIA, and RFILTER resistor values. The low power TIA  
output has a low-pass filter consisting of RFILTER and an external  
capacitor connected to the AIN4/LPF0 pin. RFILTER is typically  
1 MΩ and the external capacitor is recommended to be 1 μF,  
which provides a low cutoff frequency.  
The input to the sinc3 filter is the raw ADC codes at a rate of  
800 kHz (if the 16 MHz oscillator is selected) or 1.6 MHz (if the  
32 MHz oscillator is selected). To enable the sinc3 filter, ensure that  
ADCFILTERCON, Bit 6 = 0. The filter decimation rate is  
programmable with options of 2, 4, or 5. It is recommended to  
use a decimation rate of 4.  
The gain correction block is enabled by default and is not user  
programmable.  
Rev. 0 | Page 52 of 130  
 
 
 
 
 
Data Sheet  
AD5940  
INTERNAL TEMPERATURE SENSOR CHANNEL  
ADC CALIBRATION  
The AD5940 contains an internal temperature sensor channel.  
Because of the multiple input types on the AD5940 (for  
example, current, voltage, and temperature), there are multiple  
offset and gain calibration options. A built in, self calibration  
system is provided to aid the user when calibrating different  
ADC input channels, which is included in the AD5940 software  
development kit.  
The temperature sensor outputs a voltage that is proportional to  
the die temperature, linear, and relative to temperature.  
For improved accuracy, the temperature sensor can be  
configured in chop mode via TEMPSENS, Bits[3:1]. If chopping  
is selected, ensure that an even number of ADC conversions  
take place on the temperature sensor channel. These results  
must be averaged.  
Dedicated calibration registers for the temperature sensor  
channel are also available, which the ADC uses automatically.  
SINC2 FILTER (50 HZ/60 HZ MAINS FILTER)  
To enable the 50 Hz or 60 Hz notch filter for filtering mains  
noise, clear ADCFILTERCON, Bit 4 = 0 and set AFECON,  
Bit 16 = 1. The input is the sinc2 filter output. The input rate is  
dependent on the sinc3 and sinc2 settings. If selected, the sinc2  
filter output can be read via the SINC2DAT register. Table 40  
describes the digital filter settings that support simultaneous  
50 Hz or 60 Hz mains rejection.  
Table 40. Digital Filter Settings to Support Simultaneous 50 Hz/60 Hz Mains Rejection  
ADCFILTERCON, Bits[13:8]  
Value  
Power Mode  
(PMBW, Bit 0)  
Sinc3 Oversampling  
Setting  
Sinc2 Oversampling  
Setting  
Final ADC Output Update  
Rate (SPS)  
010111  
011011  
011011  
0 (low power mode)  
0 (low power mode)  
1 (high power mode)  
2
2
2
667  
1333  
1333  
600  
300  
600  
ADCFILTER ADCFILTER  
ADCFILTER  
CON[11:8]  
ADCFILTERCON  
[4]  
CON[13:12]  
CON[6]  
DATAFIFO_SINC3  
DATAFIFO_SINC2  
DATAFIFO_VAR/  
MEAN  
STATISTICS  
ADC  
GAIN AND  
OFFSET  
SINC2 FILTER  
CONFIGURABLE  
OSR  
SINC3 FILTER  
OSR5/4/2  
STATSCON  
DATA  
50Hz/60Hz  
NOTCH  
ADC  
[6:4]  
FIFO  
AFECON[15]  
DFT  
2 TO 16,384  
POINT  
DATAFIFO_DFT  
1.6MHz  
0.8MHz  
DFTCON[21:20]  
AVG 2/4/8/16  
DFTCON[7:4]  
HANNING  
ADCFILTERCON  
[15:14]  
ADCFILTER  
CON[0]  
ADCFILTER  
CON[7]  
DFTCON[0]  
DFT_CORDIC  
Figure 31. Postprocessing Filter Options  
Rev. 0 | Page 53 of 130  
 
 
 
 
 
AD5940  
Data Sheet  
ADC CIRCUIT REGISTERS  
Table 41. ADC Control Registers Summary  
Address  
Name  
Description  
Reset  
Access  
0x00002044  
0x00002074  
0x00002078  
0x0000207C  
0x00002080  
0x00002084  
0x000020D0  
0x00002174  
0x000021A8  
0x000021F0  
0x0000238C  
ADCFILTERCON  
ADCDAT  
ADC output filters configuration register  
ADC raw result register  
0x00000301  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000090  
0x00000000  
0x00000000  
0x00000160  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DFTREAL  
DFT result, real device register  
DFT result, imaginary device register  
Sinc2 filter result register  
DFTIMAG  
SINC2DAT  
TEMPSENSDAT  
DFTCON  
Temperature sensor result register  
DFT configuration register  
TEMPSENS  
ADCCON  
Temperature sensor configuration register  
ADC configuration register  
REPEATADCCNV  
ADCBUFCON  
Repeat ADC conversion control register  
ADC buffer configuration register  
0x005F3D00 R/W  
ADC Output Filters Configuration Register—ADCFILTERCON  
Address 0x00002044, Reset: 0x00000301, Name: ADCFILTERCON  
Table 42. Bit Descriptions for ADCFILTERCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:19] Reserved  
Reserved.  
0x0  
0x0  
R
18  
17  
16  
DFTCLKENB  
DFT clock enable.  
Enable.  
Disable.  
0
1
DACWAVECLKENB  
SINC2CLKENB  
DAC wave clock enable.  
Enable.  
Disable.  
0x0  
0x0  
0
1
Sinc2 filter clock enable.  
Enable.  
Disable.  
0
1
[15:14] AVRGNUM  
These bits set the number of samples used by the averaging function. The average 0x0  
output is fed directly to the DFT block and the DFT source is automatically  
changed to the average output. The AVRGEN bit must be set to 1 to use these  
bits.  
R/W  
0
1
2 ADC samples used for the average function.  
4 ADC samples used for the average function.  
10 8 ADC samples used for the average function.  
11 16 ADC samples used for the average function.  
Sinc3 filter oversampling rate.  
[13:12] SINC3OSR  
0x0  
R/W  
Oversampling rate of 5. Use this setting for the 160 kHz sinc3 filter output  
update rate and when the ADC update rate is 800 kSPS (default).  
Oversampling rate of 4. Use this setting for the 400 kHz sinc3 filter output  
update rate and when the ADC update rate is 1.6 MSPS. High power option.  
0
1
Oversampling rate of 2. Use this setting for the 400 kHz sinc3 filter output  
10 update rate and when the ADC update rate is 800 kSPS.  
Oversampling rate of 5. Use this setting for the 160 kHz sinc3 filter output  
11 update rate and when the ADC update rate is 800 kSPS.  
[11:8]  
SINC2OSR  
Sinc2 oversampling rate (OSR).  
0x3  
R/W  
0
1
22 samples for this OSR setting.  
44 samples for this OSR setting.  
10 89 samples for this OSR setting.  
11 178 samples for this OSR setting.  
100 267 samples for this OSR setting.  
101 533 samples for this OSR setting.  
110 640 samples for this OSR setting.  
Rev. 0 | Page 54 of 130  
 
 
Data Sheet  
AD5940  
Bits  
Bit Name  
Settings Description  
Reset Access  
111 667 samples for this OSR setting.  
1000 800 samples for this OSR setting.  
1001 889 samples for this OSR setting.  
1010 1067 samples for this OSR setting.  
1011 1333 samples for this OSR setting.  
7
6
AVRGEN  
ADC average function enable. The average output feeds directly to the DFT  
block and, when this bit is set, the DFT source automatically changes to the  
average output.  
0x0  
0x0  
R/W  
R/W  
0
1
Disable average.  
Enable average to feed to the DFT block.  
Sinc3 filter bypass. This bit bypasses the sinc3 filter.  
Sinc3 filter enable.  
SINC3BYP  
0
Bypasses the sinc3 filter. Raw 800 kHz or1.6 MHz ADC output data is fed directly to  
the gain offset adjustment stage. If the sinc3 filter is bypassed, the 200 kHz sine  
wave can be handled directly by the DFT block without amplitude attenuation. If  
the sinc3 filter is bypassed and the ADC raw data rate is 800 kHz, the gain offset  
block output is used as the DFT input.  
1
5
4
Reserved  
Reserved  
0x0  
0x0  
R
LPFBYPEN  
50 Hz/60 Hz low-pass filter.  
R/W  
Enables the 50 Hz/60 Hz notch filter. The ADC result is written to the SINC2DAT  
register.  
Bypasses the 50 Hz notch and 60 Hz notch filters.  
0
1
[3:1]  
0
Reserved  
Reserved.  
0x0  
0x0  
R
ADCSAMPLERATE  
ADC data rate. Unfiltered ADC output rate.  
800 kHz.  
1.6 MHz. If the ADC sample rate = 1.6 MHz, the ACLK frequency to analog must  
be 32 MHz (refer to the clock configuration).  
R/W  
1
0
ADC Raw Result Register—ADCDAT  
Address 0x00002074, Reset: 0x00000000, Name: ADCDAT  
The ADCDAT register is the ADC result register for the raw ADC output or when the sinc3 and/or sinc2 filter options are selected.  
Table 43. Bit Descriptions for ADCDAT Register  
Bits  
[31:16] Reserved  
[15:0] Data  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
ADC result. This register contains the ADC conversion result. Depending on the user  
configuration, this result can reflect raw, sinc3, or sinc2 filter outputs. This result is a  
16-bit unsigned number.  
R/W  
DFT Result, Real Device Register—DFTREAL  
Address 0x00002078, Reset: 0x00000000, Name: DFTREAL  
Table 44. Bit Descriptions for DFTREAL Register  
Bits  
[31:18] Reserved  
[17:0] Data  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
DFT, real. The DFT hardware accelerator returns a complex number. This register  
returns the 18-bit real part of the complex number representing the magnitude part  
of the DFT result. The DFT result is represented in twos complement format.  
R/W  
Rev. 0 | Page 55 of 130  
AD5940  
Data Sheet  
DFT Result, Imaginary Device Register—DFTIMAG  
Address 0x0000207C, Reset: 0x00000000, Name: DFTIMAG  
Table 45. Bit Descriptions for DFTIMAG Register  
Bits  
[31:18] Reserved  
[17:0] Data  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
DFT, imaginary. The DFT hardware accelerator returns a complex number. This register  
returns the 18-bit imaginary part of the complex number representing the phase  
part of the DFT result. The DFT result is represented in twos complement format.  
R/W  
Sinc2 Filter Result Register—SINC2DAT  
Address 0x00002080, Reset: 0x00000000, Name: SINC2DAT  
Table 46. Bit Descriptions for SINC2DAT Register  
Bits  
[31:16] Reserved  
[15:0] Data  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
Low-pass filter result. Sinc2 filter, ADC output result. This data is output from the  
50 Hz/60 Hz rejection filter. When new data is available, the INTCFLAG1 or INTCFLAG2  
registers, Bit 2 is set to 1.  
R/W  
Temperature Sensor Result Register—TEMPSENSDAT  
Address 0x00002084, Reset: 0x00000000, Name: TEMPSENSDAT  
Table 47. Bit Descriptions for TEMPSENSDAT Register  
Bits  
Bit Name  
Reserved  
Data  
Settings  
Description  
Reset  
0x0  
Access  
[31:16]  
[15:0]  
Reserved.  
R
ADC temperature sensor channel result.  
0x0  
R/W  
DFT Configuration Register—DFTCON  
Address 0x000020D0, Reset: 0x00000090, Name: DFTCON  
Table 48. Bit Descriptions for DFTCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:22] Reserved  
[21:20] DFTINSEL  
Reserved.  
0x0  
0x0  
R
DFT input select. The AVRGEN bit (Bit 7 in the ADCFILTERCON register) is of the  
R/W  
highest priority; if this bit = 1, the output of the average block is used as the DFT  
input, regardless of the DFTINSEL setting.  
00 Sinc2 filter output. Select the output from the Sinc2 filter.  
Gain offset output with or without sinc3. This setting selects the output from the ADC  
gain and offset correction stage. If the sinc3 filter is bypassed (the SINC3BYP bit in the  
ADCFILTERCON register = 1), ADC raw data through gain/offset correction is the DFT  
input. If sinc3 is not bypassed (the SINC3BYP bit in the ADCFILTERCON register = 0), the  
01 sinc3 output through gain/offset correction is the DFT input.  
ADC raw data. Selects the output direct from the ADC; no offset/gain correction.  
10 Only supported for an ADC sample rate of 800 kHz.  
11 Sinc2 filter output. Select the output from the Sinc2 filter Same as 00.  
Reserved.  
[19:8]  
[7:4]  
Reserved  
DFTNUM  
0x0  
0x9  
R
ADC samples used. DFT number ranges from 4 up to 16,384.  
R/W  
0
1
DFT point number is 4. DFT uses 4 ADC samples.  
DFT point number is 8. DFT uses 8 ADC samples.  
10 DFT point number is 16. DFT uses 16 ADC samples.  
11 DFT point number is 32. DFT uses 32 ADC samples.  
100 DFT point number is 64. DFT uses 64 ADC samples.  
101 DFT point number is 128. DFT uses 128 ADC samples.  
110 DFT point number is 256. DFT uses 256 ADC samples.  
111 DFT point number is 512. DFT uses 512 ADC samples.  
1000 DFT point number is 1024. DFT uses 1024 ADC samples.  
1001 DFT point number is 2048. DFT uses 2048 ADC samples.  
Rev. 0 | Page 56 of 130  
 
Data Sheet  
AD5940  
Bits  
Bit Name  
Settings Description  
Reset Access  
1010 DFT point number is 4096. DFT uses 4096 ADC samples.  
1011 DFT point number is 8192. DFT uses 8192 ADC samples.  
1100 DFT point number is 16,384. DFT uses 16,384 ADC samples.  
Reserved.  
[3:1]  
0
Reserved  
0x0  
0x0  
R
HANNINGEN  
Hanning window enable.  
R/W  
0
1
Disable Hanning window.  
Enable Hanning window.  
Temperature Sensor Configuration Register—TEMPSENS  
Address 0x00002174, Reset: 0x00000000, Name: TEMPSENS  
Table 49. Bit Descriptions for TEMPSENS Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:4] Reserved  
Reserved.  
0x0  
R
[3:2]  
CHOPFRESEL  
Chop mode frequency setting. These bits set the frequency of the chop mode switching. 0x0  
00 Chop switch frequency = 6.25 kHz.  
R/W  
01 Chop switch frequency = 25 kHz.  
10 Chop switch frequency = 100 kHz.  
11 Chop switch frequency = 200 kHz.  
1
0
CHOPCON  
Enable  
Temperature sensor chop mode. Temperature sensor channel chop control signal.  
Disables chop.  
Enables chop. If chopping is enabled, take 2× consecutive samples and average the  
results to obtain a final temperature sensor channel reading. Chopping reduces the  
offset error associated with this channel.  
0x0  
0x0  
R/W  
R/W  
0
1
Unused. Temperature sensor enable. AFECON, Bit 12 overrides this bit.  
Disable temperature sensor.  
Enable temperature sensor. Temperature sensor enable. AFECON, Bit 12 overrides this bit.  
0
1
ADC Configuration Register—ADCCON  
Address 0x000021A8, Reset: 0x00000000, Name: ADCCON  
Table 50. Bit Descriptions for ADCCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:29] Reserved  
[18:16] GNPGA  
Reserved.  
0x0  
0x0  
R
PGA gain setup.  
R/W  
0
1
Gain = 1.  
Gain = 1.5.  
10 Gain = 2.  
11 Gain = 4.  
100 Gain = 9.  
101 Gain = 9.  
15  
GNOFSELPGA  
Internal offset/gain cancellation.  
0x0  
R/W  
0
1
DC offset cancellation disabled.  
Enables dc offset cancellation. When the PGA is enabled, only a gain value of 4 is  
supported.  
[14:13] Reserved  
Reserved.  
0x0  
0x0  
R/W  
R/W  
[12:8]  
MUXSELN  
Select signals for the ADC input multiplexer as negative input.  
00000 Floating input.  
00001 High speed TIA negative input  
00010 Low power TIA negative input  
00011 Reserved.  
00100 AIN0.  
00101 AIN1.  
00110 AIN2.  
Rev. 0 | Page 57 of 130  
AD5940  
Data Sheet  
Bits  
Bit Name  
Settings Description  
00111 AIN3/BUF_VREF1V8.  
01000 VBIAS_CAP.  
Reset Access  
01001 Reserved.  
01010 Reserved.  
01011 Temperature sensor negative output. TEMPSEN_N.  
01100 AIN4/LPF0.  
01101 Reserved.  
01110 AIN6.  
01111 Reserved.  
10000 VZERO0 – Measured at VZERO pin.  
10001 VBIAS0 – Measured at VBIAS pin.  
10010 Reserved.  
10011 Reserved.  
10100 Negative node of excitation amplifier.  
10101 Reserved.  
10110 Reserved.  
[7:6]  
[5:0]  
Reserved  
MUXSELP  
Reserved.  
0x0  
0x0  
R
Select signals for the ADC input multiplexer as positive input.  
00000 Floating input.  
R/W  
00001 High speed TIA positive signal.  
00010 Low power TIA positive low-pass filter signal.  
00011 Reserved.  
00100 AIN0.  
00101 AIN1.  
00110 AIN2.  
00111 AIN3/BUF_VREF1V8.  
01000 AVDD/2.  
01001 DVDD/2.  
01010 AVDD_REG/2.  
01011 Internal temperature sensor.  
01100 VBIAS_CAP.  
01101 DE0 – Measured at pin  
01110 SE0 – Measured at pin  
01111 Reserved.  
010000 VREF_2V5/2.  
010001 Reserved.  
010010 VREF_1V82  
010011 Negative terminal of temperature sensor (TEMPSENS_N).  
010100 AIN4/LPF0.  
010101 Reserved.  
010110 AIN6.  
010111 VZERO0 – Measured at VZERO pin  
011000 VBIAS0 – Measured at VBIAS pin  
011001 Voltage on CE0 pin, VCE0  
.
011010 Voltage on RE0 pin, VRE0  
011011 Reserved.  
011100 Reserved.  
011101 Reserved.  
011110 Reserved.  
011111 VCE0/2.  
.
100000 Reserved.  
100001 Low power TIA positive output, LPTIA_P.  
100010 Reserved.  
100011 AGND_REF.  
100100 Positive node of excitation amplifier.  
Rev. 0 | Page 58 of 130  
Data Sheet  
AD5940  
Repeat ADC Conversions Control Register—REPEATADCCNV  
Address 0x000021F0, Reset: 0x00000160, Name: REPEATADCCNV  
Table 51. Bit Descriptions for REPEATADCCNV Register  
Bits  
Bit Name  
Reserved  
NUM  
Settings  
Description  
Reset  
0x0  
Access  
R
[31:12]  
[11:4]  
Reserved.  
Repeat value. Writing 0 to these bits causes unpredictable operation.  
1 conversion.  
0x16  
R/W  
1
0xFF 256 conversions.  
Reserved.  
[3:1]  
0
Reserved  
0x0  
0x0  
R
EN_P enable  
Enable repeat ADC conversions.  
R/W  
0
1
Disable repeat ADC conversions.  
Enable repeat ADC conversions.  
ADC Buffer Configuration Register—ADCBUFCON  
Address 0x0000238C, Reset: 0x005F3D00, Name: ADCBUFCON  
The recommended value is 0x005F3D0F in high power mode and 0x005F3D04 in low power mode.  
Table 52. Bit Descriptions for ADCBUFCON  
Bits  
[31:9]  
[8:4]  
Bit Name  
Reserved  
AMPDIS  
Settings  
Description  
Reserved.  
Reset  
0x0  
Access  
R
Set these bits to 1 to disable the op amp. Set these bits to 0 to enable the op amp.  
Bit 8 controls the offset cancellation buffers.  
Bit 7 controls the ADC buffers.  
0x10  
R/W  
Bit 6 controls the PGA.  
Bit 5 controls the positive front-end buffer.  
Bit 4 controls the negative front-end buffer.  
[3:0]  
CHOPDIS  
Set these bits to 1 to disable chop. Set these bits to 0 to enable chop. Clear these  
0x0  
R/W  
bits when measuring signals <80 kHz. Set these bits when measuring signals >80  
kHz.  
Bit 3 controls the offset cancellation buffers.  
Bit 2 controls the ADC buffers.  
Bit 1 controls the PGA.  
Bit 0 controls the front-end buffers.  
ADC CALIBRATION REGISTERS  
Table 53. ADC Calibration Registers Summary  
Address  
Name  
Description  
Reset  
Access  
0x00002230  
0x00002288  
0x0000228C  
0x00002234  
0x00002284  
0x00002244  
0x00002240  
0x000022CC  
0x00002270  
0x000022C8  
0x00002274  
0x000022D4  
0x00002278  
0x000022D0  
0x00002298  
0x0000223C  
0x00002238  
CALDATLOCK  
ADCOFFSETLPTIA  
ADCGNLPTIA  
ADC calibration lock register  
0x00000000  
0x00000000  
0x00004000  
0x00000000  
0x00004000  
0x00000000  
0x00004000  
0x00000000  
0x00004000  
0x00000000  
0x00004000  
0x00000000  
0x00004000  
0x00000000  
0x00004000  
0x00000000  
0x00004000  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ADC offset calibration on the low power TIA channel register  
ADC gain calibration for the low power TIA channel register  
ADC offset calibration on the high speed TIA channel register  
ADC gain calibration for the high speed TIA channel register  
ADC offset calibration auxiliary channel (PGA gain = 1) register  
ADC gain calibration auxiliary input channel (PGA gain = 1) register  
ADC offset calibration auxiliary input channel (PGA gain = 1.5) register  
ADC gain calibration auxiliary input channel (PGA gain = 1.5) register  
ADC offset calibration auxiliary input channel (PGA gain = 2) register  
ADC gain calibration auxiliary input channel (PGA gain = 2) register  
ADC offset calibration auxiliary input channel (PGA gain = 4) register  
ADC gain calibration auxiliary input channel (PGA gain = 4) register  
ADC offset calibration auxiliary input channel (PGA gain = 9) register  
ADC gain calibration auxiliary input channel (PGA gain = 9) register  
ADC offset calibration temperature sensor channel register  
ADC gain calibration temperature sensor channel register  
ADCOFFSETHSTIA  
ADCGAINHSTIA  
ADCOFFSETGN1  
ADCGAINGN1  
ADCOFFSETGN1P5  
ADCGAINGN1P5  
ADCOFFSETGN2  
ADCGAINGN2  
ADCOFFSETGN4  
ADCGAINGN4  
ADCOFFSETGN9  
ADCGAINGN9  
ADCOFFSETTEMPSENS  
ADCGAINTEMPSENS  
Rev. 0 | Page 59 of 130  
 
AD5940  
Data Sheet  
Calibration Data Lock Register—CALDATLOCK  
Address 0x00002230, Reset: 0x00000000, Name: CALDATLOCK  
Table 54. Bit Descriptions for CALDATLOCK Register  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
[31:0] Key  
Password for calibration data registers. These bits prevent the overwriting of  
data after the calibration phase.  
0x0  
R/W  
0xDE87A5AF Write this value to unlock the calibration registers.  
ADC Offset Calibration on the Low Power TIA Channel Register—ADCOFFSETLPTIA  
Address 0x00002288, Reset: 0x00000000, Name: ADCOFFSETLPTIA  
Table 55. Bit descriptions for ADCOFFSETLPTIA Register  
Bits  
[31:15] Reserved  
[14:0] Value  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
Offset calibration for the low power TIA. The ADC offset correction for the low  
R/W  
power TIA channel is represented as a twos complement number. The calibration  
resolution is 0.25 LSBs of the ADCDAT LSB size.  
0x3FFF 4095.75. Maximum positive offset calibration value.  
0x0001 0.25. Minimum positive offset calibration value.  
0x0000 0. No offset adjustment.  
0x7FFF −0.25. Minimum negative offset calibration value.  
0x4000 −4096.0. Maximum negative offset calibration value.  
ADC Gain Calibration for the Low Power TIA Channel Register—ADCGNLPTIA  
Address 0x0000228C, Reset: 0x00004000, Name: ADCGNLPTIA  
Table 56. Bit Descriptions for ADCGNLPTIA Register  
Bits  
Bit Name  
Reserved  
Value  
Settings  
Description  
Reset  
Access  
R
[31:15]  
[14:0]  
Reserved.  
0x0  
Gain error calibration for the low power TIA.  
0x4000  
R/W  
0x7FFF 2. Maximum positive gain adjustment.  
0x4001 1.000 061. Minimum positive gain adjustment.  
0x4000 1.0. ADC result multiplied by 1. No gain adjustment (default).  
0x3FFF 0.999939. Minimum negative gain adjustment.  
0x2000 0.5. ADC result multiplied by 0.5.  
0x0001 0.000061. Maximum negative gain adjustment.  
0x0000 0. Illegal value; results in an ADC result of 0.  
ADC Offset Calibration on the High Speed TIA Channel Register—ADCOFFSETHSTIA  
Address 0x00002234, Reset: 0x00000000, Name: ADCOFFSETHSTIA  
Table 57. Bit Descriptions for ADCOFFSETHSTIA Register  
Bits  
[31:15] Reserved  
[14:0] Value  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
High speed TIA offset calibration. ADC offset correction for high speed TIA  
R/W  
measurement mode, represented as a twos complement number. The calibration  
resolution is 0.25 LSBs of the ADCDAT LSB size.  
0x3FFF 4095.75. Maximum positive offset calibration value.  
0x0001 0.25. Minimum positive offset calibration value.  
0x0000 0. No offset correction.  
0x7FFF −0.25. Minimum negative offset correction.  
0x4000 −4096.0. Maximum negative offset correction.  
Rev. 0 | Page 60 of 130  
Data Sheet  
AD5940  
ADC Gain Calibration for the High Speed TIA Channel Register—ADCGAINHSTIA  
Address 0x00002284, Reset: 0x00004000, Name: ADCGAINHSTIA  
Table 58. Bit Descriptions for ADCGAINHSTIA Register  
Bits  
Bit Name  
Reserved  
Value  
Settings  
Description  
Reset  
0x0  
Access  
R
[31:15]  
[14:0]  
Reserved.  
Gain error calibration on the high speed TIA channel.  
0x4000  
R/W  
0x7FFF 2. Maximum positive gain adjustment.  
0x4001 1.000061. Minimum positive gain adjustment.  
0x4000 1.0. ADC result multiplied by 1. No gain adjustment (default).  
0x3FFF 0.999939. Minimum negative gain adjustment.  
0x2000 0.5. ADC result multiplied by 0.5.  
0x0001 0.000061. Maximum negative gain adjustment.  
0x0000 0. Illegal value; results in an ADC result of 0.  
ADC Offset Calibration Auxiliary Channel (PGA Gain = 1) Register—ADCOFFSETGN1  
Address 0x00002244, Reset: 0x00000000, Name: ADCOFFSETGN1  
Table 59. Bit Descriptions for ADCOFFSETGN1 Register  
Bits  
[31:15] Reserved  
[14:0] Value  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
Offset calibration gain = 1. ADC offset correction for the auxiliary channel with PGA  
R/W  
gain = 1, represented as a twos complement number. The calibration resolution is  
0.25 LSBs of the ADCDAT LSB size. Therefore, the calibration resolution is VREF/218. If  
V
REF = 1.82 V, the calibration resolution is 1.82/217 = 13.885 μV.  
0x3FFF 4095.75. Maximum positive offset calibration value.  
0x0001 0.25. Minimum positive offset calibration value.  
0x0000 0. No offset adjustment.  
0x7FFF −0.25. Minimum negative offset calibration value.  
0x4000 −4096. Maximum negative offset calibration value.  
ADC Gain Calibration Auxiliary Input Channel (PGA Gain = 1) Register—ADCGAINGN1  
Address 0x00002240, Reset: 0x00004000, Name: ADCGAINGN1  
The ADCGAINGN1 register provides gain calibration for the voltage input channels to the ADC, including the AINx channels.  
Table 60. Bit Descriptions for ADCGAINGN1 Register  
Bits  
[31:15] Reserved  
[14:0] Value  
Bit Name Settings Description  
Reset  
Access  
Reserved.  
0x0  
R
Gain calibration for PGA gain = 1. ADC gain correction for auxiliary input channels.  
These bits are used for all channels, except the TIA and temperature sensor channels  
when PGA gain = 1. This value is stored as a signed number. Bit 14 is the sign bit, and  
Bits[13:0] represent the fractional part.  
0x4000 R/W  
0x0000  
0x2000  
0x4000  
0x4001  
0x7FFF  
0x0001  
0x3FFF  
0. Illegal value; results in an ADC result of 0x8000.  
0.5. ADC result multiplied by 0.5.  
1.0. ADC result multiplied by 1. No gain adjustment (default).  
1.000061. Minimum positive gain adjustment.  
2. Maximum positive gain adjustment.  
0.000061. Maximum negative gain adjustment.  
0.999939. Minimum negative gain adjustment.  
Rev. 0 | Page 61 of 130  
AD5940  
Data Sheet  
ADC Offset Calibration Auxiliary Input Channel (PGA Gain = 1.5) Register—ADCOFFSETGN1P5  
Address 0x000022CC, Reset: 0x00000000, Name: ADCOFFSETGN1P5  
The ADCOFFSETGN1P5 register provides ADC input offset calibration with PGA gain =1.5.  
Table 61. Bit Descriptions for ADCOFFSETGN1P5 Register  
Bits  
Bit Name  
Reserved  
Value  
Settings  
Description  
Reset  
0x0  
Access  
R
[31:15]  
[14:0]  
Reserved.  
Offset calibration gain = 1.5. ADC offset correction with PGA gain = 1.5.  
0x0  
R/W  
0x3FFF 4095.75. Maximum positive offset calibration value.  
0x0001 0.25. Minimum positive offset calibration value.  
0x0000 0. No offset adjustment.  
0x7FFF −0.25. Minimum negative offset calibration value.  
0x4000 −4096. Maximum negative offset calibration value.  
ADC Gain Calibration Auxiliary Input Channel (PGA Gain = 1.5) Register—ADCGAINGN1P5  
Address 0x00002270, Reset: 0x00004000, Name: ADCGAINGN1P5  
The ADCGAINGN1P5 register provides gain calibration for the voltage input channels to the ADC, including the AINx channels.  
Table 62. Bit Descriptions for ADCGAINGN1P5 Register  
Bits  
[31:15] Reserved  
[14:0] Value  
Bit Name Settings Description  
Reset  
Access  
Reserved.  
0x0  
R
Gain calibration for PGA gain = 1.5. These bits provide ADC gain correction for the  
auxiliary input channels. These bits are used for all channels except the TIA and  
temperature sensor channels when PGA gain =1.5. This value is stored as a signed  
number. Bit 14 is the sign bit and Bits[13:0] represent the fractional part.  
0x4000 R/W  
0x0000 0. Illegal value resulting in an ADC result of 0.  
0x2000 0.5. ADC result multiplied by 0.5.  
0x4000 1.0. ADC result multiplied by 1. No gain adjustment (default value).  
0x4001 1.000061. Minimum positive gain adjustment.  
0x7FFF 2. Maximum positive gain adjustment.  
0x0001 0.000061. Maximum negative gain adjustment.  
0x3FFF 0.999939. Minimum negative gain adjustment.  
ADC Offset Calibration Auxiliary Input Channel (PGA Gain = 2) Register—ADCOFFSETGN2  
Address 0x000022C8, Reset: 0x00000000, Name: ADCOFFSETGN2  
The ADCOFFSETGN2 register provides ADC input offset calibration with PGA gain = 2  
Table 63. Bit Descriptions for ADCOFFSETGN2 Register  
Bits  
[31:15] Reserved  
[14:0] Value  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
Offset calibration auxiliary channel (PGA gain = 2). These bits provide ADC offset  
correction for inputs using PGA gain = 2, represented as a twos complement number.  
The calibration resolution is 0.25 LSB of the ADCDAT LSB size. Therefore, the calibration  
resolution is VREF/218. If VREF = 1.82 V, the calibration resolution is 1.8/217 = 13.73 µV.  
R/W  
0x3FFF 4095.75. Maximum positive offset calibration value.  
0x0001 0.25. Minimum positive offset calibration value.  
0x0000 0. No offset adjustment.  
0x7FFF −0.25. Minimum negative offset calibration value.  
0x4000 −4096. Maximum negative offset calibration value.  
Rev. 0 | Page 62 of 130  
Data Sheet  
AD5940  
ADC Gain Calibration Auxiliary Input Channel (PGA Gain = 2) Register—ADCGAINGN2  
Address 0x00002274, Reset: 0x00004000, Name: ADCGAINGN2  
The ADCGAINGN2 register provides gain calibration for the voltage input channels to the ADC, including the AINx channels, when the  
PGA is enabled with gain = 2.  
Table 64. Bit Descriptions for ADCGAINGN2 Register  
Bits  
[31:15] Reserved  
[14:0] Value  
Bit Name Settings Description  
Reset  
Access  
Reserved.  
0x0  
R
Gain calibration for PGA gain = 2. These bits provide ADC gain correction for the  
auxiliary input channels. These bits are used for all channels except the TIA and the  
temperature sensor channels when PGA gain = 2. This value is stored as a signed  
number. Bit 14 is the sign bit and Bits[13:0] represent the fractional part.  
0x4000 R/W  
0x0000  
0x2000  
0x4000  
0x4001  
0x7FFF  
0x0001  
0x3FFF  
0. Illegal value resulting in an ADC result of 0.  
0.5. ADC result multiplied by 0.5.  
1.0. ADC result multiplied by 1. No gain adjustment (default value).  
1.000061. Minimum positive gain adjustment.  
2. Maximum positive gain adjustment.  
0.000061. Maximum negative gain adjustment.  
0.999939. Minimum negative gain adjustment.  
ADC Offset Calibration Auxiliary Input Channel (PGA Gain = 4) Register—ADCOFFSETGN4  
Address 0x000022D4, Reset: 0x00000000, Name: ADCOFFSETGN4  
The ADCOFFSETGN4 register provides ADC input offset calibration with PGA gain = 4.  
Table 65. Bit Descriptions for ADCOFFSETGN4 Register  
Bits  
Bit Name  
Reserved  
Value  
Settings  
Description  
Reset  
Access  
R
[31:15]  
[14:0]  
Reserved.  
0x0  
0x0  
Offset calibration gain = 4. ADC offset correction with PGA gain = 4.  
R/W  
0x3FFF 4095.75. Maximum positive offset calibration value.  
0x0001 0.25. Minimum positive offset calibration value.  
0x0000 0. No offset adjustment.  
0x7FFF −0.25. Minimum negative offset calibration value.  
0x4000 −4096. Maximum negative offset calibration value.  
ADC Gain Calibration Auxiliary Input Channel (PGA Gain = 4) Register—ADCGAINGN4  
Address 0x00002278, Reset: 0x00004000, Name: ADCGAINGN4  
The ADCGAINGN4 register provides gain calibration for the voltage input channels to the ADC, including the AINx channels, when  
PGA is enabled with gain = 4.  
Table 66. Bit Descriptions for ADCGAINGN4 Register  
Bits  
[31:15] Reserved  
[14:0] Value  
Bit Name  
Settings Description  
Reset  
Access  
Reserved.  
0x0  
R
Gain calibration for PGA gain = 4. These bits provide ADC gain correction for the  
0x4000 R/W  
auxiliary input channels. These bits are used for all channels except the TIA and  
temperature sensor channels when PGA gain = 4. This value is stored as a signed  
number. Bit 14 is the sign bit and Bits[13:0] represent the fractional part.  
0x0000 0. Illegal value resulting in an ADC result of 0.  
0x2000 0.5. ADC result multiplied by 0.5.  
0x4000 1.0. ADC result multiplied by 1. No gain adjustment (default value).  
0x4001 1.000061. Minimum positive gain adjustment.  
0x7FFF 2. Maximum positive gain adjustment.  
0x0001 0.000061. Maximum negative gain adjustment.  
0x3FFF 0.999939. Minimum negative gain adjustment.  
Rev. 0 | Page 63 of 130  
AD5940  
Data Sheet  
ADC Offset Calibration Auxiliary Input Channel (PGA Gain = 9) Register—ADCOFFSETGN9  
Address 0x000022D0, Reset: 0x00000000, Name: ADCOFFSETGN9  
The ADCOFFSETGN9 register provides ADC input offset calibration with PGA gain = 9.  
Table 67. Bit Descriptions for ADCOFFSETGN9 Register  
Bits  
Bit Name  
Reserved  
Value  
Settings  
Description  
Reset  
0x0  
Access  
R
[31:15]  
[14:0]  
Reserved.  
Offset calibration gain = 9. ADC offset correction with PGA gain = 9.  
4095.75. Maximum positive offset calibration value.  
0.25. Minimum positive offset calibration value.  
0. No offset adjustment.  
−0.25. Minimum Negative Offset calibration value.  
−4096. Maximum Negative Offset calibration value.  
0x0  
R/W  
0x3FFF  
0x0001  
0x0000  
0x7FFF  
0x4000  
ADC Gain Calibration Auxiliary Input Channel (PGA Gain = 9) Register—ADCGAINGN9  
Address 0x00002298, Reset: 0x00004000, Name: ADCGAINGN9  
The ADCGAINGN9 register provides gain calibration for the voltage input channels to the ADC, including the AINx channels, when the  
PGA is enabled with gain = 9.  
Table 68. Bit Descriptions for ADCGAINGN9 Register  
Bits  
[31:15] Reserved  
[14:0] Value  
Bit Name  
Settings Description  
Reset  
Access  
Reserved.  
0x0  
R
Gain calibration for PGA gain = 9. These bits provide ADC gain correction for the  
0x4000 R/W  
auxiliary input channels. These bits are used for all channels except the TIA and  
temperature sensor channels when PGA gain = 9. This value is stored as a signed  
number. Bit 14 is the sign bit and Bits[13:0] represent the fractional part.  
0x0000 0. Illegal value resulting in an ADC result of 0.  
0x2000 0.5. ADC result multiplied by 0.5.  
0x4000 1.0. ADC result multiplied by 1. No gain adjustment (default value).  
0x4001 1.000061. Minimum positive gain adjustment.  
0x7FFF 2. Maximum positive gain adjustment.  
0x0001 0.000061. Maximum negative gain adjustment.  
0x3FFF 0.999939. Minimum negative gain adjustment.  
ADC Offset Calibration Temperature Sensor Channel Register—ADCOFFSETTEMPSENS  
Address 0x0000223C, Reset: 0x00000000, Name: ADCOFFSETTEMPSENS  
Table 69. Bit Descriptions for ADCOFFSETTEMPSENS  
Bits  
[31:15] Reserved  
[14:0] Value  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
Offset calibration for the temperature sensor. These bits provide ADC offset correction for  
the temperature sensor channel, represented as a twos complement number. The  
calibration resolution is 0.25 LSB of the ADCDAT LSB size. Therefore, the calibration  
resolution is VREF/218. If VREF = 1.82 V, the calibration resolution is: 1.82/217 = 13.73 µV.  
R/W  
0x3FFF 4095.75. Maximum positive offset calibration value.  
0x0001 0.25. Minimum positive offset calibration value.  
0x0000 0. No offset adjustment.  
0x7FFF −0.25. Minimum negative offset calibration value.  
0x4000 −4096. Maximum negative offset calibration value.  
Rev. 0 | Page 64 of 130  
Data Sheet  
AD5940  
ADC Gain Calibration Temperature Sensor Channel Register—ADCGAINTEMPSENS  
Address 0x00002238, Reset: 0x00004000, Name: ADCGAINTEMPSENS  
The ADCGAINTEMPSENS register provides the ADC gain calibration value used when measuring the internal temperature sensor.  
Table 70. Bit Descriptions for ADCGAINTEMPSENS Register  
Bits  
[31:15] Reserved  
[14:0] GAINTEMPSENS  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
Reserved.  
Gain calibration for the temperature sensor channel. These bits provide ADC gain  
correction for the temperature sensor channel. This value is stored as a signed  
number. Bit 14 is the sign bit and Bits[13:0] represent the fractional part.  
0x4000  
R/W  
0x0000 0. Illegal value resulting in an ADC result of 0.  
0x2000 0.5. ADC result multiplied by 0.5.  
0x4000 1.0. ADC result multiplied by 1. No gain adjustment (default value).  
0x4001 1.000061. Minimum positive gain adjustment.  
0x7FFF 2. Maximum positive gain adjustment.  
0x0001 0.000061. Maximum negative gain adjustment.  
0x3FFF 0.999939. Minimum negative gain adjustment.  
ADC DIGITAL POSTPROCESSING REGISTERS (OPTIONAL)  
Table 71. ADC Digital Postprocessing Registers Summary  
Address  
Name  
Description  
Reset  
Access  
0x000020A8  
0x000020AC  
0x000020B0  
0x000020B4  
0x000020B8  
ADCMIN  
ADCMINSM  
ADCMAX  
ADCMAXSMEN  
ADCDELTA  
ADC minimum value check register  
ADC minimum hysteresis value register  
ADC maximum value check register  
ADC maximum hysteresis value register  
ADC delta value check register  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
R/W  
R/W  
R/W  
R/W  
R/W  
ADC Minimum Value Check Register—ADCMIN  
Address 0x000020A8, Reset: 0x00000000, Name: ADCMIN  
Table 72. Bit Descriptions for ADCMIN Register  
Bits  
[31:16] Reserved  
[15:0] MINVAL  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
ADC minimum value threshold. This value is a low ADCDAT threshold value. If a value less  
than the value of the MINVAL bit is measured by the ADC, the FLAG4 bit in the INTCFLAG0  
register or INTCFLAG1 register is set to 1.  
R/W  
ADC Minimum Hysteresis Value Register—ADCMINSM  
Address 0x000020AC, Reset: 0x00000000, Name: ADCMINSM  
Table 73. Bit Descriptions for ADCMINSM Register  
Bits  
[31:16] Reserved  
[15:0] MINCLRVAL  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
ADCMIN hysteresis value. If a value less than ADCMIN is measured by the ADC, the FLAG4  
R/W  
bit in INTCFLAG0 register or INTCFLAG1 register is set. The FLAG4 bit is set until the value  
of the ADCDAT register is greater than ADCMIN, Bits[15:0] + ADCMINSM, Bits[15:0].  
ADC Maximum Value Check Register—ADCMAX  
Address 0x000020B0, Reset: 0x00000000, Name: ADCMAX  
Table 74. Bit Descriptions for ADCMAX Register  
Bits  
[31:16] Reserved  
[15:0] MAXVAL  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
ADC maximum threshold. These bits form the optional maximum ADCDAT threshold. If a value  
R/W  
less than ADCMAX is measured by the ADC, the FLAG5 bit in the INTCFLAG0 register or  
INTCFLAG1 register is set to 1.  
Rev. 0 | Page 65 of 130  
 
AD5940  
Data Sheet  
ADC Maximum Hysteresis Value Register—ADCMAXSMEN  
Address 0x000020B4, Reset: 0x00000000, Name: ADCMAXSMEN  
Table 75. Bit Descriptions for ADCMAXSMEN Register  
Bits  
[31:16] Reserved  
[15:0] MAXSWEN  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
ADCMAX hysteresis value. If a value greater than the value of the ADCMAX register is  
R/W  
measured by the ADC, the FLAG5 bit in INTCFLAG0 register or INTCFLAG1 register is set.  
The FLAG5 bit remains set until the value of the ADCDAT register is less than the value  
of ADCMAX, Bits[15:0] – ADCMAXSMEN, Bits[15:0].  
ADC Delta Value Check Register—ADCDELTA  
Address 0x000020B8, Reset: 0x00000000, Name: ADCDELTA  
Table 76. Bit Descriptions for ADCDELTA Register  
Bits  
[31:16] Reserved  
[15:0] DELTAVAL  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
R
ADCDAT code differences limit option. If two consecutive ADCDAT register results have 0x0  
a difference greater than ADCDELTA, Bits[15:0], an error flag is set via the FLAG6 bit of  
the INTCFLAG0 register or INTCFLAG1 register.  
R/W  
ADC STATISTICS REGISTERS  
Table 77. ADC Statistics Registers Summary  
Address  
Name  
Description  
Reset  
Access  
0x000021C0 STATSVAR  
0x000021C4 STATSCON  
Variance output register  
Statistics controlmodule configuration register, including mean, variance, and outlier  
detection blocks  
0x00000000  
0x00000000 R/W  
R
0x000021C8 STATSMEAN Mean output register  
0x00000000  
R
Variance Output Register—STATSVAR  
Address 0x000021C0, Reset: 0x00000000, Name: STATSVAR  
Table 78. Bit Descriptions for STATSVAR  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
31  
Reserved  
Reserved.  
0x0  
0x0  
R
R
[30:0] Variance  
Statistical variance value. This value indicates the spread from the mean value.  
Statistics Control Register—STATSCON  
Address 0x000021C4, Reset: 0x00000000, Name: STATSCON  
Table 79. Bit Descriptions for STATSCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:12] Reserved  
Reserved.  
0x0  
0x0  
0x0  
R
[11:7]  
[6:4]  
STDDEV  
Standard deviation configuration.  
R/W  
R/W  
SAMPLENUM  
Sample size. These bits set the number of ADC samples used for each statistic  
calculation.  
0
1
128 samples.  
64 samples.  
10 32 samples.  
11 16 samples.  
100 8 samples.  
Reserved.  
[3:1]  
0
Reserved  
STATSEN  
0x0  
0x0  
R/W  
R/W  
Statistics enable.  
0
1
Disable statistics.  
Enable statistics.  
Rev. 0 | Page 66 of 130  
 
Data Sheet  
AD5940  
Statistics Mean Output Register—STATSMEAN  
Address 0x000021C8, Reset: 0x00000000, Name: STATSMEAN  
Table 80. Bit Descriptions for STATSMEAN Register  
Bits  
[31:16] Reserved  
[15:0] Mean  
Bit Name  
Settings Description  
Reset  
Access  
Reserved.  
0x0  
0x0  
R
R
Mean output. These bits form the mean value calculated for the number of ADC  
samples set by STATSCON, Bits[6:4].  
Rev. 0 | Page 67 of 130  
AD5940  
Data Sheet  
PROGRAMMABLE SWITCH MATRIX  
The AD5940 provides flexibility for connecting external pins  
to the high speed DAC excitation amplifier and to the high  
speed TIA inverting input. This flexibility supports options for  
impedance measurements of different sensor types and allows  
an ac signal to be coupled to the dc bias voltage of a sensor.  
AFEx Switches  
The AFE1, AFE2, and AFE3 switches are only intended for use  
as switches. These switches are not ADC inputs. In a multi-  
measurement system, these switches provide a method to switch  
sensor electrodes, which is useful in bioelectric system applications.  
When configuring the switches, take the switch settings on the  
output of the low power amplifiers into account.  
RECOMMENDED CONFIGURATION IN HIBERNATE  
MODE  
On power-up, all switches are open to disconnect the sensor.  
To minimize leakage on the switches connecting to the positive  
node and negative node of the excitation amplifier, and to  
minimize leakage on the high speed TIA, it is recommended to  
tie the switches to the internal 1.82 V LDO generated voltage by  
closing the PL, PL2, NL, and NL2 switches.  
Figure 32 shows a high level diagram of how each of the switch  
matrix nodes (data out, positive, negative, and TIA nodes)  
connect to the internal circuitry of the AD5940. Figure 33  
shows a detailed diagram of every switch on the matrix.  
In hibernate mode, it is assumed that only the dc bias voltage  
from the low power amplifiers is required for the sensor.  
SWITCH DESCRIPTIONS  
Dx/DR0 Switches  
OPTIONS FOR CONTROLLING ALL SWITCHES  
The Dx/DR0 switches select the pin to connect to the excitation  
amplifier output of the high speed DAC. For an impedance  
measurement, this pin is CE0. The output of the excitation  
amplifier can be connected to an external calibration resistor  
(RCAL) via the RCAL0 pin if the DR0 switch is closed.  
Figure 33 shows all switches connected to the high speed  
DAC excitation amplifier and to the inverting input of the  
high speed TIA.  
Two options are available for controlling the switches on the  
switch matrix,  
Px/Pxx Switches  
The Px/Pxx switches select the pin to connect to the positive node  
of the excitation amplifier of the high speed DAC. For most  
applications, this pin is RE0. The negative input of the excitation  
amplifier can be connected to an external calibration resistor via  
the RCAL0 pin if the PR0 switch is closed.  
Control the Tx/TR1, Nx/Nxx, Px/Pxx, and Dx/DR0  
switches as a group in the SWCON register.  
Individual control of each switch within the switch matrix  
using the xSWFULLCON registers.  
If controlling the switches using the xSWFULLCON registers,  
follow this sequence:  
Nx/Nxx Switches  
The Nx/Nxx switches select the pin to connect to the negative  
node of the excitation amplifier of the high speed DAC. The  
inverting input of the high speed TIA can be connected to an  
external calibration resistor via the RCAL1 pin if the NR1  
switch is closed.  
1. Write to the specific bit in the xSWFULLCON register.  
2. Set the SWSOURCESEL bit in the SWCON register. If this  
bit is not set after writing to the xSWFULLCON register,  
the changes do not take effect.  
In addition, status registers are available to read back the open  
or closed status of each switch.  
Tx/TR1 Switches  
The Tx/TR1 switches select the pin to connect to the inverting  
input of the high speed TIA. The inverting input of the high  
speed TIA can be connected to RCAL via the RCAL1 pin if the  
TR1 switch is closed.  
Rev. 0 | Page 68 of 130  
 
 
 
 
Data Sheet  
AD5940  
WAVEFORM  
GENERATOR  
HSDAC  
GAIN  
T
O CE0, RCAL0,  
Dx/DR0  
SWITCHES  
EXCITATION  
BUFFER  
AFE1, AFE3, SE0,  
AIN0 TO AIN3/BUF_VREF1V8  
P-NODE  
N-NODE  
FROM RCAL0,  
CE0, SE0, DE0, RE0,  
P
N
Px/Pxx  
SWITCHES  
AFE1, AFE2, AFE3,  
AIN0 TO AIN3/BUF_VREF1V8  
V
ZERO0  
FROM RCAL1, SE0,  
AFE3,  
AIN0 TO AIN3/BUF_VREF1V8  
Nx/Nxx  
SWITCHES  
1.11V  
+
HSTIA_P  
FROM RCAL1,  
Tx/TR1  
SWITCHES  
(CURRENT)  
HSTIA  
AIN0 TO AIN3/BUF_VREF1V8,  
R
, DE0,  
LOAD_SE0  
R
, R  
LOAD_AFE3  
LOAD_DE0  
T9  
T10  
R
TIA  
R
TIA_DE0  
C
TIA  
Figure 32. Switch Matrix High Level Diagram  
Rev. 0 | Page 69 of 130  
 
AD5940  
Data Sheet  
D2  
D3  
EXCITATION BUFFER  
AMPLIFIER LOOP  
D4  
Dx/DR0 SWITCHES  
CE0  
D5  
N
P
AFE1  
D6  
D7  
DSWFULLCON  
OR SWCON[3:0]  
D8  
DR0  
RCAL0  
RCAL1  
PL  
PR0  
P2  
P3  
P4  
P5  
P6  
P7  
Px/Pxx SWITCHES  
PSWFULLCON  
OR SWCON[7:4]  
RE0  
AFE2  
SE0  
DE0  
P8  
P9  
AFE3  
P11  
P12  
PL2  
DVDD_REG_AD  
NL2  
NR1  
N1  
N2  
N3  
N4  
N5  
N6  
N7  
R
LOAD_SE0  
Nx/Nxx SWITCHES  
NSWFULLCON  
OR SWCON[11:8]  
R
LOAD_AFE3  
N9  
NL  
TR1  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
TSWFULLCON  
OR SWCON[15:12]  
HIGH SPEED  
TRANSIMPEDANCE  
AMPLIFIER  
Tx/TR1 SWITCHES  
+
TIA OUTPUT  
HSRTIACON[3:0]  
R
TIA  
AIN0  
AIN1  
AIN2  
AIN3  
T9  
HSRTIACON[12:5]  
C
TIA  
T10  
HSRTIACON[4]  
R
TIA_DE0  
R
LOAD_DE0  
DE0RTIACON[7:0]  
SWITCH AND RELOAD  
CONTROLLED BY  
DE0RESCON[7:0]  
Figure 33. Switch Matrix Block Diagram—Switches Connecting to the High Speed DAC and High Speed TIA  
Rev. 0 | Page 70 of 130  
 
Data Sheet  
AD5940  
PROGRAMMABLE SWITCHES REGISTERS  
Table 81. Programmable Switch Matrix Registers Summary  
Address  
Name  
Description  
Reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
R
R
0x0000200C  
0x00002150  
0x00002154  
0x00002158  
0x0000215C  
0x000021B0  
0x000021B4  
0x000021B8  
0x000021BC  
SWCON  
Switch matrix configuration  
0x0000FFFF  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
DSWFULLCON  
NSWFULLCON  
PSWFULLCON  
TSWFULLCON  
DSWSTA  
PSWSTA  
NSWSTA  
TSWSTA  
Switch matrix full configuration (Dx/DR0)  
Switch matrix full configuration (Nx/Nxx)  
Switch matrix full configuration (Px/Pxx)  
Switch matrix full configuration (Tx/TR1)  
Switch matrix status (Dx/DR0)  
Switch matrix status (Px/Pxx)  
Switch matrix status (Nx/Nxx)  
Switch matrix status (Tx/TR1)  
Switch Matrix Configuration Register—SWCON  
Address 0x0000200C, Reset: 0x0000FFFF, Name: SWCON  
This register allows configuration of the switch matrix.  
Table 82. Bit Descriptions for SWCON Register  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
[31:19] Reserved  
Reserved.  
Control of the T10 switch.  
T10 closed.  
T10 open.  
Control of the T9 switch.  
T9 closed.  
0x0  
0x0  
R
R/W  
18  
17  
16  
T10CON  
1
0
T9CON  
0x0  
0x0  
R/W  
R/W  
1
0
T9 open.  
SWSOURCESEL  
Switch control select. This bit selects the registers to control the  
programmable switches.  
1
0
Switch control source. Switches controlled by DSWFULLCON, TSWFULLCON,  
PSWFULLCON, and NSWFULLCON registers.  
Dx/DR0, Tx/TR1, Px/Pxx, and Nx/Nxx switches controlled as groups.  
Switches controlled as groups via the SWCON register.  
[15:12] TMUXCON  
Control of the Tx/TR1 switch mux. Does not include control of the T9 or T10 0xF  
switch.  
R/W  
0000 All switches open.  
0001 T1 closed, remaining switches open.  
0010 T2 closed, remaining switches open.  
0011 T3 closed, remaining switches open.  
0100 T4 closed, remaining switches open.  
0101 T5 closed, remaining switches open.  
0110 T6 closed, remaining switches open.  
0111 T7 closed, remaining switches open.  
1000 TR1 closed, remaining switches open.  
1001 All switches closed.  
1010 to 1111 All switches open.  
Rev. 0 | Page 71 of 130  
 
AD5940  
Data Sheet  
Bits  
[11:8]  
Bit Name  
NMUXCON  
Settings  
Description  
Control of N switch mux.  
Reset Access  
0xF  
R/W  
0000 NL closed, remaining switches open.  
0001 N1 closed, remaining switches open.  
0010 N2 closed, remaining switches open.  
0011 N3 closed, remaining switches open.  
0100 N4 closed, remaining switches open.  
0101 N5 closed, remaining switches open.  
0110 N6 closed, remaining switches open.  
0111 N7 closed, remaining switches open.  
1000 Reserved.  
1001 N9 closed, remaining switches open.  
1010 NR1 closed, remaining switches open.  
1011 to 1110 NL2 closed, remaining switches open.  
1111 All switches open.  
[7:4]  
PMUXCON  
Control of Px/Pxx switch mux.  
0xF  
R/W  
0000 PL closed, remaining switches open.  
0001 PR0 closed, remaining switches open.  
0010 P2 closed, remaining switches open.  
0011 P3 closed, remaining switches open.  
0100 P4 closed, remaining switches open.  
0101 P5 closed, remaining switches open.  
0110 P6 closed, remaining switches open.  
0111 P7 closed, remaining switches open.  
1000 P8 closed, remaining switches open.  
1001 P9 closed, remaining switches open.  
1010 Reserved.  
1011 P11 closed, remaining switches open.  
1100 Reserved.  
1101 to 1110 PL2 closed, remaining switches open.  
1111 All switches open.  
[3:0]  
DMUXCON  
Control of Dx/DR0 switch mux.  
0xF  
R/W  
0000 All switches open.  
0001 DR0 closed, remaining switches open.  
0010 D2 closed, remaining switches open.  
0011 D3 closed, remaining switches open.  
0100 D4 closed, remaining switches open.  
0101 D5 closed, remaining switches open.  
0110 D6 closed, remaining switches open.  
0111 D7 closed, remaining switches open.  
1000 D8 closed, remaining switches open.  
1001 All switches closed.  
1010 to 1111 All switches open.  
Rev. 0 | Page 72 of 130  
Data Sheet  
AD5940  
Switch Matrix Full Configuration Dx/DR0 Register—DSWFULLCON  
Address 0x00002150, Reset: 0x00000000, Name: DSWFULLCON  
The DSWFULLCON register allows individual control of the Dx/DR0 switches. The bit names are the same as the switch names shown in  
Figure 33.  
Table 83. Bit Descriptions for DSWFULLCON Register  
Bits  
[31:8]  
7
Bit Name Settings Description  
Reset Access  
Reserved  
D8  
Reserved.  
0x0  
0x0  
R
R/W  
Control of the D8 switch. This bit connects the D-node of the excitation amplifier to the  
AFE3 pin.  
0
1
Switch open.  
Switch closed.  
6
D7  
Control of the D7 switch. This bit connects the D-node of the excitation amplifier to the  
SE0 pin.  
0x0  
R/W  
0
1
Switch open.  
Switch closed.  
Reserved.  
5
4
Reserved  
D5  
0x0  
0x0  
R/W  
R/W  
Control of the D5 switch. This bit connects the data out node of the excitation amplifier  
to the CE0 pin.  
0
1
Switch open.  
Switch closed.  
3
2
1
0
D4  
Control of the D4 switch. This bit connects the data out node of the excitation amplifier  
to the AIN3 pin.  
Switch open.  
Switch closed.  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
0
1
D3  
Control of the D3 switch. This bit connects the data out node of the excitation amplifier  
to the AIN2 pin.  
Switch open.  
Switch closed.  
0
1
D2  
Control of the D2 switch. This bit connects the data out node of the excitation amplifier  
to the AIN1 pin.  
Switch open.  
Switch closed.  
0
1
DR0  
Control of the DR0 switch. This bit connects the data out node of the excitation amplifier  
to the RCAL0 pin.  
0
1
Switch open.  
Switch closed.  
Switch Matrix Full Configuration Nx/Nxx Register—NSWFULLCON  
Address 0x00002154, Reset: 0x00000000, Name: NSWFULLCON  
The NSWFULLCON register allows individual control of the Nx/Nxx switches. The bit names are the same as the switch names shown in  
Figure 33.  
Table 84. Bit Descriptions for NSWFULLCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:12] Reserved  
Reserved.  
0x0  
0x0  
R
11  
10  
NL2  
NL  
Control of the NL2 switch. If this bit is set, NL2 is closed. If this bit is not set, NL2 is open.  
Switch open.  
Switch closed.  
Control of the NL switch. If this bit is set, NL is closed. If this bit is not set, NL is open. This 0x0  
bit shorts the negative node of the excitation amplifier to the inverting input of the  
high speed TIA.  
R/W  
0
1
R/W  
0
1
Switch open.  
Switch closed.  
Rev. 0 | Page 73 of 130  
AD5940  
Data Sheet  
Bits  
Bit Name  
Settings Description  
Reset Access  
9
NR1  
Control of the NR1 switch. If this bit is set, NR1 is closed. If this bit is not set, NR1 is open. 0x0  
This bit connects the negative node of the excitation amplifier to the RCAL1 pin.  
Switch open.  
R/W  
0
1
Switch closed.  
8
N9  
Control of the N9 switch. If this bit is set, N9 is closed. If this bit is not set, N9 is open. This  
bit connects the negative node of the excitation amplifier directly to the SE0 pin,  
bypassing the RLOAD_SE0 resistor.  
Switch open.  
Switch closed.  
Reserved.  
0x0  
0x0  
R/W  
0
1
7
6
Reserved  
N7  
Control of the N7 switch. If this bit is set, N7 is closed. If this bit is not set, N7 is open.  
This bit connects the negative node of the excitation amplifier to the AFE3 pin via  
the RLOAD_AFE3 resistor.  
R/W  
0
1
Switch open.  
Switch closed.  
5
4
N6  
N5  
Control of the N6 switch. If this bit is set, N6 is closed. If this bit is not set, N6 is open.  
This bit connects the negative node of the excitation amplifier to SE0.  
Switch open.  
Switch closed.  
0x0  
0x0  
R/W  
R/W  
0
1
Control of the N5 switch. If this bit is set, N5 is closed. If this bit is not set, N5 is open.  
This bit connects the negative node of the excitation amplifier to the SE0 pin via  
RLOAD_SE0  
.
0
1
Switch open.  
Switch closed.  
3
2
1
0
N4  
N3  
N2  
N1  
Control of the N4 switch. If this bit is set, N4 is closed. If this bit is not set, N4 is open.  
This bit connects the negative node of the excitation amplifier to the AIN3 pin.  
Switch open.  
Switch closed.  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
0
1
Control of the N3 switch. If this bit is set, N3 is closed. If this bit is not set, N3 is open.  
This bit connects the negative node of the excitation amplifier to the AIN2 pin.  
Switch open.  
Switch closed.  
0
1
Control of the N2 switch. If this bit is set, N2 is closed. If this bit is not set, N2 is open.  
This bit connects the negative node of the excitation amplifier to the AIN1 pin.  
Switch open.  
Switch closed.  
0
1
Control of the N1 switch. If this bit is set, N1 is closed. If this bit is not set, N1 is open.  
This bit connects the negative node of the excitation amplifier to the AIN0 pin.  
0
1
Switch open.  
Switch closed.  
Switch Matrix Full Configuration Px/Pxx Register—PSWFULLCON  
Address 0x00002158, Reset: 0x00000000, Name: PSWFULLCON  
The PSWFULLCON register allows individual control of the Px/Pxx switches. The bit names are the same as the switch names shown in  
Figure 33.  
Table 85. Bit Descriptions for PSWFULLCON Register  
Bits  
[31:15] Reserved  
14 PL2  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
PL2 switch control.  
Switch open.  
Switch closed.  
R/W  
0
1
Rev. 0 | Page 74 of 130  
Data Sheet  
AD5940  
Bits  
13  
Bit Name  
PL  
Settings Description  
PL switch control. This bit shorts the data out and positive nodes of the excitation  
Reset Access  
0x0  
R/W  
amplifier together.  
Switch open.  
Switch closed.  
Reserved.  
0
1
[12:11] Reserved  
0x0  
0x0  
R/W  
R/W  
10  
P11  
Control of the P11 switch. Setting this bit closes the P11 switch. The P11 switch is  
open if this bit is not set. This bit connects the positive node of the excitation  
amplifier to the CE0 pin.  
0
1
Switch open.  
Switch closed.  
Reserved.  
9
8
Reserved  
P9  
0x0  
R/W  
R/W  
Control of the P9 switch. Setting this bit closes the P9 switch. The P9 switch is open if 0x0  
this bit is not set. This bit connects the positive node of the excitation amplifier to  
the AFE3 pin.  
0
1
Switch open.  
Switch closed.  
7
6
P8  
P7  
Control of the P8 switch. Setting this bit closes the P8 switch. The P8 switch is open if 0x0  
this bit is not set. This bit connects the positive node of the excitation amplifier to  
the DE0 pin.  
Switch open.  
Switch closed.  
Control of the P7 switch. Setting this bit closes the P7 switch. The P7 switch is open if 0x0  
this bit is not set. This bit connects the positive node of the excitation amplifier to  
the SE0 pin.  
R/W  
R/W  
0
1
0
1
Switch open.  
Switch closed.  
5
4
3
P6  
P5  
P4  
Control of the P6 switch. Setting this bit closes P6. P6 is open if this bit is not set. This 0x0  
bit connects the positive node of the excitation amplifier to the AFE2 pin.  
Switch open.  
Switch closed.  
R/W  
R/W  
R/W  
0
1
Control of the P5 switch. Setting this bit closes P5. The P5 switch is open if this bit is  
not set. This bit connects the positive node of the excitation amplifier to the RE0 pin.  
Switch open.  
Switch closed.  
0x0  
0x0  
0
1
Control of the P4 switch. Setting this bit closes P4. The P4 switch is open if this bit is  
not set. This bit connects the positive node of the excitation amplifier to the  
AIN3 pin.  
0
1
Switch open.  
Switch closed.  
2
1
0
P3  
Control of the P3 switch. Setting this bit closes P3. The P3 switch is open if this bit is  
not set. This bit connects the positive node of the excitation amplifier to the AIN2  
pin.  
Switch open.  
Switch closed.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
0
1
P2  
Control of the P2 switch. Setting this bit closes P2. The P2 switch is open if this bit is  
not set. This bit connects the positive node of the excitation amplifier to the AIN1  
pin.  
Switch open.  
Switch closed.  
0
1
PR0  
PR0 switch control. This bit connects the positive node of the excitation amplifier to  
the RCAL0 pin.  
0
1
Switch open.  
Switch closed.  
Rev. 0 | Page 75 of 130  
AD5940  
Data Sheet  
Switch Matrix Full Configuration Tx/TR1 Register—TSWFULLCON  
Address 0x0000215C, Reset: 0x00000000, Name: TSWFULLCON  
The TSWFULLCON register allows individual control of the Tx/TR1 switches. The bit names are the same as the switch names shown in  
Figure 33.  
Table 86. Bit Descriptions for TSWFULLCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:12] Reserved  
Reserved.  
0x0  
0x0  
R
R/W  
11  
TR1  
Control of the TR1 switch. Setting this bit closes TR1. The TR1 switch is open if this bit  
is not set. This bit connects the RCAL1 pin to the inverting input of the high speed  
TIA.  
0
1
Switch open.  
Switch closed.  
Reserved.  
10  
9
Reserved  
T10  
0x0  
0x0  
R/W  
R/W  
Control of the T10 switch. Setting this bit closes T10. The T10 switch is open if this bit  
is not set. This bit connects the DE0 pin to the inverting input of the high speed TIA.  
0
1
Switch open.  
Switch closed.  
8
T9  
Control of the T9 switch. Setting this bit closes T9. The T9 switch is open if this bit is  
not set. This switch is used in conjunction with the T10 switch.  
0x0  
R/W  
0
1
Switch open. When open, the inverting input of the high speed TIA can be DE0 via  
the T10 switch.  
Switch closed. Ensure that T10 is open. The inverting input of the high speed TIA is  
determined by T1, T2, T3, T4, T5, and T6.  
7
6
Reserved  
T7  
Reserved.  
0x0  
0x0  
R/W  
R/W  
Control of the T7 switch. Setting this bit closes T7. The T7 switch is open if this bit is  
not set.  
0
1
Switch open.  
Switch closed.  
5
4
3
2
T6  
T5  
T4  
T3  
Control of the T6 switch. Setting this bit closes T6. The T6 switch is open if this bit is  
not set. This bit allows connection of the RCALx path to the DE0 input to calibrate  
the RLOAD_DE0 and RTIA_DE0 resistors.  
Switch open.  
Switch closed.  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
0
1
Control of the T5 switch. Setting this bit closes T5. The T5 switch is open if this bit is  
not set. This bit connects the inverting input of the high speed TIA to the SE0 pin the  
via T9 switch and RLOAD_SE0  
.
0
1
Switch open.  
Switch closed.  
Control of the T4 switch. Setting this bit closes T4. The T4 switch is open if this bit is  
not set. This bit connects the inverting input of the high speed TIA to the AIN3 pin via  
the T9 switch.  
Switch open.  
Switch closed.  
0
1
Control of the T3 switch. Setting this bit closes T3. The T3 switch is open if this bit is  
not set. This bit connects the inverting input of the high speed TIA to the AIN2 pin  
via the T9 switch.  
0
1
Switch open.  
Switch closed.  
Rev. 0 | Page 76 of 130  
Data Sheet  
AD5940  
Bits  
1
Bit Name  
T2  
Settings Description  
Control of the T2 switch. Setting this bit closes T2. T2 is open if this bit is not set. This  
Reset Access  
0x0  
R/W  
bit connects the inverting input of the high speed TIA to the AIN1 pin via the T9  
switch.  
0
1
Switch open.  
Switch closed.  
0
T1  
Control of the T1 switch. Setting this bit closes T1. T1 is open if this bit is not set. This  
bit connects the inverting input of the high speed TIA to the AIN0 pin via the T9  
switch.  
0x0  
R/W  
0
1
Switch open.  
Switch closed.  
Switch Matrix Status Dx/DR0 Register—DSWSTA  
Address 0x000021B0, Reset: 0x00000000, Name: DSWSTA  
The DSWSTA register indicates the status of the Dx/DR0 switches. The bit names are the same as the switch names shown in Figure 33.  
Table 87. Bit Descriptions for DSWSTA Register  
Bits  
[31:7]  
6
Bit Name  
Reserved  
D7STA  
Settings  
Description  
Reserved.  
Status of the D7 switch.  
Switch open.  
Switch closed.  
Reset  
0x0  
0x0  
Access  
R
R
0
1
5
4
3
2
1
0
D6STA  
D5STA  
D4STA  
D3STA  
D2STA  
DR0STA  
Status of the D6 switch.  
Switch open.  
Switch closed.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
0
1
Status of the D5 switch.  
Switch open.  
Switch closed.  
0
1
Status of the D4 switch.  
Switch open.  
Switch closed.  
Status of the D3 switch.  
Switch open.  
Switch closed.  
Status of the D2 switch.  
Switch open.  
Switch closed.  
Status of the DR0 switch.  
Switch open.  
Switch closed.  
0
1
0
1
0
1
0
1
Switch Matrix Status Px/Pxx Register—PSWSTA  
Address 0x000021B4, Reset: 0x00000000, Name: PSWSTA  
The PSWSTA register indicates the status of the Px/Pxx switches. The bit names are the same as the switch names shown in Figure 33.  
Table 88. Bit Descriptions for PSWSTA Register  
Bits  
[31:15]  
14  
Bit Name  
Reserved  
PL2STA  
Settings  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R
Status of PL2 switch.  
Switch open.  
Switch closed.  
PL switch control.  
Switch open.  
0
1
13  
PLSTA  
0x0  
R
0
1
Switch closed.  
Rev. 0 | Page 77 of 130  
AD5940  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
12  
P13STA  
Status of the P13 switch.  
Switch open.  
Switch closed.  
0x0  
R
0
1
11  
10  
Reserved  
P11STA  
Reserved  
Status of the P11 switch.  
Switch open.  
0x0  
0x0  
R
R
0
1
Switch closed.  
9
7
6
5
4
3
2
1
0
P9STA  
P8STA  
P7STA  
P6STA  
P5STA  
P4STA  
P3STA  
P2STA  
PR0STA  
Status of the P9 switch.  
Switch open.  
Switch closed.  
Status of the P8 switch.  
Switch open.  
Switch closed.  
Status of the P7 switch.  
Switch open.  
Switch closed.  
Status of the P5 switch.  
Switch open.  
Switch closed.  
Status of the P5 switch.  
Switch open.  
Switch closed.  
Status of the P4 switch.  
Switch open.  
Switch closed.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
R
R
R
0
1
0
1
0
1
0
1
0
1
0
1
Status of the P3 switch.  
Switch open.  
Switch closed.  
Status of the P2 switch.  
Switch open.  
Switch closed.  
PR0 switch control.  
Switch open.  
Switch closed.  
0
1
0
1
0
1
Switch Matrix Status Nx/Nxx Register—NSWSTA  
Address 0x000021B8, Reset: 0x00000000, Name: NSWSTA  
The NSWSTA register indicates the status of the Nx/Nxx switches. The bit names are the same as the switch names shown in Figure 33.  
Table 89. Bit Descriptions for NSWSTA Register  
Bits  
[31:12]  
11  
Bit Name  
Reserved  
NL2STA  
Settings  
Description  
Reserved.  
Status of the NL2 switch.  
Switch open.  
Switch closed.  
Reset  
0x0  
0x0  
Access  
R
R
0
1
10  
9
NLSTA  
Status of the NL switch.  
Switch open.  
Switch closed.  
Status of the NR1 switch.  
Switch open.  
Switch closed.  
0x0  
0x0  
R
R
0
1
NR1STA  
0
1
Rev. 0 | Page 78 of 130  
Data Sheet  
AD5940  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
8
N9STA  
Status of the N9 switch.  
Switch open.  
Switch closed.  
0x0  
R
0
1
7
6
Reserved  
N7STA  
Reserved  
Status of the N7 switch.  
Switch open.  
0x0  
0x0  
R
R
0
1
Switch closed.  
5
4
3
2
1
0
N6STA  
N5STA  
N4STA  
N3STA  
N2STA  
N1STA  
Status of the N6 switch.  
Switch open.  
Switch closed.  
Status of the N5 switch.  
Switch open.  
Switch closed.  
Status of the N4 switch.  
Switch open.  
Switch closed.  
Status of the N3 switch.  
Switch open.  
Switch closed.  
Status of the N2 switch.  
Switch open.  
Switch closed.  
Status of the N1 switch.  
Switch open.  
Switch closed.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
0
1
0
1
0
1
0
1
0
1
0
1
Switch Matrix Status Tx/TR1 Register—TSWSTA  
Address 0x000021BC, Reset: 0x00000000, Name: TSWSTA  
The TSWSTA register indicates the status of the Tx/TR1 switches. The bit names are the same as the switch names shown in Figure 33.  
Table 90. Bit Descriptions for TSWSTA Register  
Bits  
[31:12]  
11  
Bit Name  
Reserved  
TR1STA  
Settings  
Description  
Reserved.  
Reset  
0x0  
Access  
R
R
Status of the TR1 switch.  
Switch open.  
Switch closed.  
0x0  
0
1
10  
9
Reserved  
T10STA  
Reserved  
Status of the T10 switch.  
Switch open.  
0x0  
0x0  
R
R
0
1
Switch closed.  
8
T9STA  
Status of the T9 switch.  
Switch open.  
Switch closed.  
0x0  
R
0
1
7
6
Reserved  
T7STA  
Reserved.  
Status of the T7 switch.  
Switch open.  
0x0  
0x0  
R
R
0
1
Switch closed.  
5
4
T6STA  
T5STA  
Status of the T6 switch.  
Switch open.  
Switch closed.  
Status of the T5 switch.  
Switch open.  
Switch closed.  
0x0  
0x0  
R
R
0
1
0
1
Rev. 0 | Page 79 of 130  
AD5940  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
T4STA  
T3STA  
T2STA  
T1STA  
Status of the T4 switch.  
Switch open.  
Switch closed.  
0x0  
0x0  
0x0  
0x0  
R
0
1
2
1
0
Status of the T3 switch.  
Switch open.  
Switch closed.  
Status of the T2 switch.  
Switch open.  
Switch closed.  
Status of the T1 switch.  
Switch open.  
Switch closed.  
R
R
R
0
1
0
1
0
1
Rev. 0 | Page 80 of 130  
Data Sheet  
AD5940  
PRECISION VOLTAGE REFERENCES  
This section describes the integrated voltage reference options  
available on the AD5940. The AD5940 can generate accurate  
voltage references for the ADC and DAC. There is a 1.82 V  
reference for the ADC and DAC and a 2.5 V reference for the  
potentiostat. The 2.5 V reference must be decoupled via the  
VREF_2V5 pin and the 1.82 V reference must be decoupled via  
the VREF_1V82 pin.  
Figure 34 shows the various voltage reference options available  
and the register and bits that control these options.  
AVDD  
AIN3/BUF_VREF1V8  
1.82V FOR  
THERMISTOR  
1.82V  
ANALOG  
LDO  
BUFSENCON[8]  
VBIAS_CAP  
4.7µF  
1.1V FOR ADC  
INPUT BIAS  
1.82V AVDD  
HP ADC  
BUFSENCON[4]  
BUFFER  
1.1V HP  
PRECISION  
BAND GAP  
VREF_1V82  
4.7µF  
1.82V  
REFERENCE  
FOR ADC  
BUFSENCON[0]  
AFECON[5]  
HP DAC  
BUFFER  
1.82V  
REFERENCE  
FOR ADC  
BUFSENCON[2]  
ULP  
BUFFER  
0.92V  
LP  
BAND GAP  
VREF_2V5  
0.47µF  
2.5V  
REFERENCE  
LP ADC  
BUFFER  
FOR POTENTIOSTAT  
1.82V  
REFERENCE  
FOR ADC  
LOW POWER 1.11V  
BUFFER  
BUFSENCON[2]  
VOLTAGE REFERENCES  
BUFSENCON[5]  
Figure 34. Precision Voltage References  
HIGH POWER AND LOW POWER BUFFER CONTROL REGISTER—BUFSENCON  
Address 0x00002180, Reset: 0x00000037, Name: BUFSENCON  
Table 91. Bit Descriptions for BUFSENCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:9] Reserved  
Reserved.  
0x0  
0x0  
R
8
V1P8THERMSTEN  
Buffered reference output. Buffered output to the AIN3/BUF_VREF1V82 pin.  
R/W  
0
1
Disables 1.82 V buffered reference output.  
Enables 1.82 V buffered reference output.  
Reserved.  
7
6
Reserved  
0x0  
0x0  
R
V1P1LPADCCHGDIS  
Controls the decoupling capacitor discharge switch. This switch connects  
the 1.11 V internal reference for the ADC common-mode voltage to an internal  
discharging circuit. Leave this bit open for normal operation to maintain the  
reference voltage on the external 1.11 V decoupling capacitor.  
R/W  
0
1
Opens switch (recommended value). Leave the switch open to maintain  
charge on external decoupling capacitor for the 1.11 V reference.  
Closes switch. Close this switch to connect the 1.11 V reference to the  
discharging circuit.  
Rev. 0 | Page 81 of 130  
 
 
 
AD5940  
Data Sheet  
Bits  
Bit Name  
Settings Description  
ADC 1.11 V low power common-mode buffer (optional). Use the high speed  
Reset Access  
5
V1P1LPADCEN  
0x1  
R/W  
or low power reference buffer.  
0
1
Disables the 1.11 V low power reference buffer of the ADC.  
Enables the 1.11 V low power reference buffer of the ADC.  
4
3
V1P1HSADCEN  
Enables the 1.11 V, high speed, common-mode buffer. This bit controls the  
buffer for the 1.11 V common-mode voltage source to the ADC input stage.  
Disables the 1.11 V, high speed, common-mode buffer.  
Enables the 1.11 V, high speed, common-mode buffer (recommended value  
for normal ADC operation).  
0x1  
R/W  
0
1
V1P8HSADCCHGDIS  
V1P8LPADCEN  
Controls the decoupling capacitor discharge switch. This switch connects  
the 1.82 V internal ADC reference to an internal discharging circuit. Leave  
this bit open for normal operation to maintain the reference voltage on the  
external decoupling capacitor.  
Opens switch. If opened, the voltage on the external decoupling capacitor  
for the reference is maintained (recommended value).  
0x0  
0x1  
R/W  
R/W  
0
1
Closes switch. Close this switch to connect the reference to the discharge circuit.  
ADC 1.82 V low power reference buffer.  
2
0
1
Disables the low power 1.82 V reference buffer.  
Enables the low power 1.82 V reference buffer (recommended value). This  
setting speeds up the settling time when exiting a power-down state.  
1
0
V1P8HSADCILIMITEN  
V1P8HSADCEN  
High speed ADC input current limit. This bit protects the ADC input buffer.  
Disables buffer current limit.  
Enables buffer current limit (recommended value).  
0x1  
0x1  
R/W  
R/W  
0
1
High speed 1.82 V reference buffer. Enable the reference buffer for normal  
ADC conversions.  
0
1
Disables 1.82 V high speed ADC reference buffer.  
Enables 1.82 V high speed ADC reference buffer.  
Rev. 0 | Page 82 of 130  
Data Sheet  
AD5940  
SEQUENCER  
The number of commands executed by the sequencer can be  
SEQUENCER FEATURES  
read from the SEQCNT register. Each time a command is read  
from command memory and executed, the counter is increments  
by 1. Performing a write to the SEQCNT register resets the counter.  
The features of the AD5940 sequencer are as follows:  
Programmable for cycle accurate applications.  
Four separate command sequences.  
Large 6 kB SRAM to store sequences.  
FIFO for storing measurement results.  
Control via the wake-up timer, SPI command, or GPIO  
toggle.  
The sequencer calculates the cyclic redundancy check (CRC) of  
all commands it executes. The algorithm used is the CRC-8, using  
the x8 + x2 + x + 1 polynomial. The CRC-8 algorithm performs  
on 32-bit input data (sequencer instructions). Each 32-bit input  
is processed in one clock cycle and the result is available  
immediately for reading by the host controller. The CRC value  
can be read from the SEQCRC register. This register is reset by  
the same mechanism as the command count, by writing to the  
SEQCNT register. The SEQCRC resets to a seed value of 0x01.  
SEQCRC is a read only register.  
Various interrupts from user maskable sources.  
SEQUENCER OVERVIEW  
The role of the sequencer is to allow offloading of the low level  
AFE operations from the external microcontroller and to  
provide cyclic accurate control over the analog DSP blocks. The  
sequencer handles timing critical operations without being  
subject to system load.  
SEQUENCER COMMANDS  
There are two types of commands that can be executed by the  
sequencer: write commands and timer commands, which  
includes wait commands and timeout commands.  
In the AD5940, four sequences are supported by hardware.  
These sequences can be stored in SRAM to easily switch between  
different measurement procedures. Only one sequence can be  
executed by the sequencer at a time. However, the user can  
configure which sequences the sequencer executes and the  
order in which they are executed.  
Write Command  
Use a write instruction to write data into a register. The register  
address must lie between 0x00000000 and 0x000021FC.  
Figure 35 shows the format of the instruction. The MSB is equal  
to 1, which indicates a write command.  
The sequencer reads commands from the sequence that is  
stored in the command memory and, depending on the  
command, either waits a certain amount of time or writes a  
value to a memory map register (MMR). The execution is  
sequential, with no branching. The sequencer cannot read  
MMR values or signals from the analog or DSP blocks.  
In Figure 35, ADDR is the write address and data is the write  
data to be written to the MMR. All write instructions finish within  
one cycle.  
The address field is seven bits wide, allowing access to registers  
from Address 0x0 to address 0x1FC in the AFE register block. All  
MMR accesses are 32 bits only. Byte and half word accesses are  
forbidden. All accesses are implied write only. There is a direct  
mapping between the address field and the MMR address. In  
Figure 35, ADDR corresponds to Bits[8:2] of the 16-bit MMR  
address.  
To enable the sequencer, set the SEQEN bit in the SEQCON  
register. Writing 0 to this bit disables the sequencer.  
The rate at which the sequencer commands are executed is  
provided in the SEQWRTMR bits in the SEQCON register.  
When a write command is executed by the sequencer, the  
sequencer performs the MMR write and then waits SEQWRTMR  
clock cycles before fetching the next command in the sequence.  
The effect is the same as a write command followed by a wait  
command. The main purpose of this setup is to reduce code  
size when generating arbitrary waveforms. The SEQWRTMR  
bits do not have any effect following a wait or timeout command.  
For example, when writing to the WGCON register directly  
through the SPI interface, the address used is 0x2014. To write to  
the same register using the sequencer, the address field must be  
0b0000101 (Bits[8:2] of the address used by the external  
controller).  
The data field is 24 bits wide and only allows writing to the MMR  
bits, Bits[23:0]. It is not possible to write to the full 32 bits of the  
MMRs via the sequencer. However, Bits[31:24] are not used by  
any of the MMRs. Therefore, all assigned MMR bits can be  
written by the sequencer.  
In addition to a single write command being followed by a wait  
command, multiple write commands can be executed in succession  
followed by a wait command. Any configuration can be set up  
rapidly by the sequencer, regardless of the number of register  
writes followed by a precisely executed delay.  
The sequencer can also be paused by setting the SEQHALT bit  
in the SEQCON register. This option applies to each function,  
including FIFO operations, internal timers, and waveform  
generation. Reads from the MMRs are allowed when the  
sequencer is paused. This mode is intended for debugging  
during software development.  
Rev. 0 | Page 83 of 130  
 
 
 
 
AD5940  
Data Sheet  
Timer Command  
the end of execution. These interrupts are cleared by writing to  
the corresponding bits in the INTCCLR register. The current  
value of the counter can be read by the host controller at any  
time through the SEQTIMEOUT register.  
There are two timer commands in the sequencer, with a  
separate hardware counter for each.  
The wait command introduces wait states in the sequencer  
execution. After the programmed counter reaches 0, the  
execution is resumed by reading the next command from  
command memory.  
The timeout counter is not reset when the sequencer execution  
is stopped as a result of a sequencer write command. However,  
it is reset if the host controller writes a 0 to the SEQEN bit in the  
SEQCON register. This reset applies to situations when the host  
must abort the sequence.  
The timeout command starts a counter that operates independently  
of the sequencer flow. When the timer elapses, one of two  
interrupts is generated: a sequence timeout error interrupt,  
INTSEL17, or a sequence timeout finished interrupts, INTSEL16.  
Both interrupts are configured in the INTCSELx registers. The  
sequence timeout finished interrupt is asserted at the end of the  
timeout period. The sequence timeout error interrupt is asserted if,  
at the end of the timeout period, the sequencer does not reach  
The time unit for both timer commands is one ACLK period.  
For a clock frequency of 16 MHz, the timer resolution is 62.5 ns,  
and the maximum timeout is 67.1 sec. These values are true  
even if the SEQWRTMR bits in the SEQCON register are  
nonzero.  
B31 B30 B29 B28 B27 B26 B25 B24 B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
1
BIT[31]  
CMD  
BITS[30:24]  
ADDR  
BITS[23:0]  
DATA  
Figure 35. Sequencer Write Command  
B31 B30 B29 B28 B27 B26 B25 B24 B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
0
1
BITS[31:30]  
CMD  
BITS[29:0]  
TIME  
Figure 36. Sequencer Timer Command  
B31 B30 B29 B28 B27 B26 B25 B24 B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
0
0
BITS[31:30]  
CMD  
BITS[29:0]  
TIME  
Figure 37. Sequencer Wait Command  
LOAD TRIM VALUES  
FROM OTP TO  
SHADOW REGISTERS  
RUN SEQUENCE  
ENABLE/DISABLE  
ANALOG BLOCKS,  
START ADC CONVERSION,  
STORE RESULTS IN SRAM  
BOOT  
POR  
MEASUREMENT  
MEASUREMENT  
INITIALIZATION  
HIBERNATE  
HIBERNATE  
• • •  
LOAD SEQUENCES TO SRAM,  
SETUP SEQUENCE, FIFO,  
SLEEP WAKE-UP TIMER, GPIOS.  
HIBERNATE MODE WITH  
SRAM CONTENTS  
RETAINED  
Figure 38. Run Sequence  
Rev. 0 | Page 84 of 130  
 
 
 
Data Sheet  
AD5940  
There are a number of interrupt sources associated with the  
sequencer, including the following:  
SEQUENCER OPERATION  
Figure 38 shows the typical steps required to set up the sequencer  
to take measurements. After the device is booted, the sequencer,  
command memory, and data FIFO must be configured. The  
following steps are required for this configuration:  
Sequence timeout error.  
Sequencer timeout command finished.  
End of sequence interrupt. For this interrupt to be asserted,  
SEQCON, Bit 0, must be cleared at the end of the sequencer  
command.  
1. Configure the command memory.  
2. Load the sequences into SRAM.  
3. Set the Sequence 0 (SEQ0) to Sequence 3 (SEQ3)  
information sequences.  
Refer to the Interrupts section for more information.  
Data FIFO  
4. Configure the data FIFO.  
The data FIFO provides a buffer for the output of the analog  
and DSP blocks before it is read by the external controller.  
5. Configure the sleep wake-up timer.  
6. Configure the GPIO pin mux.  
7. Configure the interrupts.  
The memory available for the data FIFO can be selected in the  
DATA_MEM_SEL bits in the CMDDATACON register. The  
available options are 2 kB, 4 kB, and 6 kB. The data FIFO and  
command memory share the same block of 6 kB SRAM. Therefore,  
ensure there is no overlap between the command memory and  
data FIFO.  
8. Configure the sleep and wake-up method.  
Command Memory  
The command memory stores the sequence commands and  
provides a link between the external microcontroller and the  
sequencer. The command memory can be configured to use the  
2 kB, 4, kB, and 6 kB SRAM memory sizes, which are selected using  
the CMDDATACON, Bits[2:0].  
The data FIFO can be configured in FIFO mode or stream mode  
via CMDDATACON, Bits[11:9]. In stream mode, when the FIFO  
is full, old data is discarded to make room for new data. In FIFO  
mode, when the FIFO is full, new data is discarded. Never let  
the FIFO overflow when in FIFO mode. All new data are then lost.  
The large amount of memory available for the command memory  
facilitates the creation of larger, more complex sequences.  
Determine the number of commands in a sequence by reading  
SEQxINFO, Bits[26:16].  
The data FIFO is always unidirectional. A selectable source in  
the AFE block writes data and the external microcontroller  
reads data from DATAFIFORD.  
The command memory is unidirectional. The host microcontroller  
specifies the destination address of the command by writing to  
the CMDFIFOWADDR register and writes the command contents  
to the CMDFIFOWRITE register. The sequencer reads the  
commands from memory for execution.  
Select the data source for the data FIFO in DATAFIFOSRCSEL  
(FIFOCON, Bits[15:13]). The available options are as follows:  
ADC data, DFT result, sinc2 filter result, statistic block mean  
result, and statistic block variance result.  
There are a number of interrupts associated with the command  
FIFO, including the FIFO threshold interrupt, the FIFO empty  
interrupt, and the FIFO full interrupt. Refer to the Interrupts  
section for more information.  
There a number of interrupt flags associated with the data  
FIFO, including the following: empty, full, overflow, underflow,  
and threshold.  
These interrupts are user readable using the INTCFLAGx  
registers (see the Interrupts section for more details). Each flag  
has an associated maskable interrupt.  
Loading Sequences  
The sequence commands are written to SRAM by writing to  
two registers. The address in SRAM for the command is written  
to the CMDFIFOWADDR register. The command content is  
written to the CMDFIFOWRITE register. After all the  
commands are written to SRAM, set the SEQ0 to SEQ3  
information sequences by writing to the SEQxINFO registers.  
The overflow and underflow flags only activate for one clock  
period.  
The data FIFO is enabled by writing a 1 to FIFOCON, Bit 11.  
The data FIFO threshold value is set by writing to the  
DATAFIFOTHRES register. At any time, the host  
microcontroller can read the number of words in the data FIFO  
by reading FIFOCNTSTA, Bits[26:16].  
Each information sequence from SEQ0 to SEQ3 requires a start  
address in SRAM and a total number or commands for that  
sequence. The number of commands is written to SEQxINFO,  
Bits[26:16]. The start address is written to SEQxINFO,  
Bits[10:0]. Ensure there is no overlap between the four  
sequences. There is no hardware mechanism in place to warn  
the user of overlapping sequences.  
Reading data from the data FIFO when empty returns  
0x00000000. In addition, the underflow flag, FLAG27, in the  
INTCFLAGx register is asserted.  
Rev. 0 | Page 85 of 130  
 
AD5940  
Data Sheet  
development kit. The sequencer can also access the GPIO when  
running. This access synchronizes external devices, such as the  
ADXL362 or the AD8233. To perform this synchronization, the  
corresponding GPIOx functionality must be set to synchronize  
in the GP0CON register and the direction of data must be set to  
output in the GP0OEN register. The sequencer can then write  
to the SYNCEXTDEVICE register to toggle the corresponding  
GPIOx pin, which is a useful debugging feature when  
programming the sequencer.  
Data FIFO Word Format  
The format of data FIFO words is shown in Figure 39. Each  
word in the data FIFO is 32 bits. The seven MSBs are the error  
correction code (ECC) required for functional safety applications.  
Bits[24:23] of the data FIFO word form the sequence ID and  
indicate which sequence, from SEQ0 to SEQ3, the result came  
from.  
Bits[22:16] of the data FIFO word contain the channel ID and  
indicate the source for the data (see Table 92).  
Sequencer Conflicts  
The 16 LSBs of the data FIFO word are the actual data (see  
Figure 39).  
If a conflict between sequences arises, for example, when SEQ0  
is running and the SEQ1 request arrives, SEQ1 is ignored and  
SEQ0 completes. An interrupt is generated to indicate that the  
SEQ1 sequence is ignored.  
When the data source is the DFT result, the data is 18 bits wide and  
is in twos complement format. The format is shown in Figure 40.  
The channel ID is five bits wide, with 5’b11111 indicating the  
DFT results.  
Reading back registers does not cause resource conflicts. Writes  
to the MMRs by the host controller are allowed when the  
sequencer is enabled. There can be some conflicts. If conflicts  
arise, the sequencer has the priority. If the sequencer and the  
host controller write at the same time, the host controller is  
ignored. There is no error report for this conflict. The user must  
not write to a register when the sequencer is running. However,  
there are exceptions, which can be written to freely without any  
conflict. The SEQCON register allows ending sequence  
Sequencer and the Sleep and Wake-Up Timer  
See the Sleep and Wake-Up Timer section for more information.  
Configuring the GPIOx Pin Mux  
Each of the eight GPIOx pins can be configured to trigger a  
sequence. The GPIOx pin must first be configured as an input  
in the GP0OEN register. Then, the pin must be configured to  
the PINxCFG bits in the GP0CON register. Register EI0CON  
and EI1CON configure how to detect a GPIO event, either level  
triggered or edge triggered. After a GPIO event is detected, the  
corresponding sequence runs. Refer to the  
execution (SEQEN bit) and halting a sequence (SEQHALT bit).  
AD5940_SEQGpioTrigCfg function in the AD5940 software  
Table 92. Channel ID Description  
Bits[22:16] of the Data FIFO Word  
Description  
11111 xx  
11110xx  
11101xx  
1xxxxxx  
0xxxxxx  
DFT result  
Mean from statistics block  
Variance from statistics block  
Sinc2 filter result, xxxxxx is the ADC multiplexer positive setting (ADCCON [5:0])  
Sinc3 filter result, xxxxxx is the ADC multiplexer positive setting (ADCCON [5:0])  
[31:25]  
[24:23]  
[22:16]  
CH_ID  
[15:0]  
2-BIT  
SEQ  
ID  
7-BIT  
ECC  
16-BIT  
DATA  
Figure 39. Data FIFO Word Format  
[31:25]  
[24:23]  
[22:18]  
[17:0]  
2-BIT  
SEQ  
ID  
7-BIT  
ECC  
CH_ID  
5'b11111  
18-BIT  
DATA  
Figure 40. Data FIFO DFT Word Format  
Rev. 0 | Page 86 of 130  
 
 
 
Data Sheet  
AD5940  
SEQUENCER AND FIFO REGISTERS  
Table 93. Sequence and FIFO Registers Summary  
Address  
Name  
Description  
Reset  
Access  
R/W  
R/W  
R
R/W  
R
0x00002004  
0x00002008  
0x00002060  
0x00002064  
0x00002068  
0x0000206C  
0x00002070  
0x00002118  
0x0000211C  
0x000021CC  
0x000021D0  
0x000021D4  
0x000021D8  
0x000021E0  
0x000021E4  
0x000021E8  
0x00002200  
0x00002054  
0x00000430  
SEQCON  
FIFOCON  
SEQCRC  
SEQCNT  
SEQTIMEOUT  
DATAFIFORD  
CMDFIFOWRITE  
SEQSLPLOCK  
SEQTRGSLP  
SEQ0INFO  
Sequencer configuration register  
FIFO configuration register  
Sequencer CRC value register  
Sequencer command count register  
Sequencer timeout counter register  
Data FIFO read register  
Command FIFO write register  
Sequencer sleep control lock register  
Sequencer trigger sleep register  
Sequence 0 information register  
Sequence 2 information register  
Command FIFO write address register  
Command data control register  
Data FIFO threshold register  
Sequence 3 information register  
Sequence 1 information register  
Command and data FIFO internal data count register  
Sync external devices register  
Trigger sequence register  
0x00000002  
0x00001010  
0x00000001  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000410  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x0000  
R
W
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
SEQ2INFO  
CMDFIFOWADDR  
CMDDATACON  
DATAFIFOTHRES  
SEQ3INFO  
SEQ1INFO  
FIFOCNTSTA  
SYNCEXTDEVICE  
TRIGSEQ  
R/W  
R/WS  
Sequencer Configuration Register—SEQCON  
Address 0x00002004, Reset: 0x00000002, Name: SEQCON  
Table 94. Bit Descriptions for SEQCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:16] Reserved  
Reserved.  
0x0  
0x0  
R
[15:8]  
SEQWRTMR  
Timer for sequencer write commands. These bits act as a clock divider  
R/W  
affecting the write commands, but not the wait commands. This divider is  
useful to reduce the code size when generating arbitrary waveforms. The  
clock source for the timer is ACLK.  
[7:5]  
4
Reserved  
SEQHALT  
Reserved.  
0x0  
0x0  
R
R/W  
Halt sequence debugging feature. This bit provides a way to halt the AFE  
interface, including the sequencer, DSP hardware accelerators, FIFOs, and  
so on.  
0
1
Normal execution.  
Execution halted.  
Reserved  
[3:2]  
1
Reserved  
0x0  
0x1  
R
SEQHALTFIFOEMPTY  
Halt sequencer, if empty. This bit controls whether the sequencer stops  
when attempting to read when the command FIFO is empty (in an  
underflow condition).  
R/W  
1
0
Sequencer stops if command FIFO is empty and sequencer attempts to  
read (in an underflow condition).  
Sequencer continues to attempt to read, even if the FIFO is empty.  
0
SEQEN  
Enable sequencer. If this bit is set to 1, the sequencer reads from the  
command FIFO and executes the commands.  
0x0  
R/W  
0
1
Sequencer disabled (default).  
Sequencer enabled.  
Rev. 0 | Page 87 of 130  
 
AD5940  
Data Sheet  
FIFO Configuration Register—FIFOCON  
Address 0x00002008, Reset: 0x00001010, Name: FIFOCON  
Table 95. Bit Descriptions for FIFOCON Register  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
[31:16] RESERVED  
[15:13] DATAFIFOSRCSEL  
Reserved.  
Selects the source for the data FIFO.  
0x0  
0x0  
R
R/W  
000, 001, 110, ADC data. ADC data is output of gain/offset calibration through the sinc3  
or 111 filter.  
010 DFT data. Real part is 18 bits and the imaginary part is 18 bits. The lowest  
two bits are fractional because the ADC is 16 bits.  
011 Sinc2 filter output. Data is 16 bits.  
100 Variance. Variance is 30-bit data, which uses two addresses.  
101 Mean result. Mean is 16 bits of data.  
Reserved.  
12  
11  
Reserved  
DATAFIFOEN  
0x1  
0x0  
R/W  
R/W  
Data FIFO enable.  
0
1
FIFO is reset. No data transfers can take place. This setting sets the read  
and write pointers to the default values (empty FIFO). The status  
indicates that the FIFO is empty.  
Normal operation. The FIFO is not reset.  
Reserved.  
[10:0]  
Reserved  
0x0  
R/W  
Sequencer CRC Value Register—SEQCRC  
Address 0x00002060, Reset: 0x00000001, Name: SEQCRC  
The SEQCRC register forms the checksum value calculated from all the commands executed by the sequencer.  
Table 96. Bit Descriptions for SEQCRC Register  
Bits  
[31:8]  
[7:0]  
Bit Name  
Reserved  
CRC  
Settings  
Description  
Reserved.  
Reset  
0x0  
0x1  
Access  
R
R
Sequencer command CRC value. The algorithm used is CRC-8.  
Sequencer Command Count Register—SEQCNT  
Address 0x00002064, Reset: 0x00000000, Name: SEQCNT  
The SEQCNT register forms the command count, which is incremented by 1 each time the sequencer executes a command. This register  
is not key protected.  
Table 97. Bit Descriptions for SEQCNT Register  
Bits  
[31:16] Reserved  
[15:0] Count  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
Sequencer command count. This count is incremented by 1 each time the  
R/W1  
sequencer executes a command. Reset to 0 by writing 1 to this register. Write 1 to  
this register also to clear the SEQCRC register.  
Sequencer Timeout Counter Register—SEQTIMEOUT  
Address 0x00002068, Reset: 0x00000000, Name: SEQTIMEOUT  
Table 98. Bit Descriptions for SEQTIMEOUT Register  
Bits  
[31:30]  
[29:0]  
Bit Name  
Reserved  
Timeout  
Settings  
Description  
Reserved.  
Current value of the sequencer timeout counter.  
Reset  
0x0  
0x0  
Access  
R
R
Rev. 0 | Page 88 of 130  
Data Sheet  
AD5940  
Data FIFO Read Register—DATAFIFORD  
Address: 0x0000206C, Reset: 0x00000000, Name: DATAFIFORD  
Table 99. Bit Descriptions for DATAFIFORD Register  
Bits  
[31:16] Reserved  
[15:0] DATAFIFOOUT  
Bit Name  
Settings Description  
Reset  
0x0  
Access  
R
R
Reserved.  
Data FIFO read. If the data FIFO is empty, a read of this register returns 0x00000000. 0x0  
Command FIFO Write Register—CMDFIFOWRITE  
Address 0x00002070, Reset: 0x00000000, Name: CMDFIFOWRITE  
Table 100. Bit Descriptions for CMDFIFOWRITE Register  
Bits  
Bit Name  
Settings Description  
Command FIFO write. If the command FIFO is written when full, the write is ignored  
and all current commands are not affected.  
Reset Access  
0x0  
[31:0] CMDFIFOIN  
W
Sequencer Sleep Control Lock Register—SEQSLPLOCK  
Address 0x00002118, Reset: 0x00000000, Name: SEQSLPLOCK  
The SEQSLPLOCK register protects the SEQTRGSLP register.  
Table 101. Bit Descriptions for SEQSLPLOCK Register  
Bits  
[31:20] Reserved  
[19:0] SEQ_SLP_PW  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
Password for the SEQTRGSLP register. These bits prevent the sequencer from  
R/W  
accidentally triggering a sleep state.  
0x0000 Write any value other than 0xA47E5 to lock the SEQTRGSLP register.  
0xA47E5 Write this value to this register to unlock the SEQTRGSLP register.  
Sequencer Trigger Sleep Register—SEQTRGSLP  
Address 0x0000211C, Reset: 0x00000000, Name: SEQTRGSLP  
The SEQTRGSLP register is protected by the SEQSLPLOCK register.  
Table 102. Bit Descriptions for SEQTRGSLP Register  
Bits  
[31:1] Reserved  
TRGSLP  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
R
0
Trigger sleep by sequencer. Write to the SEQSLPLOCK register first. Put this command 0x0  
at the end of a sequence. Set this command to 1 if entering sleep at the end of a  
sequence.  
R/W  
Sequence 0 Information Register—SEQ0INFO  
Address 0x000021CC, Reset: 0x00000000, Name: SEQ0INFO  
Table 103. Bit Descriptions for SEQ0INFO Register  
Bits  
Bit Name  
Reserved  
SEQ0INSTNUM  
Reserved  
SEQ0STARTADDR  
Settings  
Description  
Reserved.  
SEQ0 instruction number.  
Reserved.  
SEQ0 start address.  
Reset  
0x0  
0x0  
0x0  
0x0  
Access  
R
R/W  
R
[31:27]  
[26:16]  
[15:11]  
[10:0]  
R/W  
Rev. 0 | Page 89 of 130  
AD5940  
Data Sheet  
Sequence 2 Information Register—SEQ2INFO  
Address 0x000021D0, Reset: 0x00000000, Name: SEQ2INFO  
Table 104. Bit Descriptions for SEQ2INFO Register  
Bits  
Bit Name  
Reserved  
SEQ2INSTNUM  
Reserved  
SEQ2STARTADDR  
Settings  
Description  
Reserved.  
SEQ2 instruction number.  
Reserved.  
SEQ2 start address.  
Reset  
0x0  
0x0  
0x0  
0x0  
Access  
R
R/W  
R
[31:27]  
[26:16]  
[15:11]  
[10:0]  
R/W  
Command FIFO Write Address Register—CMDFIFOWADDR  
Address 0x000021D4, Reset: 0x00000000, Name: CMDFIFOWADDR  
Table 105. Bit Descriptions for CMDFIFOWADDR Register  
Bits  
[31:11]  
[10:0]  
Bit Name  
Reserved  
WADDR  
Settings  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
Write address. These bits are the address in SRAM in which to store the command.  
Command Data Control Register—CMDDATACON  
Address 0x000021D8, Reset: 0x00000410, Name: CMDDATACON  
Table 106. Bit Descriptions for CMDDATACON Register  
Bits  
[31:12]  
[11:9]  
Bit Name  
Reserved  
Settings  
Description  
Reserved.  
Reset  
0x0  
Access  
R
DATAMEMMDE  
Data FIFO mode select.  
0x2  
R/W  
10 FIFO mode.  
11 Stream mode.  
Data FIFO size select.  
[8:6]  
DATA_MEM_SEL  
0x0  
R/W  
000 Reserved.  
001 2 kB SRAM.  
010 4 kB SRAM.  
011 6 kB SRAM.  
[5:3]  
[2:0]  
CMDMEMMDE  
CMD_MEM_SEL  
Command FIFO mode.  
01 Memory mode.  
10 Reserved.  
0x2  
0x0  
R/W  
R/W  
11 Reserved.  
Command memory select.  
0x0 Reserved.  
0x1 2 kB SRAM.  
0x2 4 kB SRAM.  
0x3 6 kB SRAM.  
Data FIFO Threshold Register—DATAFIFOTHRES  
Address 0x000021E0, Reset: 0x00000000, Name: DATAFIFOTHRES  
Table 107. Bit Descriptions for DATAFIFOTHRES Register  
Bits  
Bit Name  
Reserved  
HIGHTHRES  
Reserved  
Settings  
Description  
Reserved.  
High threshold.  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
R
[31:27]  
[26:16]  
[15:0]  
0x0  
Rev. 0 | Page 90 of 130  
Data Sheet  
AD5940  
Sequence 3 Information Register—SEQ3INFO  
Address 0x000021E4, Reset: 0x00000000, Name: SEQ3INFO  
Table 108. Bit Descriptions for SEQ3INFO Register  
Bits  
Bit Name  
Reserved  
INSTNUM  
Reserved  
STARTADDR  
Settings  
Description  
Reserved.  
SEQ3 instruction number.  
Reserved.  
SEQ3 start address.  
Reset  
0x0  
0x0  
0x0  
0x0  
Access  
R
R/W  
R
[31:27]  
[26:16]  
[15:11]  
[10:0]  
R/W  
Sequence 1 Information Register—SEQ1INFO  
Address 0x000021E8, Reset: 0x00000000, Name: SEQ1INFO  
Table 109. Bit Descriptions for SEQ1INFO Register  
Bits  
Bit Name  
Reserved  
SEQ1INSTNUM  
Reserved  
SEQ1STARTADDR  
Settings  
Description  
Reserved.  
SEQ1 instruction number.  
Reserved.  
SEQ1 start address.  
Reset  
Access  
R
R/W  
R
[31:27]  
[26:16]  
[15:11]  
[10:0]  
0x0  
0x0  
0x0  
0x0  
R/W  
Command and Data FIFO Internal Data Count Register—FIFOCNTSTA  
Address 0x00002200, Reset: 0x00000000, Name: FIFOCNTSTA  
Table 110. Bit Descriptions for FIFOCNTSTA Register  
Bits  
Bit Name  
Reserved  
DATAFIFOCNTSTA[10:0]  
Reserved  
Settings  
Description  
Reserved.  
Current number of words in the data FIFO  
Reserved  
Reset  
0x0  
0x0  
Access  
[31:27]  
[26:16]  
[15:0]  
R
R
R
0x0  
Sync External Devices Register—SYNCEXTDEVICE  
Address 0x00002054, Reset: 0x00000000, Name: SYNCEXTDEVICE  
Table 111. Bit Descriptions for SYNCEXTDEVICE Register  
Bits  
[31:8] Reserved  
[7:0] Sync  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
R/W  
Output data of the GPIOx. Refer to the GP0CON register for information on how the  
GPIOx is controlled. Writing 1 to the corresponding bit sets the corresponding GPIOx  
high. Writing 0 sets the corresponding GPIOx to 0.  
Trigger Sequence Register—TRIGSEQ  
Address 0x00000430, Reset: 0x0000, Name: TRIGSEQ  
Table 112. Bit Descriptions for TRIGSEQ Register  
Bits  
[15:4]  
3
2
1
0
Bit Name  
Reserved  
TRIG3  
TRIG2  
TRIG1  
Settings  
Description  
Reserved.  
Trigger Sequence 3.  
Trigger Sequence 2.  
Trigger Sequence 1.  
Trigger Sequence 0.  
Reset  
Access  
R
R/W  
R/W  
R/W  
R/WS  
0x0  
0x0  
0x0  
0x0  
0x0  
TRIG0  
Rev. 0 | Page 91 of 130  
AD5940  
Data Sheet  
WAVEFORM GENERATOR  
The AD5940 implements a digital waveform generator for  
generating sinusoid, trapezoid, and square waveforms. This  
section describes how to use the waveform generator.  
The sinusoid generator includes a programmable phase offset  
controlled by the WGOFFSET register. When enabled, the phase  
accumulator is initialized with the contents of the phase offset  
register. After the sinusoid generator starts, the phase increment  
is always positive.  
WAVEFORM GENERATOR FEATURES  
The waveform generator features sine wave, trapezoid, and  
square wave capabilities and can be used with the high speed  
DAC or the low power DAC.  
Trapezoid Generator  
The definition of the trapezoid waveform is shown in Figure 43  
SINE  
GENERATION  
DC LEVEL 2  
DC LEVEL 1  
TRAPEZOID  
DAC  
DELAY 1  
TIME  
SLOPE 1  
TIME  
DELAY 2  
TIME  
SLOPE 2 DELAY 1  
GENERATION  
TIME  
TIME  
SECOND  
PERIOD  
FIRST  
PERIOD  
Figure 43. Trapezoid Waveform Definition  
DAC CODE  
(DC)  
The six parameters shown in Figure 43 are user programmable  
through the WGDCLEVEL1, WGDCLEVEL2, WGDELAY1,  
WGDELAY2, WDSLOPE1, and WGSLOPE2 registers. These  
variables define the trapezoid waveform. By setting the  
WGSLOPEx register to 0x00000, a square wave is generated.  
The times are expressed in the number of periods of the DAC  
update clock, which is set to 320 kHz for the trapezoid function.  
A period of the trapezoid waveform begins at the start of  
WGDELAY1 and completes at the end of WGSLOPE2. The  
trapezoid continues to loop until it is disabled by the user.  
Figure 41. Simplified Waveform Generator Block Diagram  
WAVEFORM GENERATOR OPERATION  
To enable the waveform generator block, set the WAVEGENEN bit  
in the AFECON register to 1. When this bit is enabled, the selected  
waveform source starts and loops until either the block is disabled  
(WAVEGENEN = 0), or another source is selected. When the  
block is disabled, the DAC output maintains the voltage until a  
different waveform is selected by writing to the TYPESEL bit in  
the WGCON register, or if the waveform is reset.  
USING THE WAVEFORM GENERATOR WITH THE  
LOW POWER DAC  
Sinusoid Generator  
The block diagram for the sinusoid generator is shown in Figure 42.  
Although the waveform generator is primarily designed for use  
with the high speed DAC, it can also be used with the low power  
DAC for ultra low power and low bandwidth applications. To  
configure the low power DAC for generating waveforms, set  
Bit 6 in the LPDACCON register to 1. Trapezoid or sinusoid  
can be selected as described previously. The 32 kHz oscillator  
must be selected as the system clock when using the waveform  
generator with the low power DAC, which limits the bandwidth  
of the signal.  
PHASE  
FREQUENCY CONTROL  
WORD  
AMPLITUDE  
OFFSET  
OFFSET  
PHASE TO  
AMPLITUDE  
PHASE  
ACCUMULATOR  
DAC  
CONVERSION  
SINE  
GENERATION  
SCALING COMMON-MODE  
ADJUSTMENT  
Figure 42. Sinusoid Generator  
The output frequency (fOUT) is adjusted using the frequency  
control word (WGFCW, Bits[30:0]) with the following formula:  
f
OUT = fACLK × SINEFCW/230  
where:  
ACLK is the frequency of ACLK, 16 MHz.  
SINEFCW is Bits[30:0] in the WGFCW register.  
f
Rev. 0 | Page 92 of 130  
 
 
 
 
 
 
Data Sheet  
AD5940  
WAVEFORM GENERATOR REGISTERS  
Table 113. Waveform Generator for High Speed DAC Registers Summary  
Address  
Name  
Description  
Reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x00002014  
0x00002018  
0x0000201C  
0x00002020  
0x00002024  
0x00002028  
0x0000202C  
0x00002030  
0x00002034  
0x00002038  
0x0000203C  
WGCON  
Waveform generator configuration register.  
0x00000030  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
WGDCLEVEL1  
WGDCLEVEL2  
WGDELAY1  
WGSLOPE1  
WGDELAY2  
WGSLOPE2  
WGFCW  
WGPHASE  
WGOFFSET  
WGAMPLITUDE  
Waveform generator register, Trapezoid DC Level 1.  
Waveform generator register, Trapezoid DC Level 2.  
Waveform generator register ,Trapezoid Delay 1 time.  
Waveform generator register, Trapezoid Slope 1 time.  
Waveform generator register, Trapezoid Delay 2 time.  
Waveform generator register, Trapezoid Slope 2 time.  
Waveform generator register, sinusoid frequency control word.  
Waveform generator register, sinusoid phase offset.  
Waveform generator register, sinusoid offset.  
Waveform generator register, sinusoid amplitude.  
Waveform Generator Configuration Register—WGCON  
Address 0x00002014, Reset: 0x00000030, Name: WGCON  
Table 114. Bit Descriptions for WGCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:6] Reserved  
Reserved  
0x0  
0x1  
R
5
4
DACGAINCAL  
Bypass DAC gain. Use the DAC gain calculated during the Analog Devices  
factory trim and stored in the DACGAIN register.  
Bypass DAC gain correction.  
Perform DAC gain correction.  
R/W  
0
1
DACOFFSETCAL  
Bypass DAC Offset. Use the DAC offset calculated during the calibration routine.  
Bypass DAC offset correction.  
Perform DAC offset correction. The offset value is in the DACOFFSET register and  
the DACOFFSETHS register for low power and high power mode, respectively,  
when LPDACCON0, Bit 0 = 0. The offset value is in the DACOFFSETATTEN register  
and the DACOFFSETATTENHS register for low power and high power mode,  
respectively, when LPDACCON0, Bit 0 = 1.  
0x1  
R/W  
0
1
3
[2:1]  
Reserved  
TYPESEL  
Reserved.  
0x0  
0x0  
R
R/W  
These bits select the type of waveform.  
00 Direct write to the DAC. User code writes to the HSDACDAT register directly.  
10 Sinusoid. Sets the WAVEGENEN bit in the AFECON register to 1. The DAC outputs  
a sine wave.  
11 Trapezoid. Sets the WAVEGENEN bit in the AFECON register to 1. The DAC  
outputs a trapezoid wave.  
0
TRAPRSTEN  
Resets the trapezoid waveform generator. The output restarts from the beginning of  
the Delay 1 period, with an output corresponding to DC Level 1. The reset takes  
effect immediately. After the trapezoid generator is reset, the bit value returns to 0.  
0x0  
W
0
1
Disable reset of the trapezoid waveform generator.  
Enable reset of the trapezoid waveform generator.  
Waveform Generator, Trapezoid DC Level 1 Register—WGDCLEVEL1  
Address 0x00002018, Reset: 0x00000000, Name: WGDCLEVEL1  
Table 115. Bit Descriptions for WGDCLEVEL1 Register  
Bits  
[31:12]  
[11:0]  
Bit Name  
Reserved  
TRAPDCLEVEL1  
Settings  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
DC Level 1 value for trapezoid waveform generation.  
Rev. 0 | Page 93 of 130  
 
AD5940  
Data Sheet  
Waveform Generator, Trapezoid DC Level 2 Register—WGDCLEVEL2  
Address 0x0000201C, Reset: 0x00000000, Name: WGDCLEVEL2  
Table 116. Bit Descriptions for WGDCLEVEL2 Register  
Bits  
[31:12]  
[11:0]  
Bit Name  
Reserved  
TRAPDCLEVEL2  
Settings  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
DC Level 2 value for trapezoid waveform generation.  
Waveform Generator, Trapezoid Delay 1 Time Register—WGDELAY1  
Address 0x00002020, Reset: 0x00000000, Name: WGDELAY1  
Table 117. Bit Descriptions for WGDELAY1 Register  
Bits  
[31:20] Reserved  
[19:0] DELAY1  
Bit Name Settings  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
Delay 1 value for trapezoid waveform generation. The unit of time is the DAC  
update rate.  
Waveform Generator, Trapezoid Slope 1 Time Register—WGSLOPE1  
Address 0x00002024, Reset: 0x00000000, Name: WGSLOPE1  
Table 118. Bit Descriptions for WGSLOPE1 Register  
Bits  
[31:20] Reserved  
[19:0] SLOPE1  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
R
Slope 1 value for trapezoid waveform generation. The unit of time is the DAC update 0x0  
rate. For trapezoid generation, the DAC update rate is fixed to 320 kHz.  
R/W  
Waveform Generator, Trapezoid Delay 2 Time Register—WGDELAY2  
Address 0x00002028, Reset: 0x00000000, Name: WGDELAY2  
Table 119. Bit Descriptions for WGDELAY2 Register  
Bits  
[31:20] Reserved  
[19:0] DELAY2  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
R/W  
Delay 2 value for trapezoid waveform generation. The unit of time is the DAC  
update rate. For trapezoid generation, the DAC update rate is fixed to 320 kHz.  
Waveform Generator, Trapezoid Slope 2 Time Register—WGSLOPE2  
Address 0x0000202C, Reset: 0x00000000, Name: WGSLOPE2  
Table 120. Bit Descriptions for WGSLOPE2 Register  
Bits  
[31:20] Reserved  
[19:0] SLOPE2  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
R
Slope 2 value for trapezoid waveform generation. The unit of time is the DAC update 0x0  
rate. For trapezoid generation, the DAC update rate is fixed to 320 kHz.  
R/W  
Rev. 0 | Page 94 of 130  
Data Sheet  
AD5940  
Waveform Generator, Sinusoid Frequency Control Word Register—WGFCW  
Address 0x00002030, Reset: 0x00000000, Name: WGFCW  
Table 121. Bit Descriptions for WGFCW Register  
Bits  
[31:24] Reserved  
[30:0] SINEFCW  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
R/W  
Sinusoid generator frequency control word. These bits select the output frequency  
of the sinusoid waveform. The output frequency (fOUT) = fACLK × (SINEFCW/230). To obtain  
accurate DFT results and to avoid spectral leakage, fOUT/(DFT input data rate/N) must  
be an integer, where N is input data number of DFT. Refer to the DFTNUM bit in the  
DFTCON register (see Table 48). The DFT input data rate can be different due to  
different input data sources. Refer to the DFTINSEL bit in the DFTCON register (see  
Table 48).  
Sinc3 is output as input data of DFT (the DFT input data rate = ADC output data  
rate(1.6 MHz or 800 kHz)/SINC3_OSR)). Refer to the SINC3OSR bit in the  
ADCFILTERCON register (see Table 42). For the sinc3 bypass, refer to the SINC3BYP bit in  
the ADCFILTERCON register (see Table 42).  
If the DFT input data rate = 800 kHz, the ADC output data rate must be set to 800 kHz.  
Refer to the ADCSAMPLERATE bit in the ADCFILTERCON register = 1 (see Table 42). The  
general formula is ADC_FS/SINC3_OSR/SINC2_OS. Refer to the SINC2OSR bit in the  
ADCFILTERCON register (see Table 42).  
For more information, see the High Performance ADC Circuit section.  
Waveform Generator, Sinusoid Phase Offset Register—WGPHASE  
Address 0x00002034, Reset: 0x00000000, Name: WGPHASE  
Table 122. Bit Descriptions for WGPHASE Register  
Bits  
[31:20] Reserved  
[19:0] SINEOFFSET  
Bit Name  
Settings  
Description  
Reserved.  
Reset Access  
0x0  
0x0  
R
R/W  
Sinusoid phase offset. SINEOFFSET, Bits[19:0] = phase (degrees)/360 × 220. For  
example, to obtain a 45° phase offset, SINEOFFSET, Bits[19:0] = 45/360 × 220. This  
register must be set before setting the TYPESEL bit in the WGCON register and  
the WAVEGENEN bit in the AFECON register.  
Waveform Generator, Sinusoid Offset Register—WGOFFSET  
Address 0x00002038, Reset: 0x00000000, Name: WGOFFSET  
Table 123. Bit Descriptions for WGOFFSET Register  
Bits  
[31:12] Reserved  
[11:0] SINEOFFSET  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
R/W  
Sinusoid offset. This offset is added to the waveform generator output in sinusoid  
mode. This value is a signed number represented in twos complement format. This  
register must be set before setting the TYPESEL bit in the WGCON register and the  
WAVEGENEN bit in the AFECON register.  
Waveform Generator, Sinusoid Amplitude Register—WGAMPLITUDE  
Address 0x0000203C, Reset: 0x00000000, Name: WGAMPLITUDE  
Table 124. Bit Descriptions for WGAMPLITUDE Register  
Bits  
[31:11] Reserved  
[10:0] SINEAMPLITUDE  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
R/W  
Sinusoid amplitude, unsigned number. This amplitude scales the waveform  
generator in sinusoid mode. The DAC output voltage is determined by this value,  
as well as the ATTENEN bit and the INAMPGNMDE bit in the HSDACCON register.  
This register must be set before setting the TYPESEL bit in the WGCON register  
and the WAVEGENEN bit in the AFECON register.  
Rev. 0 | Page 95 of 130  
AD5940  
Data Sheet  
SPI INTERFACE  
OVERVIEW  
COMMAND BYTE  
The AD5940 provides an SPI interface to facilitate configuration  
and control by a host microcontroller. The host controller uses  
the SPI to read from and write to memory, registers, and FIFOs.  
The AD5940 operate as a slave SPI device.  
The first byte sent from the host to the AD5940 in an SPI  
transaction is the command byte. The command byte specifies  
the SPI protocol used for the SPI transaction. The available  
commands are detailed in Table 125.  
SPI PINS  
Table 125. SPI Commands  
CS  
Command  
Value Description  
The SPI connections between the host and the AD5940 are  
SCLK, MOSI, and MISO.  
,
SPICMD_SETADDR  
0x20  
Set register address for SPI  
transaction  
Chip Select Enable  
SPICMD_READREG  
0x6D  
Specifies SPI transaction is a read  
transaction  
CS  
The host must connect the SPI slave enable signal to the  
input  
of the AD5940. To initiate an SPI transaction, the host drives  
SPICMD_WRITEREG 0x2D  
SPICMD_READFIFO 0x5F  
Specifies SPI transaction is a write  
transaction  
Command to read FIFO  
CS  
the  
signal low before the first SCLK rising edge and drives it  
high again after the last SCLK falling edge. The AD5940 ignores  
CS  
the SCLK and MOSI signals of the SPI when the input is high.  
Two main SPI transaction protocols are available on the  
AD5940: writing to and reading from registers and reading data  
from the data FIFO.  
SCLK  
SCLK is the serial clock driven by the host to the AD5940. The  
maximum clock speed is 16 MHz.  
WRITING TO AND READING FROM REGISTERS  
Writing to and reading from a register requires two SPI  
transactions. The first transaction sets the register address. The  
second transaction is the actual read or write to the required  
register. The following are the steps to write to a register:  
MOSI and MISO  
MOSI is the data input line driven from the host to the AD5940,  
and MISO is the data output from the AD5940 to the host. The  
MOSI signal and MISO signal are launched on the falling edge of  
the SCLK signal and sampled on the rising edge of the SCLK  
signal by the host and the AD5940, respectively. The MOSI  
signal carries the data from the host to the AD5940. The MISO  
signal carries the returning read data fields from the AD5940 to  
the host during a read transaction.  
1. Write the command byte and configure the register  
address.  
CS  
a. Drive  
low.  
b. Send 8-bit command byte: SPICMD_SETADDR.  
c. Send 16-bit address of register to read to or write  
from.  
SPI OPERATION  
CS  
d. Pull  
2. Write the data to the register.  
CS  
high.  
The host is the master of the SPI. The features and requirements  
of SPI operation are as follows:  
a. Drive  
low.  
SCLK is always slower than the system clock on the AD5940,  
which is 16 MHz.  
b. Send 8-bit command byte: SPICMD_WRITEREG.  
c. Write either 16-bit or 32-bit data to the register.  
CS  
CS  
When the  
signal is brought low, a multiple of eight  
d. Bring  
3. Read the data from the register.  
CS  
high.  
clock cycles must be generated by the host.  
Transfers over the SPI slave are always byte aligned.  
In every octet, the most significant bit (Bit 7) is transmitted  
and received first.  
If the signal is brought high at any time by the host, the  
AD5940 is ready to accept new SPI transactions when the  
a. Drive  
low.  
b. Send 8-bit command byte: SPICMD_READREG.  
c. Transmit a dummy byte on the SPI bus to initiate a  
read.  
CS  
d. Read returning 16-bit or 32-bit data.  
CS  
e. Bring  
high.  
CS  
signal is brought low again by the host. The minimum  
CS  
time between  
Table 4).  
going high and going low again is t10 (see  
Rev. 0 | Page 96 of 130  
 
 
 
 
 
 
 
Data Sheet  
AD5940  
The transaction protocol is shown in Figure 44. Six dummy reads  
are required before valid data is returned on the advanced  
peripheral bus (APB). The diagram also illustrates why the last  
two FIFO results are read back with a nonzero offset. In Figure 44,  
the APB reads Data C when the SPI bus is transferring Data B.  
Assuming APB Read B is the last data in the FIFO, the read  
offset (ROFFSETC) is set to a nonzero value. Then, the APB  
reads a different register than the DATAFIFORD register. If the  
APB continues to read the DATAFIFORD register, the data  
FIFO underflows, which causes an underflow error.  
READING DATA FROM THE DATA FIFO  
There are two methods to read back data from the data FIFO:  
read the DATAFIFORD register as described in the Writing to  
and Reading from Registers section, or implement a fast FIFO  
read protocol.  
If there are less than three results in the data FIFO, the data can  
be read back from the DATAFIFORD register. However, if there  
are more than three results in the FIFO, a more efficient SPI  
transaction protocol is implemented. The following section  
describes this protocol and is illustrated in Figure 44.  
Read Data from Data FIFO  
To read data from the data FIFO, take the following steps:  
CS  
1. Drive  
low.  
2. Send an 8-bit command byte: SPICMD_READFIFO.  
3. Transmit six dummy bytes on the SPI bus before valid data  
can be read back.  
4. Continuously read the DATAFIFORD register until only  
two results are left.  
5. Read back the last two data points using a nonzero offset.  
CS  
6. Pull  
high.  
APB READ A  
APB READ B  
APB READ C  
CMD  
ROFFSETA ROFFSETA ROFFSETA ROFFSETA ROFFSETB ROFFSETB ROFFSETB ROFFSETB ROFFSETC ROFFSETC ROFFSETC ROFFSETC ROFFSETC  
MOSI  
MISO  
RDATA3  
RDATA2  
RDATA1  
RDATA1  
RDATA3  
RDATA2  
RDATA1  
B
SSTATUS1 SSTATUS2 SSTATUS3 SSTATUS4 SSTATUS5  
6 DUMMY READS BEFORE VALID DATA  
SSTATUS6  
SSTATUS0  
A
A
A
A0  
B
B
Figure 44. Data FIFO Read Protocol  
Rev. 0 | Page 97 of 130  
 
 
AD5940  
Data Sheet  
SLEEP AND WAKE-UP TIMER  
SLEEP AND WAKE-UP TIMER FEATURES  
CONFIGURING A DEFINED SEQUENCE ORDER  
The AD5940 integrates a 20-bit sleep and wake-up timer. The  
sleep and wake-up timer provides automated control of the  
sequencer and can run up to eight sequences sequentially in any  
order from SEQ0 to SEQ3. The timer is clocked from the  
internal 32 kHz oscillator clock source.  
The sleep and wake-up timer provides a feature that allows a  
specific order of sequences to execute periodically. The order in  
which the sequences are executed is defined in the SEQORDER  
register. There are eight available slots in this register, from A to  
H. Each slot can be configured with any one of the four  
sequences. Figure 47 shows an example of this feature. There are  
three defined sequences executed, SEQ1, SEQ2, and SEQ3, as  
shown in Figure 47.  
SEQ0SLEEPx  
SEQ1SLEEPx  
SEQ2SLEEPx  
SEQ3SLEEPx  
To configure the AD5940 to implement this sequence order,  
implement the following register settings:  
20-BIT DOWN  
COUNTER  
INTERNAL  
32kHz OSC  
WAKE UP  
1. SEQORDER, Bit SEQA = 0 (SEQ0)  
2. SEQORDER, Bit SEQB = 2 (SEQ1)  
3. SEQORDER, Bit SEQC = 3 (SEQ2)  
4. SEQORDER, Bit SEQD = 4 (SEQ3)  
5. CON, Bit ENDSEQ = 3 (end on sequence D)  
SEQ0WUPx  
SEQ1WUPx  
SEQ3WUPx  
HIBERNATE  
SEQ2WUPx  
ORDER OF SEQUENCES  
REPEAT  
Figure 45. Sleep and Wake-Up Timer Block Diagram  
SEQ0  
A
SEQ1  
B
SEQ2  
C
SEQ3  
D
SEQ1  
A
SEQ2  
B
SEQ3  
C
SLEEP AND WAKE-UP TIMER OVERVIEW  
The sleep and wake-up timer block consists of a 20-bit timer  
that counts down. The source clock is the 32 kHz, internal, low  
frequency oscillator.  
Figure 47. Sequence Order Diagram  
RECOMMENDED SLEEP AND WAKE-UP TIMER  
OPERATION  
SEQUENCE EXECUTION  
Analog Devices recommends the following procedure when  
using the sleep and wake-up timer to optimize performance and  
power consumption:  
HIBERNATE  
MODE  
HIBERNATE  
MODE  
ACTIVE MODE  
1. Disable the timer sleep function by setting PWRMOD,  
Bit 2 to 0. The sleep wake-up timer does not put the device  
into hibernate mode. Instead, place the device in sleep  
mode by writing to the SEQTRG register at the end of the  
sequence. This sleep mode optimizes power consumption.  
2. Enable the timer wakeup function by setting TMRCON,  
Bit 0 to 1.  
3. Enable the sequencer to trigger sleep by setting PWRMOD,  
Bit 3 to 1 and the SEQSLPLOCK register to 0xA47E5.  
4. Set the final sequence in CON, Bits[3:1]. If only one  
sequence is used, select that sequence.  
SEQxWUPx  
TIME ELAPSES  
SEQxSLEEPx  
TIME ELAPSES  
PWRMOD[3]  
SEQSLPEN = 1. AUTO SLEEP  
BY SEQUENCER COMMAND  
Figure 46. Sleep and Wake-Up Timing Diagram  
When the timer elapses, the device wakes up and runs a  
sequence automatically. Up to eight sequences can run  
sequentially.  
When the timer elapses, the device returns to sleep. If the timer  
elapses before the sequence completes execution, the remaining  
commands in the sequence are ignored. Therefore, the user  
code must ensure that the values in the SEQxSLEEPx registers  
are large enough to allow sequences to execute all commands.  
5. Write the sleep time and wake-up time to the SEQxSLEEPH,  
SEQxSLEEPL, SEQxWUPH, and SEQxWUPL registers.  
6. Configure the order in which sequences are triggered by  
using the SEQORDER register.  
It is recommended to use the wake-up timer to disable the  
timer sleep function (PWRMOD, Bit 2 = 0) and use the  
sequencer to enter hibernate mode. Set PWRMOD, Bit 3 = 1 to  
enable the sequencer to put the device in hibernate mode.  
7. Enable the timer by writing to CON, Bit 0 = 1.  
Rev. 0 | Page 98 of 130  
 
 
 
 
 
 
Data Sheet  
AD5940  
When CON, Bit 0 = 1, the timer loads the values from the  
SEQxWUPH and SEQxWUPL registers and begins counting  
down. When the timer reaches zero, the device wakes up and  
executes sequences in the order specified in SEQORDER,  
Bits[1:0]. The timer loads the values from the SEQxSLEEPH  
and SEQxSLEEPL registers and begins counting down again  
when the sequencer is running. When the timer elapses, the  
AD5940 returns to sleep if TMRCON, Bit 0 = 1. If PWRMOD,  
Bit 3 = 1, the AD5940 returns to sleep at the end of the last  
sequence.  
The maximum hibernate time is 32 sec when using the internal  
32 kHz oscillator.  
To calculate the code for SEQxWUPx and SEQxSLEEPx  
registers, use the following equation:  
Code = ClkFreq × Time  
where:  
Code is the code value for the SEQxWUPx register.  
ClkFreq is frequency of the internal oscillator in Hz.  
Time is required timeout duration in seconds.  
SLEEP AND WAKE-UP TIMER REGISTERS  
Table 126. Sleep and Wake-Up Timer Registers Summary  
Address  
Name  
CON  
Description  
Timer control register  
Order control register  
Reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x00000800  
0x00000804  
0x00000808  
0x0000080C  
0x00000810  
0x00000814  
0x00000818  
0x0000081C  
0x00000820  
0x00000824  
0x00000828  
0x0000082C  
0x00000830  
0x00000834  
0x00000838  
0x0000083C  
0x00000840  
0x00000844  
0x00000A1C  
0x0000  
0x0000  
0xFFFF  
0x000F  
0xFFFF  
0x000F  
0xFFFF  
0x000F  
0xFFFF  
0x000F  
0xFFFF  
0x000F  
0xFFFF  
0x000F  
0xFFFF  
0x000F  
0xFFFF  
0x000F  
0x0000  
SEQORDER  
SEQ0WUPL  
SEQ0WUPH  
SEQ0SLEEPL  
SEQ0SLEEPH  
SEQ1WUPL  
SEQ1WUPH  
SEQ1SLEEPL  
SEQ1SLEEPH  
SEQ2WUPL  
SEQ2WUPH  
SEQ2SLEEPL  
SEQ2SLEEPH  
SEQ3WUPL  
SEQ3WUPH  
SEQ3SLEEPL  
SEQ3SLEEPH  
TMRCON  
Sequence 0 wake-up time register (LSB)  
Sequence 0 wake-up time register (MSB)  
Sequence 0 sleep time register (LSB)  
Sequence 0 sleep time register (MSB)  
Sequence 1 wake-up time register (LSB)  
Sequence 1 wake-up time register (MSB)  
Sequence 1 sleep time register (LSB)  
Sequence 1 sleep time register (MSB)  
Sequence 2 wake-up time register (LSB)  
Sequence 2 wake-up time register (MSB)  
Sequence 2 sleep time register (LSB))  
Sequence 2 sleep time register (MSB)  
Sequence 3 wake-up time register (LSB)  
Sequence 3 wake-up time register (MSB)  
Sequence 3 sleep time register (LSB)  
Sequence 3 sleep time register (MSB)  
Timer wake-up configuration register  
Timer Control Register—CON  
Address 0x00000800, Reset: 0x0000, Name: CON  
The CON register is the wake-up timer control register.  
Table 127. Bit Descriptions for CON Register  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
[15:7] Reserved  
Reserved.  
0x0  
0x0  
R
6
MSKTRG  
Mask sequence trigger from the sleep and wake-up timer. This bit masks the sequence trigger  
from the sleep and wake-up timer. After the trigger is masked, it does not go to the  
sequencer.  
R/W  
[5:4]  
[3:1]  
RESERVED  
ENDSEQ  
Reserved.  
0x0  
0x0  
R
End sequence. These bits select one of the SEQORDER bits to end the timing sequence.  
The sleep and wake-up timer stops at Sequence A and then goes back to Sequence A.  
The sleep and wake-up timer stops at Sequence B and then goes back to Sequence A.  
R/W  
0
1
10 The sleep and wake-up timer stops at Sequence C and then goes back to Sequence A.  
11 The sleep and wake-up timer stops at Sequence D and then goes back to Sequence A.  
100 The sleep and wake-up timer stops at Sequence E and then goes back to Sequence A.  
101 The sleep and wake-up timer stops at Sequence F and then goes back to Sequence A.  
110 The sleep and wake-up timer stops at Sequence G and then goes back to Sequence A.  
111 The sleep and wake-up timer stops at Sequence H and then goes back to Sequence A.  
Rev. 0 | Page 99 of 130  
 
AD5940  
Data Sheet  
Bits  
0
Bit Name  
EN  
Settings  
Description  
Reset Access  
Sleep and wake-up timer enable bit.  
Enables the sleep and wake-up timer.  
Disables the sleep and wake-up timer.  
0x0  
R/W  
0
1
Order Control Register—SEQORDER  
Address 0x00000804, Reset: 0x0000, Name: SEQORDER  
The SEQORDER register controls the command sequence execution order.  
Table 128. Bit Descriptions for SEQORDER Register  
Bits  
Bit Name Settings Description  
Reset Access  
[15:14] SEQH  
[13:12] SEQG  
[11:10] SEQF  
Sequence H configuration. These bits select SEQ0, SEQ1, SEQ2, or SEQ3 for Timer Sequence H.  
Fills in SEQ0.  
Fills in SEQ1.  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
10 Fills in SEQ2.  
11 Fills in SEQ3.  
Sequence G configuration. These bits select SEQ0, SEQ1, SEQ2, or SEQ3 for Timer Sequence G.  
Fills in SEQ0.  
Fills in SEQ1.  
0
1
10 Fills in SEQ2.  
11 Fills in SEQ3.  
Sequence F configuration. These bits select SEQ0, SEQ1, SEQ2, or SEQ3 for Timer Sequence F.  
Fills in SEQ0.  
Fills in SEQ1.  
0
1
10 Fills in SEQ2.  
11 Fills in SEQ3.  
[9:8]  
[7:6]  
[5:4]  
[3:2]  
[1:0]  
SEQE  
SEQD  
SEQC  
SEQB  
SEQA  
Sequence E configuration. These bits select SEQ0, SEQ1, SEQ2, or SEQ3 for Timer Sequence E.  
Fills in SEQ0.  
Fills in SEQ1.  
0
1
10 Fills in SEQ2.  
11 Fills in SEQ3.  
Sequence D configuration. These bits select SEQ0, SEQ1, SEQ2, or SEQ3 for Timer Sequence D.  
Fills in SEQ0.  
Fills in SEQ1.  
0
1
10 Fills in SEQ2.  
11 Fills in SEQ3.  
Sequence C configuration. These bits select SEQ0, SEQ1, SEQ2, or SEQ3 for Timer Sequence C. 0x0  
Fills in SEQ0.  
Fills in SEQ1.  
0
1
10 Fills in SEQ2.  
11 Fills in SEQ3.  
Sequence B configuration. These bits select SEQ0, SEQ1, SEQ2, or SEQ3 for Timer Sequence B.  
Fills in SEQ0.  
Fills in SEQ1.  
0x0  
0x0  
0
1
10 Fills in SEQ2.  
11 Fills in SEQ3.  
Sequence A configuration. These bits select SEQ0, SEQ1, SEQ2, or SEQ3 for Timer Sequence A.  
Fills in SEQ0.  
Fills in SEQ1.  
0
1
10 Fills in SEQ2.  
11 Fills in SEQ3.  
Rev. 0 | Page 100 of 130  
Data Sheet  
AD5940  
Sequence 0 to Sequence 3 Wake-Up Time Registers (LSB)—SEQxWUPL  
Address 0x00000808, Reset: 0xFFFF, Name: SEQ0WUPL  
Address 0x00000818, Reset: 0xFFFF, Name: SEQ1WUPL  
Address 0x00000828, Reset: 0xFFFF, Name: SEQ2WUPL  
Address 0x00000838, Reset: 0xFFFF, Name: SEQ3WUPL  
These registers sets the sequence sleep time. The counter is 20 bits. These registers set the 16 LSBs. When this timer elapses, the device  
wakes up.  
Table 129. Bit Descriptions for SEQxWUPL Registers  
Bits  
Bit Name  
Settings Description  
Sequence and sleep period. This register defines the length of time in which  
the device stays in sleep mode. When this time elapses, the device wakes up.  
Reset  
0xFFFF R/W  
Access  
[15:0] WAKEUPTIME0[15:0]  
Sequence 0 to Sequence 3 Wake-Up Time Registers (MSB)—SEQxWUPH  
Address 0x0000080C, Reset: 0x000F, Name: SEQ0WUPH  
Address 0x0000081C, Reset: 0x000F, Name: SEQ1WUPH  
Address 0x0000082C, Reset: 0x000F, Name: SEQ2WUPH  
Address 0x0000083C, Reset: 0x000F, Name: SEQ3WUPH  
These registers sets the sequence sleep time. The counter is 20 bits. These registers set the 4 MSBs When this timer elapses, the device  
wakes up.  
Table 130. Bit Descriptions for SEQxWUPH Registers  
Bits  
[15:4] Reserved  
[3:0] WAKEUPTIME0[19:16]  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0xF  
R
R/W  
Sequence and sleep period. This register defines the length of time in  
which the device stays in sleep mode. When this time elapses, the device  
wakes up.  
Sequence 0 to Sequence 3 Sleep Time Registers (LSB)—SEQxSLEEPL  
Address 0x00000810, Reset: 0xFFFF, Name: SEQ0SLEEPL  
Address 0x00000820, Reset: 0xFFFF, Name: SEQ1SLEEPL  
Address 0x00000830, Reset: 0xFFFF, Name: SEQ2SLEEPL  
Address 0x00000840, Reset: 0xFFFF, Name: SEQ3SLEEPL  
The SEQxSLEEPL registers define the device active time for SEQ0 to SEQ3. The counter is 20 bits. These registers set the 16 LSBs.  
Table 131. Bit Descriptions for SEQxSLEEPL Registers  
Bits  
Bit Name  
Settings Description  
Sequence and active period. This register defines the length of time in which the  
device stays in active mode. When this time elapses, the device returns to sleep.  
Reset  
0xFFFF R/W  
Access  
[15:0] SLEEPTIME0[15:0]  
Sequence 0 to Sequence 3 Sleep Time Registers (MSB)—SEQxSLEEPH  
Address 0x00000814, Reset: 0x000F, Name: SEQ0SLEEPH  
Address 0x00000824, Reset: 0x000F, Name: SEQ1SLEEPH  
Address 0x00000834, Reset: 0x000F, Name: SEQ2SLEEPH  
Address 0x00000844, Reset: 0x000F, Name: SEQ3SLEEPH  
The SEQxSLEEPH registers define the device active time for SEQ0 to SEQ3. The counter is 20 bits. These registers set the four MSBs.  
Table 132. Bit Descriptions for SEQxSLEEPH Registers  
Bits  
[15:4] Reserved  
[3:0] SLEEPTIME0[19:16]  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0xF  
R
R/W  
Sequence and active period. This register defines the length of time in which the  
device stays in active mode. When this time elapses, the device returns to sleep.  
Rev. 0 | Page 101 of 130  
AD5940  
Data Sheet  
Timer Wake-Up Configuration Register—TMRCON  
Address 0x00000A1C, Reset: 0x0000, Name: TMRCON  
Table 133. Bit Descriptions for TMRCON Register  
Bits  
[15:1] Reserved  
TMRINTEN  
Bit Name  
Settings Description  
Reset  
0x0  
0x0  
Access  
R
R/W  
Reserved.  
0
Wake-up timer enable. Set this bit before entering hibernate mode to enable the  
ability of the sleep and wake-up timer to wake up the chip.  
0
1
Wake-up timer disabled.  
Wake-up timer enabled.  
Rev. 0 | Page 102 of 130  
Data Sheet  
AD5940  
INTERRUPTS  
There are a number of interrupt options available on the AD5940.  
These interrupts can be configured to toggle a GPIOx pin in  
response to an interrupt event.  
CUSTOM INTERRUPTS  
Four custom interrupt sources are selectable by the user in  
INTCSELx, Bits[12:9]). These custom interrupts can generate  
an interrupt event by writing to the corresponding bit in the  
AFEGENINTSTA register. It is only possible to write to this  
register via the sequencer. Writing to the AFEGENINTSTA  
register when using the SPI has no effect.  
INTERRUPT CONTROLLER INTERUPTS  
The interrupt controller is divided into two blocks. Each block  
consists of an INTCSELx register and an INTCFLAGx register.  
The INTCPOL and INTCCLR registers are common to both  
blocks. After an interrupt is enabled in the INTCSELx register,  
the corresponding bit in the INTCFLAGx register is set. The  
available interrupt sources are shown in Table 134. The  
INTCFLAGx interrupts can be configured to toggle a  
GPIOx pin in response to an interrupt event.  
EXTERNAL INTERRUPT CONFIGURATION  
Eight external interrupts are implemented on the AD5940.  
These external interrupts can be configured to detect any  
combination of the following types of events:  
Rising edge. The logic detects a transition from low to high  
and generates a pulse.  
Falling edge. The logic detects a transition from high to  
low and generates a pulse.  
Rising or falling edge. The logic detects a transition from  
low to high or high to low and generates a pulse.  
High level. The logic detects a high level. The interrupt line  
is held asserted until the external source deasserts.  
Low level. The logic detects a low level. The interrupt line  
is held asserted until the external source deasserts.  
CONFIGURING THE INTERRUPTS  
Before configuring the interrupt sources, the GPIOx pin must  
be configured as the interrupt output. GPIO0, GPIO3, and  
GPIO6 can be configured for the INT0 output. GPIO4 and  
GPIO7 can be configured for the INT1 output. Refer to the  
Digital Port Multiplex section for more details. The user can  
program the polarity of the interrupt (rising or falling edge) in  
the INTCPOL register. When an interrupt is triggered, the  
selected GPIOx pin toggles to alert the host microcontroller  
that an interrupt event has occurred. To clear an interrupt  
source, write to the corresponding bit in the INTCCLR register.  
The external interrupt detection unit block allows an external  
event to wake up the AD5940 when it is in hibernate mode.  
Table 134. Interrupt Sources Summary  
INTCFLAGx Register Flag Name Interrupt Source Description  
FLAG0  
ADC result IRQ status.  
FLAG1  
DFT result IRQ status.  
FLAG2  
FLAG3  
FLAG4  
FLAG5  
FLAG6  
FLAG7  
Sinc2 filter result ready IRQ status.  
Temperature result IRQ status.  
ADC minimum fail IRQ status.  
ADC maximum fail IRQ status.  
ADC delta fail IRQ status.  
Mean IRQ status.  
FLAG8  
Variance IRQ status.  
FLAG13  
FLAG15  
FLAG16  
FLAG17  
FLAG23  
FLAG24  
FLAG25  
FLAG26  
FLAG27  
FLAG29  
FLAG31  
Bootload done IRQ status.  
End of sequence IRQ status.  
Sequencer timeout finished IRQ status. See the Timer Command section.  
Sequencer timeout command error IRQ status. See the Timer Command section.  
Data FIFO full IRQ status.  
Data FIFO empty IRQ status.  
Data FIFO threshold IRQ status. Threshold value set in DATAFIFOTHRES register.  
Data FIFO overflow IRQ status.  
Data FIFO underflow IRQ status.  
Outlier IRQ status. Detects when an outlier is detected.  
Attempt to break IRQ status. This interrupt is set if a Sequence B request occurs when Sequence A is  
running. This interrupt indicates that Sequence B is ignored.  
Rev. 0 | Page 103 of 130  
 
 
 
 
 
 
AD5940  
Data Sheet  
INTERRUPT REGISTERS  
Table 135. Interrupt Registers Summary  
Address  
Name  
INTCPOL  
INTCCLR  
INTCSEL0  
INTCSEL1  
INTCFLAG0  
INTCFLAG1  
AFEGENINTSTA  
Description  
Interrupt polarity register  
Interrupt clear register  
Interrupt controller select register (INT0)  
Interrupt controller select register (INT1)  
Interrupt controller flag register (INT0)  
Interrupt controller flag register (INT1)  
Analog generation interrupt  
Reset  
Access  
R/W  
W
R/W  
R/W  
R
0x00003000  
0x00003004  
0x00003008  
0x0000300C  
0x00003010  
0x00003014  
0x0000209C  
0x00000000  
0x00000000  
0x00002000  
0x00002000  
0x00000000  
0x00000000  
0x00000010  
R
R/W1C  
Interrupt Polarity Register—INTCPOL  
Address 0x00003000, Reset: 0x00000000, Name: INTCPOL  
Table 136. Bit Descriptions for INTCPOL Register  
Bits  
[31:1]  
0
Bit Name  
Reserved  
INTPOL  
Settings  
Description  
Reserved.  
Interrupt polarity.  
Reset  
0x0  
0x0  
Access  
R
R/W  
0
1
Output negative edge interrupt.  
Output positive edge interrupt.  
Interrupt Clear Register—INTCCLR  
Address 0x00003004, Reset: 0x00000000, Name: INTCCLR  
Table 137. Bit Descriptions for INTCCLR Register  
Bits  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
17  
16  
15  
14  
13  
12  
11  
10  
9
Bit Name  
INTCLR31  
Reserved  
INTCLR29  
Reserved  
INTCLR27  
INTCLR26  
INTCLR25  
INTCLR24  
INTCLR23  
Reserved  
INTCLR17  
INTCLR16  
INTCLR15  
Reserved  
INTCLR13  
INTCLR12  
INTCLR11  
INTCLR10  
INTCLR9  
INTCLR8  
INTCLR7  
INTCLR6  
INTCLR5  
INTCLR4  
INTCLR3  
INTCLR2  
INTCLR1  
INTCLR0  
Settings  
Description  
Attempt to break interrupt (IRQ). Write 1 to clear.  
Reserved.  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
Outlier IRQ. Write 1 to clear.  
Reserved.  
Data FIFO underflow IRQ. Write 1 to clear.  
Data FIFO overflow IRQ. Write 1 to clear.  
Data FIFO threshold IRQ. Write 1 to clear.  
Data FIFO empty IRQ. Write 1 to clear.  
Data FIFO full IRQ. Write 1 to clear.  
Reserved.  
Sequencer timeout error IRQ. Write 1 to clear.  
Sequencer timeout finished IRQ. Write 1 to clear.  
End of sequence IRQ. Write 1 to clear.  
Reserved.  
Boot load done IRQ. Write 1 to clear.  
Custom Interrupt 3 (IRQ3). Write 1 to clear.  
Custom Interrupt 2 (INR. Write 1 to clear.  
Custom Interrupt 1. Write 1 to clear.  
Custom Interrupt 0. Write 1 to clear.  
Variance IRQ. Write 1 to clear.  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
8
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
W
W
W
W
W
W
W
W
W
7
Mean IRQ. Write 1 to clear.  
6
ADC delta fail IRQ. Write 1 to clear.  
ADC maximum fail IRQ. Write 1 to clear.  
ADC minimum fail IRQ. Write 1 to clear.  
Temperature result IRQ. Write 1 to clear.  
Sinc2 filter result ready IRQ. Write 1 to clear.  
DFT result IRQ. Write 1 to clear.  
5
4
3
2
1
0
ADC result IRQ. Write 1 to clear.  
Rev. 0 | Page 104 of 130  
 
Data Sheet  
AD5940  
Interrupt Controller Select Registers—INTCSEL0 and INTCSEL1  
Address 0x00003008, Reset: 0x00002000, Name: INTCSEL0  
Address 0x0000300C, Reset: 0x00002000, Name: INTCSEL1  
Table 138. Bit Descriptions for INTCSEL0 and INTCSEL1 Registers  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
31  
INTSEL31  
Attempt to break IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
0x0  
R/W  
0
1
30  
29  
Reserved  
INTSEL29  
Reserved.  
Outlier IRQ enable.  
0x0  
0x0  
R/W  
R/W  
0
1
Interrupt disabled.  
Interrupt enabled.  
28  
27  
Reserved  
INTSEL27  
Reserved.  
Data FIFO underflow IRQ enable.  
Interrupt disabled.  
0x0  
0x0  
R/W  
R/W  
0
1
Interrupt enabled.  
26  
25  
24  
23  
INTSEL26  
INTSEL25  
INTSEL24  
INTSEL23  
Data FIFO overflow IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
Data FIFO threshold IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
Data FIFO empty IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
0
1
0
1
0
1
Data FIFO full IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
0
1
[22:18]  
17  
Reserved  
INTSEL17  
Reserved.  
Sequencer timeout error IRQ enable.  
Interrupt disabled.  
0x0  
0x0  
R/W  
R/W  
0
1
Interrupt enabled.  
16  
15  
INTSEL16  
INTSEL15  
Sequencer timeout finished IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
End of sequence IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
0x0  
0x0  
R/W  
R/W  
0
1
0
1
14  
13  
Reserved  
INTSEL13  
Reserved.  
Bootloader done IRQ enable.  
Interrupt disabled.  
0x0  
0x1  
R/W  
R/W  
0
1
Interrupt enabled.  
Rev. 0 | Page 105 of 130  
AD5940  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
12  
INTSEL12  
Custom IRQ3 enable.  
Interrupt disabled.  
Interrupt enabled.  
Custom IRQ 2 enable.  
Interrupt disabled.  
Interrupt enabled.  
Custom IRQ 1 enable.  
Interrupt disabled.  
Interrupt enabled.  
Custom IRQ 0 enable.  
Interrupt disabled.  
Interrupt enabled.  
Variance IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
Mean IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
0
1
11  
10  
9
INTSEL11  
INTSEL10  
INTSEL9  
INTSEL8  
INTSEL7  
INTSEL6  
INTSEL5  
INTSEL4  
INTSEL3  
INTSEL2  
INTSEL1  
INTSEL0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
0
1
0
1
8
0
1
7
0
1
6
ADC delta fail IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
ADC maximum fail IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
0
1
5
0
1
4
ADC minimum fail IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
Temperature result IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
Sinc2 filter result ready IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
DFT result IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
0
1
3
0
1
2
0
1
1
0
1
0
ADC result IRQ enable.  
Interrupt disabled.  
Interrupt enabled.  
0
1
Rev. 0 | Page 106 of 130  
Data Sheet  
AD5940  
Interrupt Controller Flag Registers—INTCFLAG0 and INTCFLAG1  
Address 0x00003010, Reset: 0x00000000, Name: INTCFLAG0  
Address 0x00003014, Reset: 0x00000000, Name: INTCFLAG1  
Table 139. Bit Descriptions for INTCFLAG0 and INTCFLAG1 Registers  
Bits  
Bit Name  
Settings Description  
Reset Access  
31  
FLAG31  
Attempt to break IRQ status. This bit is set if a Sequence B request arrives when  
0x0  
R
Sequence A is running, indicating that Sequence B is ignored.  
Interrupt not asserted.  
Interrupt asserted.  
0
1
30  
29  
Reserved  
FLAG29  
Reserved.  
Outlier IRQ status.  
0x0  
0x0  
R
R
0
1
Interrupt not asserted.  
Interrupt asserted.  
28  
27  
Reserved  
FLAG27  
Reserved.  
0x0  
0x0  
R
R
Data FIFO underflow IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
0
1
26  
25  
24  
23  
FLAG26  
FLAG25  
FLAG24  
FLAG23  
Data FIFO overflow IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
Data FIFO threshold IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
Data FIFO empty IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
Data FIFO full IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
0
1
0
1
0
1
0
1
[22:18] Reserved  
Reserved.  
0x0  
0x0  
R
R
17  
16  
15  
FLAG17  
FLAG16  
FLAG15  
Sequencer timeout error IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
0
1
Sequencer timeout finished IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
End of sequence IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
0x0  
0x0  
R
R
0
1
0
1
14  
13  
Reserved  
FLAG13  
Reserved.  
0x0  
0x0  
R
R
Bootload done IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
0
1
Rev. 0 | Page 107 of 130  
AD5940  
Data Sheet  
Bits  
12  
Bit Name  
Settings Description  
Custom Interrupt 3 status.  
Reset Access  
FLAG12  
FLAG11  
FLAG10  
FLAG9  
FLAG8  
FLAG7  
FLAG6  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
R
0
1
Interrupt not asserted.  
Interrupt asserted.  
11  
10  
9
Custom Interrupt 2 status.  
Interrupt not asserted.  
Interrupt asserted.  
Custom Interrupt 1 status.  
Interrupt not asserted.  
Interrupt asserted.  
Custom Interrupt 0 status.  
Interrupt not asserted.  
Interrupt asserted.  
Variance IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
0
1
0
1
0
1
8
0
1
7
Mean IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
0
1
6
ADC delta fail IRQ status. When this bit is set, it is indicated that the difference between  
two consecutive ADC results is greater than the value specified by the ADCDELTA  
register. If this bit is clear, it is indicated that no difference between two consecutive  
ADC values greater than the limit is detected since the last time this bit was cleared.  
0
1
Interrupt not asserted.  
Interrupt asserted.  
5
4
FLAG5  
FLAG4  
ADC maximum fail IRQ status. When this bit is set, it is indicated that an ADC result is 0x0  
above the maximum value specified by the ADCMAX register. If this bit is clear, it is  
indicated that no ADC value above the maximum is detected.  
Interrupt not asserted.  
Interrupt asserted.  
R
R
0
1
ADC minimum fail IRQ status. When this bit is set, it is indicated that an ADC result is  
below the minimum value as specified by the ADCMIN register. If this bit is clear, it is  
indicated that no ADC value below the limit is detected since the last time this bit  
was cleared.  
0x0  
0
1
Interrupt not asserted.  
Interrupt asserted.  
3
2
1
0
FLAG3  
FLAG2  
FLAG1  
FLAG0  
Temperature result IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
Sinc2 filter result ready IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
DFT result IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
ADC result IRQ status.  
Interrupt not asserted.  
Interrupt asserted.  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
0
1
0
1
0
1
0
1
Rev. 0 | Page 108 of 130  
Data Sheet  
AD5940  
Analog Generation Interrupt Register—AFEGENINTSTA  
Address 0x0000209C, Reset: 0x00000010, Name: AFEGENINTSTA  
The AFEGENINTSTA register provides custom interrupt generation. Writing to this register is only possible using the sequencer. Writing  
to this register using the SPI has no effect. Reading this register using the SPI does not return meaningful data.  
Table 140. Bit Descriptions for AFEGENINTSTA Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:4] Reserved  
Reserved.  
0x1  
0x0  
R
3
2
1
0
CUSTOMINT3  
General-Purpose Custom Interrupt 3. Set this bit manually using the sequencer  
program. Write 1 to this bit to trigger an interrupt.  
R/W1C  
CUSTOMINT2  
CUSTOMINT1  
CUSTOMINT0  
General-Purpose Custom Interrupt 2. Set this bit manually using the sequencer  
program. Write 1 to this bit to trigger an interrupt.  
0x0  
0x0  
0x0  
R/W1C  
R/W1C  
R/W1C  
General-Purpose Custom Interrupt 1. Set this bit manually using the sequencer  
program. Write 1 to this bit to trigger an interrupt.  
General-Purpose Custom Interrupt 0. Set this bit manually using the sequencer  
program. Write 1 to this bit to trigger an interrupt.  
EXTERNAL INTERRUPT CONFIGURATION REGISTERS  
Table 141. External Interrupt Registers Summary  
Address  
Name  
Description  
Reset  
Access  
0x00000A20  
0x00000A24  
0x00000A28  
0x00000A30  
EI0CON  
EI1CON  
EI2CON  
EICLR  
External Interrupt Configuration 0 register  
External Interrupt Configuration 1 register  
External Interrupt Configuration 2 register  
External interrupt clear register  
0x0000  
0x0000  
0x0000  
0xC000  
R/W  
R/W  
R/W  
R/W  
External Interrupt Configuration 0 Register—EI0CON  
Address 0x00000A20, Reset: 0x0000, Name: EI0CON  
Table 142. Bit Descriptions for EI0CON Register  
Bits  
Bit Name Settings Description  
Reset  
Access  
15  
IRQ3EN  
External Interrupt 3 enable bit. Set this bit before placing the device in hibernate  
0x0  
R/W  
mode to enable the ability of GPIO3 to wake up the device.  
External Interrupt 3 disabled.  
External Interrupt 3 enabled.  
0
1
[14:12] IRQ3MDE  
External Interrupt 3 mode bits.  
0x0  
R/W  
000 Rising edge.  
001 Falling edge.  
010 Rising or falling edge.  
011 High level.  
100 Low level.  
101 Falling edge (same as 001).  
110 Rising or falling edge (same as 010).  
111 High level (same as 011).  
11  
IRQ2EN  
External Interrupt 2 enable bit. Set this bit before placing the device in hibernate  
mode to enable the ability of GPIO2 to wake up the device.  
External Interrupt 2 disabled.  
External Interrupt 2 enabled.  
External Interrupt 2 mode bits.  
0x0  
0x0  
R/W  
R/W  
0
1
[10:8]  
IRQ2MDE  
000 Rising edge.  
001 Falling edge.  
010 Rising or falling edge.  
011 High level.  
100 Low level.  
Rev. 0 | Page 109 of 130  
 
AD5940  
Data Sheet  
Bits  
Bit Name Settings Description  
Reset  
Access  
101 Falling edge (same as 001).  
110 Rising or falling edge (same as 010).  
111 High level (same as 011).  
7
IRQ1EN  
External Interrupt 1 enable bit. Set this bit before placing the device in hibernate  
mode to enable the ability of GPIO1 to wake up the device.  
External Interrupt 1 disabled.  
External Interrupt 1 enabled.  
External Interrupt 1 mode bits.  
0x0  
0x0  
R/W  
R/W  
0
1
[6:4]  
IRQ1MDE  
000 Rising edge.  
001 Falling edge.  
010 Rising or falling edge.  
011 High level.  
100 Low level.  
101 Falling edge (same as 001).  
110 Rising or falling edge (same as 010).  
111 High level (same as 011).  
3
IRQ0EN  
External Interrupt 0 enable bit. Set this bit before placing the device in hibernate  
mode to enable the ability of GPIO0 to wake up the device.  
External Interrupt 0 disabled.  
External Interrupt 0 enabled.  
External Interrupt 0 mode bits.  
0x0  
0x0  
R/W  
R/W  
0
1
[2:0]  
IRQ0MDE  
000 Rising edge.  
001 Falling edge.  
010 Rising or falling edge.  
011 High level.  
100 Low level.  
101 Falling edge (same as 001).  
110 Rising or falling edge (same as 010).  
111 High level (same as 011).  
External Interrupt Configuration 1 Register—EI1CON  
Address 0x00000A24, Reset: 0x0000, Name: EI1CON  
Table 143. Bit Descriptions for EI1CON Register  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
IRQ7EN  
External Interrupt 7 enable bit. Set this bit before placing the device in hibernate mode  
to enable the ability of GPIO7 to wake up the device.  
0x0  
R/W  
0
1
External Interrupt 7 disabled.  
External Interrupt 7 enabled.  
External Interrupt 7 mode bits.  
[14:12]  
IRQ7MDE  
0x0  
R/W  
000 Rising edge.  
001 Falling edge.  
010 Rising or falling edge.  
011 High level.  
100 Low level.  
101 Falling edge (same as 001).  
110 Rising or falling edge (same as 010).  
111 High level (same as 011).  
11  
IRQ6EN  
External Interrupt 6 enable bit. Set this bit before placing the device in hibernate mode  
to enable the ability of GPIO6 to wake up the device.  
0x0  
R/W  
0
1
External Interrupt 6 disabled.  
External Interrupt 6 enabled.  
Rev. 0 | Page 110 of 130  
Data Sheet  
AD5940  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[10:8]  
IRQ6MDE  
External Interrupt 6 mode bits.  
0x0  
R/W  
000 Rising edge.  
001 Falling edge.  
010 Rising or falling edge.  
011 High level.  
100 Low level.  
101 Falling edge (same as 001).  
110 Rising or falling edge (same as 010).  
111 High level (same as 011).  
7
IRQ5EN  
External Interrupt 5 enable bit. Set this bit before placing the device in hibernate mode  
to enable the ability of GPIO5 to wake up the device.  
External Interrupt 5 disabled.  
External Interrupt 5 enabled.  
External Interrupt 5 mode bits.  
0x0  
0x0  
R/W  
R/W  
0
1
[6:4]  
IRQ5MDE  
000 Rising edge.  
001 Falling edge.  
010 Rising or falling edge.  
011 High level.  
100 Low level.  
101 Falling edge (same as 001).  
110 Rising or falling edge (same as 010).  
111 High level (same as 011).  
3
IRQ4EN  
External Interrupt 4 enable bit. Set this bit before placing the device in hibernate mode  
to enable the ability of GPIO4 to wake up the device.  
External Interrupt 4 disabled.  
External Interrupt 4 enabled.  
External Interrupt 4 mode bits.  
0x0  
0x0  
R/W  
R/W  
0
1
[2:0]  
IRQ4MDE  
000 Rising edge.  
001 Falling edge.  
010 Rising or falling edge.  
011 High level.  
100 Low level.  
101 Falling edge (same as 001).  
110 Rising or falling edge (same as 010).  
111 High level (same as 011).  
External Interrupt Configuration 2 Register—EI2CON  
Address 0x00000A28, Reset: 0x0000, Name: EI2CON  
Table 144. Bit Descriptions for EI2CON Register  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
[15:4] Reserved  
Reserved.  
0x0  
0x0  
R
3
BUSINTEN  
Bus interrupt detection enable bit. Set this bit before placing the device in hibernate  
mode to enable the ability of the SPI to wake up the device.  
R/W  
0
1
Bus interrupt wake-up disabled.  
Bus interrupt wake-up enabled.  
Bus interrupt detection mode bits.  
[2:0]  
BUSINTMDE  
0x0  
R/W  
000 Rising edge.  
001 Falling edge.  
010 Rising or falling edge.  
011 High level.  
100 Low level.  
101 Falling edge (same as 001).  
110 Rising or falling edge (same as 010).  
111 High level (same as 011).  
Rev. 0 | Page 111 of 130  
AD5940  
Data Sheet  
External Interrupt Clear Register—EICLR  
Address 0x00000A30, Reset: 0xC000, Name: EICLR  
Table 145. Bit Descriptions for EICLR Register  
Bits  
15  
14  
Bit Name  
AUTCLRBUSEN  
AUTCLRIRQEN  
Settings Description  
Reset  
0x1  
0x1  
Access  
R/W  
R/W  
Enable autoclear of bus interrupt. Set this bit to 1 to enable autoclear.  
Enable autoclear of External Interrupt 0 to External Interrupt 7. Set this bit to 1  
to enable autoclear.  
[13:9] Reserved  
Reserved.  
0x0  
R
8
7
6
5
4
3
2
1
0
BUSINT  
IRQ7  
IRQ6  
IRQ5  
IRQ4  
IRQ3  
IRQ2  
IRQ1  
IRQ0  
Bus interrupt. Set this bit to 1 to clear an internal interrupt flag. This bit is cleared 0x0  
automatically by the hardware.  
R/W  
External Interrupt 7. Set this bit to 1 to clear an internal interrupt flag. This bit is  
cleared automatically by the hardware.  
External Interrupt 6. Set this bit to 1 to clear an internal interrupt flag. This bit is  
cleared automatically by the hardware.  
External Interrupt 5. Set this bit to 1 to clear an internal interrupt flag. This bit is  
cleared automatically by the hardware.  
External Interrupt 4. Set this bit to 1 to clear an internal interrupt flag. This bit is  
cleared automatically by the hardware.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
External Interrupt 3. Set this bit to 1 to clear an internal interrupt flag. This bit is  
cleared automatically by the hardware.  
External Interrupt 2. Set this bit to 1 to clear an internal interrupt flag. This bit is  
cleared automatically by the hardware.  
External Interrupt 1. Set this bit to 1 to clear an internal interrupt flag. This bit is  
cleared automatically by the hardware.  
External Interrupt 0. Set this bit to 1 to clear an internal interrupt flag. This bit is  
cleared automatically by the hardware.  
Rev. 0 | Page 112 of 130  
Data Sheet  
AD5940  
DIGITAL INPUTS/OUTPUTS  
Bit Toggle  
DIGITAL INPUTS/OUTPUTS FEATURES  
The GP0 port has a corresponding bit toggle register, GP0TGL.  
Using the bit toggle register, it is possible to invert one or more  
GPIO data outputs without affecting other outputs within the  
port. Only the GPIOx pin that corresponds to the write data bit  
equal to 1 is toggled. The remaining GPIOs are unaffected.  
The AD5940 features eight GPIO pins. The GPIOs are grouped  
in one port, which is eight bits wide. Each GPIOx contains  
multiple functions that are configurable by user code.  
OUTPUT ENABLE  
GP0OEN  
Input/Output Data Output Enable  
OUTPUT DATA  
The GP0 port has a data output enable register, GP0OEN, by  
which the data output path is enabled. When the data output  
enable register bits are set, the values in GP0OUT are reflected  
on the corresponding GPIOx pins.  
GP0OUT, GP0SET,  
GP0CLR, GP0TGL  
GPIO  
INPUT ENABLE  
GP0IEN  
Interrupt Inputs  
Each GPIOx pin can be configured to react to external events.  
These events can be detected and used to wake up the device or  
to trigger specific sequences. These events are configured in the  
EIxCON register. Writing to the corresponding bit in the EICLR  
register clears the interrupt flag. For further information, see  
the Interrupts section.  
INPUT DATA  
GP0IN  
Figure 48. Digital Input/Output Diagram  
DIGITAL INPUTS/OUTPUTS OPERATION  
Input/Output Pull-Up Enable  
Interrupt Outputs  
GPIO0, GPIO1, GPIO3, GPIO4, GPIO5, GPIO6, and GPIO7  
pins have pull-up resistors that are enabled or disabled using the  
GP0PE register. Unused GPIOs must have the respective pull-up  
resistors disabled to reduce power consumption.  
The AD5940 has two external interrupts that can be mapped to  
certain GPIOx pins (see the GP0CON register). When an  
interrupt occurs, the AD5940 sets the GPIOx pin high. When  
the interrupt is cleared, the AD5940 brings the GPIOx pin low.  
These interrupts are configured in the interrupt controller  
register (see the Interrupts section).  
Input/Output Data Input  
When the GPIOs are configured as inputs using the GP0IEN  
register, the GPIO input levels are available in the GP0IN register.  
Digital Port Multiplex  
Input/Output Data Output  
The digital port multiplex block provides control over the GPIO  
functionality of the specified pins. These options are configured  
in the GP0CON register.  
When the GPIOs are configured as outputs, the values in the  
GP0OUT register are reflected on the GPIOs.  
Bit Set  
GPIOx Control with the Sequencer  
The GP0 port has a corresponding bit set register, GP0SET.  
Using the bit set register, it is possible to set one or more GPIO  
data outputs without affecting other outputs within the port.  
Only the GPIOx corresponding to the write data bit equal to 1  
is set. The remaining GPIOs are unaffected.  
Each GPIOx on the AD5940 can be controlled via the sequencer.  
This control allows syncing of external devices during timing  
critical applications using a dedicated register, SYNCEXTDEVICE.  
To control the GPIOs via this register, the GPIOx must first be  
configured as an output in the GP0OEN register and sync must  
be selected in the GP0CON register.  
Bit Clear  
The GP0 port has a corresponding bit clear register, GP0CLR.  
Use the bit clear register to clear one or more GPIO data  
outputs without affecting other outputs within the port. Only  
the GPIOx that corresponds to the write data bit equal to 1 is  
cleared. The remaining GPIOs are unaffected.  
Rev. 0 | Page 113 of 130  
 
 
 
 
AD5940  
Data Sheet  
Table 146. GPIOx Multiplex Options  
PINxCFG Bit Setting Option  
10  
GPIOx Name 00  
01  
11  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
Interrupt 0 output  
General-purpose input/output  
POR signal output  
General-purpose input/output  
General-purpose input/output  
General-purpose input/output  
General-purpose input/output  
General-purpose input/output  
Sequence 0 trigger Synchronizes External Device 0  
Sequence 1 trigger Synchronizes External Device 1  
Sequence 2 trigger Synchronizes External Device 2  
Sequence 3 trigger Synchronizes External Device 3  
Sequence 0 trigger Synchronizes External Device 4  
Sequence 1 trigger Synchronizes External Device 5  
Sequence 2 trigger Synchronizes External Device 6  
Sequence 3 trigger Synchronizes External Device 7  
General-purpose input/output  
Deep sleep  
External clock input  
Interrupt 0 output  
Interrupt 1 output  
External clock input  
Interrupt 0 output  
Interrupt 1 output  
GPIO REGISTERS  
Table 147. GPIO Registers Summary  
Address  
Name  
Description  
Reset  
Access  
R/W  
R/W  
R/W  
R/W  
R
R/W  
W
W
0x00000000  
0x00000004  
0x00000008  
0x0000000C  
0x00000010  
0x00000014  
0x00000018  
0x0000001C  
0x00000020  
GP0CON  
GP0OEN  
GP0PE  
GP0IEN  
GP0IN  
GP0OUT  
GP0SET  
GP0CLR  
GP0TGL  
GPIO Port 0 configuration register  
GPIO Port 0 output enable register  
GPIO Port 0 pull-up and pull-down enable register  
GPIO Port 0 input path enable register  
GPIO Port 0 registered data input register  
GPIO Port 0 data output register  
GPIO Port 0 data output set register  
GPIO Port 0 data out clear register  
GPIO Port 0 pin toggle register  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
W
GPIO Port 0 Configuration Register—GP0CON  
Address 0x00000000, Reset: 0x0000, Name: GP0CON  
The GP0CON register configures the configuration for each of the eight GPIOs.  
Table 148. Bit Descriptions for GP0CON Register  
Bits  
Bit Name Settings Description  
Reset Access  
[15:14] PIN7CFG  
[13:12] PIN6CFG  
[11:10] PIN5CFG  
GPIO 7configuration bits.  
00 General-purpose input/output.  
01 Sequence 3 trigger signal input from the microcontroller unit (MCU) side.  
10 Synchronizes External Device 7 output signal.  
11 Interrupt 1 output.  
GPIO6 configuration bits.  
00 General-purpose input/output.  
01 Sequence 2 trigger signal input from the MCU side.  
10 Synchronizes External Device 6 output signal.  
11 Interrupt 0 output.  
GPIO5 configuration bits.  
00 General-purpose input/output.  
01 Sequence 1 trigger signal input from the MCU side.  
10 Synchronizes External Device 5 output signal.  
11 External clock input (EXTCLK).  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
[9:8]  
PIN4CFG  
GPIO4 configuration bits.  
00 General-purpose input/output.  
01 Sequence 0 trigger signal input from the MCU side.  
10 Synchronizes External Device 4 output signal.  
11 Interrupt 1 output.  
Rev. 0 | Page 114 of 130  
 
Data Sheet  
AD5940  
Bits  
Bit Name Settings Description  
Reset Access  
[7:6]  
PIN3CFG  
PIN2CFG  
PIN1CFG  
GPIO3 configuration bits.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
00 General-purpose input/output.  
01 Sequence 3 trigger signal input from the MCU side.  
10 Synchronizes External Device 3 output signal.  
11 Interrupt 0 output.  
[5:4]  
[3:2]  
GPIO2 configuration bits.  
00 POR signal output.  
01 Sequence 2 trigger signal input from the MCU side.  
10 Synchronizes External Device 2 output signal.  
11 External clock input (EXTCLK).  
GPIO1 configuration bits.  
00 General-purpose input/output.  
01 Sequence 1 trigger signal input from the MCU side.  
10 Synchronizes External Device 1 output signal.  
11 Deep sleep. Sleep flag indicating that the AD5940 is in hibernate mode. Used when  
reading data FIFO. When the MCU receives the FIFO full or almost full interrupt, the  
MCU waits for this pin to go high. Then, the MCU wakes the AD5940 and reads data  
FIFO. After the data FIFO is read, the MCU sends a command to put the AD5940 back  
in sleep mode.  
[1:0]  
PIN0CFG  
GPIO0 configuration bits.  
0x0  
R/W  
00 Interrupt 0 output.  
01 Sequence 0 trigger signal input from the MCU side.  
10 Synchronizes External Device 0 output signal.  
11 General-purpose input/output.  
GPIO Port 0 Output Enable Register—GP0OEN  
Address 0x00000004, Reset: 0x0000, Name: GP0OEN  
The GP0OEN register enables the output for each GPIO.  
Table 149. Bit Descriptions for GP0OEN Register  
Bits  
[15:8] Reserved  
[7:0] OEN  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
R/W  
Pin output drive enable. Each bit in this range is set to enable the output for that  
particular pin. Each bit is cleared to disable the output for each pin.  
GPIO Port 0 Pull-Up and Pull-Down Enable Register—GP0PE  
Address 0x00000008, Reset: 0x0000, Name: GP0PE  
Table 150. Bit Descriptions for GP0PE Register  
Bits  
[15:8] Reserved  
[7:0] PE  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
R/W  
Pin pull enable. Each bit in this range is set to enable the pull-up and/or pull-down  
resistor for that particular pin. Each bit is cleared to disable the pull-up/pull-down resistor  
for each pin.  
GPIO Port 0 Input Path Enable Register—GP0IEN  
Address 0x0000000C, Reset: 0x0000, Name: GP0IEN  
Table 151. Bit Descriptions for GP0IEN Register  
Bits  
[15:8] RESERVED  
[7:0] IEN  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
R
Input path enable. Each bit is set to enable the input path and cleared to disable the 0x0  
input path for the GPIOx pin.  
R/W  
Rev. 0 | Page 115 of 130  
AD5940  
Data Sheet  
GPIO Port 0 Registered Data Input—GP0IN  
Address 0x00000010, Reset: 0x0000, Name: GP0IN  
Table 152. Bit Descriptions for GP0IN Register  
Bits  
[15:8] Reserved  
[7:0] IN  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
R
Registered data input. Each bit reflects the state of the GPIOx pin if the  
corresponding input buffer is enabled. If the pin input buffer is disabled the value  
seen is zero.  
GPIO Port 0 Data Output Register—GP0OUT  
Address 0x00000014, Reset: 0x0000, Name: GP0OUT  
Table 153. Bit Descriptions for GP0OUT Register  
Bits  
[15:8] Reserved  
[7:0] OUT  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
R
Data out. Set by user code to drive the corresponding GPIOx high. Cleared by user to 0x0  
drive the corresponding GPIOx low.  
R/W  
GPIO Port 0 Data Out Set Register—GP0SET  
Address 0x00000018, Reset: 0x0000, Name: GP0SET  
Table 154. Bit Descriptions for GP0SET Register  
Bits  
[15:8] Reserved  
[7:0] Set  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
W
Set the output high. Set by user code to drive the corresponding GPIOx high.  
Clearing this bit has no effect.  
GPIO Port 0 Data Out Clear Register—GP0CLR  
Address 0x0000001C, Reset: 0x0000, Name: GP0CLR  
Table 155. Bit Descriptions for GP0CLR Register  
Bits  
[15:8] Reserved  
[7:0] CLR  
Bit Name Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
W
Set the output low. Each bit is set to drive the corresponding GPIOx pin low.  
Clearing this bit has no effect.  
GPIO Port 0 Pin Toggle Register—GP0TGL  
Address 0x00000020, Reset: 0x0000, Name: GP0TGL  
Table 156. Bit Descriptions for GP0TGL Register  
Bits  
[15:8] Reserved  
[7:0] TGL  
Bit Name Settings Description  
Reset Access  
Reserved  
0x0  
0x0  
R
W
Toggle the Output. Each bit is set to invert the corresponding GPIOx pin. Clearing  
this bit has no effect.  
Rev. 0 | Page 116 of 130  
Data Sheet  
AD5940  
SYSTEM RESETS  
The AD5940 provides the following reset sources:  
The host microcontroller can trigger a software reset to the  
AD5940 by clearing SWRSTCON, Bit 0. It is recommends to  
connect the pin of the AD5940 to a GPIO pin on the  
host processor to give the controller control over hardware  
resets.  
External reset.  
POR.  
Software reset of the digital part of the device. The low  
power PA and low power TIA circuitry is not reset.  
RESET  
The AD5940 reset status register is RSTSTA. Read this register  
to identify the source of the reset to the chip.  
The AD5940 is reset during an external hardware reset or POR.  
The external reset or hardware reset is connected to the external  
Software resets can be bypassed to ensure the circuits used to  
bias an external sensor are not disturbed. These circuits include  
the ultra low power DACs, power amplifier, and TIAs. The  
programmable switches circuits can also be configured to  
maintain their states in the event of a reset.  
RESET  
pin. When this pin is pulled low, a reset occurs. All  
circuits and control registers return to their default state.  
ANALOG DIE RESET REGISTERS  
Table 157. Analog Die Reset Registers Summary  
Address  
Name  
Description  
Reset  
Access  
W
R/W  
0x00000A5C  
0x00000424  
0x00000A40  
RSTCONKEY  
SWRSTCON  
RSTSTA  
Key protection for SWRSTCON register.  
Software reset register.  
Reset status register.  
0x0000  
0x0001  
0x0000  
R/W1C  
Key Protection for the RSTCON Register—RSTCONKEY  
Address 0x00000A5C, Reset: 0x0000, Name: RSTCONKEY  
Table 158. Bit Descriptions for RSTCONKEY Register  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
Key  
Reset control key register. The SWRSTCON register is key protected with a value of 0x12EA.  
Write to the SWRSTCON register after the key is entered. A write to any other register  
before writing to the SWRSTCON register returns the protection to the lock state.  
0x0  
W
Software Reset Register—SWRSTCON  
Address 0x00000424, Reset: 0x0001, Name: SWRSTCON  
Table 159. Bit Descriptions for SWRSTCON Register  
Bits  
[15:1]  
0
Bit Name  
Reserved  
SWRSTL  
Settings  
Description  
Reserved.  
Reset  
0x0  
0x1  
Access  
R
Software reset. Write to the RESTCONKEY register to unlock this register.  
Not reset.  
R/W  
0
0xA158 Trigger reset.  
Reset Status Register—RSTSTA  
Address 0x00000A40, Reset: 0x0000, Name: RSTSTA  
Table 160. Bit Descriptions for RSTSTA Register  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
[15:4] Reserved  
Reserved.  
R
3
MMRSWRST  
MMR software reset. This bit is automatically set to 1 when writing to the SWRSTCON  
register. Clear this bit by writing 1.  
0x0  
R/W1C  
2
1
Reserved  
EXTRST  
Reserved.  
0x0  
0x0  
R/W1C  
R/W1C  
External reset. This bit is automatically set to 1 when an external reset occurs. Clear this  
bit by writing 1.  
0
POR  
AFE power-on reset. This bit is automatically set when a POR occurs. Clear this bit by  
writing 1.  
0x0  
R/W1C  
Rev. 0 | Page 117 of 130  
 
 
AD5940  
Data Sheet  
POWER MODES  
There are four main power modes for the AD5940: active high  
power mode (>80 kHz), active normal mode (<80 kHz),  
hibernate mode, and shutdown mode.  
the leakage from the ADC is reduced, which subsequently  
reduces the current consumption in hibernate mode.  
Optionally, the low power DAC, reference, and amplifiers can  
remain active to maintain the bias of an external sensor.  
However, current consumption increases.  
ACTIVE HIGH POWER MODE (>80 kHz)  
Active high power mode (>80 kHz) is recommended when  
generating or measuring high bandwidth signals >80 kHz. The  
32 MHz oscillator is selected to drive the high speed DAC and  
ADC circuits to handle the high bandwidth signal. To enable  
high power mode, use the following sequence:  
SHUTDOWN MODE  
Shutdown mode is similar to hibernate, except the user is  
expected to power-down the low power analog blocks.  
LOW POWER MODE  
1. Write PMBW = 0x000D.  
The AD5940 provides a feature for ultra low power applications,  
such as EDA measurements. Various blocks can be powered  
down simultaneously by writing to the LPMODECON register.  
Within the LPMODECON register, there are a number of bits  
corresponding to certain analog blocks. By setting these bits to  
1, the corresponding piece of circuitry is powered down to save  
power. For example, writing 1 to LPMODECON, Bit 1, powers  
down the high power reference.  
2. Set the system clock divider to 2 and set the ADC clock  
divider to 1.  
3. Switch the oscillator to 32 MHz.  
4. Set ADCFILTERCON, Bit 0 = 1 to enable a 1.6 MHz ADC  
sample rate.  
ACTIVE LOW POWER MODE (<80 kHz)  
Active low power mode (<80 kHz) is the default active state of  
the AD5940. The system clock is the 16 MHz internal oscillator  
(PWRMOD, Bits[1:0] = 0x1).  
The LPMODECON register features key protection. Before  
accessing the register, the user must write 0xC59D6 to the  
LPMODEKEY register.  
HIBERNATE MODE  
Another feature that is useful in ultra low power applications is  
the ability to switch system clocks to the 32 kHz oscillator using  
the sequencer. To enable this feature, write 1 to LPMODECLKSEL,  
Bit 0. The sequencer can then switch the system clocks to the  
32 kHz oscillator. The LPMODECLKSEL register is key  
protected by the LPMODKEY register.  
When the AD5940 is in hibernate mode, the high speed clock  
circuits are powered down, resulting in all blocks being clocked  
when entering a low power, clock gated state. The 32 kHz oscillator  
remains active. The watchdog timer is also active. To place the  
AD5940 in hibernate mode, write PWRMOD, Bits[1:0] = 0x2. It  
is recommended that PWRMOD, Bit 14 = 0. Bit 14 controls a  
power switch to the ADC block. When this switch is turned off,  
POWER MODES REGISTERS  
Table 161. Power Mode Registers Summary  
Address  
Name  
PWRMOD  
PWRKEY  
Description  
Reset  
0x0001  
0x0000  
0x00000000 R/W  
0x00000000 R/W  
0x00000102 R/W  
Access  
R/W  
R/W  
0x00000A00  
0x00000A04  
0x0000210C  
0x00002110  
0x00002114  
Power mode configuration register  
Key protection for PWRMOD register  
Key protection for LPMODECLKSEL and LPMODECON registers  
LPMODEKEY  
LPMODECLKSEL Low power mode clock select register  
LPMODECON Low power mode configuration register  
Power Modes Register—PWRMOD  
Address 0x00000A00, Reset: 0x0001, Name: PWRMOD  
Table 162. Bit Descriptions for PWRMOD Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
15  
RAMRETEN  
Retention for RAM.  
0x0  
0x0  
0x0  
R/W  
R/W  
R
0
1
RAM is not retained during hibernate mode.  
RAM is retained during hibernate mode.  
This bit keeps the ADC power switch on in hibernate mode.  
ADC power switch turned off during hibernate mode.  
ADC power switch turned on during hibernate mode.  
Reserved.  
14  
ADCRETEN  
0
1
[13:4] Reserved  
Rev. 0 | Page 118 of 130  
 
 
 
 
 
 
 
Data Sheet  
AD5940  
Bits  
3
Bit Name  
SEQSLPEN  
Settings Description  
Autosleep function by sequencer command.  
Reset Access  
0x0  
0x0  
0x1  
R/W  
R/W  
R/W  
0
1
Disables the sequencer autosleep function.  
Enables the sequencer autosleep function.  
2
TMRSLPEN  
PWRMOD  
Autosleep function by sleep and wake-up timer.  
Disables the sleep and wake-up timer autosleep function.  
Enables the sleep and wake-up timer autosleep function.  
0
1
[1:0]  
Power mode control bits. When read, these bits contain the last power mode value  
entered by user code.  
01 Active mode. Normal working mode. All digital circuits powered up. The user can  
optionally power down blocks by disabling their input clock.  
10 Hibernate mode. Digital core powered down. Most AFE die blocks powered down  
(low power DACs and references can remain active to bias an external sensor). SRAM  
is powered down, with or without retention. The high speed clock is powered down.  
Only the low speed clock is powered up.  
11 Reserved.  
Key Protection for the PWRMOD Register—PWRKEY  
Address 0x00000A04, Reset: 0x0000, Name: PWRKEY  
Table 163. Bit Descriptions for PWRKEY Register  
Bits  
Bit Name Settings Description  
Reset Access  
0x0 R/W  
[15:0] PWRKEY  
PWRMOD key register. The PWRMOD register is key protected. Two writes to the key  
are necessary to change the value in the PWRMOD register: first 0x4859, then 0xF27B.  
Then, write to the PWRMOD register. A write to any other register before writing to  
PWRMOD returns the protection to the lock state.  
Low Power Mode AFE Control Lock Register—LPMODEKEY  
Address 0x0000210C, Reset: 0x00000000, Name: LPMODEKEY  
The LPMODEKEY register protects the LPMODECLKSEL and LPMODECON registers.  
Table 164. Bit Descriptions for LPMODEKEY Register  
Bits  
[31:20] Reserved  
[19:0] Key  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
R/W  
These bits are the key for low power mode control by the sequencer related  
registers. The key prevents accidental writing to the registers.  
0xC59D6 Clocks related registers via a sequencer write.  
0x00000 Locks the clock related registers via a sequencer write. Write any value other than  
0xC59D6 to lock the sequencer read/write clock related registers.  
Low Power Mode Clock Select Register—LPMODECLKSEL  
Address 0x00002110, Reset: 0x00000000, Name: LPMODECLKSEL  
The LPMODECLKSEL register is protected by the LPMODKEY register.  
Table 165. Bit Descriptions for LPMODECLKSEL Register  
Bits  
[31:1] Reserved  
LFSYSCLKEN  
Bit Name  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
0
Enable for switching the system clock to 32 kHz via the sequencer. Write 1 to this  
R/W  
bit to switch to the 32 kHz oscillator. Clear this bit to switch to the 16 MHz oscillator.  
Rev. 0 | Page 119 of 130  
AD5940  
Data Sheet  
Low Power Mode Configuration Register—LPMODECON  
Address 0x00002114, Reset: 0x00000102, Name: LPMODECON  
The LPMODECON register is protected by the LPMODEKEY register.  
Table 166. Bit Descriptions for LPMODECON Register  
Bits  
Bit Name  
Settings Description  
Reset  
0x0  
0x1  
0x0  
0x0  
0x0  
0x0  
0x0  
0x1  
0x0  
Access  
R
[31:9] Reserved  
8
7
6
[5:4]  
3
2
Reserved.  
ALDOEN  
Set this bit high to power-down the analog LDO.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
V1P1HSADCEN  
V1P8HSADCEN  
RESERVED  
REPEATADCCNVEN_P  
ADCCONVEN  
HSREFDIS  
Set this bit high to enable the 1.11 V high speed common-mode buffer.  
Set this bit high to enable the high speed 1.82 V reference buffer.  
Reserved.  
Set this bit high to enable the repetition of ADC conversions.  
Set this bit high to enable ADC conversions.  
1
0
Set this bit high to power-down the high speed reference.  
Set this bit high to power-down the high speed power oscillator.  
HFOSCPD  
Rev. 0 | Page 120 of 130  
Data Sheet  
AD5940  
CLOCKING ARCHITECTURE  
CLOCK FEATURES  
The AD5940 features the following clock options:  
An external clock input option on GPIOx. If the 32 MHz  
clock is used, ensure that ADCCLKDIV, Bits[9:6] = 2 to  
limit the ADC and digital die clock sources to 16 MHz.  
A low frequency, 32 kHz internal oscillator (LFOSC).  
A high frequency, 16 MHz or 32 MHz internal oscillator  
(HFOSC). The 32 MHz setting only clocks the high speed  
DAC to output signals >80 kHz, especially for high  
frequency impedance measurements.  
An external 16 MHz or 32 MHz crystal option. If the  
32 MHz crystal is used, ensure that ADCCLKDIV, Bits[9:6] =  
2 to limit the ADC and digital die clock sources to 16 MHz.  
Note that when using an external 32 MHz crystal, the ADC  
clock divider function does not have any affect. The ADC  
runs at 32 MHz, and the current consumption of the ADC  
is increased.  
At power-up, the internal high frequency oscillator is selected as  
the AFE system clock with a 16 MHz setting. The user code can  
divide the clock by a factor of 1 to 32 to reduce power  
consumption.  
Note that the system performance is only validated with AFE  
system clock rates of 32 MHz, 16 MHz, 8 MHz, and 4 MHz.  
The clock architecture diagram is shown in Figure 49.  
AFECON[7]  
ADC  
AFEM  
ADCCLK DIV  
CLKCON0[9:6]  
INTC  
AFE_PCLK  
MISC  
CLKSEL[3:2]  
AFECRC_CTL[0]  
01 11 00 10  
CRC  
HF EXTERNAL  
XTAL 16MHz/32MHz  
01  
11  
00  
AFE_SYSCLK  
SYSCLK DIV  
CLKCON0[9:6]  
EXT CLK  
GPIO1 EXTCLK  
10  
AFE HF  
OSC  
16MHz/32MHz  
CLKSEL[1:0]  
CLKEN1[5]  
AFE_ACLK  
DFT/WG  
AFE LF  
INTERNAL  
OSC 32kHz  
CLKEN0[1]  
CLKEN0[2]  
AFE WAKEUP  
TIMER  
TIA CHOP  
Figure 49. AD5940 System Clock Architecture  
CLOCK ARCHITECTURE REGISTERS  
Table 167. Clock Registers Summary  
Address  
Name  
Description  
Reset  
Access  
W
0x00000420  
0x00000408  
0x00000414  
0x00000A70  
0x00000410  
0x00000A0C  
0x00000A10  
0x000020BC  
0x00000A5C  
0x00000A6C  
CLKCON0KEY  
CLKCON0  
CLKSEL  
CLKEN0  
CLKEN1  
Key protection register for the CLKCON0 register  
Clock divider configuration  
Clock select  
Clock control of the low power TIA chop and wake-up timers  
Clock gate enable  
Key protection for the OSCCON register  
Oscillator control  
High speed oscillator configuration  
Key protection for the RSTCON register  
Internal low frequency oscillator test  
0x0000  
0x0441  
0x0000  
0x0004  
0x01C0  
0x0000  
0x0003  
0x0034  
0x0000  
0x0088  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
OSCKEY  
OSCCON  
HSOSCCON  
RSTCONKEY  
LOSCTST  
R/W  
Rev. 0 | Page 121 of 130  
 
 
 
 
AD5940  
Data Sheet  
Key Protection Register for the CLKCON0 Register—CLKCON0KEY  
Address 0x00000420, Reset: 0x0000, Name: CLKCON0KEY  
Table 168. Bit Descriptions for CLKCON0KEY Register  
Bits  
[15:0]  
Bit Name  
KEY  
Settings  
Description  
Reset  
0x0  
Access  
W
Write 0xA815 to this register before accessing the CLKCON0 register  
Clock Divider Configuration Register—CLKCON0  
Address 0x00000408, Reset: 0x0441, Name: CLKCON0  
Table 169. Bit Descriptions for CLKCON0 Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[15:10] Reserved  
Reserved. Do not write to these bits.  
0x1  
0x1  
R/W  
R/W  
[9:6]  
[5:0]  
ADCCLKDIV  
ADC clock divider configuration. The ADC clock divider provides a divided clock from a  
16 MHz root clock that drives the ADC clock. The ADC clock frequency (fADC) = root  
clock/ADCCLKDIV. The value range is from 1 to 15. Values of 0 and 1 have the same  
results as divide by 1. The fADC frequency must be ≤32 MHz. The ADC is only  
evaluated with a 16 MHz and 32 MHz ADC clock.  
SYSCLKDIV  
System clock divider configuration. The system clock divider provides a divided  
clock from a 16 MHz root clock that drives most digital peripherals. The system  
clock frequency (fSYS) = root clock/SYSCLKDIV. The value range is from 1 to 32.  
Values larger than 32 are saturated to 32. Values of 0 and 1 have the same results  
as divide by 1. The fSYS frequency must be ≤16 MHz.  
0x1  
R/W  
Clock Select Register—CLKSEL  
Address 0x00000414, Reset: 0x0000, Name: CLKSEL  
Table 170. Bit Descriptions for CLKSEL Register  
Bits  
[15:4]  
[3:2]  
Bit Name  
Reserved  
Settings  
Description  
Reserved.  
Reset  
0x0  
Access  
R
ADCCLKSEL  
Selects the ADC clock source.  
Internal high frequency oscillator clock.  
External high frequency crystal clock.  
0x0  
R/W  
0
1
10 Internal low frequency oscillator clock (not recommended).  
11 External clock.  
[1:0]  
SYSCLKSEL  
Selects system clock source.  
0x0  
R/W  
0
1
Internal high frequency oscillator clock.  
External high frequency crystal clock.  
10 Internal low frequency oscillator clock (not recommended).  
11 External clock.  
Clock Enable for Low Power TIA Chop and Wake-Up Timer—CLKEN0  
Address 0x00000A70, Reset: 0x0004, Name: CLKEN0  
Table 171. Bit Descriptions for CLKEN0 Register  
Bits  
[15:3]  
2
Bit Name  
Reserved  
TIACHSDIS  
Settings  
Description  
Reserved.  
Reset  
0x0  
0x1  
Access  
R
R/W  
TIA chop clock disable.  
Turn on TIA chop clock.  
Turn off TIA chop clock.  
Sleep and wake-up timer clock disable.  
Turn on sleep wake-up timer clock.  
Turn off sleep wake-up timer clock.  
Reserved.  
0
1
1
0
SLPWUTDIS  
Reserved  
0x0  
0x0  
R/W  
R/W  
0
1
Rev. 0 | Page 122 of 130  
Data Sheet  
AD5940  
Clock Gate Enable Register—CLKEN1  
Address 0x00000410, Reset: 0x01C0, Name: CLKEN1  
Table 172. Bit Descriptions for CLKEN1 Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[15:10] Reserved  
Reserved.  
0x0  
0x0  
0x1  
0x1  
0x0  
R
9
Reserved  
Reserved  
Reserved  
ACLKDIS  
Reserved. Never write to this bit. Leave this bit cleared to 0.  
Reserved. Never write to this bit.  
Reserved. Always leave at 0. Never write to these bits.  
R/W  
R/W  
R/W  
R/W  
8
[7:6]  
5
ACLK clock enable. This bit controls the main AFE control clock, including the analog  
interface and digital signal processing.  
1
0
Turn off ACLK clock.  
Turn on ACLK clock.  
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved. Always leave at 0. Never write to this bit.  
Write 1 to this bit at initialization.  
Reserved. Always leave at 0. Never write to this bit.  
Reserved. Always leave at 0. Never write to this bit.  
Write 1 to this bit at initialization.  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
Key Protection for the OSCCON Register—OSCKEY  
Address 0x00000A0C, Reset: 0x0000, Name: OSCKEY  
Table 173. Bit Descriptions for OSCKEY Register  
Bits  
Bit Name Settings Description  
Reset Access  
0x0 R/W  
[15:0] OSCKEY  
Oscillator control key register. The OSCCON register is key protected. OSCKEY must be  
written to with a value of 0xCB14 before accessing the OSCCON register. A write to  
any other register before writing to the OSCCON register returns the protection to the  
lock state.  
Oscillator Control Register—OSCCON  
Address 0x00000A10, Reset: 0x0003, Name: OSCCON  
The OSCCON register is key protected. To unlock this protection, write 0xCB14 to the OSCKEY register before writing to this register. A  
write to any other register before writing to this register returns the protection to the lock state.  
Table 174. Bit Descriptions for OSCCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[15:11] Reserved  
Reserved.  
0x0  
R
R
10  
9
HFXTALOK  
HFOSCOK  
LFOSCOK  
Reserved  
Status of the high frequency crystal oscillator. This bit indicates when the oscillator is 0x0  
stable after it is enabled. This bit is not a monitor and does not indicate a  
subsequent loss of stability.  
Oscillator is not yet stable or is disabled.  
Oscillator is enabled and is stable and ready for use.  
0
1
Status of the high frequency oscillator. This bit indicates when the oscillator is stable  
after it is enabled. This bit is not a monitor and does not indicate a subsequent loss  
of stability.  
Oscillator is not yet stable or is disabled.  
Oscillator is enabled and is stable and ready for use.  
0x0  
0x0  
0x0  
R
R
R
0
1
8
Status of the low frequency oscillator. This bit indicates when the oscillator is stable  
after it is enabled. This bit is not a monitor and does not indicate a subsequent loss  
of stability.  
Oscillator is not yet stable or is disabled.  
Oscillator is enabled and is stable and ready for use.  
Reserved.  
0
1
[7:3]  
Rev. 0 | Page 123 of 130  
AD5940  
Data Sheet  
Bits  
2
Bit Name  
Settings Description  
High frequency crystal oscillator enable. This bit is used to enable and disable the  
Reset Access  
HFXTALEN  
HFOSCEN  
LFOSCEN  
0x0  
0x1  
0x1  
R/W  
R/W  
R/W  
oscillator. The oscillator must be stable before use. This bit must be set before the  
SYSRESETREQ system reset can be initiated.  
0
1
The high frequency crystal oscillator is disabled and placed in a low power state.  
The high frequency crystal oscillator is enabled.  
1
0
High frequency internal oscillator enable. This bit is used to enable and disable the  
oscillator. The oscillator must be stable before use. This bit must be set before the  
SYSRESETREQ system reset can be initiated.  
0
1
The high frequency oscillator is disabled and placed in a low power state.  
The high frequency oscillator is enabled.  
Low frequency internal oscillator enable. This bit is used to enable and disable the  
oscillator. The oscillator must be stable before use.  
0
1
The low frequency oscillator is disabled and placed in a low power state.  
The low frequency oscillator is enabled.  
High Power Oscillator Configuration Register—HSOSCCON  
Address 0x000020BC, Reset: 0x00000034, Name: HSOSCCON  
Table 175. Bit Descriptions for HSOSCCON Register  
Bits  
Bit Name  
Settings Description  
Reset Access  
[31:3] Reserved  
Reserved.  
0x3  
0x1  
R
R/W  
2
CLK32MHZEN  
16 MHz/32 MHz output selector signal. This bit determines if the output is 32 MHz  
or 16 MHz. The ADC can run at 32 MHz, but system clock cannot run at 32 MHz. It  
is required to divide the system clock by 2 first before switching the oscillator to  
32 MHz. Refer to the SYSCLKDIV bit in the CLKCON0 register.  
0
1
Select 32 MHz output.  
Select 16 MHz output.  
Reserved.  
[1:0]  
Reserved  
0x0  
R
Key Protection for RSTCON Register—RSTCONKEY  
Address 0x00000A5C, Reset: 0x0000, Name: RSTCONKEY  
Table 176. Bit Descriptions for RSTCONKEY Register  
Bits  
Bit Name Settings Description  
Reset Access  
[15:0] KEY  
Reset control key register. SWRSTCON is key protected with a value of 0x12EA. Write to 0x0  
W
the SWRSTCON register after the key is entered. A write to any other register before  
writing to SWRSTCON returns the protection to the lock state.  
Internal Low Frequency Oscillator Register—LOSCTST  
Address 0x00000A6C, Reset: 0x0088, Name: LOSCTST  
Table 177. Bit Descriptions for LOSCTST Register  
Bits  
[15:4]  
[3:0]  
Bit Name  
Reserved  
TRIM  
Settings Description  
Reset Access  
Reserved.  
0x8  
0x8  
R/W  
R/W  
Trim capacitors to adjust frequency. The output frequency can be trimmed by  
adjusting the charging capacitors.  
Rev. 0 | Page 124 of 130  
Data Sheet  
AD5940  
APPLICATIONS INFORMATION  
EDA BIOIMPEDANCE MEASUREMENT USING A  
LOW BANDWIDTH LOOP  
accelerators calculates the real and imaginary values of the data.  
A high level block diagram is shown in Figure 50. An accurate  
ac impedance value is then calculated. Using the low power  
mode features of the AD5940 can achieve an average current  
consumption as low as 70 μA. For details, see the AN-1557  
Application Note.  
The AD5940 can be used for EDA measurements. This use case  
requires an always on measurement with a typical sampling rate  
of 4 Hz and excitation signal of 100 Hz. The AD5940 uses the  
low power DAC to generate the low frequency signal. The low  
power TIA converts current to voltages, and the DFT hardware  
C
+
ISO1  
R
CE0  
LIMIT  
WAVEFORM  
GENERATOR  
PA  
LPDAC0  
SW2  
Z
SW10  
UNKNOWN  
PRECISION  
REFERENCE  
+
R
FILTER  
LPTIA_LPF0  
LPTIA  
C
ISO2  
SE0  
V
CEO  
R
ADC/800kHz  
SINC3  
DFT  
TIA  
LPTIA_N  
LPF0  
FIFO  
AD5940  
Figure 50. Low Frequency, 2-Wire, Bioimpedance Loop (Maximum Bandwidth = 300 Hz)  
Rev. 0 | Page 125 of 130  
 
 
 
AD5940  
Data Sheet  
BODY IMPEDANCE ANALYSIS (BIA)  
MEASUREMENT USING A HIGH BANDWIDTH  
LOOP  
The AD5940 uses its high bandwidth impedance loop to perform  
an absolute, 4-wire impedance measurement on the body. The  
high performance, 16-bit ADC, along with on-chip DFT hard-  
ware accelerator, target 100 dB of SNR at 50 kHz with impedance  
measurements up to 200 kHz. For details, see AN-1557.  
WAVEFORM  
GENERATOR  
HSDAC  
GAIN  
D5  
C
ISO1  
R
CE0  
LIMIT  
EXCITATION  
BUFFER  
N
P
P5  
F+  
S+  
V
V
BIAS  
C
LPDAC0  
ISO3  
AIN2  
ZERO  
R
+
FILTER  
SEQUENCER  
LPTIA  
10M  
16MHz  
OSC  
AIN4/  
LPF0  
C
LPF  
VCM  
BODY  
10MΩ  
ADC/  
800kHz  
DFT  
FIFO  
C
C
ISO4  
AIN3  
AIN1  
S–  
F–  
N2  
1.11V  
+
HSTIA_P  
ISO2  
HSTIA  
T2  
T9  
R
TIA  
C
TIA  
AD5940  
Figure 51. High Frequency, 4-Wire, Bioimpedance Loop (Maximum Bandwidth = 200 kHz)  
Rev. 0 | Page 126 of 130  
 
Data Sheet  
AD5940  
HIGH PRECISION POTENTIOSAT CONFIGURATION  
The low bandwidth loop or the high bandwidth loop can be  
used for potentiostat applications. The switch matrix allows 2-,  
3-, or 4-wire electrode connections. Single reference electrode  
configuration is available for the low bandwidth loop. Single or  
dual reference electrode measurements configurations are  
available for the higher bandwidth loop. For details, see the  
AN-1563 Application Note.  
V
ZERO  
LPDAC0  
V
BIAS  
WAVEFORM  
GENERATOR  
GAIN  
HSDAC  
D5  
CE0  
EXCITATION  
BUFFER  
P11  
SEQUENCER  
SENSOR  
16MHz  
OSC  
N2  
V
ZERO  
+
HSTIA  
AIN1  
ADC/  
800kHz  
FIFO  
T2  
T9  
R
TIA  
IVS  
AD5940  
Figure 52. Using a High Bandwidth AFE Loop in Potentiostat Mode  
Rev. 0 | Page 127 of 130  
 
AD5940  
Data Sheet  
When an ECG measurement is required, the AD5940 switch  
matrix disconnects the AD5940 AFE from the electrodes and  
connects to the AD8233 front end. The AD8233 analog output  
is connected to the high performance, 16-bit ADC on the  
AD5940 through an AINx pin. The measurement data is stored  
in the AD5940 data FIFO to be read by the host controller.  
USING THE AD5940, AD8232, AND AD8233 FOR  
BIOIMPEDANCE AND ELECTROCARDIOGRAM  
(ECG) MEASUREMENTS  
The AD5940 can be used in conjunction with the AD8232 and  
AD8233 to perform bioimpedance and ECG measurements.  
The same electrodes can be used to facilitate both measurements.  
For details, see AN-1557.  
When a bioimpedance measurement (for example, body  
composition, hydration, EDA, and so on) is required, the  
AD8232 and AD8233 are put into shutdown (the SDN pin on  
the AD8232 and AD8233 is controlled by the AD5940  
GPIOx pin) and the AD5940 switch matrix disconnects the  
AD8232 and AD8233 from the electrodes.  
V
V
ZERO0  
BIAS0  
AIN1  
EXCITATION  
BUFFER  
VREF2V5  
C
ISO  
R
LIMIT  
HSDAC  
CE0  
LP DUAL  
OUTPUT  
DAC  
E1  
CE0  
AIN0  
R
R
LIMITECG  
RE0  
RF = 0  
LP  
AMP  
LPTIA  
AIN4  
R
TIA = INFΩ  
HPDRIVE HPSENSE  
AFE2  
AFE3  
IAOUT  
+V  
+IN  
–IN  
LIMITECG  
DE0  
SE0  
+V  
S
AD8233  
S
SW2_1  
E1  
E2  
REFIN  
SW  
C
ISO  
GND  
FR  
OPAMP+  
REFOUT  
OPAMP–  
AIN2  
AIN4  
E2  
AIN6  
E3  
10MΩ  
AC/DC  
RLD SDN  
SDN  
+V  
S
E4  
OUT  
RLDFB  
TO  
HOST/  
AD5940  
RLD  
LOD  
C
10MΩ  
ISOBIA  
AIN3  
AIN0  
E3  
E4  
R
LIMIT  
ECG  
AIN1  
ADC  
AAF  
COARSE  
OFFSET  
V
BIAS  
C
ISO  
R
CORRECTION  
HSTIA  
LIMIT  
AIN1  
R
C
TIA  
BIA  
AD5940  
TIA  
BIA  
R
LIMIT  
ECG  
Figure 53. Body Composition and ECG System Solution Using the AD5940 with the AD8232 and the AD8233  
Rev. 0 | Page 128 of 130  
 
Data Sheet  
AD5940  
2-wire conductivity sensor. The pH measurement indicates the  
acidity or alkalinity of the solution and uses an external amplifier  
for buffering purposes before conversion by the ADC.  
SMART WATER/LIQUID QUALITY AFE  
The features and flexibility of the AD5940 make the device ideal  
for water analysis applications. These applications typically  
measure pH, conductivity, oxidation/reduction, and temperature.  
Figure 54 shows a simplified version of the AD5940 configured  
to satisfy these measurement needs. The high power PA loop  
can be used for the conductivity measurement. Figure 54 shows a  
In this application, as shown in Figure 54, the data FIFO and  
AFE sequence lend themselves to autonomous,  
preprogrammed, smart water measurements.  
WAVEFORM  
GENERATOR  
GAIN  
HSDAC  
CE0  
EXCITATION  
BUFFER  
RE0  
V
SEQUENCER  
BIAS  
LPDAC0  
V
ZERO  
CONDUCTIVITY  
16MHz  
OSC  
V
ZERO  
+
HSTIA  
HSTIA  
AIN0  
ADC/  
800kHz  
FIFO  
pH LEVEL  
ADA469x  
AIN1  
OXIDATION/  
REDUCTION  
AD5940  
Figure 54. Typical Water Analysis Application Using the AD5940  
Rev. 0 | Page 129 of 130  
 
 
AD5940  
Data Sheet  
OUTLINE DIMENSIONS  
4.200  
4.160  
4.120  
8
7
6
5
4
3
2
1
A
B
C
D
E
F
BALL A1  
IDENTIFIER  
3.600  
3.560  
3.520  
2.40 REF  
G
0.40  
BSC  
BOTTOM VIEW  
(BALL SIDE UP)  
TOP VIEW  
(BALL SIDE DOWN)  
0.40  
BSC  
2.80 REF  
0.320  
0.305  
0.290  
0.550  
0.505  
0.460  
END VIEW  
COPLANARITY  
0.05  
0.287  
0.267  
0.247  
SEATING  
PLANE  
0.230  
0.200  
0.170  
Figure 55. 56-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-56-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CB-56-3  
CB-56-3  
AD5940BCBZ-RL  
AD5940BCBZ-RL7  
EVAL-AD5940BIOZ  
EVAL-AD5940ELCZ  
−40°C to +85°C  
−40°C to +85°C  
56-Ball Wafer Level Chip Scale Package [WLCSP]  
56-Ball Wafer Level Chip Scale Package [WLCSP]  
Bioelectric Evaluation Board  
Electrochemical Evaluation Board  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16778-0-3/19(0)  
Rev. 0 | Page 130 of 130  
 
 

相关型号:

AD5941

高精度、阻抗和电化学前端
ADI

AD594A

Monolithic Thermocouple Amplifiers with Cold Junction Compensation
ADI

AD594AD

Monolithic Thermocouple Amplifiers with Cold Junction Compensation
ADI

AD594AD/+

Thermocouple Amplifier
ETC

AD594ADZ

Monolithic Thermocouple Amplifiers with Cold Junction Compensation
ADI

AD594AQ

Monolithic Thermocouple Amplifiers with Cold Junction Compensation
ADI

AD594C

Monolithic Thermocouple Amplifiers with Cold Junction Compensation
ADI

AD594CD

Monolithic Thermocouple Amplifiers with Cold Junction Compensation
ADI

AD594CD/+

Thermocouple Amplifier
ETC

AD594CDZ

Monolithic Thermocouple Amplifiers with Cold Junction Compensation
ADI

AD594CQ

Monolithic Thermocouple Amplifiers with Cold Junction Compensation
ADI

AD595

Monolithic Thermocouple Amplifiers with Cold Junction Compensation
ADI