AD623ARM-REEL [ADI]

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier; 单电源,轨到轨,低成本仪表放大器
AD623ARM-REEL
型号: AD623ARM-REEL
厂家: ADI    ADI
描述:

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
单电源,轨到轨,低成本仪表放大器

仪表放大器
文件: 总16页 (文件大小:960K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Supply, Rail-to-Rail, Low Cost  
Instrumentation Amplifier  
a
AD623  
FEATURES  
Easy to Use  
Higher Performance than Discrete Design  
Single and Dual Supply Operation  
Rail-to-Rail Output Swing  
CONNECTION DIAGRAM  
8-Lead Plastic DIP (N),  
SOIC (R) and SOIC (RM) Packages  
Input Voltage Range Extends 150 mV Below Ground  
(Single Supply)  
Low Power, 575 A Max Supply Current  
Gain Set with One External Resistor  
Gain Range 1 (No Resistor) to 1,000  
1
2
3
4
8
7
6
5
؉R  
؉V  
؊R  
G
G
؊IN  
؉IN  
S
OUTPUT  
؊V  
REF  
S
AD623  
HIGH ACCURACY DC PERFORMANCE  
0.1% Gain Accuracy (G = 1)  
0.35% Gain Accuracy (G > 1)  
25 ppm Gain Drift (G = 1)  
200 V Max Input Offset Voltage (AD623A)  
2 V/؇C Max Input Offset Drift (AD623A)  
100 V Max Input Offset Voltage (AD623B)  
1 V/؇C Max Input Offset Drift (AD623B)  
25 nA Max Input Bias Current  
common-mode range and can amplify signals that have a  
common-mode voltage 150 mV below ground. Although the  
design of the AD623 has been optimized to operate from a single  
supply, the AD623 still provides superior performance when  
operated from a dual voltage supply (±2.5 V to ±6.0 V).  
NOISE  
35 nV/Hz RTI Noise @ 1 kHz (G = 1)  
EXCELLENT AC SPECIFICATIONS  
90 dB Min CMRR (G = 10); 84 dB Min CMRR (G = 5)  
(@ 60 Hz, 1K Source Imbalance)  
800 kHz Bandwidth (G = 1)  
20 s Settling Time to 0.01% (G = 10)  
Low power consumption (1.5 mW at 3 V), wide supply voltage  
range, and rail-to-rail output swing make the AD623 ideal for  
battery powered applications. The rail-to-rail output stage maxi-  
mizes the dynamic range when operating from low supply volt-  
ages. The AD623 replaces discrete instrumentation amplifier  
designs and offers superior linearity, temperature stability and  
reliability in a minimum of space. Until the AD623, this level of  
instrumentation amplifier performance has not been achieved.  
APPLICATIONS  
Low Power Medical Instrumentation  
Transducer Interface  
Thermocouple Amplifier  
Industrial Process Controls  
Difference Amplifier  
120  
110  
Low Power Data Acquisition  
100  
90  
x1000  
PRODUCT DESCRIPTION  
x100  
The AD623 is an integrated single supply instrumentation am-  
plifier that delivers rail-to-rail output swing on a single supply  
(+3 V to +12 V supplies). The AD623 offers superior user flex-  
ibility by allowing single gain set resistor programming, and  
conforming to the 8-lead industry standard pinout configura-  
tion. With no external resistor, the AD623 is configured for  
unity gain (G = 1) and with an external resistor, the AD623 can  
be programmed for gains up to 1,000.  
80  
70  
60  
50  
40  
30  
x10  
x1  
The AD623 holds errors to a minimum by providing superior  
AC CMRR that increases with increasing gain. Line noise, as  
well as line harmonics, will be rejected since the CMRR re-  
mains constant up to 200 Hz. The AD623 has a wide input  
1
100k  
10  
100  
1k  
10k  
FREQUENCY – Hz  
Figure 1. CMR vs. Frequency, +5 VS, 0 VS  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD623–SPECIFICATIONS  
SINGLE SUPPLY  
(typical @ +25؇C Single Supply, VS = +5 V, and RL = 10 k, unless otherwise noted)  
Model  
AD623A  
Typ Max  
AD623ARM  
Typ Max  
AD623B  
Typ Max  
Specification  
Conditions  
Min  
Min  
Min  
Units  
GAIN  
G = 1 + (100 k/RG)  
Gain Range  
Gain Error1  
1
1000  
1
1000  
1
1000  
G1 VOUT  
0.05 V to 3.5 V  
G > 1 VOUT  
0.05 V to 4.5 V  
=
=
G = 1  
G = 10  
G = 100  
G = 1000  
Nonlinearity,  
0.03 0.10  
0.10 0.35  
0.10 0.35  
0.10 0.35  
0.03 0.10  
0.10 0.35  
0.10 0.35  
0.10 0.35  
0.03 0.05  
0.10 0.35  
0.10 0.35  
0.10 0.35  
%
%
%
%
G1 VOUT  
0.05 V to 3.5 V  
G > 1 VOUT  
=
=
0.05 V to 4.5 V  
G = 1–1000  
50  
50  
50  
ppm  
Gain vs. Temperature  
G = 1  
5
50  
10  
5
50  
10  
5
50  
10  
ppm/°C  
ppm/°C  
G > 11  
VOLTAGE OFFSET  
Total RTI Error =  
VOSI + VOSO/G  
Input Offset, VOSI  
Over Temperature  
Average TC  
Output Offset, VOSO  
Over Temperature  
Average TC  
25  
200  
350  
2
200 500  
650  
25  
100  
160  
1
µV  
µV  
µV/°C  
µV  
µV  
0.1  
200 1000  
1500  
0.1  
2
0.1  
500 2000  
2600  
200 500  
1100  
10  
2.5  
10  
2.5  
10  
2.5  
µV/°C  
Offset Referred to the Input  
vs. Supply (PSR)  
G = 1  
80  
100  
120  
140  
140  
80  
100  
120  
140  
140  
80  
100  
120  
140  
140  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
100  
120  
120  
100  
120  
120  
100  
120  
120  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
17  
25  
27.5  
17  
25  
27.5  
17  
25  
27.5  
nA  
nA  
pA/°C  
nA  
nA  
25  
0.25  
25  
0.25  
25  
0.25  
2
2.5  
2
2.5  
2
2.5  
5
5
5
pA/°C  
INPUT  
Input Impedance  
Differential  
2ʈ2  
2ʈ2  
2ʈ2  
2ʈ2  
2ʈ2  
2ʈ2  
GʈpF  
GʈpF  
V
Common-Mode  
Input Voltage Range2  
Common-Mode Rejection at  
60 Hz with 1 kSource  
Imbalance  
VS = +3 V to +12 V (–VS) – 0.15  
(+VS) – 1.5 (–VS) – 0.15  
(+VS) – 1.5 (–VS) – 0.15  
(+VS) – 1.5  
G = 1  
G = 10  
G = 100  
G = 1000  
VCM = 0 V to 3 V  
VCM = 0 V to 3 V  
VCM = 0 V to 3 V  
VCM = 0 V to 3 V  
70  
90  
105  
105  
80  
70  
90  
105  
105  
80  
77  
94  
105  
105  
86  
dB  
dB  
dB  
dB  
100  
110  
110  
100  
110  
110  
100  
110  
110  
OUTPUT  
Output Swing  
RL = 10 kΩ  
RL = 100 kΩ  
+0.01  
+0.01  
(+VS) – 0.5 +0.01  
(+VS) – 0.15 +0.01  
(+VS) – 0.5 +0.01  
(+VS) – 0.15 +0.01  
(+VS) – 0.5  
(+VS) – 0.15  
V
V
DYNAMIC RESPONSE  
Small Signal –3 dB  
Bandwidth  
G = 1  
G = 10  
G = 100  
G = 1000  
800  
100  
10  
2
0.3  
800  
100  
10  
2
0.3  
800  
100  
10  
2
0.3  
kHz  
kHz  
kHz  
kHz  
V/µs  
Slew Rate  
Settling Time to 0.01%  
G = 1  
G = 10  
VS = +5 V  
Step Size: 3.5 V  
Step Size: 4 V,  
VCM = 1.8 V  
30  
20  
30  
20  
30  
20  
µs  
µs  
–2–  
REV. C  
AD623  
DUAL SUPPLIES  
(typical @ +25؇C Dual Supply, VS = ؎5 V, and RL = 10 k, unless otherwise noted)  
Model  
AD623A  
Typ Max  
AD623ARM  
Typ Max  
AD623B  
Typ Max  
Specification  
Conditions  
Min  
Min  
Min  
Units  
GAIN  
G = 1 + (100 k/RG)  
Gain Range  
Gain Error1  
1
1000  
1
1000  
1
1000  
G1 VOUT  
–4.8 V to 3.5 V  
G > 1 VOUT  
0.05 V to 4.5 V  
=
=
G = 1  
G = 10  
G = 100  
G = 1000  
Nonlinearity,  
0.03 0.10  
0.10 0.35  
0.10 0.35  
0.10 0.35  
0.03 0.10  
0.10 0.35  
0.10 0.35  
0.10 0.35  
0.03 0.05  
0.10 0.35  
0.10 0.35  
0.10 0.35  
%
%
%
%
G1 VOUT  
–4.8 V to 3.5 V  
G > 1 VOUT  
=
=
–4.8 V to 4.5 V  
G = 1–1000  
Gain vs. Temperature  
G = 1  
50  
50  
50  
ppm  
5
50  
10  
5
50  
10  
5
50  
10  
ppm/°C  
ppm/°C  
G > 11  
VOLTAGE OFFSET  
Total RTI Error =  
VOSI + VOSO/G  
Input Offset, VOSI  
Over Temperature  
Average TC  
Output Offset, VOSO  
Over Temperature  
Average TC  
25  
200  
350  
2
200 500  
650  
25  
100  
160  
1
µV  
µV  
µV/°C  
µV  
µV  
0.1  
200 1000  
1500  
0.1  
2
0.1  
500 2000  
2600  
2.5 10  
200 500  
1100  
10  
2.5  
10  
2.5  
µV/°C  
Offset Referred to the Input  
vs. Supply (PSR)  
G = 1  
80  
100  
120  
140  
140  
80  
100  
120  
140  
140  
80  
100  
120  
140  
140  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
100  
120  
120  
100  
120  
120  
100  
120  
120  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
17  
25  
27.5  
17 25  
27.5  
25  
17  
25  
27.5  
nA  
nA  
pA/°C  
nA  
nA  
25  
0.25  
25  
0.25  
2
2.5  
0.25  
2
2
2.5  
2.5  
5
5
5
pA/°C  
INPUT  
Input Impedance  
Differential  
2ʈ2  
2ʈ2  
2ʈ2  
2ʈ2  
2ʈ2  
2ʈ2  
GʈpF  
GʈpF  
V
Common-Mode  
Input Voltage Range2  
Common-Mode Rejection at  
60 Hz with 1 kSource  
Imbalance  
VS = +2.5 V to ±6 V  
(–VS) – 0.15  
(+VS) – 1.5 (–VS) –0.15  
(+VS) – 1.5  
(–VS) – 0.15  
(+VS) – 1.5  
G = 1  
G = 10  
G = 100  
G = 1000  
VCM = +3.5 V to –5.15 V 70  
VCM = +3.5 V to –5.15 V 90  
VCM = +3.5 V to –5.15 V 105  
VCM = +3.5 V to –5.15 V 105  
80  
70  
90  
105  
105  
80  
77  
94  
105  
105  
86  
dB  
dB  
dB  
dB  
100  
110  
110  
100  
110  
110  
100  
110  
110  
OUTPUT  
Output Swing  
RL = 10 k, VS = ±5 V  
RL = 100 kΩ  
(–VS) +0. 2  
(–VS) + 0.05  
(+VS) – 0.5 (–VS) + 0.2  
(+VS) – 0.15 (–VS) + 0.05  
(+VS) – 0.5  
(+VS) – 0.15 (–VS) + 0.05  
(–VS) + 0.2  
(+VS) – 0.5  
(+VS) – 0.15 V  
V
DYNAMIC RESPONSE  
Small Signal –3 dB  
Bandwidth  
G = 1  
G = 10  
G = 100  
G = 1000  
800  
100  
10  
2
0.3  
800  
100  
10  
2
0.3  
800  
100  
10  
2
0.3  
kHz  
kHz  
kHz  
kHz  
V/µs  
Slew Rate  
Settling Time to 0.01%  
G = 1  
G = 10  
VS = ±5 V, 5 V Step  
30  
20  
30  
20  
30  
20  
µs  
µs  
REV. C  
–3–  
AD623–SPECIFICATIONS  
BOTH DUAL AND SINGLE SUPPLIES  
Model  
AD623A  
Typ  
AD623ARM  
Typ  
AD623B  
Min Typ  
Specification  
Conditions  
Min  
Max  
Min  
Max  
Max  
Units  
NOISE  
2
2
Voltage Noise, 1 kHz  
Input, Voltage Noise, eni  
Output, Voltage Noise, eno  
RTI, 0.1 Hz to 10 Hz  
G = 1  
Total RTI Noise =  
e
+
e
/G  
ni  
no  
35  
50  
35  
50  
35  
50  
nV/Hz  
nV/Hz  
3.0  
1.5  
100  
1.5  
3.0  
1.5  
100  
1.5  
3.0  
1.5  
100  
1.5  
µV p-p  
µV p-p  
fA/Hz  
pA p-p  
G = 1000  
Current Noise  
0.1 Hz to 10 Hz  
f = 1 kHz  
REFERENCE INPUT  
RIN  
IIN  
100  
+50  
±20%  
+60  
+VS  
100  
+50  
±20%  
+60  
+VS  
100  
+50  
±20%  
+60  
+VS  
kΩ  
µA  
V
VIN+, VREF = 0  
Voltage Range  
Gain to Output  
–VS  
–VS  
–VS  
1 ± 0.0002  
1 ± 0.0002  
1 ± 0.0002  
V
POWER SUPPLY  
Operating Range  
Dual Supply  
Single Supply  
Dual Supply  
Single Supply  
±2.5  
+2.7  
±6  
±2.5  
+2.7  
±6  
±2.5  
+2.7  
±6  
V
V
µA  
µA  
µA  
+12  
550  
480  
625  
+12  
550  
480  
625  
+12  
550  
480  
625  
Quiescent Current  
Over Temperature  
375  
305  
375  
305  
375  
305  
TEMPERATURE RANGE  
For Specified Performance  
–40 to +85  
–40 to +85  
–40 to +85  
°C  
NOTES  
1Does not include effects of external resistor RG.  
2One input grounded. G = 1.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
Lead Temperature Range  
(Soldering 10 seconds) . . . . . . . . . . . . . . . . . . . . . . +300°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±6 V  
Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . . . 650 mW  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±6 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range  
(N, R, RM) . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Operating Temperature Range  
(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
8-Lead Plastic DIP Package: θJA = 95°C/W  
8-Lead SOIC Package: θJA = 155°C/W  
8-Lead µSOIC Package: θJA = 200°C/W  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Brand  
Code  
Model  
AD623AN  
AD623AR  
AD623ARM  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Plastic DIP  
8-Lead SOIC  
8-Lead µSOIC  
13" Tape and Reel  
7" Tape and Reel  
13" Tape and Reel  
7" Tape and Reel  
8-Lead Plastic DIP  
8-Lead SOIC  
N-8  
SO-8  
RM-8  
SO-8  
SO-8  
RM-8  
RM-8  
N-8  
SO-8  
SO-8  
SO-8  
J0A  
AD623AR-REEL  
AD623AR-REEL7  
AD623ARM-REEL  
AD623ARM-REEL7  
AD623BN  
AD623BR  
AD623BR-REEL  
AD623BR-REEL7  
J0A  
J0A  
13" Tape and Reel  
7" Tape and Reel  
ESD SUSCEPTIBILITY  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 volts, which  
readily accumulate on the human body and on test equipment, can discharge without detection.  
Although the AD623 features proprietary ESD protection circuitry, permanent damage may still  
occur on these devices if they are subjected to high energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid any performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. C  
Typical Characteristics  
(@ +25؇C VS = ؎5 V, RL = 10 kunless otherwise noted)  
AD623  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
60  
40  
20  
0
0
100 200 300 400 500  
–600 –500 –400 –300 –200 –100  
0
20 40 60 80 100 120 140  
–100 –80 –60 –40 –20  
OUTPUT OFFSET VOLTAGE – V  
INPUT OFFSET VOLTAGE – V  
Figure 5. Typical Distribution of Output Offset Voltage,  
VS = +5, Single Supply, VREF = –0.125 V; Package Option  
N-8, SO-8  
Figure 2. Typical Distribution of Input Offset Voltage;  
Package Option N-8, SO-8  
210  
480  
420  
360  
300  
240  
180  
150  
120  
90  
60  
30  
180  
120  
60  
0
0
–0.245 –0.24 –0.235 –0.23 –0.225 –0.22 –0.215 –0.21  
INPUT OFFSET CURRENT – nA  
0
200 400 600 800  
–800 –600 –400 –200  
OUTPUT OFFSET VOLTAGE ؊ ␮V  
Figure 3. Typical Distribution of Output Offset Voltage;  
Package Option N-8, SO-8  
Figure 6. Typical Distribution for Input Offset Current;  
Package Option N-8, SO-8  
20  
18  
16  
22  
20  
18  
16  
14  
12  
10  
8
14  
12  
10  
8
6
4
6
4
2
0
2
0
0
20  
40  
60  
80 100  
–80 –60 –40 –20  
0
0.005  
0.01  
–0.025 –0.02 –0.015 –0.01 –0.005  
INPUT OFFSET VOLTAGE – V  
INPUT OFFSET CURRENT – nA  
Figure 7. Typical Distribution for Input Offset Current,  
VS = +5, Single Supply, VREF = –0.125 V; Package Option  
N-8, SO-8  
Figure 4. Typical Distribution of Input Offset Voltage,  
VS = +5, Single Supply, VREF = –0.125 V; Package Option  
N-8, SO-8  
REV. C  
–5–  
AD623  
30  
25  
20  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
15  
10  
5
0
75 80 85 90 95  
105 110 115 120 125 130  
100  
–60 –40  
–20  
0
20  
40  
60  
80 100 120  
140  
CMRR ؊ dB  
TEMPERATURE – ؇C  
Figure 11. IBIAS vs. Temp  
Figure 8. Typical Distribution for CMRR (G = 1)  
1k  
100  
10  
1k  
GAIN = 1  
100  
GAIN = 10  
GAIN = 100  
GAIN = 1000  
10  
10  
100  
FREQUENCY – Hz  
1k  
1
1
10  
100  
FREQUENCY – Hz  
100k  
10k  
1k  
Figure 9. Voltage Noise Spectral Density vs. Frequency  
Figure 12. Current Noise Spectral Density vs. Frequency  
21  
20  
19  
18  
17  
16  
15  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
–5  
0
2
4
–4  
–2  
0
1
–3  
–2  
–1  
CMV – Volts  
CMV – Volts  
Figure 10. IBIAS vs. CMV, VS = ±5 V  
Figure 13. IBIAS vs. CMV, VS = ±2.5 V  
–6–  
REV. C  
AD623  
120  
110  
x1000  
100  
90  
80  
70  
60  
50  
40  
30  
x10  
x1  
x100  
1
100k  
10  
100  
1k  
10k  
FREQUENCY – Hz  
Figure 14. 0.1 Hz to 10 Hz Current Noise (0.71 pA/Div)  
Figure 17. CMR vs. Frequency, ±5 VS  
70  
60  
50  
40  
30  
20  
10  
RTO  
RTI  
0
–10  
–20  
–30  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
Figure 15. 0.1 Hz to 10 Hz RTI Voltage Noise  
Figure 18. Gain vs. Frequency (VS = +5 V, 0 V), VREF = 2.5 V  
(1 Div = 1 µV p-p)  
5
4
120  
110  
V
= ؎5  
S
3
2
1
0
100  
90  
x1000  
V
= ؎2.5  
S
x100  
80  
70  
60  
50  
40  
30  
–1  
x10  
–2  
–3  
–4  
–5  
x1  
1
100k  
10  
100  
1k  
10k  
–6  
–5 –4  
–3  
–2  
–1  
0
1
2
3
4
5
FREQUENCY – Hz  
COMMON MODE INPUT – Volts  
Figure 19. Maximum Output Voltage vs. Common Mode,  
G = 1, RL = 100 kΩ  
Figure 16. CMR vs. Frequency, +5, 0 VS, VREF = 2.5 V  
REV. C  
–7–  
AD623  
140  
120  
100  
80  
5
G = 1000  
4
3
2
V
= ؎5  
S
V
= ؎2.5  
S
G = 100  
1
0
60  
–1  
40  
–2  
–3  
–4  
–5  
G = 10  
20  
G = 1  
0
1
10  
100  
1k  
10k  
100k  
–6  
–5 –4  
–3  
–2  
–1  
0
1
2
3
4
5
FREQUENCY – Hz  
COMMON MODE INPUT – Volts  
Figure 20. Maximum Output Voltage vs. Common Mode,  
G 10, RL = 100 kΩ  
Figure 23. Positive PSRR vs. Frequency, ±5 VS  
5
4
3
2
1
0
140  
G = 1000  
120  
G = 100  
100  
80  
60  
40  
G = 10  
20  
G = 1  
0
–1  
0
1
2
3
4
5
1
100k  
10  
100  
1k  
10k  
COMMON MODE INPUT – Volts  
FREQUENCY – Hz  
Figure 24. Positive PSRR vs. Frequency, +5 VS, 0 VS  
Figure 21. Maximum Output Voltage vs. Common Mode,  
G = 1, VS = +5 V, RL = 100 kΩ  
140  
5
4
3
2
1
0
G = 1000  
120  
100  
80  
G = 100  
G = 10  
60  
40  
20  
0
G = 1  
1
100k  
10  
100  
1k  
10k  
–1  
0
1
2
3
4
5
FREQUENCY – Hz  
COMMON MODE INPUT – Volts  
Figure 22. Maximum Output Voltage vs. Common Mode,  
Figure 25. Negative PSRR vs. Frequency, ±5 VS  
G 10, VS = +5 V, RL = 100 kΩ  
–8–  
REV. C  
AD623  
10  
8
6
4
V
= ؎5  
S
V
= ؎2.5  
S
2
0
0
20  
80  
100  
40  
60  
FREQUENCY – kHz  
Figure 26. Large Signal Response, G 10  
Figure 29. Large Signal Pulse Response and Settling Time,  
G = –10 (0.250 mV = 0.01%), CL = 100 pF  
1000  
100  
10  
1
10  
1
100  
1000  
GAIN – V/V  
Figure 27. Settling Time to 0.01% vs. Gain, for a 5 V Step  
at Output, CL = 100 pF, VS = ±5 V  
Figure 30. Large Signal Pulse Response and Settling  
Time, G = 100, CL = 100 pF  
Figure 28. Large Signal Pulse Response and Settling  
Time, G = –1 (0.250 mV = 0.01%), CL = 100 pF  
Figure 31. Large Signal Pulse Response and Settling  
Time, G = –1000 (5 mV = 0.01%), CL = 100 pF  
REV. C  
–9–  
AD623  
Figure 35. Small Signal Pulse Response, G = 1000,  
Figure 32. Small Signal Pulse Response, G = 1, RL = 10 k,  
RL = 10 k, CL = 100 pF  
CL = 100 pF  
Figure 36. Gain Nonlinearity, G = –1 (50 ppm/Div)  
Figure 33. Small Signal Pulse Response, G = 10,  
RL = 10 k, CL = 100 pF  
Figure 34. Small Signal Pulse Response G = 100,  
Figure 37. Gain Nonlinearity, G = –10 (6 ppm/Div)  
RL = 10 k, CL = 100 pF  
–10–  
REV. C  
AD623  
The output voltage at Pin 6 is measured with respect to the  
potential at Pin 5. The impedance of the reference pin is 100 k,  
so in applications requiring V/I conversion, a small resistor  
between Pins 5 and 6 is all that is needed.  
POS SUPPLY  
7
+
INVERTING  
2
4
50k⍀  
50k⍀  
50k⍀  
50k⍀  
1
+
OUT  
6
GAIN  
50k⍀  
50k⍀  
REF  
5
8
7
4
Figure 38. Gain Nonlinearity (G = –100, 15 ppm/Div)  
NON-  
INVERTING  
3
+
V+  
NEG SUPPLY  
Figure 40. Simplified Schematic  
(V+) –0.5  
The bandwidth of the AD623 is reduced as the gain is increased,  
since all the amplifiers are of voltage feedback type. At unity  
gain, it is the output amplifier that limits the bandwidth. There-  
fore even at higher gains the AD623 bandwidth does not roll off  
as quickly.  
(V+) –1.5  
(V+) –1.5  
APPLICATIONS  
Basic Connection  
(V–) +0.5  
V–  
Figure 41 shows the basic connection circuit for the AD623.  
The +VS and –VS terminals are connected to the power supply.  
The supply can be either bipolar (VS = ±2.5 V to ±6 V) or  
single supply (–VS = 0 V, +VS = 3.0 V to 12 V). Power supplies  
should be capacitively decoupled close to the devices power  
pins. For best results, use surface mount 0.1 µF ceramic chip  
capacitors and 10 µF electrolytic tantalum capacitors.  
0
0.5  
1.5  
1
2
OUTPUT CURRENT – mA  
Figure 39. Output Voltage Swing vs. Output Current  
THEORY OF OPERATION  
The input voltage, which can be either single-ended (tie either  
–IN or +IN to ground) or differential is amplified by the pro-  
grammed gain. The output signal appears as the voltage difference  
between the Output pin and the externally applied voltage on  
the REF input. For a ground referenced output, REF should be  
grounded.  
The AD623 is an instrumentation amplifier based on a modified  
classic three op amp approach, to assure single or dual supply  
operation even at common-mode voltages at the negative supply  
rail. Low voltage offsets, input and output, as well as absolute  
gain accuracy, and one external resistor to set the gain, make the  
AD623 one of the most versatile instrumentation amplifiers in  
its class.  
GAIN SELECTION  
The input signal is applied to PNP transistors acting as voltage  
buffers and providing a common-mode signal to the input  
amplifiers (Figure 40). An absolute value 50 kresistor in each  
of the amplifiers’ feedback assures gain programmability.  
The AD623’s gain is resistor programmed by RG, or more pre-  
cisely, by whatever impedance appears between Pins 1 and 8.  
The AD623 is designed to offer accurate gains using 0.1%–1%  
tolerance resistors. Table I shows required values of RG for  
various gains. Note that for G = 1, the RG terminals are uncon-  
The differential output is  
nected (RG =  
by using the formula  
ϱ). For any arbitrary gain, RG can be calculated  
100 kΩ  
VO = 1+  
VC  
RG  
RG = 100 k/(G – 1)  
The differential voltage is then converted to a single-ended  
voltage using the output amplifier, which also rejects any common-  
mode signal at the output of the input amplifiers.  
REFERENCE TERMINAL  
The reference terminal potential defines the zero output voltage  
and is especially useful when the load does not share a precise  
ground with the rest of the system. It provides a direct means of  
injecting a precise offset to the output. The reference terminal is  
also useful when bipolar signals are being amplified as it can be  
used to provide a virtual ground voltage. The voltage on the  
reference terminal can be varied from –VS to +VS.  
Since all the amplifiers can swing to either supply rails, as well  
as have their common-mode range extended to below the nega-  
tive supply rail, the range over which the AD623 can operate is  
further enhanced (Figures 19 and 20).  
REV. C  
–11–  
AD623  
+V  
+V  
S
S
+2.5V TO +6V  
+3V TO +12V  
10F  
10F  
0.1F  
0.1F  
R
R
G
G
V
R
V
R
G
OUTPUT  
REF  
OUTPUT  
REF  
V
V
OUT  
IN  
G
IN  
OUT  
R
R
G
G
REF (INPUT)  
REF (INPUT)  
10F  
0.1F  
–2.5V TO –6V  
–V  
S
a. Dual Supply  
b. Single Supply  
Figure 41. Basic Connections  
Table I. Required Values of Gain Resistors INPUT PROTECTION  
Internal supply referenced clamping diodes allow the input,  
reference, output and gain terminals of the AD623 to safely  
withstand overvoltages of 0.3 V above or below the supplies.  
This is true for all gains, and for power on and off. This last  
case is particularly important since the signal source and ampli-  
fier may be powered separately.  
Desired  
Gain  
1% Std Table  
Value of RG,  
Calculated Gain  
Using 1% Resistors  
2
5
10  
20  
33  
40  
50  
65  
100  
200  
500  
1000  
100 k  
24.9 k  
11 k  
5.23 k  
3.09 k  
2.55 k  
2.05 k  
1.58 k  
1.02 k  
499  
2
5.02  
10.09  
20.12  
33.36  
40.21  
49.78  
64.29  
99.04  
201.4  
501  
If the overvoltage is expected to exceed this value, the current  
through these diodes should be limited to about 10 mA using  
external current limiting resistors. This is shown in Figure 42.  
The size of this resistor is defined by the supply voltage and the  
required overvoltage protection.  
+V  
S
200  
100  
1 = 10mA MAX  
R
LIM  
1001  
V
OVER  
R
AD623  
R
OUTPUT  
G
INPUT AND OUTPUT OFFSET VOLTAGE  
R
LIM  
The low errors of the AD623 are attributed to two sources,  
input and output errors. The output error is divided by the  
programmed gain when referred to the input. In practice, the  
input errors dominate at high gains and the output errors domi-  
nate at low gains. The total VOS for a given gain is calculated as:  
V
V
؊V +0.7V  
OVER  
S
OVER  
=
LIM  
10mA  
؊V  
S
Figure 42. Input Protection  
RF INTERFERENCE  
Total Error RTI = Input Error + (Output Error/G)  
Total Error RTO = (Input Error × G) + Output Error  
All instrumentation amplifiers can rectify high frequency out-of-  
band signals. Once rectified, these signals appear as dc offset  
errors at the output. The circuit of Figure 43 provides good RFI  
suppression without reducing performance within the in amps  
pass band. Resistor R1 and capacitor C1 (and likewise, R2 and  
C2) form a low-pass RC filter that has a –3 dB BW equal to:  
F = 1/(2 π R1C1). Using the component values shown, this  
filter has a –3 dB bandwidth of approximately 40 kHz. Resistors  
R1 and R2 were selected to be large enough to isolate the  
circuit’s input from the capacitors, but not large enough to  
significantly increase the circuit’s noise. To preserve common-  
mode rejection in the amplifier’s pass band, capacitors C1 and  
C2 need to be 5% or better units, or low cost 20% units can be  
tested and “binned” to provide closely matched devices.  
RTI offset errors and noise voltages for different gains are shown  
below in Table II.  
Table II. RTI Error Sources  
Max  
Max  
Total Input  
Offset Error  
Total Input  
Offset Drift  
Total Input  
Referred Noise  
(nV/Hz)  
Gain V  
V  
V/؇C  
V/؇C  
AD623A AD623B AD623A AD623B AD623A & AD623B  
1
2
5
10  
20  
50  
1200  
700  
400  
300  
250  
220  
600  
350  
200  
150  
125  
110  
105  
100  
12  
7
4
11  
6
3
62  
45  
38  
35  
35  
35  
35  
35  
Capacitor C3 is needed to maintain common-mode rejection at  
the low frequencies. R1/R2 and C1/C2 form a bridge circuit  
whose output appears across the in amp’s input pins. Any  
mismatch between C1 and C2 will unbalance the bridge and  
reduce common-mode rejection. C3 ensures that any RF signals  
3
2
2.5  
2.2  
2.1  
2
1.5  
1.2  
1.1  
1
100 210  
1000 200  
–12–  
REV. C  
AD623  
are common mode (the same on both in amp inputs) and are  
not applied differentially. This second low pass network, R1+R2  
and C3, has a –3 dB frequency equal to: 1/(2 π (R1+R2) (C3)).  
Using a C3 value of 0.047 µF as shown, the –3 dB signal BW of  
this circuit is approximately 400 Hz. The typical dc offset shift  
over frequency will be less than 1.5 µV and the circuit’s RF  
signal rejection will be better than 71 dB. The 3 dB signal band-  
width of this circuit may be increased to 900 Hz by reducing  
resistors R1 and R2 to 2.2 k. The performance is similar to  
that using 4 kresistors, except that the circuitry preceding the  
in amp must drive a lower impedance load.  
In many applications shielded cables are used to minimize noise;  
for best CMR over frequency the shield should be properly  
driven. Figure 44 shows an active guard drive that is configured  
to improve ac common-mode rejection by “bootstrapping” the  
capacitances of input cable shields, thus minimizing the capaci-  
tance mismatch between the inputs.  
+V  
S
–INPUT  
R
G
2
100  
V
AD623  
AD8031  
+INPUT  
OUT  
R
G
The circuit of Figure 43 should be built using a PC board with a  
ground plane on both sides. All component leads should be as  
short as possible. Resistors R1 and R2 can be common 1% metal  
film units but capacitors C1 and C2 need to be ±5% tolerance  
devices to avoid degrading the circuit’s common-mode rejection.  
Either the traditional 5% silver mica units or Panasonic ±2%  
PPS film capacitors are recommended.  
2
REFERENCE  
–V  
S
Figure 44. Common-Mode Shield Driver  
GROUNDING  
Since the AD623 output voltage is developed with respect to the  
potential on the reference terminal, many grounding problems  
can be solved by simply by tying the REF pin to the appropri-  
ate “local ground.” The REF pin should, however, be tied to a  
low impedance point for optimal CMR.  
+V  
S
0.33F  
0.01F  
R1  
4.02k⍀  
1%  
C1  
1000pF  
5%  
–IN  
+IN  
R2  
4.02k⍀  
1%  
C3  
0.047F  
The use of ground planes is recommended to minimize the  
impedance of ground returns (and hence the size of dc errors).  
In order to isolate low level analog signals from a noisy digital  
environment, many data-acquisition components have separate  
analog and digital ground returns (Figure 45). All ground pins  
from mixed signal components such as analog-to-digital converters  
should be returned through the “high quality” analog ground  
R
V
AD623  
G
OUT  
REFERENCE  
C2  
1000pF  
5%  
0.33F  
0.01F  
LOCATE C1–C3 AS CLOSE  
TO THE INPUT PINS AS POSSIBLE  
–V  
S
Figure 43. Circuit to Attenuate RF Interference  
ANALOG POWER SUPPLY  
DIGITAL POWER SUPPLY  
GND  
+5V  
–5V  
+5V  
GND  
0.1F  
0.1F 0.1F  
0.1F  
AGND  
V
DD  
V
AGND DGND  
V
12  
AD623  
DD  
IN1  
PROCESSOR  
ADC  
AD7892-2  
V
IN2  
Figure 45. Optimal Grounding Practice for a Bipolar Supply Environment with Separate Analog and Digital Supplies  
POWER SUPPLY  
GND  
+5V  
0.1F  
0.1F  
0.1F  
V
DGND  
V
DGND  
AGND  
12  
DD  
DD  
AD623  
V
IN  
PROCESSOR  
ADC  
AD7892-2  
Figure 46. Optimal Ground Practice in a Single Supply Environment  
–13–  
REV. C  
AD623  
plane. Maximum isolation between analog and digital is achieved  
by connecting the ground planes back at the supplies. The digi-  
tal return currents from the ADC, which flow in the analog ground  
plane will, in general, have a negligible effect on noise performance.  
applications, providing this path is generally not necessary as the  
bias current simply flows from the bridge supply through the  
bridge and into the amplifier. However, if the impedances that  
the two inputs see are large and differ by a large amount (>10 k),  
the offset current of the input stage will cause dc errors propor-  
tional with the input offset voltage of the amplifier.  
If there is only a single power supply available, it must be shared  
by both digital and analog circuitry. Figure 46 shows how to  
minimize interference between the digital and analog circuitry.  
As in the previous case, separate analog and digital ground  
planes should be used (reasonably thick traces can be used as an  
alternative to a digital ground plane). These ground planes  
should be connected at the power supply’s ground pin. Separate  
traces should be run from the power supply to the supply pins of  
the digital and analog circuits. Ideally, each device should have  
its own power supply trace, but these can be shared by a num-  
ber of devices as long as a single trace is not used to route cur-  
rent to both digital and analog circuitry.  
Output Buffering  
The AD623 is designed to drive loads of 10 kor greater. If the  
load is less that this value, the AD623’s output should be buff-  
ered with a precision single supply op amp such as the OP113.  
This op amp can swing from 0 V to 4 V on its output while  
driving a load as small as 600 . Table III summarizes the per-  
formance of some other buffer op amps.  
+5V  
0.1F  
+5V  
Ground Returns for Input Bias Currents  
0.1F  
Input bias currents are those dc currents that must flow in order  
to bias the input transistors of an amplifier. These are usually  
transistor base currents. When amplifying “floating” input sources  
such as transformers or ac-coupled sources, there must be a  
direct dc path into each input in order that the bias current can  
flow. Figure 47 shows how a bias current path can be provided  
for the cases of transformer coupling, capacitive ac-coupling and  
for a thermocouple application. In dc-coupled resistive bridge  
V
R
G
AD623  
IN  
OP113  
V
OUT  
REF  
Figure 48. Output Buffering  
Table III. Buffering Options  
+V  
S
–INPUT  
Op Amp Comments  
OP113  
OP191  
OP150  
Single Supply, High Output Current  
Rail-to-Rail Input and Output, Low Supply Current  
Rail-to-Rail Input and Output, High Output Current  
R
V
AD623  
G
OUT  
+INPUT  
REFERENCE  
LOAD  
–V  
S
A Single Supply Data Acquisition System  
TO POWER  
SUPPLY  
Interfacing bipolar signals to single supply analog to digital  
converters (ADCs) presents a challenge. The bipolar signal  
must be “mapped” into the input range of the ADC. Figure 49  
shows how this translation can be achieved.  
GROUND  
Figure 47a. Ground Returns for Bias Currents with  
Transformer Coupled Inputs  
+V  
S
+5V  
–INPUT  
+5V  
+5V  
0.1F  
0.1F  
R
AD623  
V
G
OUT  
AD7776  
+INPUT  
REFERENCE  
LOAD  
R
G
؎10mV  
AD623  
A
IN  
1.02k⍀  
–V  
S
REF  
TO POWER  
SUPPLY  
GROUND  
REF  
OUT  
REF  
IN  
Figure 47b. Ground Returns for Bias Currents with  
Thermocouple Inputs  
Figure 49. A Single Supply Data Acquisition System  
+V  
S
–INPUT  
The bridge circuit is excited by a +5 V supply. The full-scale  
output voltage from the bridge (± 10 mV) therefore has a  
common-mode level of 2.5 V. The AD623 removes the common-  
mode component and amplifies the input signal by a factor of  
100 (RGAIN = 1.02 k). This results in an output signal of ±1 V.  
In order to prevent this signal from running into the AD623’s  
ground rail, the voltage on the REF pin has to be raised to at  
least 1 V. In this example, the 2 V reference voltage from the  
AD7776 ADC is used to bias the AD623’s output voltage to 2 V  
±1 V. This corresponds to the input range of the ADC.  
R
V
AD623  
G
OUT  
+INPUT  
REFERENCE  
LOAD  
100k⍀  
100k⍀  
–V  
S
TO POWER  
SUPPLY  
GROUND  
Figure 47c. Ground Returns for Bias Currents with AC  
Coupled Inputs  
–14–  
REV. C  
AD623  
Amplifying Signals with Low Common-Mode Voltage  
Because the common-mode input range of the AD623 extends  
0.1 V below ground, it is possible to measure small differential  
signals which have low, or no, common mode component. Fig-  
ure 50 shows a thermocouple application where one side of the  
J-type thermocouple is grounded.  
The voltages on these internal nodes are critical in determining  
whether or not the output voltage will be clipped. The voltages  
A1 and VA2 can swing from about 10 mV above the negative  
supply (V– or Ground) to within about 100 mV of the positive  
rail before clipping occurs. Based on this and from the above  
equations, the maximum and minimum input common-mode  
voltages are given by the equations  
V
+5V  
VCMMAX = V+ – 0.7 V – VDIFF × Gain/2  
0.1F  
VCMMIN = V– – 0.590 V + VDIFF × Gain/2  
These equations can be rearranged to give the maximum possible  
differential voltage (positive or negative) for a particular common-  
mode voltage, gain, and power supply. Because the signals on A1  
and A2, can clip on either rail, the maximum differential voltage  
will be the lesser of the two equations.  
R
J-TYPE  
THERMOCOUPLE  
G
AD623  
V
OUT  
1.02k⍀  
REF  
2V  
|VDIFFMAX| = 2 (V+ – 0.7 V – VCM)/Gain  
|VDIFFMAX| = 2 (VCM – V– +0.590 V)/Gain  
Figure 50. Amplifying Bipolar Signals with Low Common-  
Mode Voltage  
However, the range on the differential input voltage range is also  
constrained by the output swing. So the range of VDIFF may have  
to be lower according the equation.  
Over a temperature range from –200°C to +200°C, the J-type  
thermocouple delivers a voltage ranging from –7.890 mV to  
10.777 mV. A programmed gain on the AD623 of 100 (RG =  
1.02 k) and a voltage on the AD623 REF pin of 2 V, results in  
the AD623’s output voltage ranging from 1.110 V to 3.077 V  
relative to ground.  
Input Range Available Output Swing/Gain  
For a bipolar input voltage with a common-mode voltage that is  
roughly half way between the rails, VDIFFMAX will be half the  
value that the above equations yield because the REF pin will be  
at midsupply. Note that the available output swing is given for  
different supply conditions in the Specifications section.  
INPUT DIFFERENTIAL AND COMMON-MODE RANGE  
VS. SUPPLY AND GAIN  
Figure 51 shows a simplified block diagram of the AD623. The  
voltages at the outputs of the amplifiers A1 and A2 are given by  
the equations  
The equations can be rearranged to give the maximum gain for a  
fixed set of input conditions. Again, the maximum gain will be  
the lesser of the two equations.  
VA2 = VCM + VDIFF/2 + 0.6 V + VDIFF × RF/RG  
= VCM + 0.6 V + VDIFF × Gain/2  
GainMAX = 2 (V+ – 0.7 V – VCM)/VDIFF  
GainMAX = 2 (VCM – V– +0.590 V)/VDIFF  
VA1 = VCM VDIFF/2 + 0.6 V VDIFF × RF/RG  
= VCM + 0.6 V VDIFF × Gain/2  
Again, we must ensure that the resulting gain times the input  
range is less than the available output swing. If this is not the  
case, the maximum gain is given by,  
POS SUPPLY  
7
GainMAX = Available Output Swing/Input Range  
Also for bipolar inputs (i.e., input range = 2 VDIFF), the maxi-  
mum gain will be half the value yielded by the above equations  
because the REF pin must be at midsupply.  
INVERTING  
A1  
2
R
F
50k⍀  
4
50k⍀  
The maximum gain and resulting output swing for different  
input conditions is given in Table IV. Output voltages are refer-  
enced to the voltage on the REF pin.  
50k⍀  
50k⍀  
V
1
DIFF  
2
V
OUT  
6
R
A3  
50k⍀  
GAIN  
G
V
CM  
R
F
For the purposes of computation, it is necessary to break down  
the input voltage into its differential and common-mode compo-  
nent. So when one of the inputs is grounded or at a fixed voltage,  
the common-mode voltage changes as the differential voltage  
changes. Take the case of the thermocouple amplifier in Figure  
50. The inverting input on the AD623 is grounded. So when the  
input voltage is –10 mV, the voltage on the noninverting input is  
–10 mV. For the purposes of signal swing calculations, this input  
voltage should be considered to be composed of a common-mode  
voltage of –5 mV (i.e., (+IN + –IN)/2) and a differential input  
voltage of –10 mV (i.e., +IN – –IN).  
REF  
5
50k⍀  
8
7
V
DIFF  
2
A2  
3
NONINVERTING  
4
NEG SUPPLY  
Figure 51. Simplified Block Diagram  
REV. C  
–15–  
AD623  
Table IV. Maximum Attainable Gain and Resulting Output Swing for Different Input Conditions  
Supply  
Voltages  
Max  
Gain  
Closest 1%  
Gain Resistor, ⍀  
Resulting  
Gain  
Output  
Swing  
VCM  
VDIFF  
REF Pin  
0 V  
0 V  
0 V  
0 V  
±10 mV  
±100 mV  
±10 mV  
±100 mV  
±1 V  
±10 mV  
±100 mV  
±1 V  
±10 mV  
±100 mV  
±10 mV  
±100 mV  
2.5 V  
2.5 V  
0 V  
0 V  
0 V  
2.5 V  
2.5 V  
2.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
+5 V  
+5 V  
±5 V  
±5 V  
±5 V  
+5 V  
+5 V  
+5 V  
+3 V  
+3 V  
+3 V  
+3 V  
118  
11.8  
490  
49  
866  
9.31 k  
205  
2.1 k  
26.1 k  
422  
4.32 k  
71.5 k  
715  
116  
11.7  
488  
48.61  
4.83  
238  
24.1  
2.4  
141  
14  
116  
11.74  
±1.2 V  
±1.1 V  
±4.8 V  
±4.8 V  
±4.8 V  
±2.3 V  
±2.4 V  
±2.4 V  
±1.4 V  
±1.4 V  
±1.1 V  
±1.1 V  
0 V  
4.9  
2.5 V  
2.5 V  
2.5 V  
1.5 V  
1.5 V  
0 V  
242  
24.2  
2.42  
142  
14.2  
118  
11.8  
7.68 k  
866  
9.31 k  
0 V  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic DIP  
(N-8)  
8-Lead SOIC  
(RM-8)  
0.430 (10.92)  
0.348 (8.84)  
0.122 (3.10)  
0.114 (2.90)  
8
5
4
0.280 (7.11)  
0.240 (6.10)  
5
4
8
1
1
0.199 (5.05)  
0.187 (4.75)  
0.122 (3.10)  
0.114 (2.90)  
0.325 (8.25)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.195 (4.95)  
0.210 (5.33)  
0.115 (2.93)  
PIN 1  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.0256 (0.65) BSC  
0.015 (0.381)  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.008 (0.204)  
0.043 (1.09)  
0.037 (0.94)  
0.006 (0.15)  
0.002 (0.05)  
33°  
27°  
0.018 (0.46)  
0.011 (0.28)  
0.003 (0.08)  
0.028 (0.71)  
0.016 (0.41)  
SEATING  
PLANE  
0.008 (0.20)  
8-Lead SOIC  
(SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
؋
 45؇  
0.0098 (0.25)  
0.0040 (0.10)  
0.0099 (0.25)  
8؇  
0؇  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
–16–  
REV. C  

相关型号:

AD623ARM-REEL7

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD623ARMZ

Single-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD623ARMZ-REEL

Single-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD623ARMZ-REEL7

Single-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD623ARZ

Single-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD623ARZ-R7

Single-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD623ARZ-REEL7

INSTRUMENTATION AMPLIFIER, 350uV OFFSET-MAX, 0.8MHz BAND WIDTH, PDSO8, SOIC-8
ADI

AD623ARZ-RL

Single-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD623B

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD623BN

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD623BNZ

Single-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD623BR

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI