AD621ANZ [ADI]

Low Drift, Low Power Instrumentation Amplifier; 低漂移,低功耗仪表放大器
AD621ANZ
型号: AD621ANZ
厂家: ADI    ADI
描述:

Low Drift, Low Power Instrumentation Amplifier
低漂移,低功耗仪表放大器

仪表放大器
文件: 总16页 (文件大小:520K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Drift, Low Power  
Instrumentation Amplifier  
a
AD621  
CONNECTION DIAGRAM  
8-Lead Plastic Mini-DIP (N), Cerdip (Q)  
and SOIC (R) Packages  
FEATURES  
EASY TO USE  
Pin-Strappable Gains of 10 and 100  
All Errors Specified for Total System Performance  
Higher Performance than Discrete In Amp Designs  
Available in 8-Lead DIP and SOIC  
Low Power, 1.3 mA Max Supply Current  
Wide Power Supply Range (؎2.3 V to ؎18 V)  
1
2
3
4
8
7
6
5
G = 10/100  
G = 10/100  
–IN  
+V  
S
AD621  
TOPVIEW  
+IN  
OUTPUT  
REF  
(Not to Scale)  
–V  
S
EXCELLENT DC PERFORMANCE  
0.15% Max, Total Gain Error  
gain drift errors are achieved by the use of internal gain setting  
resistors. Fixed gains of 10 and 100 can easily be set via external  
pin strapping. The AD621 is fully specified as a total system,  
therefore, simplifying the design process.  
؎5 ppm/؇C, Total Gain Drift  
125 V Max, Total Offset Voltage  
1.0 V/؇C Max, Offset Voltage Drift  
LOW NOISE  
9 nV/Hz, @ 1 kHz, Input Voltage Noise  
For portable or remote applications, where power dissipation,  
size, and weight are critical, the AD621 features a very low  
supply current of 1.3 mA max and is packaged in a compact  
8-lead SOIC, 8-lead plastic DIP or 8-lead cerdip. The AD621  
also excels in applications requiring high total accuracy, such  
as precision data acquisition systems used in weigh scales and  
transducer interface circuits. Low maximum error specifications  
including nonlinearity of 10 ppm, gain drift of 5 ppm/°C, 50 µV  
offset voltage, and 0.6 µV/°C offset drift (“B” grade), make  
possible total system performance at a lower cost than has been  
previously achieved with discrete designs or with other mono-  
lithic instrumentation amplifiers.  
0.28 V p-p Noise (0.1 Hz to 10 Hz)  
EXCELLENT AC SPECIFICATIONS  
800 kHz Bandwidth (G = 10), 200 kHz (G = 100)  
12 s Settling Time to 0.01%  
APPLICATIONS  
Weigh Scales  
Transducer Interface and Data Acquisition Systems  
Industrial Process Controls  
Battery-Powered and Portable Equipment  
PRODUCT DESCRIPTION  
The AD621 is an easy to use, low cost, low power, high accu-  
racy instrumentation amplifier that is ideally suited for a wide  
range of applications. Its unique combination of high perfor-  
mance, small size and low power, outperforms discrete in amp  
implementations. High functionality, low gain errors, and low  
When operating from high source impedances, as in ECG and  
blood pressure monitors, the AD621 features the ideal combina-  
tion of low noise and low input bias currents. Voltage noise is  
specified as 9 nV/Hz at 1 kHz and 0.28 µV p-p from 0.1 Hz to  
10 Hz. Input current noise is also extremely low at 0.1 pA/Hz.  
The AD621 outperforms FET input devices with an input bias  
current specification of 1.5 nA max over the full industrial tem-  
perature range.  
30,000  
25,000  
3 OP AMP  
IN AMP  
10,000  
20,000  
15,000  
10,000  
5,000  
0
(3 OP 07S)  
1,000  
TYPICAL STANDARD  
BIPOLAR INPUT  
IN AMP  
AD621A  
100  
10  
AD621 SUPERETA  
BIPOLAR INPUT  
0
5
10  
SUPPLY CURRENT mA  
15  
20  
IN AMP  
1
Figure 1. Three Op Amp IA Designs vs. AD621  
0.1  
1k  
10k  
100k  
1M  
10M  
100M  
SOURCE RESISTANCE ⍀  
Figure 2. Total Voltage Noise vs. Source Resistance  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2001  
AD621–SPECIFICATIONS  
(Typical @ 25؇C, V =  
؎
15 V, and RL = 2 k  
, unless otherwise noted.)  
Gain = 10  
S
AD621A  
Typ  
AD621B  
AD621S1  
Typ  
Model  
Conditions  
Min  
Max  
Min  
Typ  
Max  
Min  
Max  
Unit  
GAIN  
Gain Error  
Nonlinearity,  
VOUT  
=
10 V  
0.15  
0.05  
0.15  
%
V
OUT = –10 V to +10 V RL = 2 kΩ  
2
–1.5  
10  
5
2
–1.5  
10  
5
2
–1  
10  
5
ppm of FS  
ppm/°C  
Gain vs. Temperature  
TOTAL VOLTAGE OFFSET  
Offset (RTI)  
VS  
VS  
VS  
=
=
=
15 V  
5 V to 15 V  
5 V to 15 V  
75  
250  
400  
2.5  
50  
125  
215  
1.5  
75  
250  
500  
2.5  
µV  
µV  
µV/°C  
Over Temperature  
Average TC  
1.0  
120  
0.6  
120  
1.0  
120  
Offset Referred to the  
Input vs. Supply (PSR)2 VS  
=
2.3 V to 18 V 95  
100  
95  
dB  
Total NOISE  
Voltage Noise (RTI)  
RTI  
Current Noise  
1 kHz  
0.1 Hz to 10 Hz  
f = 1 kHz  
13  
17  
13  
17  
0.8  
13  
17  
0.8  
nV/Hz  
µV p-p  
fA/Hz  
pA p-p  
0.55  
100  
10  
0.55  
100  
10  
0.55  
100  
10  
0.1 Hz–10 Hz  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
VS  
=
15 V  
0.5  
2.0  
2.5  
0.5  
1.0  
1.5  
0.5  
2
4
nA  
nA  
pA/°C  
nA  
nA  
3.0  
0.3  
3.0  
0.3  
8.0  
0.3  
1.0  
1.5  
0.5  
0.75  
1.0  
2.0  
1.5  
1.5  
8.0  
pA/°C  
INPUT  
Input Impedance  
Differential  
Common-Mode  
Input Voltage Range3  
Over Temperature  
10ʈ2  
10ʈ2  
10ʈ2  
10ʈ2  
10ʈ2  
10ʈ2  
GʈpF  
GʈpF  
V
V
V
V
VS  
VS  
=
=
2.3 V to 5 V  
5 V to 18 V  
–VS + 1.9  
–VS + 2.1  
–VS + 1.9  
–VS + 2.1  
+VS – 1.2 –VS + 1.9  
+VS – 1.3 –VS + 2.1  
+VS – 1.4 –VS + 1.9  
+VS – 1.4 –VS + 2.1  
+VS – 1.2 –VS + 1.9  
+VS – 1.3 –VS + 2.1  
+VS – 1.4 –VS + 1.9  
+VS – 1.4 –VS + 2.3  
+VS – 1.2  
+VS – 1.3  
+VS – 1.4  
+VS – 1.4  
Over Temperature  
Common-Mode Rejection  
Ratio DC to 60 Hz with  
1 kSource Imbalance VCM = 0 V to 10 V  
OUTPUT  
Output Swing  
93  
110  
100  
110  
93  
110  
dB  
RL = 10 k,  
VS  
=
2.3 V to 5 V  
–VS + 1.1  
–VS + 1.4  
–VS + 1.2  
–VS + 1.6  
+VS – 1.2 –VS + 1.1  
+VS – 1.3 –VS + 1.4  
+VS – 1.4 –VS + 1.2  
+VS – 1.5 –VS + 1.6  
+VS – 1.2 –VS + 1.1  
+VS – 1.3 –VS + 1.6  
+VS – 1.4 –VS + 1.2  
+VS – 1.5 –VS + 2.3  
+VS – 1.2  
+VS – 1.3  
+VS – 1.4  
+VS – 1.5  
V
V
V
V
Over Temperature  
VS  
=
5 V to 18 V  
Over Temperature  
Short Current Circuit  
18  
18  
18  
mA  
DYNAMIC RESPONSE  
Small Signal,  
–3 dB Bandwidth  
Slew Rate  
Settling Time to 0.01%  
800  
1.2  
12  
800  
1.2  
12  
800  
1.2  
12  
kHz  
V/µs  
µs  
0.75  
0.75  
0.75  
10 V Step  
REFERENCE INPUT  
RIN  
IIN  
20  
50  
20  
50  
20  
+50  
kΩ  
µA  
V
VIN +, VREF = 0  
60  
60  
+60  
+VS – 1.6  
0.0001  
Voltage Range  
Gain to Output  
–VS + 1.6  
2.3  
+VS – 1.6 –VS + 1.6  
+VS – 1.6 VS + 1.6  
1
0.0001  
1
0.0001  
1
POWER SUPPLY  
Operating Range  
Quiescent Current  
Over Temperature  
18  
1.3  
1.6  
2.3  
18  
1.3  
1.6  
2.3  
18  
1.3  
1.6  
V
mA  
mA  
VS  
=
2.3 V to 18 V  
0.9  
1.1  
0.9  
1.1  
0.9  
1.1  
TEMPERATURE RANGE  
For Specified Performance  
–40 to +85  
–40 to +85  
–55 to +125  
°C  
NOTES  
1See Analog Devices’ military data sheet for 883B tested specifications.  
2This is defined as the supply range over which PSRR is defined.  
3Input Voltage Range = CMV + (Gain × VDIFF).  
Specifications subject to change without notice.  
–2–  
REV. B  
AD621  
(Typical @ 25  
؇
C, VS =  
؎
15 V, and RL = 2 k, unless otherwise noted.)  
Gain = 100  
AD621A  
AD621B  
AD621S1  
Typ  
Model  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
Unit  
GAIN  
Gain Error  
Nonlinearity,  
VOUT  
=
10 V  
0.15  
0.05  
0.15  
%
V
OUT = –10 V to +10 V RL = 2 kΩ  
2
–1  
10  
5
2
–1  
10  
5
2
–1  
10  
5
ppm of FS  
ppm/°C  
Gain vs. Temperature  
TOTAL VOLTAGE OFFSET  
Offset (RTI)  
VS  
VS  
VS  
=
=
=
15 V  
5 V to 15 V  
5 V to 15 V  
35  
125  
185  
1.0  
25  
50  
215  
0.6  
35  
125  
225  
1.0  
µV  
µV  
µV/°C  
Over Temperature  
Average TC  
0.3  
140  
0.1  
140  
0.3  
140  
Offset Referred to the  
Input vs. Supply (PSR)2 VS  
=
2.3 V to 18 V 110  
120  
110  
dB  
Total NOISE  
Voltage Noise (RTI)  
RTI  
Current Noise  
1 kHz  
0.1 Hz to 10 Hz  
f = 1 kHz  
9
13  
9
13  
0.4  
9
13  
0.4  
nV/Hz  
µV p-p  
fA/Hz  
pA p-p  
0.28  
100  
10  
0.28  
100  
10  
0.28  
100  
10  
0.1 Hz–10 Hz  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
VS  
=
15 V  
0.5  
2.0  
2.5  
0.5  
1.0  
1.5  
0.5  
2
4
nA  
nA  
pA/°C  
nA  
nA  
3.0  
0.3  
3.0  
0.3  
8.0  
0.3  
1.0  
1.5  
0.5  
0.75  
1.0  
2.0  
1.5  
1.5  
8.0  
pA/°C  
INPUT  
Input Impedance  
Differential  
Common-Mode  
Input Voltage Range3  
Over Temperature  
10ʈ2  
10ʈ2  
10ʈ2  
10ʈ2  
10ʈ2  
10ʈ2  
GʈpF  
GʈpF  
V
V
V
V
VS  
VS  
=
=
2.3 V to 5 V  
5 V to 18 V  
–VS + 1.9  
–VS + 2.1  
–VS + 1.9  
–VS + 2.1  
+VS – 1.2 –VS + 1.9  
+VS – 1.3 –VS + 2.1  
+VS – 1.4 –VS + 1.9  
+VS – 1.4 –VS + 2.1  
+VS – 1.2 –VS + 1.9  
+VS – 1.3 –VS + 2.1  
+VS – 1.4 –VS + 1.9  
+VS – 1.4 –VS + 2.3  
+VS – 1.2  
+VS – 1.3  
+VS – 1.4  
+VS – 1.4  
Over Temperature  
Common-Mode Rejection  
Ratio DC to 60 Hz with  
1 kSource Imbalance VCM = 0 V to 10 V  
OUTPUT  
Output Swing  
110  
130  
120  
130  
110  
130  
dB  
RL = 10 k,  
VS  
=
2.3 V to 5 V  
–VS + 1.1  
–VS + 1.4  
–VS + 1.2  
–VS + 1.6  
+VS – 1.2 –VS + 1.1  
+VS – 1.3 –VS + 1.4  
+VS – 1.4 –VS + 1.2  
+VS – 1.5 –VS + 1.6  
+VS – 1.2 –VS + 1.1  
+VS – 1.3 –VS + 1.6  
+VS – 1.4 –VS + 1.2  
+VS – 1.5 –VS + 2.3  
+VS – 1.2  
+VS – 1.3  
+VS – 1.4  
+VS – 1.5  
V
V
V
V
Over Temperature  
VS  
=
5 V to 18 V  
Over Temperature  
Short Current Circuit  
18  
18  
18  
mA  
DYNAMIC RESPONSE  
Small Signal,  
–3 dB Bandwidth  
Slew Rate  
Settling Time to 0.01%  
200  
1.2  
12  
200  
1.2  
12  
200  
1.2  
12  
kHz  
V/µs  
µs  
0.75  
0.75  
0.75  
10 V Step  
REFERENCE INPUT  
RIN  
IIN  
20  
50  
20  
50  
20  
50  
kΩ  
µA  
V
VIN +, VREF = 0  
60  
60  
60  
+VS – 1.6  
0.0001  
Voltage Range  
Gain to Output  
–VS + 1.6  
2.3  
+VS – 1.6 –VS + 1.6  
+VS – 1.6 VS + 1.6  
1
0.0001  
1
0.0001  
1
POWER SUPPLY  
Operating Range  
Quiescent Current  
Over Temperature  
18  
1.3  
1.6  
2.3  
18  
1.3  
1.6  
2.3  
18  
1.3  
1.6  
V
mA  
mA  
VS  
=
2.3 V to 18 V  
0.9  
1.1  
0.9  
1.1  
0.9  
1.1  
TEMPERATURE RANGE  
For Specified Performance  
–40 to +85  
–40 to +85  
–55 to +125  
°C  
NOTES  
1See Analog Devices’ military data sheet for 883B tested specifications.  
2This is defined as the supply range over which PSEE is defined.  
3Input Voltage Range = CMV + (Gain × VDIFF).  
Specifications subject to change without notice.  
–3–  
REV. B  
AD621  
ABSOLUTE MAXIMUM RATINGS1  
ESD SUSCEPTIBILITY  
ESD (electrostatic discharge) sensitive device. Electrostatic  
charges as high as 4000 volts, which readily accumulate on the  
human body and on test equipment, can discharge without  
detection. Although the AD621 features proprietary ESD pro-  
tection circuitry, permanent damage may still occur on these  
devices if they are subjected to high energy electrostatic dis-  
charges. Therefore, proper ESD precautions are recommended  
to avoid any performance degradation or loss of functionality.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . . . 650 mW  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . 25 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range (Q) . . . . . . . . . –65°C to +150°C  
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C  
Operating Temperature Range  
AD621 (A, B) . . . . . . . . . . . . . . . . . . . . . . 40°C to +85°C  
AD621 (S) . . . . . . . . . . . . . . . . . . . . . . . . 55°C to +125°C  
Lead Temperature Range  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option1  
(Soldering 10 seconds) . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Model  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
AD621AN  
AD621BN  
AD621AR  
AD621BR  
40°C to +85°C 8-Lead Plastic DIP  
40°C to +85°C 8-Lead Plastic DIP  
N-8  
N-8  
40°C to +85°C 8-Lead Plastic SOIC R-8  
40°C to +85°C 8-Lead Plastic SOIC R-8  
AD621SQ/883B2 55°C to +125°C 8-Lead Cerdip  
AD621ACHIPS –40°C to +85°C Die  
Q-8  
8-Lead Plastic Package: θJA = 95°C/W  
8-Lead Cerdip Package: θJA = 110°C/W  
NOTES  
8-Lead SOIC Package: θJA = 155°C/W  
1N = Plastic DIP; Q = Cerdip; R = SOIC.  
2See Analog Devices’ military data sheet for 883B specifications.  
METALIZATION PHOTOGRAPH  
Dimensions shown in inches and (mm).  
Contact factory for latest dimensions.  
1.125 (3.57)  
+V  
7
S
OUTPUT  
6
RG 8  
5
REFERENCE  
0.0708  
(2.545)  
RG 1  
4 V  
S
2
IN  
3
+IN  
–4–  
REV. B  
Typical Performance Characteristics–AD621  
50  
50  
40  
30  
20  
10  
0
SAMPLE SIZE = 90  
SAMPLE SIZE = 90  
40  
30  
20  
10  
0
800  
400  
0
+400  
+800  
200  
100  
0
+100  
+200  
INPUT BIAS CURRENT pA  
INPUT OFFSET VOLTAGE V  
TPC 1. Typical Distribution of VOS, Gain = 10  
TPC 4. Typical Distribution of Input Bias Current  
50  
2.0  
1.5  
1.0  
0.5  
0
SAMPLE SIZE = 90  
40  
30  
20  
10  
0
80  
40  
0
+40  
+80  
0
1
2
3
4
5
INPUT OFFSET VOLTAGE V  
WARM-UP TIME Minutes  
TPC 2. Typical Distribution of VOS, Gain = 100  
TPC 5. Change in Input Offset Voltage vs. Warm-Up Time  
50  
1000  
SAMPLE SIZE = 90  
40  
30  
20  
10  
0
100  
GAIN = 10  
10  
GAIN = 100  
1
400  
200  
0
+200  
+400  
1
10  
100  
1k  
10k  
100k  
INPUT OFFSET CURRENT pA  
FREQUENCY Hz  
TPC 3. Typical Distribution of Input Offset Current  
TPC 6. Voltage Noise Spectral Density  
REV. B  
–5–  
AD621  
1000  
100mV  
1s  
100  
90  
100  
10  
0%  
10  
10  
100  
FREQUENCY Hz  
1
1000  
TPC 7. Current Noise Spectral Density vs. Frequency  
TPC 9. 0.1 Hz to 10 Hz Current Noise, 5 pA per Vertical  
Div, 1 Second per Horizontal Div  
100,000  
10,000  
FET INPUT  
IN AMP  
1000  
100  
AD621A  
10  
TIME 1 sec/div  
1k  
10k  
100k  
1M  
10M  
SOURCE RESISTANCE ⍀  
TPC 10. Total Drift vs. Source Resistance  
TPC 8a. 0.1 Hz to 10 Hz RTI Voltage Noise, Gain = 10  
160  
GAIN = 100  
GAIN = 10  
140  
120  
100  
80  
60  
40  
20  
0
TIME 1 sec/div  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY Hz  
TPC 11. CMR vs. Frequency, RTI, for a Zero to 1 kΩ  
Source Imbalance  
TPC 8b. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 100  
–6–  
REV. B  
AD621  
180  
160  
35  
G = 10 & 100  
30  
25  
G = 100  
G = 10  
140  
120  
20  
15  
100  
80  
10  
5
60  
40  
20  
0.1  
0
1k  
1
10  
100  
1k  
10k  
100k  
1M  
1M  
10k  
100k  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 12. Positive PSR vs. Frequency  
TPC 15. Large Signal Frequency Response  
180  
160  
0.0  
+V  
S
0.5  
1.0  
1.5  
G = 100  
G = 10  
140  
120  
100  
80  
+1.5  
+1.0  
+0.5  
+0.0  
60  
40  
20  
0.1  
V  
S
1
10  
100  
1k  
10k  
100k  
1M  
0
5
10  
15  
20  
FREQUENCY Hz  
SUPPLY VOLTAGE ؎ Volts  
TPC 13. Negative PSR vs. Frequency  
TPC 16. Input Voltage Range vs. Supply Voltage  
1000  
100  
10  
0.0  
0.5  
+V  
S
R
= 10k⍀  
L
1.0  
1.5  
R
= 2k⍀  
L
+1.5  
+1.0  
+0.5  
+0.0  
R
= 2k⍀  
L
1
R
= 10k⍀  
L
0.1  
100  
V  
S
0
5
10  
SUPPLY VOLTAGE ؎ Volts  
15  
20  
1k  
10k  
100k  
1M  
10M  
FREQUENCY Hz  
TPC 14. Closed-Loop Gain vs. Frequency  
TPC 17. Output Voltage Swing vs. Supply Voltage,  
G = 10  
–7–  
REV. B  
AD621  
30  
5V  
1mV  
10s  
V
= ؎ 15V  
S
G = 10  
100  
90  
20  
10  
0
10  
0%  
0
100  
1k  
10k  
LOAD RESISTANCE ⍀  
TPC 21. Large Signal Pulse Response and Settling  
TPC 18. Output Voltage Swing vs. Resistive Load  
Time, G = 100 (0.5 mV = 0.1%), RL = 2 k, CL = 100 pF  
20mV  
10s  
5V  
1mV  
10s  
100  
90  
100  
90  
10  
10  
0%  
0%  
TPC 19. Large Signal Pulse Response and Settling  
Time Gain, G = 10 (0.5 mV = 0.01%), RL = 1 k,  
CL = 100 pF  
TPC 22. Small Signal Pulse Response, G = 100,  
RL = 2 k, CL = 100 pF  
20  
20mV  
10s  
TO 0.01%  
100  
90  
15  
TO 0.1%  
10  
10  
5
0
0%  
0
5
10  
15  
20  
OUTPUT STEP SIZE Volts  
TPC 20. Small Signal Pulse Response, G = 10,  
TPC 23. Settling Time vs. Step Size, G = 10  
RL = 1 k, CL = 100 pF  
–8–  
REV. B  
AD621  
20  
15  
10  
100V  
2V  
TO 0.01%  
100  
90  
TO 0.1%  
10  
5
0
0%  
0
5
10  
15  
20  
OUTPUT STEP SIZE Volts  
TPC 27. Gain Nonlinearity, G = 10, RL = 10 k, Vertical  
Scale: 100 µV/Div = 100 ppm/Div, Horizontal Scale:  
2 Volts/Div  
TPC 24. Settling Time vs. Step Size, Gain = 100  
2.0  
1.5  
10k  
1%  
1k⍀  
10T  
10k⍀  
1%  
+I  
B
1.0  
0.5  
0
V
OUT  
+V  
S
100k⍀  
1%  
INPUT  
20V p-p  
I  
B
G = 10  
G = 100  
G = 10  
AD621  
11k⍀  
0.1%  
1k⍀  
0.1%  
G = 100  
0.5  
1.0  
1.5  
2.0  
+
V  
S
125  
75  
25  
25  
75  
125  
175  
TEMPERATURE ؇C  
TPC 28. Settling Time Test Circuit  
TPC 25. Input Bias Current vs. Temperature  
0PW 0  
VZR 0  
100V  
2V  
100  
90  
10  
0%  
0 WFM  
20 WFM AQR WARNING  
TPC 26. Gain Nonlinearity, G = 100, RL = 10 k,  
CL = 0 pF. Vertical Scale: 100 µV/Div = 100 ppm/Div  
Horizontal Scale: 2 Volts/Div  
–9–  
REV. B  
AD621  
+V  
S
R5 at a gain of 10 or the parallel combination of R5 and R6 at a  
gain of 100.  
7
V
I1  
20A  
20A  
I2  
B
This creates a differential gain from the inputs to the A1/A2  
outputs given by G = (R1 + R2) / RG + 1. The unity-gain  
subtracter A3 removes any common-mode signal, yielding a  
single-ended output referred to the REF pin potential.  
A1  
A2  
10k⍀  
C1  
C2  
10k⍀  
10k⍀  
The value of RG also determines the transconductance of the  
preamp stage. As RG is reduced for larger gains, the transcon-  
ductance increases asymptotically to that of the input transistors.  
This has three important advantages: (a) Open-loop gain is  
boosted for increasing programmed gain, thus reducing gain-  
related errors. (b) The gain-bandwidth product (determined by  
C1, C2 and the preamp transconductance) increases with pro-  
grammed gain, thus optimizing frequency response. (c) The  
input voltage noise is reduced to a value of 9 nV/Hz, deter-  
mined mainly by the collector current and base resistance of the  
input devices.  
A3  
+
OUTPUT  
6
R1 25kR2 25k⍀  
10k⍀  
R3  
400⍀  
REF  
R5  
5555.6⍀  
5
IN  
Q1  
Q2  
+IN  
R4  
400⍀  
3
2
R6  
555.6⍀  
1
8
G = 100  
G = 100  
4
S
V  
Figure 3. Simplified Schematic of AD621  
THEORY OF OPERATION  
The AD621 is a monolithic instrumentation amplifier based on  
a modification of the classic three op amp circuit. Careful layout  
of the chip, with particular attention to thermal symmetry builds  
in tight matching and tracking of critical components, thus  
preserving the high level of performance inherent in this circuit,  
at a low price.  
Make vs. Buy: A Typical Bridge Application Error Budget  
The AD621 offers improved performance over discrete three op  
amp IA designs, along with smaller size, fewer components and  
10 times lower supply current. In the typical application, shown  
in Figure 4, a gain of 100 is required to amplify a bridge output of  
20 mV full scale over the industrial temperature range of –40°C to  
+85°C. The error budget table below shows how to calculate  
the effect various error sources have on circuit accuracy.  
Regardless of the system it is being used in, the AD621 provides  
greater accuracy, and at low power and price. In simple systems,  
absolute accuracy and drift errors are by far the most significant  
contributors to error. In more complex systems with an intelligent  
processor, an autogain/autozero cycle will remove all absolute  
accuracy and drift errors leaving only the resolution errors of  
gain nonlinearity and noise, thus allowing full 14-bit accuracy.  
On chip gain resistors are pretrimmed for gains of 10 and 100.  
The AD621 is preset to a gain of 10. A single external jumper  
(between Pins 1 and 8) is all that is needed to select a gain of  
100. Special design techniques assure a low gain TC of 5 ppm/°C  
max, even at a gain of 100.  
Figure 3 is a simplified schematic of the AD621. The input  
transistors Q1 and Q2 provide a single differential-pair bipolar  
input for high precision, yet offer 10× lower Input Bias Current,  
thanks to Superβeta processing. Feedback through the Q1-A1-R1  
loop and the Q2-A2-R2 loop maintains constant collector cur-  
rent of the input devices Q1 and Q2, thereby impressing the  
input voltage across the gain-setting resistor, RG, which equals  
Note that for the discrete circuit, the OP07 specifications for  
input voltage offset and noise have been multiplied by 2. This is  
because a three op amp type in amp has two op amps at its inputs,  
both contributing to the overall input error.  
10V  
+
10k* 10k*  
OP07D  
10k**  
+
R = 350⍀  
R = 350⍀  
R = 350⍀  
R = 350⍀  
AD621A  
OP07D  
+
100k**  
REFERENCE  
10k**  
OP07D  
+
10k* 10k*  
AD621A MONOLITHIC  
INSTRUMENTATION  
AMPLIFIER, G = 100  
3 OP AMP, IN AMP, G = 100  
* 0.02% RESISTOR MATCH, 3PPM/؇C TRACKING  
** DISCRETE 1% RESISTOR, 100PPM/؇C TRACKING  
SUPPLY CURRENT = 15mA MAX  
PRECISION BRIDGE TRANSDUCER  
SUPPLY CURRENT = 1.3mA MAX  
Figure 4. Make vs. Buy  
–10–  
REV. B  
AD621  
5V  
20k⍀  
10k⍀  
+
3k⍀  
3k⍀  
3k⍀  
3k⍀  
REF  
IN  
AD621B  
DIGITAL  
DATA  
OUTPUT  
ADC  
+
AD705  
AGND  
20k⍀  
1.7mA  
1.3mA  
MAX  
0.10mA  
0.6mA  
MAX  
Figure 5. A Pressure Monitor Circuit which Operates on a 5 V Power Supply  
presence of large, unwanted common-mode signals or offsets.  
Many monolithic in amps achieve low total input drift and noise  
errors only at relatively high gains (~100). In contrast the AD621’s  
low output errors allow such performance at a gain of 10, thus  
allowing larger input signals and therefore greater dynamic  
range. The circuit of Figure 6 ( 15 V supply, G = 10) has  
only 2.5 µV/°C max. VOS drift and 0.55 µ/V p-p typical 0.1 Hz  
to 10 Hz noise, yet will amplify a 0.5 V differential signal while  
suppressing a 10 V common-mode signal, or it will amplify a  
1.25 V differential signal while suppressing a 1 V offset by use  
of the DAC driving the reference pin of the AD621. An added  
benefit, the offsetting DAC connected to the reference pin allows  
removal of a dc signal without the associated time-constant  
of ac coupling. Note the representations of a differential and  
common-mode signal shown in Figure 6 such that a single-ended  
(or normal mode) signal of 1 V would be composed of a 0.5 V  
common-mode component and a 1 V differential component.  
Pressure Measurement  
Although useful in many bridge applications such as weigh-scales,  
the AD621 is especially suited for higher resistance pressure  
sensors powered at lower voltages where small size and low  
power become more even significant.  
Figure 5 shows a 3 kpressure transducer bridge powered from  
5 V. In such a circuit, the bridge consumes only 1.7 mA. Adding  
the AD621 and a buffered voltage divider allows the signal to be  
conditioned for only 3.8 mA of total supply current.  
Small size and low cost make the AD621 especially attractive for  
voltage output pressure transducers. Since it delivers low noise  
and drift, it will also serve applications such as diagnostic non-  
invasion blood pressure measurement.  
Wide Dynamic Range Gain Block Suppresses Large Common-  
Mode and Offset Signals  
The AD621 is especially useful in wide dynamic range applica-  
tions such as those requiring the amplification of signals in the  
Table I. Make vs. Buy Error Budget  
AD621 Circuit  
Calculation  
Discrete Circuit  
Calculation  
Error, ppm of Full Scale  
Error Source  
AD621  
Discrete  
ABSOLUTE ACCURACY at TA = +25°C  
Input Offset Voltage, µV  
Output Offset Voltage, µV  
Input Offset Current, nA  
CMR, dB  
125 µV/20 mV  
N/A  
2 nA × 350 /20 mV  
(150 µV × 2/20 mV  
((150 µV × 2)/100)/20 mV  
(6 nA × 350 )/20 mV  
16,250  
N/A  
12,118  
12,791  
15,000  
12,150  
121,53  
14,988  
110 dB3.16 ppm, × 5 V/20 mV (0.02% Match × 5 V)/20 mV  
Total Absolute Error  
17,558  
20,191  
DRIFT TO +85°C  
Gain Drift, ppm/°C  
Input Offset Voltage Drift, µV/°C  
Output Offset Voltage Drift, µV/°C  
5 ppm × 60°C  
1 µV/°C × 60°C/20 mV  
N/A  
100 ppm/°C Track × 60°C  
(2.5 µV/°C × 2 × 60°C)/20 mV  
(2.5 µV/°C × 2 × 60°C)/100/20 mV  
13,300  
13,000  
N/A  
12,600  
15,000  
12,150  
Total Drift Error  
13,690  
15,750  
RESOLUTION  
Gain Nonlinearity, ppm of Full Scale  
Typ 0.1 Hz–10 Hz Voltage Noise, µV p-p 0.28 µV p-p/20 mV  
40 ppm  
40 ppm  
(0.38 µV p-p × √2)120 mV  
12,140  
121,14  
12,140  
12,127  
Total Resolution Error  
Grand Total Error  
121,54  
11,472  
121,67  
36,008  
G = 100, VS  
= 15 V.  
(All errors are min/max and referred to input.)  
–11–  
REV. B  
AD621  
INPUT A:  
؎10V CM  
+
V
DIFF  
؎0.5V  
+
V
COM  
OPTIONAL  
؎10V–  
V
10k⍀  
؋
10  
AD621  
OUT1  
G = 10  
V
OUT2  
؋
10  
AD621  
+
TOTAL GAIN = 100  
DAC  
0 TO ؎10V  
INPUT B:  
10k⍀  
؎1V  
+
+
OFFSET  
V
+ V  
OFFSET  
DIFF  
؎(1.25V + 1V)  
USE THIS IN PLACE OF THE DAC FOR ZERO SUPPRESSION FUNCTION.  
TO  
REF  
TO  
OUT1  
C
V
R
AD548  
+
Figure 6. Suppressing a Large Common-Mode or Offset Voltage in Order to Measure a Small Differential Signal  
(VS = 15 V)  
The AD621, as well as many other monolithic instrumentation  
amplifiers, is based on the “three op amp” in amp circuit (Fig-  
ure 7) amplifier. Since the input amplifiers (A1 and A2) have a  
common-mode gain of unity and a differential gain equal to the  
set gain of the overall in amp, the voltages V1 and V2 are defined  
by the equations  
The AD621’s input amplifiers can provide output voltage within  
2.5 V of the supplies. To avoid saturation of the input amplifier  
the input voltage must therefore obey the equations:  
VCM + G × VDIFF/2 (Upper Supply – 2.5 V)  
CM – G × VDIFF/2 (Lower Supply + 2.5 V)  
V
Figure 8 shows the trade-off between common-mode and  
differential-mode input for 15 V supplies and G = 10.  
V1 = VCM + G × VDIFF/2  
V2 = VCM G × VDIFF/2  
By cascading with use of the optional AD621, the circuit of  
Figure 6 will provide 1 V of zero suppression at gains of 10  
and 100 (at VOUT1 and VOUT2 respectively) with maximum TCs  
of 4 ppm/°C and 8 ppm/°C, respectively. Therefore, depend-  
ing on the magnitude of the differential input signal, either  
VOUT1 or VOUT2 may be used as the output.  
The common-mode voltage will drive the outputs of amplifiers  
A1 and A2 to the differential-signal voltage, multiplied by the  
gain, spreads them apart. For a 10 V common-mode 0.1 V  
differential input, V1 would be at 10.5 V and V2 at 9.5 V.  
INPUT AMPLIFIER  
OUTPUT AMPLIFIER  
DIFFERENTIAL GAIN = 10  
COMMON MODE GAIN = 1  
DIFFERENTIAL GAIN = 1  
COMMON MODE GAIN = 1/1000  
1.2  
1.0  
0.8  
0.6  
0.4  
+
V1  
10k  
A1  
10k⍀  
20k⍀  
A3  
4.44k⍀  
+
20k⍀  
10k⍀  
A2  
10k⍀  
+
V2  
0.2  
0
Figure 7. Typical Three Op Amp Instrumentation  
Amplifier, Differential Gain = 10  
0
2
4
6
8
10  
12  
V
؎Volts  
CM  
Figure 8. Trade-Off Between VCM and VDIFF Range (VS =  
15 V, G = 10), for Reference Pin at Ground  
–12–  
REV. B  
AD621  
INPUT OVERLOAD CONSIDERATIONS  
Precision V-I Converter  
Failure of a transducer, faults on input lines, or power supply  
sequencing can subject the inputs of an instrumentation ampli-  
fier to voltages well beyond their linear range, or even the supply  
voltage, so it is essential that the amplifier handle these over-  
loads without being damaged.  
The AD621 along with another op amp and two resistors make  
a precision current source (Figure 9). The op amp buffers the  
reference terminal to maintain good CMR. The output voltage  
VX of the AD621 appears across R1 which converts it to a cur-  
rent. This current less only the input bias current of the op amp  
then flows out to the load.  
The AD621 will safely withstand continuous input overloads of  
3.0 volts ( 6.0 mA). This is true for gains of 10 and 100, with  
power on or off.  
+V  
S
The inputs of the AD621 are protected by high current capacity  
dielectrically isolated 400 thin-film resistors R3 and R4 (Fig-  
ure 3) and by diodes which protect the input transistors Q1 and  
Q2 from reverse breakdown. If reverse breakdown occurred, there  
would be a permanent increase in the amplifier’s input current.  
R1  
+V  
V
IN+  
X–  
AD621  
V
IN–  
I
L
V  
S
AD705  
The input overload capability of the AD621 can be easily increased  
while only slightly degrading the noise, common-mode rejection  
and offset drift of the device by adding external resistors in series  
with the amplifier’s inputs as shown in Figure 10.  
V
(V ) (V ) G  
IN+ IN–  
X
I
=
=
L
LOAD  
R1  
R1  
Table II summarizes the overload voltages and total input  
noise for a range of range of r values. Note that a 2 kresis-  
tor in series with each input will protect the AD621 from a  
15 volt continuous overload, while only increasing input noise  
to 13 nVHz—about the same level as would be expected from  
a typical unprotected 3 op amp in amp.  
Figure 9. Precision Voltage to Current Converter  
(Operates on 1.8 mA, 3 V)  
INPUT AND OUTPUT OFFSET VOLTAGE  
The AD621 is fully specified for total input errors at gains of 10  
and 100. That is, effects of all error sources within the AD621  
are properly included in the guaranteed input error specs, elimi-  
nating the need for separate error calculation.  
Table II. Input Overload Protection vs. Value of Resistor RP  
Total Input Noise  
Maximum Continuous  
Overload Voltage, VOL  
Total Error RTI = Input Error + (Output Error/G)  
Total Error RTO = (Input Error × G) + Output Error  
@
in nVHz 1 kHz  
Value of  
Resistor RP G = 10  
G = 100 In Volts  
0
14  
14  
14  
15  
16  
17  
9
3
6
9
15  
21  
33  
REFERENCE TERMINAL  
499 Ω  
10  
11  
13  
14  
16  
Although usually grounded, the reference terminal may be used  
to offset the output of the AD621. This is useful when the load  
is “floating” or does not share a ground with the rest of the system.  
It also provides a direct means of injecting a precise offset.  
1.00 kΩ  
2.00 kΩ  
3.01 k*  
4.99 k*  
Another benefit of having a reference terminal is that it can be  
quite effective in eliminating ground loops and noise in a circuit  
or system.  
*1/4 watt, 1% metal-film resistor. All others are 1/8 watt, 1% RN55  
or equivalent.  
+V  
S
R
R
P
V
OUT  
V
OL  
AD621  
V
P
OL  
GAIN = 10 OR 100  
V  
S
Figure 10. Input Overload Protection  
–13–  
REV. B  
AD621  
Gain Selection  
+V  
S
+V  
S
The AD621 has accurate, low temperature coefficient (TC),  
gains of 10 and 100 available. The gain of the AD621 is nomi-  
nally set at 10; this is easily changed to a gain of 100 by simply  
connecting a jumper between Pins 1 and 8.  
0.1F  
0.1F  
INPUTS  
+
AD621  
+
OUTPUT  
AD526  
2
+
G = 10  
20k⍀  
555.5⍀  
0.1F  
V  
S
R
5,555.5⍀  
AD621  
EXT  
0.1F  
V  
S
Figure 12. A High Performance Programmable Gain  
Amplifier  
Figure 11. Programming the AD621 for Gains Between  
10 and 100  
COMMON-MODE REJECTION  
Instrumentation amplifiers like the AD621 offer high CMR  
which is a measure of the change in output voltage when both  
inputs arc changed by equal amounts. These specifications are  
usually given for a full-range input voltage change and a speci-  
fied source imbalance.  
As shown in Figure 11, the device can be programmed for any  
gain between 10 and 100 by connecting a single external resistor  
between Pins 1 and 8. Note that adding the external resistor will  
degrade both the gain accuracy and gain TC. Since the gain  
equation of the AD621 yields:  
For optimal CMR, the reference terminal should be tied to a  
low impedance point, and differences in capacitance and resis-  
tance should be kept to a minimum between the two inputs. In  
many applications shielded cables are used to minimize noise,  
and for best CMR over frequency the shield should he properly  
driven. Figures 13 and 14 show active data guards that are config-  
ured to improve ac common-mode rejections by bootstrapping”  
the capacitances of input cable shields, thus minimizing the  
capacitance mismatch between the inputs.  
9(RX + 6,111.111)  
G = 1+  
(RX + 555.555)  
This can be solved for the nominal value of external resistor for  
gains between 10 and 100:  
(G 1)555.555 55,000  
RX  
=
(10 G)  
Table III gives practical 1% resistor values for several com-  
mon gains.  
+V  
S
INPUT  
AD648  
100  
Table III. Practical 1% External Resistor  
Values for Gains Between 10 and 100  
100k⍀  
V
OUT  
AD621  
100k⍀  
Desired Recommended  
Temperature  
Gain Error Coefficient (TC)  
100⍀  
V  
S
Gain  
1% Resistor Value  
REFERENCE  
+
10  
20  
(Pins 1 and 8 Open)  
4.42 kΩ  
*
5 ppm/°C max  
0.4 (50 ppm/°C  
+ Resistor TC)  
0.4 (50 ppm/°C  
+ Resistor TC)  
5 ppm/°C max  
+INPUT  
10%  
10%  
V  
S
50  
698 Ω  
Figure 13. Differential Shield Driver, G = 10  
100  
0 (Pins 1 and 8 Shorted)  
*
+V  
S
*Factory trimmedexact value depends on grade.  
INPUT  
2
1
7
A High Performance Programmable Gain Amplifier  
The excellent performance of the AD621 at a gain of 10 makes  
it a good choice to team up with the AD526 programmable gain  
amplifier (PGA) to yield a differential input PGA with gains of  
10, 20, 40, 80, 160. As shown in Figure 12, the low offset of the  
AD621 allows total circuit offset to be trimmed using the offset  
null of the AD526, with only a negligible increase in total drift  
error. The total gain TC will be 9 ppm/°C max, with 2 µV/°C  
typical input offset drift. Bandwidth is 600 kHz to gains of 10 to  
80, and 350 kHz at G = 160. Settling time is 13 µs to 0.01%  
for a 10 V output step for all gains.  
V
OUT  
100⍀  
AD621  
6
AD548  
5
8
3
REFERENCE  
4
+ INPUT  
V  
S
Figure 14. Common-Mode Shield Driver, G = 100  
–14–  
REV. B  
AD621  
+V  
S
GROUNDING  
Since the AD621 output voltage is developed with respect to the  
potential on the reference terminal, it can solve many ground-  
ing problems by simply tying the REF pin to the appropriate  
local ground.”  
INPUT  
V
AD621  
OUT  
LOAD  
+INPUT  
In order to isolate low level analog signals from a noisy digital  
environment, many data-acquisition components have separate  
analog and digital ground pins (Figure 15). It would be conve-  
nient to use a single ground line; however, current through  
ground wires and PC runs of the circuit card can cause hundreds  
of millivolts of error. Therefore, separate ground returns should  
be provided to minimize the current flow from the sensitive  
points to the system ground. These ground returns must be tied  
together at some point, usually best at the ADC package as shown.  
V  
S
REFERENCE  
TO POWER SUPPLY GROUND  
Figure 16a. Ground Returns for Bias Currents when Using  
Transformer Input Coupling  
+V  
S
DIGITAL P.S.  
ANALOG P.S.  
INPUT  
C
+15V  
15V  
C
+5V  
AD621  
V
OUT  
0.1F  
0.1F  
1F 1F  
1F  
LOAD  
+INPUT  
7
2
3
V  
+
4
11  
4
S
REFERENCE  
1
9
11 15  
7
6
AD585  
S/H  
AD621  
DIGITAL  
DATA  
OUTPUT  
6
AD574A  
ADC  
5
TO POWER SUPPLY GROUND  
Figure 16b. Ground Returns for Bias Currents when Using  
a Thermocouple Input  
Figure 15. Basic Grounding Practice  
GROUND RETURNS FOR INPUT BIAS CURRENTS  
Input bias currents are those currents necessary to bias the input  
transistors of an amplifier. There must be a direct return path  
for these currents; therefore when amplifying floatinginput  
sources such as transformers, or ac-coupled sources, there must  
be a dc path from each input to ground as shown in Figures 16a  
through 16c. Refer to the Instrumentation Amplifier Application  
Guide (free from Analog Devices) for more information regard-  
ing in amp applications.  
+V  
S
INPUT  
V
AD621  
OUT  
LOAD  
+INPUT  
REFERENCE  
100k⍀  
100k⍀  
V  
S
TO POWER SUPPLY GROUND  
Figure 16c. Ground Returns for Bias Currents when Using  
AC Input Coupling  
–15–  
REV. B  
AD621  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Plastic DIP (N-8) Package  
8
5
0.25  
(6.35)  
0.31  
(7.87)  
1
4
0.30 (7.62)  
REF  
0.39 (9.91)  
MAX  
0.035 0.01  
(0.89 0.25)  
0.165 0.01  
(4.19 0.25)  
SEATING PLANE  
0.011 0.003  
(4.57 0.76)  
0.125 (3.18)  
MIN  
0.18 0.03  
(4.57 0.76)  
0.10  
(2.54)  
TYP  
0
- 15  
0.018 0.003  
(0.46 0.08)  
0.033  
(0.84)  
NOM  
Cerdip (Q-8) Package  
0.005 (0.13) MIN  
0.055 (1.4) MAX  
8
5
0.310 (7.87)  
0.220 (5.59)  
1
4
0.070 (1.78)  
0.030 (0.76)  
0.320 (8.13)  
0.290 (7.37)  
0.405 (10.29) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200  
(5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
0.023 (0.58)  
0.014 (0.36)  
0.100 (2.54)  
BSC  
0
- 15  
SEATING PLANE  
SOIC (R-8) Package  
0.198 (5.03)  
0.188 (4.77)  
5
8
0.158 (4.00)  
0.150 (3.80)  
0.244 (6.200)  
0.228 (5.80)  
1
4
0.018 (0.46)  
0.014 (0.36)  
0.050 (1.27)  
TYP  
0.205 (5.20)  
0.181 (4.60)  
0.094(2.39)  
0.010 (0.25)  
0.004 (0.10)  
0.015 (0.38)  
0.007 (0.18)  
0.045 (1.15)  
0.020 (0.50)  
0.100 (2.59)  
–16–  
REV. B  

相关型号:

AD621AR

Low Drift, Low Power Instrumentation Amplifier
ADI

AD621AR-REEL

IC INSTRUMENTATION AMPLIFIER, 185 uV OFFSET-MAX, 0.2 MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8, Instrumentation Amplifier
ADI

AD621AR-REEL7

INSTRUMENTATION AMPLIFIER, 185 uV OFFSET-MAX, 0.2 MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8
ROCHESTER

AD621AR-REEL7

Low Drift, Low Power Instrumentation Amp with fixed gains of 10 and 100
ADI

AD621ARZ

Three-wire Serial Electrically Erasable Programmable Read-only Memory
ATMEL

AD621ARZ

Low Drift, Low Power Instrumentation Amp with fixed gains of 10 and 100
ADI

AD621ARZ-REEL

IC INSTRUMENTATION AMPLIFIER, 185 uV OFFSET-MAX, 0.2 MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8, Instrumentation Amplifier
ADI

AD621ARZ-RL

Low Drift, Low Power Instrumentation Amp with fixed gains of 10 and 100
ADI

AD621B

Low Drift, Low Power Instrumentation Amplifier
ADI

AD621BN

Low Drift, Low Power Instrumentation Amplifier
ADI

AD621BNZ

Low Drift, Low Power Instrumentation Amplifier
ADI

AD621BR

Low Drift, Low Power Instrumentation Amplifier
ADI