AD6630R/PCB [ADI]

Differential, Low Noise IF Gain Block with Output Clamping; 差,低噪声中频增益模块具有输出钳位
AD6630R/PCB
型号: AD6630R/PCB
厂家: ADI    ADI
描述:

Differential, Low Noise IF Gain Block with Output Clamping
差,低噪声中频增益模块具有输出钳位

文件: 总8页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Differential, Low Noise IF Gain  
Block with Output Clamping  
a
AD6630  
FUNCTIONAL BLOCK DIAGRAM  
AD6630  
FEATURES  
24 dB Gain  
4 dB Noise Figure  
Easy Match to SAW Filters  
Output Limiter Adjustable +8.5 dBm to +12 dBm  
700 MHz Bandwidth  
10 V Single or Dual 5 V Power Supply  
300 mW Power Dissipation  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
NC  
NC  
IP2  
IP1  
IP1  
CD1  
OP  
+
+
+
V
EE  
CMD  
OP  
IP2  
APPLICATIONS  
ADC IF Drive Amp  
Communications Receivers  
PCS/Cellular Base Stations  
GSM, CDMA, TDMA  
CLLO  
CD2  
CLHI  
V
CC  
NC = NO CONNECT  
PRODUCT DESCRIPTION  
GSM to CDMA to AMPS. The clamping circuitry also main-  
tains the phase integrity of an overdriven signal. This allows  
phase demodulation of single carrier signals with an overrange  
signal.  
The AD6630 is an IF gain block designed to interface between  
SAW filters and differential input analog-to-digital converters.  
The AD6630 has a fixed gain of 24 dB and has been optimized  
for use with the AD6600 and AD6620 in digitizing narrowband  
IF carriers in the 70 MHz to 250 MHz range.  
While the AD6630 is optimized for use with the AD6600 Dual  
Channel, Gain Ranging ADC with RSSI, it can also be used in  
many other IF applications. The AD6630 is designed with an  
input impedance of 200 and an output of 400 . In the typi-  
cal application shown below, these values match the real portion  
of a typical SAW filter. Other devices can be matched using  
standard matching network techniques.  
Taking advantage of the differential nature of SAW filters, the  
AD6630 has been designed as a differential in/differential out  
gain block. This architecture allows 100 dB of adjacent channel  
blocking using low cost SAW filters. The AD6630 provides  
output limiting for ADC and SAW protection with Ͻ10° phase  
variation in recovery from overdrive situations.  
The AD6630 is built using Analog Devices’ high speed comple-  
mentary bipolar process. Units are available in a 300 mil SOIC  
(16 leads) plastic surface mount package and specified to operate  
over the industrial temperature range (–40°C to +85°C).  
Designed for “narrow-band” cellular/PCS receivers, the high  
linearity and low noise performance of the AD6630 allows for  
implementation in a wide range of applications ranging from  
AD6630  
MAIN  
LOCAL  
OSCILLATOR  
AD6600  
AD6620  
DSP  
AD6630  
DIVERSITY  
Figure 1. Reference Design  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
AD6630–SPECIFICATIONS  
NORMAL OPERATING CONDITIONS  
Parameter (Conditions)  
Min  
8.5  
Typ  
Max  
10.5  
5.25  
–4.25  
+85  
Units  
V
SINGLE SUPPLY VOLTAGE  
POSITIVE SUPPLY VOLTAGE  
NEGATIVE SUPPLY VOLTAGE  
AMBIENT TEMPERATURE  
PACKAGE THERMAL RESISTANCE  
OPERATING FREQUENCY1  
4.25  
–5.25  
–40  
5.0  
V
–5.0  
V
°C  
80  
°C/W  
MHz  
70  
250  
(TMIN = –40؇C, TMAX = +85؇C. Output dc levels are nominally at VM, where VM = VCC + VEE = [+5 V + (–5 V)] = 0.  
Inputs should be AC coupled.)  
DC SPECIFICATIONS  
Test  
Level  
Parameter  
Temp  
Full  
Min  
Typ  
Max  
48  
Units  
mA  
SUPPLY CURRENT  
OUTPUT DC LEVEL  
II  
30  
Full  
II  
VM–150  
VM+150  
mV  
(TMIN = –40؇C, TMAX = +85؇C. All AC production tests are performed at 5 MHz. 70 MHz and 250 MHz  
performance limits are correlated to 5 MHz testing based on characterization data.)  
AC SPECIFICATIONS  
Test  
Parameter1  
Temp  
Full  
Level  
Min  
23  
Typ  
24  
Max  
25  
Units  
GAIN (POWER) @ 70 MHz  
II  
dB  
GAIN (POWER) @ 250 MHz  
–3 dB BANDWIDTH  
OUTPUT REFERRED IP3 @ 70 MHz2  
OUTPUT REFERRED IP3 @ 250 MHz2  
OUTPUT REFERRED IP2 @ 70 MHz2  
OUTPUT REFERRED IP2 @ 250 MHz2  
Full  
II  
22  
23  
24  
dB  
+25°C  
Full  
V
700  
22  
MHz  
dBm  
dBm  
dBm  
dBm  
V
Full  
V
19  
Full  
V
45  
Full  
V
45  
OUTPUT REFERRED 1 dB COMPRESSION POINT  
@ 70 MHz LOW LEVEL CLAMP3  
Full  
Full  
Full  
II  
II  
II  
8.5  
7.5  
11  
9
dBm  
dBm  
dBm  
OUTPUT REFERRED 1 dB COMPRESSION POINT  
@ 250 MHz LOW LEVEL CLAMP3  
OUTPUT REFERRED 1 dB COMPRESSION POINT  
@ 70 MHz HIGH LEVEL CLAMP4  
OUTPUT REFERRED 1 dB COMPRESSION POINT  
@ 250 MHz HIGH LEVEL CLAMP4  
Full  
II  
V
dBm  
V/µs  
OUTPUT SLEW RATE  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
Full  
3700  
200  
2
INPUT IMPEDANCE (REAL)  
V
INPUT CAPACITANCE  
V
pF  
OUTPUT IMPEDANCE (REAL)  
V
400  
2
OUTPUT CAPACITANCE  
V
pF  
NOISE FIGURE  
V
4
dB  
LOW LEVEL CLAMP MAXIMUM OUTPUT @ 70 MHz3, 5  
HIGH LEVEL CLAMP MAXIMUM OUTPUT @ 70 MHz4, 5  
LOW LEVEL CLAMP MAXIMUM OUTPUT @ 250 MHz3, 5  
IV  
IV  
IV  
11  
12.5  
14.3  
10.6  
dBm  
dBm  
dBm  
Full  
13.8  
9.25  
Full  
–2–  
REV. 0  
AD6630  
Test  
Level  
Parameter  
Temp  
Full  
Min  
Typ  
11.2  
9
Max  
12.2  
Units  
dBm  
Degree  
dB  
HIGH LEVEL CLAMP MAXIMUM OUTPUT @ 250 MHz4, 5  
PHASE VARIATION6  
CMRR7  
IV  
V
+25°C  
+25°C  
+25°C  
V
50  
PSRR8  
V
30  
dB  
NOTES  
1All specifications are valid across the operating frequency range when the source and load impedance are a conjugate match to the amplifier’s input and output  
impedance.  
2Test is for two tones separated by 1 MHz for IFs at 70 MHz and 250 MHz at –23 dBm per tone input.  
3Low Level Clamp is selected by connecting pin CLLO to the negative supply, while pin CLHI is left floating. Clamping can be set at lower levels by connecting pin  
CLLO and CLHI to the negative supply through an external resistor.  
4High Level Clamp is selected by connecting pin CLHI to the negative supply, while pin CLLO is left floating, this allows the maximum linear range of the device to  
be utilized.  
5Output clamp levels are measured for hard clamping with a +3 dBm input level. Valid for a maximum input level of +8 dBm/200 = 3.2 V p-p—differential.  
6Measured as the change in output phase when the input level is changed from –53 dBm to +8 dBm (i.e., from linear operation to clamping).  
7Ratio of the differential output signal (referenced to the input) to the common-mode input signal presented to all input pins.  
8Ratio of signal on supply to differential output (<500 kHz).  
Specifications subject to change without notice.  
EXPLANATION OF TEST LEVELS  
ABSOLUTE MAXIMUM RATINGS  
I. 100% production tested.  
Parameter  
Min  
Max  
Units  
II. 100% production tested at +25°C, and guaranteed by  
Single Supply Voltage  
Positive Supply Voltage  
Negative Supply Voltage  
Input Power  
Storage Temperature  
Junction Temperature  
ESD Protection  
–0.5  
–0.5  
–5.75  
11.5  
5.75  
0.5  
+8  
+150  
+150  
V
V
V
dBm  
°C  
°C  
kV  
design and analysis at temperature extremes.  
III. Sample tested only.  
IV. Parameter guaranteed by design and analysis.  
V. Parameter is typical value only.  
–65  
1
VI. 100% production tested at +25°C, and sample tested at  
temperature extremes.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD6630AR  
AD6630AR-REEL  
AD6630R/PCB  
–40°C to +85°C (Ambient)  
–40°C to +85°C (Ambient)  
16-Lead Wide Body SOIC  
AD6630AR on 1000 PC Reel  
Evaluation Board with AD6630AR  
R-16  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD6630 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
AD6630  
PIN FUNCTION DESCRIPTION  
PIN CONFIGURATION  
Pin No  
Pin Name  
Description  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
IP2  
IP1  
V
CC  
1, 2  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
NC  
IP2  
IP1  
IP1  
No Connect  
Input  
Input  
Input  
Input  
Clamp Level Low Pin  
Clamp Level High Pin  
+VCC Supply  
Clamp Decoupling  
Output  
DC Feedback Decoupling  
–VEE Supply  
Output  
CD1  
OP  
AD6630  
TOP VIEW  
(Not to Scale)  
V
EE  
IP2  
CMD  
IP1  
IP2  
CLLO  
CLHI  
VCC  
CD2  
OP  
CMD  
VEE  
OP  
CD1  
VCC  
OP  
CLLO  
CLHI  
CD2  
V
CC  
NC = NO CONNECT  
Clamp Decoupling  
+VCC Supply  
Typical Performance Characteristics  
13  
12  
11  
10  
24  
23  
22  
21  
20  
19  
18  
17  
16  
HIGH CLAMP  
LOW CLAMP  
9
8
70  
100  
300  
70  
100  
300  
INPUT FREQUENCY – MHz  
INPUT FREQUENCY – MHz  
Figure 2. 3rd Order Intercept (IP3) vs. Frequency  
Figure 4. 1 dB Compression Point (Typical)  
25  
14  
13  
12  
11  
10  
9
–40؇C  
24  
HIGH CLAMP  
+25؇C  
+85؇C  
23  
LOW CLAMP  
22  
70  
100  
300  
70  
100  
300  
INPUT FREQUENCY – MHz  
INPUT FREQUENCY – MHz  
Figure 3. Gain vs. Frequency  
Figure 5. Clamp Level vs. Frequency  
–4–  
REV. 0  
AD6630  
–1dB 15dB –9dB –2dB 15dB –5dB 24dB –5dB  
MAIN  
9dBm  
4dBm  
–15dBm  
–28dBm –29dBm –14dBm –23dBm–25dBm10dBm  
LOCAL  
OSCILLATOR  
AD6600  
AD6620  
DSP  
AD6630  
SAW  
SAW  
DIVERSITY  
ANTENNA  
–104dBm  
–43dBm  
–28dBm  
–16dBm  
–15dBm  
AD6630 INPUT  
–91dBm  
–30dBm  
–15dBm  
–3dBm  
AD6630 OUTPUT  
–67dBm  
–6dBm  
AD6600 INPUT  
–71dBm  
–10dBm  
+4dBm  
+9dBm  
+9dBm  
+9dBm  
+4dBm  
+4dBm  
–2dBm  
Figure 6. GSM Design Example  
This equation is derived from measured data at 170 MHz. Clamp  
levels vary with frequency, see Figure 5. Output clamp levels  
less than 8.5 dBm will result in damage to the clamp circuitry  
unless the absolute maximum input power is derated. Similarly,  
the output clamp level cannot be set higher than 12 dBm.  
THEORY OF OPERATION  
The AD6630 amplifier consists of two stages of gain. The first  
stage is differential. This differential amplifier provides good  
common-mode rejection to common-mode signals passed by  
the SAW filter. The second stage consists of matched current  
feedback amplifiers on each side of the differential pair. These  
amplifiers provide additional gain as well as output drive capa-  
bility. Gain set resistors for these stages are internal to the de-  
vice and cannot be changed, allowing fixed compensation for  
optimum performance.  
R
CLAMP  
GENERATOR  
V
EE  
Figure 7. Clamp Level Resistor  
Matching SAW Filters  
The AD6630 is designed to easily match to SAW filters. SAW  
filters are largely capacitive in nature. Normally a conjugate  
match to the load is desired for maximum power transfer.  
Clamping levels for the device are normally set by tying CLLO  
or CLHI pins to the negative supply. This internally sets bias  
points that generate symmetric clamping levels. Clamping is  
achieved primarily in the output amplifiers. Additional input  
stage clamping is provided for additional protection. Clamping  
levels may be adjusted to lower levels as discussed below.  
Another way to treat the problem is to make the SAW filter look  
purely resistive. If the SAW filter load looks resistive there is no  
lead or lag in the current vs. voltage. This may not preserve  
maximum power transfer, but maximum voltage swing will  
exist. All that is required to make the SAW filter input or output  
look real is a single inductor shunted across the input. When the  
correct value is used, the impedance of the SAW filter becomes  
real.  
APPLICATIONS  
The AD6630 provides several useful features to meet the needs  
of radio designers. The gain and low noise figure of the device  
make it perfect for providing interstage gain between differential  
SAW filters and/or analog-to-digital converters (ADC). Addi-  
tionally, the on-board clamping circuitry provides protection for  
sensitive SAW filters or ADCs. The fast recovery of the clamp  
circuit permits demodulation of constant envelope modulated  
IF signals by preserving the phase response during clamping.  
9.7⍀  
The following topics provide recommendations for using the  
AD6630 in narrowband, single carrier applications.  
400⍀  
47nH  
3pF  
15.2pF  
Adjusting Output Clamp Levels  
Normally, the output clamp level is set by tying either CLLO or  
CLHI to ground or VEE. It is possible to set the limit between  
8.5 dBm and 12 dBm levels by selecting the appropriate exter-  
nal resistor.  
Figure 8. Saw Filter Model (170 MHz)  
EVALUATION BOARD  
To set to a different level, CLLO and CLHI should be tied  
together and then through a resistor to ground. The value of the  
resistor can be selected using the following equation.  
Figures 9, 10 and 12 refer to the schematic and layout of the  
AD6630AR as used on Analog Devices’ GSM Diversity Re-  
ceiver Reference Design (only the IF section is shown). Figure  
14 references the schematic of the stand-alone AD6630 evalua-  
tion board and uses a similar layout. The evaluation board uses  
center tapped transformers to convert the input to a differential  
signal and AD6630 outputs to a single connector to simplify  
evaluation. C8, C9 and L2 are optional reactive components to  
tune the load for a particular IF frequency if desired.  
14.4OUTPUT  
R =  
CLAMP (dBm)  
0.0014  
REV. 0  
–5–  
AD6630  
+10V  
U100A  
NC1  
V
1
CC  
SMA  
CHNA  
NC2  
IP2  
CD1  
OP  
L1A  
C2  
L1  
11  
12  
5
6
V
V
I
O
C100  
11  
12  
5
V
V
V
C1  
SAW1  
GND  
0.1F  
I
O
IP1  
V
EE  
TO  
AD6600  
L2  
L4  
L6  
IP1B  
IP2B  
CL1  
CL2  
CMD  
OPB  
CD2  
SAW2  
GND  
C101  
0.1F  
V
V
I
O
6
V
I
O
C104  
1
2
3
4
7
8
9
10  
0.1F  
V
2
1
2 3 4 7 8 9 10  
CC  
C103  
0.1F  
AD6630  
C102  
0.1F  
Figure 9. Reference Design Schematic (One Channel)  
Figure 10. Reference Design PCB Layout  
Figure 12. Reference Design Component Placement (Two  
Channels Shown)  
OUTPUT  
AMP  
V
+
CC  
+
+
DIFF  
200⍀  
200⍀  
200⍀  
AMP  
IP1  
IP1  
OUTPUT  
AMP  
TO OUTPUT  
AMPLIFIER  
TO OUTPUT  
AMPLIFIER  
BIAS  
200⍀  
IP2  
IP2  
CLP  
CLHI  
CLAMP  
V
GENERATOR CLN  
EE  
CLLO  
Figure 13. Equivalent Input Circuit  
Figure 11. Functional Block Diagram  
–6–  
REV. 0  
AD6630  
J1  
PCTB3  
3
2
1
C13  
1F  
AGND  
J3  
C18  
1F  
1
2
+
AGND  
+
11  
2
C16  
10nF  
AGND  
C21  
10nF  
AGND  
C17  
R3  
10nF  
1
R1  
200⍀  
J6  
SMA  
TP1  
2
1
AGND  
TEST P  
AD6630  
C15  
1nF  
C10  
U1  
100nF  
16  
1
15  
1
2
3
4
5
C2  
V
NC1  
NC2  
IP2  
CC  
10nF  
10nF  
C5  
AGND  
CD1  
OP  
T2  
T1  
14  
13  
12  
11  
10  
9
J8  
SMA  
1
1
J7  
SMA  
3
2
4
6
C12  
10nF  
1
3
6
4
2
2
IP1  
V
EE  
2
L1  
470nH  
C8  
C9  
L2  
10nF  
10nF  
C6  
C7  
IP1B  
IP2B  
CL1  
CL2  
CMD  
OPB  
CD2  
C11  
10nF  
1
6
7
TC4–1W  
AT224  
TC 8-1  
AT224  
C1  
10nF  
AGND  
AGND  
C3  
10nF  
8
AGND  
V
2
TP2  
CC  
1
C14  
1nF  
C4  
100nF  
TEST P  
J2  
R2  
200⍀  
C20  
1nF  
AGND  
C19  
100nF  
AGND  
AGND  
Figure 14. Evaluation Board Schematic  
Table I. Typical S Parameters  
Frequency  
(MHz)  
S11  
S12  
S21  
S22  
70  
224.5 –4.52°  
–41.0 –3.0°  
–31.4 0°  
–41.0 –5°  
–40.6 –2.3°  
24.1 –8.8°  
23.5 –22.5°  
23.2 –26.4°  
22.9 –38.9°  
394.3 –8.6°  
382.4 –21.9°  
353.0 –25.4°  
328.9 –29.2°  
170  
200  
250  
264.8 –32.9°  
227.9 –34.8°  
209.5 –36.2°  
REV. 0  
–7–  
AD6630  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
16-Lead Wide Body SOIC  
(R-16)  
0.4133 (10.50)  
0.3977 (10.00)  
16  
9
1
8
0.1043 (2.65)  
0.0926 (2.35)  
PIN 1  
0.0291 (0.74)  
0.0098 (0.25)  
x 45؇  
0.0118 (0.30)  
0.0040 (0.10)  
0.0500 (1.27)  
0.0157 (0.40)  
8؇  
0؇  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
0.0138 (0.35)  
–8–  
REV. 0  

相关型号:

AD6633

Multichannel Digital Upconverter with VersaCREST Crest Reduction Engine
ADI

AD6634

80 MSPS, Dual-Channel WCDMA Receive Signal Processor (RSP)
ADI

AD6634BBC

80 MSPS, Dual-Channel WCDMA Receive Signal Processor (RSP)
ADI

AD6634BBC

TELECOM, CELLULAR, BASEBAND CIRCUIT, PBGA196, 15 MM X 15 MM, BGA-196
ROCHESTER

AD6634BBCZ

80 MSPS, Dual-Channel, WCDMA Receive Signal Processor (RSP)
ADI

AD6634BBCZ

TELECOM, CELLULAR, BASEBAND CIRCUIT, PBGA196, 15 MM X 15 MM, BGA-196
ROCHESTER

AD6634BC/PCB

80 MSPS, Dual-Channel WCDMA Receive Signal Processor (RSP)
ADI

AD6634PCB

80 MSPS, Dual-Channel WCDMA Receive Signal Processor (RSP)
ADI

AD6634XBC

IC TELECOM, CELLULAR, BASEBAND CIRCUIT, PBGA196, 15 X 15 MM, BGA-196, Cellular Telephone Circuit
ADI

AD6635

4-Channel, 80 MSPS WCDMA Receive Signal Processor (RSP)
ADI

AD6635BB

4-Channel, 80 MSPS WCDMA Receive Signal Processor (RSP)
ADI

AD6635BB/PCB

4-Channel, 80 MSPS WCDMA Receive Signal Processor (RSP)
ADI