AD6679BBPZRL7-500 [ADI]

135 MHz BW IF Diversity Receiver;
AD6679BBPZRL7-500
型号: AD6679BBPZRL7-500
厂家: ADI    ADI
描述:

135 MHz BW IF Diversity Receiver

文件: 总82页 (文件大小:1723K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
135 MHz BW IF Diversity Receiver  
Data Sheet  
AD6679  
FEATURES  
APPLICATIONS  
Parallel LVDS (DDR) outputs  
Diversity multiband, multimode digital receivers  
3G/4G, TD-SCDMA, W-CDMA, GSM, LTE, LTE-A  
DOCSIS 3.0 CMTS upstream receive paths  
HFC digital reverse path receivers  
In-band SFDR = 82 dBFS at 340 MHz (500 MSPS)  
In-band SNR = 67.8 dBFS at 340 MHz (500 MSPS)  
1.1 W total power per channel at 500 MSPS (default settings)  
Noise density = −153 dBFS/Hz at 500 MSPS  
1.25 V, 2.50 V, and 3.3 V dc supply operation  
Flexible input range  
1.46 V p-p to 2.06 V p-p (2.06 V p-p nominal)  
95 dB channel isolation/crosstalk  
Amplitude detect bits for efficient automatic gain control  
(AGC) implementation  
Noise shaping requantizer (NSR) option for main receiver  
function  
Variable dynamic range (VDR) option for digital  
predistortion (DPD) function  
2 integrated wideband digital processors per channel  
12-bit numerically controlled oscillator (NCO), up to  
4 cascaded half-band filters  
GENERAL DESCRIPTION  
The AD6679 is a 135 MHz bandwidth mixed-signal intermediate  
frequency (IF) receiver. It consists of two, 14-bit, 500 MSPS  
analog-to-digital converters (ADCs) and various digital signal  
processing blocks consisting of four wideband DDCs, an NSR,  
and VDR monitoring. It has an on-chip buffer and a sample-and-  
hold circuit designed for low power, small size, and ease of use.  
This product is designed to support communications applications  
capable of sampling wide bandwidth analog signals of up to 2 GHz.  
The AD6679 is optimized for wide input bandwidth, high sampling  
rates, excellent linearity, and low power in a small package.  
The dual ADC cores feature a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth inputs supporting a variety of  
user-selectable input ranges. An integrated voltage reference  
eases design considerations.  
Differential clock inputs  
Integer clock divide by 1, 2, 4, or 8  
Energy saving power-down modes  
Small signal dither  
FUNCTIONAL BLOCK DIAGRAM  
AVDD1  
(1.25V)  
AVDD2  
(2.50V)  
AVDD3  
(3.3V)  
DVDD  
(1.25V)  
DRVDD  
(1.25V)  
SPIVDD  
(1.22V TO 3.4V)  
BUFFER  
VIN+A  
VIN–A  
FD_A  
D0±  
SIGNAL PROCESSING  
ADC  
D1±  
D2±  
D3±  
DIGITAL DOWN-  
CONVERSION  
(×4)  
D4±  
D5±  
16  
D6±  
D7±  
FAST  
DETECT  
SIGNAL  
MONITOR  
LVDS  
OUTPUT  
STAGING  
D8±  
DATA  
ROUTER  
MUX  
LVDS  
OUTPUTS  
D9±  
NOISE SHAPING  
REQUANTIZER  
(×2)  
FD_B  
V_1P0  
VIN+B  
VIN–B  
D10±  
D11±  
D12±  
D13±  
DCO±  
STATUS±  
BUFFER  
VARIABLE  
DYNAMIC RANGE  
(×2)  
ADC  
FAST  
DETECT  
CLOCK  
GENERATION  
AND ADJUST  
CLK+  
CLK–  
AD6679  
÷2  
÷4  
÷8  
SIGNAL  
MONITOR  
PDWN/STBY  
SPI CONTROL  
DGND  
AGND  
SDIO  
DRGND  
SYNC±  
SCLK  
CSB  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD6679* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DISCUSSIONS  
View all AD6679 EngineerZone Discussions.  
EVALUATION KITS  
AD6679 Evaluation Board  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
DOCUMENTATION  
TECHNICAL SUPPORT  
Application Notes  
Submit a technical question or find your regional support  
number.  
AN-1371: Variable Dynamic Range  
Data Sheet  
DOCUMENT FEEDBACK  
AD6679: 135 MHz BW IF Diversity Receiver Data Sheet  
Submit feedback for this data sheet.  
DESIGN RESOURCES  
AD6679 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD6679  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
General Description................................................................... 46  
DDC NCO Plus Mixer Loss and SFDR................................... 47  
Numerically Controlled Oscillator .......................................... 47  
FIR Filters ........................................................................................ 49  
Overview ..................................................................................... 49  
Half-Band Filters ........................................................................ 49  
DDC Gain Stage ......................................................................... 51  
DDC Complex to Real Conversion ......................................... 51  
DDC Example Configurations ................................................. 52  
Noise Shaping Requantizer (NSR) ............................................... 56  
Decimating Half-Band Filter .................................................... 56  
NSR Overview ............................................................................ 56  
Variable Dynamic Range (VDR).................................................. 59  
VDR Real Mode.......................................................................... 60  
VDR Complex Mode ................................................................. 60  
Digital Outputs ............................................................................... 62  
Timing.......................................................................................... 62  
Data Clock Output..................................................................... 62  
ADC Overrange.......................................................................... 62  
Multichip Synchronization............................................................ 64  
SYNC Setup and Hold Window Monitor............................. 65  
Test Modes....................................................................................... 67  
ADC Test Modes ........................................................................ 67  
Serial Port Interface (SPI).............................................................. 68  
Configuration Using the SPI..................................................... 68  
Hardware Interface..................................................................... 68  
SPI Accessible Features.............................................................. 68  
Memory Map .................................................................................. 69  
Reading the Memory Map Register Table............................... 69  
Memory Map Register Table..................................................... 70  
Applications Information .............................................................. 80  
Power Supply Recommendations............................................. 80  
Outline Dimensions....................................................................... 81  
Ordering Guide .......................................................................... 81  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Product Highlights ........................................................................... 4  
Specifications..................................................................................... 5  
DC Specifications ......................................................................... 5  
AC Specifications.......................................................................... 6  
Digital Specifications ................................................................... 7  
Switching Specifications .............................................................. 8  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings.......................................................... 18  
Thermal Characteristics ............................................................ 18  
ESD Caution................................................................................ 18  
Pin Configurations and Function Descriptions ......................... 19  
Typical Performance Characteristics ........................................... 25  
Equivalent Circuits ......................................................................... 28  
Theory of Operation ...................................................................... 30  
ADC Architecture ...................................................................... 30  
Analog Input Considerations.................................................... 30  
Voltage Reference ....................................................................... 32  
Clock Input Considerations ...................................................... 33  
Power-Down/Standby Mode..................................................... 35  
Temperature Diode .................................................................... 35  
Virtual Converter Mapping........................................................... 36  
ADC Overrange and Fast Detect.................................................. 38  
ADC Overrange (OR)................................................................ 38  
Fast Threshold Detection (FD_A and FD_B) ........................ 38  
Signal Monitor ................................................................................ 39  
Digital Downconverter (DDC)..................................................... 40  
DDC I/Q Input Selection .......................................................... 40  
DDC I/Q Output Selection ....................................................... 40  
DDC General Description ........................................................ 40  
Frequency Translation ................................................................... 46  
Rev. B | Page 2 of 81  
Data Sheet  
AD6679  
REVISION HISTORY  
4/16—Rev. A to Rev. B  
9/15—Rev. 0 to Rev. A  
Changes to Table 4 ............................................................................8  
Changes to Table 5 and Figure 3 .....................................................9  
Changes to Figure 4 Caption .........................................................10  
Changes to Figure 5 Caption .........................................................11  
Changes to Figure 6 Caption .........................................................12  
Changes to Figure 7 Caption .........................................................13  
Changes to Figure 8 Caption .........................................................14  
Changes to Figure 10 ......................................................................16  
Changes to Table 6 ..........................................................................18  
Changes to Input Clock Divider Section .....................................34  
Added Virtual Converter Mapping Section and Table 12;  
Renumbered Sequentially ..............................................................36  
Added Figure 60; Renumbered Sequentially...............................37  
Changes to Table 35 ........................................................................62  
Changes to Datapath Soft Reset Section ......................................69  
Changes to Table 41 ........................................................................70  
Changes to General Description Section.......................................3  
Changes to Figure 12 ......................................................................18  
Changes to Figure 13 ......................................................................20  
Changes to Figure 14 ......................................................................22  
Changes to ADC Test Modes.........................................................63  
5/15—Revision 0: Initial Version  
Rev. B | Page 3 of 81  
 
AD6679  
Data Sheet  
The analog input and clock signals are differential inputs. The  
ADC data outputs are internally connected to four DDCs  
through a crossbar mux. Each DDC consists of up to five  
cascaded signal processing stages: a 12-bit frequency translator  
(NCO) and up to four half-band decimation filters.  
incoming signal power using the fast detect control bits in  
Register 0x245 of the ADC. If the input signal level exceeds the  
programmable threshold, the fast detect indicator goes high.  
Because this threshold indicator has low latency, the user can  
quickly reduce the system gain to avoid an overrange condition  
at the ADC input. In addition to the fast detect outputs, the  
AD6679 also offers signal monitoring capability. The signal  
monitoring block provides additional information about the  
signal that the ADC digitized.  
Each ADC output is connected internally to an NSR block. The  
integrated NSR circuitry allows improved SNR performance in  
a smaller frequency band within the Nyquist bandwidth. The  
device supports two different output modes, selectable via the  
serial port interface (SPI). With the NSR feature enabled, the  
outputs of the ADCs are processed such that the AD6679 supports  
enhanced SNR performance within a limited portion of the  
Nyquist bandwidth while maintaining a 9-bit output resolution.  
The output data is routed directly to the one external  
14-bit LVDS output port, supporting double data rate (DDR)  
formatting. An external data clock and a clock status bit are offered  
for data capture flexibility.  
Each ADC output is also connected internally to a VDR block.  
This optional mode allows full dynamic range for defined input  
signals. Inputs that are within a defined mask (based on DPD  
applications) pass unaltered. Inputs that violate this defined  
mask result in the reduction of the output resolution.  
The AD6679 has flexible power-down options that allow  
significant power savings when desired. All of these features can  
be programmed using a 1.8 V capable 3-wire SPI.  
The AD6679 is available in a Pb-free, 196-ball BGA_ED, and is  
specified over the −40°C to +85°C industrial temperature range.  
With VDR, the dynamic range of the observation receiver is  
determined by a defined input frequency mask. For signals  
falling within the mask, the outputs are presented at the  
maximum resolution allowed. For signals exceeding defined  
power levels within this frequency mask, the output resolution  
is truncated. This mask is based on DPD applications and  
supports tunable real IF sampling, and zero IF or complex IF  
receive architectures.  
PRODUCT HIGHLIGHTS  
1. Wide full power bandwidth IF sampling of signals up to  
2 GHz.  
2. Buffered inputs with programmable input termination  
eases filter design and implementation.  
3. Four integrated wideband decimation filters and NCO  
blocks support multiband receivers.  
4. Flexible SPI controls various product features and  
functions to meet specific system requirements.  
5. Programmable fast overrange detection and signal  
monitoring.  
Operation of the AD6679 between the DDC, NSR, and VDR  
modes is selectable via SPI-programmable profiles.  
In addition to the DDC blocks, the AD6679 has several functions  
that simplify the AGC function in a communications receiver.  
The programmable threshold detector allows monitoring of the  
6. Programmable fast overrange detection.  
7. 12 mm × 12 mm, 196-ball BGA_ED.  
Rev. B | Page 4 of 81  
 
Data Sheet  
AD6679  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.50 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified maximum sampling  
rate, 1.0 V internal reference (VREF), AIN = −1.0 dBFS, clock divider = 2, default SPI settings, unless otherwise noted.  
Table 1.  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
RESOLUTION  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Gain Matching  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Guaranteed  
0
0
0
0
±0.5  
±±.5  
−0.3  
−6.5  
+0.3  
0.3  
+6.5  
5.0  
+0.7  
+5.0  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
−0.6  
−4.5  
LSB  
Full  
Full  
±3  
−39  
ppm/°C  
ppm/°C  
Gain Error  
INTERNAL VOLTAGE REFERENCE  
Voltage  
Full  
1.0  
V
INPUT REFERRED NOISE  
VREF = 1.0 V  
±5°C  
±.04  
LSB rms  
ANALOG INPUTS  
Differential Input Voltage Range (Internal VREF = 1.0 V)  
Full  
Full  
Full  
Full  
1.46  
±.06  
±.05  
1.5  
±
±.06  
V p-p  
V
pF  
Common-Mode Voltage (VCM  
)
Differential Input Capacitance1  
Analog Full Power Bandwidth  
GHz  
POWER SUPPLY  
AVDD1  
AVDD±  
AVDD3  
DVDD  
DRVDD  
SPIVDD  
IAVDD1  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.±±  
±.44  
3.±  
1.±±  
1.±±  
1.±±  
1.±5  
±.50  
3.3  
1.±5  
1.±5  
1.8  
464  
396  
89  
141  
117  
110  
5
1.±8  
±.56  
3.4  
1.±8  
1.±8  
3.4  
503  
455  
100  
164  
138  
1±3  
6
V
V
V
V
V
V
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IAVDD±  
IAVDD3  
±
IDVDD (Default SPI—NSR Mode)  
IDVDD (VDR Mode)  
3
IDRVDD  
ISPIVDD  
POWER CONSUMPTION  
Total Power Dissipation  
Default SPI—NSR Mode3  
VDR Mode3  
Power-Down Dissipation  
Standby4  
Full  
Full  
Full  
Full  
±.±  
±.37  
±.34  
W
W
W
W
±.16  
0.71  
1.4  
1 Differential capacitance is measured between the VIN+x and VIN−x pins (x = A, B).  
± AVDD3 current changes based on the Buffer Control 1 setting (see Figure 46).  
3 Parallel interleaved LVDS mode. The power dissipation on DRVDD changes with the output data mode used.  
4 Standby can be controlled by the SPI.  
Rev. B | Page 5 of 81  
 
 
AD6679  
Data Sheet  
AC SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.50 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified maximum sampling  
rate, 1.0 V internal reference, AIN = −1.0 dBFS, clock divider = 2, default SPI settings, unless otherwise noted.  
Table 2.  
Parameter1  
Temperature  
Min  
Typ  
Max  
Unit  
ANALOG INPUT FULL SCALE  
NOISE DENSITY2  
SIGNAL-TO-NOISE RATIO (SNR)3  
VDR Mode (Input Mask Not Triggered)  
fIN = 10 MHz  
Full  
Full  
2.06  
−153  
V p-p  
dBFS/Hz  
25°C  
Full  
68.9  
67.5 68.6  
67.8  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
67.3  
63.9  
62.8  
59.0  
NSR Enabled (21% Bandwidth (BW) Mode)  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
75.0  
74.8  
74.0  
73.1  
69.7  
68.1  
64.6  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
NSR Enabled (28% BW Mode)  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
72.4  
72.3  
71.6  
71.0  
67.7  
66.8  
63.1  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
SIGNAL-TO-NOISE-AND-DISTORTION RATIO (SINAD)3  
VDR Mode (Input Mask Not Triggered)  
fIN = 10 MHz  
25°C  
Full  
68.7  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
67  
68.5  
67.6  
67.2  
63.8  
62.5  
58.3  
25°C  
25°C  
25°C  
25°C  
25°C  
EFFECTIVE NUMBER OF BITS (ENOB)3  
VDR Mode (Input Mask Not Triggered)  
fIN = 10 MHz  
25°C  
Full  
11.1  
10.8 10.9  
10.8  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
10.8  
10.3  
10.1  
9.5  
Rev. B | Page 6 of 81  
 
Data Sheet  
AD6679  
Parameter1  
Temperature  
Min  
Typ  
Max  
Unit  
SPURIOUS FREE DYNAMIC RANGE (SFDR), SECOND OR THIRD HARMONIC3  
VDR Mode (Input Mask Not Triggered)  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
25°C  
Full  
83  
85  
82  
86  
81  
76  
69  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
76  
25°C  
25°C  
25°C  
25°C  
25°C  
WORST OTHER (EXCLUDING SECOND OR THIRD HARMONIC)3  
VDR Mode (Input Mask Not Triggered)  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
25°C  
Full  
−93  
−94  
−90  
−92  
−89  
−89  
−85  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
25°C  
25°C  
25°C  
25°C  
25°C  
TWO-TONE INTERMODULATION DISTORTION (IMD)3, AIN1 AND AIN2 = −7.0 dBFS  
fIN1 = 185 MHz, fIN2 = 188 MHz  
fIN1 = 338 MHz, fIN2 = 341 MHz  
CROSSTALK4  
25°C  
25°C  
25°C  
25°C  
−88  
−87  
95  
dBFS  
dBFS  
dB  
FULL POWER BANDWIDTH  
2
GHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Noise density is measured at a low analog input frequency (30 MHz).  
3 See Table 11 for the recommended settings for full-scale voltage and buffer control settings.  
4 Crosstalk is measured at 185 MHz with a −1.0 dBFS analog input on one channel and no input on the adjacent channel.  
DIGITAL SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.50 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified maximum sampling  
rate, 1.0 V internal reference, AIN = −1.0 dBFS, clock divider = 2, default SPI settings, unless otherwise noted.  
Table 3.  
Parameter  
Temperature  
Min  
Typ  
LVDS/LVPECL  
1200  
0.85  
35  
Max  
1800  
2.5  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
600  
mV p-p  
V
kΩ  
pF  
SYSTEM REFERENCE INPUTS (SYNC+, SYNC−)  
Logic Compliance  
Full  
Full  
Full  
Full  
Full  
LVDS/LVPECL  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance (Differential)  
LOGIC INPUTS (SDIO, SCLK, CSB, PDWN/STBY)  
Logic Compliance  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
400  
0.6  
1200  
0.85  
35  
1800  
2.0  
mV p-p  
V
kΩ  
pF  
2.5  
Full  
Full  
Full  
Full  
CMOS  
0.8 × SPIVDD  
0.2 × SPIVDD  
30  
V
V
kΩ  
0
Rev. B | Page 7 of 81  
 
 
AD6679  
Data Sheet  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
LOGIC OUTPUT (SDIO)  
Logic Compliance  
Logic 1 Voltage (IOH = 800 µA)  
Logic 0 Voltage (IOL = 50 µA)  
LOGIC OUTPUTS (FD_A, FD_B)  
Logic Compliance  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
Full  
Full  
Full  
CMOS  
0.8 × SPIVDD  
0.2 × SPIVDD  
V
V
Full  
Full  
Full  
Full  
CMOS  
SPIVDD  
0.8  
0
V
V
kΩ  
0
30  
DIGITAL OUTPUTS (D0 to D13 , A Dx/Dy and B Dx/Dy ,  
DATA0 to DATA7 , DCO , OVR , FCO , and STATUS )  
Logic Compliance  
Full  
LVDS  
ANSI Mode  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Reduced Swing Mode  
Full  
Full  
230  
0.58  
350  
0.70  
430  
0.85  
mV  
V
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Full  
Full  
120  
0.59  
200  
0.70  
235  
0.83  
mV  
V
SWITCHING SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.50 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified maximum sampling  
rate, 1.0 V internal reference, AIN = −1.0 dBFS, clock divider = 2, default SPI settings, unless otherwise noted.  
Table 4.  
Parameter  
Temperature Min  
Typ  
Max  
Unit  
CLOCK  
Clock Rate (at CLK+/CLK− Pins)  
Sample Rate  
Full  
0.3  
4
GHz  
Maximum1  
Full  
Full  
500  
250  
MSPS  
MSPS  
Minimum2  
Clock Pulse Width  
High  
Low  
Full  
Full  
1000  
1000  
ps  
ps  
LVDS DATA OUTPUT  
Data Propagation Delay (tPD)3  
DCO Propagation Delay (tDCO  
DCO to Data Skew—Rising Edge Data (tSKEWR  
DCO to Data Skew—Falling Edge Data (tSKEWF  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
2.225  
2.2  
−25  
−25  
50  
ns  
ns  
ps  
ps  
%
ns  
ps  
MHz  
Mbps  
3
)
3
)
−150  
−150  
44  
+100  
+100  
56  
3
)
DCO and Data Duty Cycle  
FCO Propagation Delay (tFCO  
4
)
2.2  
−25  
4
DCO to FCO Skew (tFRAME  
DCO Output Frequency  
Output Date Rate  
)
−150  
+100  
500  
1000  
LATENCY  
Pipeline Latency  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
33  
8
24  
8
50  
101  
217  
433  
28  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
NSR Latency5  
NSR HB Filter Latency5  
VDR Latency5  
HB1 Filter Latency5  
HB1 + HB2 Filter Latency5  
HB1 + HB2 + HB3 Filter Latency5  
HB1 + HB2 + HB3 + HB4 Filter Latency5  
Fast Detect Latency  
Rev. B | Page 8 of 81  
 
Data Sheet  
AD6679  
Parameter  
Temperature Min  
Typ  
Max  
Unit  
Wake-Up Time6  
Standby  
Power-Down6  
25°C  
25°C  
1
ms  
ms  
4
APERTURE  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Out of Range Recovery Time  
Full  
Full  
Full  
530  
55  
1
ps  
fs rms  
Clock cycles  
1 The maximum sample rate is the clock rate after the divider.  
2 The minimum sample rate operates at 300 MSPS with L = 2 or L = 1.  
3 This specification is valid for parallel interleaved, channel multiplexed, and byte mode output modes.  
4 This specification is valid for byte mode output mode only.  
5 Add this value to the pipeline latency specification to achieve total latency through the AD6679.  
6 Wake-up time is defined as the time required to return to normal operation from power-down mode or standby mode.  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
CLK to SYNC TIMING REQUIREMENTS  
tSU_SR  
tH_SR  
Device clock to SYNC setup time  
Device clock to SYNC hold time  
117  
−96  
ps  
ps  
SPI TIMING REQUIREMENTS  
See Figure 3  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tACCESS  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
Minimum period that SCLK is in a logic high state  
Minimum period that SCLK is in a logic low state  
Maximum time delay between falling edge of SCLK and output  
data valid for a read operation  
2
2
40  
2
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
10  
6
10  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an  
input relative to the SCLK rising edge (not shown in Figure 3)  
10  
ns  
Timing Diagrams  
CLK–  
CLK+  
tSU_SR  
tH_SR  
SYNC–  
SYNC+  
Figure 2. SYNC Setup and Hold Timing  
tDS  
tHIGH  
tCLK  
tACCESS  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
D7  
D6  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 3. Serial Port Interface Timing Diagram  
Rev. B | Page 9 of 81  
 
 
 
 
AD6679  
Data Sheet  
APERTURE DELAY  
N + x  
N + 37  
N + 33  
N
N + 34  
N + 38  
N – 1  
VIN±x  
N + 35  
N + y  
N + 36  
N + 39  
SYNCHRONOUS LOW TO HIGH TRANSITION OF THE SYNC SIGNAL CAPTURED ON THE RISING EDGE OF  
THE CLK SIGNAL CAUSES THE DCO INTERNAL DIVIDER TO BE RESET  
SYNC+  
SYNC–  
CLK+  
CLK–  
tCLK  
FIXED DELAY FROM SYNC EVENT TO DCO KNOWN PHASE  
tCH  
tDCO  
tPD  
2 × tCLK  
DCO± (DATA CLOCK OUTPUT)  
0° PHASE ADJUST  
DCO± ((DATA CLOCK OUTPUT)  
1
90° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
180° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
2
270° PHASE ADJUST  
tSKEWR  
tSKEWF  
STATUS BIT SELECTED BY  
OUTPUT MODE CONTROL 1 BITS, REGISTER 0x559[2:0]  
IN THE REGISTER MAP  
CONVERTER 0 CONVERTER 0 CONVERTER 0 CONVERTER 0 CONVERTER 0  
SAMPLE  
[N]  
SAMPLE  
[N + 1]  
SAMPLE  
[N + 2]  
SAMPLE  
[N + 3]  
SAMPLE  
[N + 4]  
OVR+  
(OVERRANGE/STATUS BIT)  
OVR  
D13  
OVR  
D13  
OVR  
D13  
OVR  
D13  
OVR  
D13  
OVR  
D13  
OVR  
D13  
OVR–  
D13±  
D0±  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
1
90° PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK±.  
270° PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK±.  
2
Figure 4. Parallel Interleaved Mode—One Virtual Converter (Decimate by 1)  
Rev. B | Page 10 of 81  
 
Data Sheet  
AD6679  
APERTURE DELAY  
N + 33  
N
N + 35  
VIN±x  
N + x  
N + 34  
SYNCHRONOUS LOW TO HIGH TRANSITION OF THE SYNC SIGNAL CAPTURED ON THE RISING EDGE OF  
THE CLK SIGNAL CAUSES THE DCO INTERNAL DIVIDER TO BE RESET  
SYNC+  
SYNC–  
CLK+  
CLK–  
tDCO  
tPD  
tCLK  
tCH  
DCO± (DATA CLOCK OUTPUT)  
0° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
180° PHASE ADJUST  
tSKEWR  
tSKEWF  
STATUS BIT SELECTED BY  
OUTPUT MODE CONTROL 1 BITS, REGISTER 0x559[2:0]  
IN THE REGISTER MAP  
CONVERTER 0 CONVERTER 1 CONVERTER 0 CONVERTER 1 CONVERTER 0  
SAMPLE  
[N]  
SAMPLE  
[N]  
SAMPLE  
[N + 1]  
SAMPLE  
[N + 1]  
SAMPLE  
[N + 2]  
OVR+  
(OVERRANGE/STATUS BIT)  
OVR  
D13  
OVR  
D13  
OVR  
OVR  
D13  
OVR  
D13  
OVR  
D13  
OVR  
D13  
OVR  
D13  
OVR–  
D13  
D13±  
D0±  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
Figure 5. Parallel Interleaved Mode—Two Virtual Converters (Decimate by 1)  
Rev. B | Page 11 of 81  
AD6679  
Data Sheet  
APERTURE DELAY  
N + 33  
N
N + 35  
VIN±x  
N + x  
N + 34  
SYNCHRONOUS LOW TO HIGH TRANSITION OF THE SYSREF SIGNAL CAPTURED ON THE RISING EDGE OF  
THE CLK SIGNAL CAUSES THE DCO INTERNAL DIVIDER TO BE RESET  
SYNC+  
SYNC–  
CLK+  
CLK–  
tDCO  
tPD  
tCLK  
tCH  
DCO± (DATA CLOCK OUTPUT)  
0° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
180° PHASE ADJUST  
tSKEWR  
tSKEWF  
STATUS BIT SELECTED BY  
OUTPUT MODE CONTROL 1 BITS, REGISTER 0x559[2:0]  
IN THE REGISTER MAP  
CONVERTERS  
SAMPLE  
[N]  
CONVERTERS CONVERTERS CONVERTERS  
SAMPLE  
[N]  
CONVERTERS  
SAMPLE  
[N + 2]  
SAMPLE  
[N + 1]  
SAMPLE  
[N + 1]  
OVR+  
(OVERRANGE/STAUS BIT)  
OVR  
OVR  
OVR  
OVR  
OVR  
OVR  
OVR  
OVR  
OVR–  
A D12/D13±  
A D0/D1±  
S[N – y]  
(ODD BITS) (EVEN BITS)  
S[N – x]  
S[N]  
S[N]  
S[N + 1]  
S[N + 1]  
S[N + 2]  
S[N – 1]  
(ODD BITS)  
(EVEN BITS) (ODD BITS) (EVEN BITS) (ODD BITS) (EVEN BITS)  
Figure 6. Channel Multiplexed (Even/Odd) Mode—One Virtual Converter (Decimate by 1)  
Rev. B | Page 12 of 81  
Data Sheet  
AD6679  
APERTURE DELAY  
N + 33  
N
N + 35  
VIN±x  
N + x  
N + 34  
SYNCHRONOUS LOW TO HIGH TRANSITION OF THE SYNC SIGNAL CAPTURED ON THE RISING EDGE OF  
THE CLK SIGNAL CAUSES THE DCO INTERNAL DIVIDER TO BE RESET  
SYNC+  
SYNC–  
CLK+  
CLK–  
tDCO  
tPD  
tCLK  
tCH  
DCO± (DATA CLOCK OUTPUT)  
0° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
180° PHASE ADJUST  
tSKEWR  
tSKEWF  
STATUS BIT SELECTED BY  
OUTPUT MODE CONTROL 1 BITS, REGISTER 0x559[2:0]  
IN THE REGISTER MAP  
CONVERTERS  
SAMPLE  
[N]  
CONVERTERS CONVERTERS CONVERTERS  
SAMPLE  
[N]  
CONVERTERS  
SAMPLE  
[N + 2]  
SAMPLE  
[N + 1]  
SAMPLE  
[N + 1]  
OVR+  
(OVERRANGE/STATUS BIT)  
OVR  
OVR  
OVR  
OVR  
OVR  
OVR  
OVR  
OVR  
OVR–  
A D12/D13±  
S[N – y]  
S[N – x]  
S[N]  
S[N]  
S[N + 1]  
S[N + 1]  
S[N + 2]  
S[N – 1]  
(ODD BITS) (EVEN BITS)  
(EVEN BITS) (ODD BITS) (EVEN BITS) (ODD BITS) (EVEN BITS)  
(ODD BITS)  
A D0/D1±  
B D12/D13±  
B D0/D1±  
S[N – y]  
(ODD BITS) (EVEN BITS)  
S[N – x]  
S[N]  
S[N]  
S[N + 1]  
S[N + 1]  
S[N + 2]  
S[N – 1]  
(ODD BITS)  
(EVEN BITS) (ODD BITS) (EVEN BITS) (ODD BITS) (EVEN BITS)  
Figure 7. Channel Multiplexed (Even/Odd) Mode—Two Virtual Converters (Decimate by 1)  
Rev. B | Page 13 of 81  
AD6679  
Data Sheet  
APERTURE DELAY  
N + x  
N + 36  
N + z  
N + 33  
N + 37  
N
N + 39  
VIN±x  
N – 1  
N + 34  
N + 35  
N + y  
N + 38  
SYNCHRONOUS LOW TO HIGH TRANSITION OF THE SYNC SIGNAL CAPTURED ON THE RISING EDGE OF  
THE CLK SIGNAL CAUSES THE DCO/FCO DIVIDERS TO BE RESET  
SYNC+  
SYNC–  
CLK+  
CLK–  
tCLK  
FIXED DELAY FROM SYNC EVENT  
TO DCO KNOWN PHASE  
tCH  
tDCO  
tPD  
2 × tCLK  
tFCO  
DCO± (DATA CLOCK OUTPUT)  
0° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
1
90° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
180° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
2
270° PHASE ADJUST  
tFRAME  
tSKEWR  
tSKEWF  
FCO–  
3
(FRAME CLOCK OUTPUT)  
FRAME 0  
FRAME 1  
FRAME 2  
FRAME 3  
FCO+  
I [N]  
0
I [N]  
I [N]  
1
I [N]  
1
I [N + 1] I [N + 1] I [N + 1] I [N + 1]  
0
2
2
3
3
EVEN  
ODD  
EVEN  
ODD  
EVEN  
ODD  
PAR  
EVEN  
ODD  
PAR  
STATUS+  
4
(OVERRANGE STATUS BIT)  
PAR  
PAR  
D15  
OVR  
PAR  
D15  
OVR  
PAR  
OVR  
D14  
OVR  
D14  
STATUS–  
DATA7±  
D15  
D1  
D14  
D0  
D14  
D0  
D15  
D1  
D15  
D1  
D15  
D1  
DATA0±  
D1  
D1  
D0  
D0  
1
90° PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK±.  
270° PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK±.  
FRAME CLOCK OUTPUT SUPPORTS THREE MODES OF OPERATION:  
1) ENABLED (ALWAYS ON)  
2
3
2) DISABLED (ALWAYS OFF)  
3) GAPPED PERIODIC (CONDITIONALLY ENABLED BASED ON PSEUDORANDOM BIT)  
STATUS BIT SELECTED BY THE OUTPUT MODE CONTROL 1 BITS, REGISTER 0x559[2:0] IN THE REGISTER MAP.  
4
Figure 8. LVDS Byte Mode—One Virtual Converter, One DDC (I Only, Decimate by 2)  
Rev. B | Page 14 of 81  
Data Sheet  
AD6679  
APERTURE DELAY  
N + x  
N + 36  
N + z  
N + 33  
N + 37  
N
N + 39  
VIN±x  
N – 1  
N + 34  
N + 35  
N + y  
N + 38  
SYNCHRONOUS LOW TO HIGH TRANSITION OF THE SYNC SIGNAL CAPTURED ON THE RISING EDGE OF  
THE CLK SIGNAL CAUSES THE DCO/FCO DIVIDERS TO BE RESET  
SYNC+  
SYNC–  
CLK+  
CLK–  
tCLK  
FIXED DELAY FROM SYNC EVENT  
TO DCO KNOWN PHASE  
tCH  
tDCO  
tPD  
2 × tCLK  
tFCO  
DCO± (DATA CLOCK OUTPUT)  
0° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
1
90° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
180° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
2
270° PHASE ADJUST  
tFRAME  
FCO–  
3
(FRAME CLOCK OUTPUT)  
FRAME 0  
FRAME 1  
FCO+  
tSKEWF  
tSKEWR  
I [N]  
0
I [N]  
Q [N]  
Q [N]  
I [N + 1] I [N + 1] Q [N + 1] Q [N + 1]  
0
0
0
0
0
0
0
EVEN  
ODD  
EVEN  
ODD  
EVEN  
ODD  
EVEN  
ODD  
STATUS+  
4
(OVERRANGE STATUS BIT)  
PAR  
PAR  
D15  
OVR  
PAR  
D15  
OVR  
D14  
PAR  
D15  
OVR  
D14  
PAR  
OVR  
D14  
PAR  
D15  
STATUS–  
DATA7±  
D15  
D1  
D14  
D0  
D15  
D1  
DATA0±  
D1  
D1  
D0  
D1  
D0  
D0  
D1  
1
90° PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK±.  
270° PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK±.  
FRAME CLOCK OUTPUT SUPPORTS THREE MODES OF OPERATION:  
1) ENABLED (ALWAYS ON)  
2
3
2) DISABLED (ALWAYS OFF)  
3) GAPPED PERIODIC (CONDITIONALLY ENABLED BASED ON PSEUDORANDOM BIT)  
STATUS BIT SELECTED BY THE OUTPUT MODE CONTROL 1 BITS, REGISTER 0x559[2:0] IN THE REGISTER MAP.  
4
Figure 9. LVDS Byte Mode—Two Virtual Converters, One DDC (I/Q Decimate by 4)  
Rev. B | Page 15 of 81  
AD6679  
Data Sheet  
0 0 9 1 3 0 5 9  
Figure 10. LVDS Byte Mode—Four Virtual Converters, Two DDCs (I/Q Decimate by 8)  
Rev. B | Page 16 of 81  
Data Sheet  
AD6679  
0 1 0  
1
Figure 11. LVDS Byte Mode—Eight Virtual Converters, Four DDCs (I/Q Decimate by 16)  
Rev. B | Page 17 of 81  
 
AD6679  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Parameter  
Rating  
THERMAL CHARACTERISTICS  
Electrical  
AVDD1 to AGND  
AVDD2 to AGND  
AVDD3 to AGND  
Typical θJA, ΨJB, and ΨJT are specified vs. the number of printed  
circuit board (PCB) layers in different airflow velocities (in  
m/sec). Airflow increases heat dissipation, effectively reducing  
1.32 V  
2.75 V  
3.63 V  
1.32 V  
1.32 V  
3.63 V  
θ
JA and ΨJB. In addition, metal in direct contact with the package  
DVDD to DGND  
leads from metal traces, through holes, ground, and power planes  
reduces the θJA. Thermal performance for actual applications  
requires careful inspection of the conditions in an application.  
The use of appropriate thermal management techniques is recom-  
mended to ensure that the maximum junction temperature does  
not exceed the limits shown in Table 6.  
DRVDD to DRGND  
SPIVDD to AGND  
AGND to DRGND  
VIN x to AGND  
SCLK, SDIO, CSB to AGND  
PDWN/STBY to AGND  
Environmental  
−0.3 V to +0.3 V  
3.2 V  
−0.3 V to SPIVDD + 0.3 V  
−0.3 V to SPIVDD + 0.3 V  
Table 7. Thermal Resistance  
Airflow Velocity  
(m/sec)  
Operating Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
(Ambient)  
−40°C to +85°C  
+125°C  
−65°C to +150°C  
PCB Type  
θJA  
ΨJT  
ΨJB  
Unit  
JEDEC 2s2p  
Board  
0.0  
27.01, 2 0.71, 3 7.31, 3 °C/W  
1 Per JEDEC 51-7, plus JEDEC 51-5 2s2p test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per JEDEC JESD51-8 (still air).  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Rev. B | Page 18 of 81  
 
 
 
 
Data Sheet  
AD6679  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
AGND  
AGND  
AGND  
AVDD2  
AVDD1  
AGND  
CLK+  
CLK–  
AGND  
AVDD1  
AVDD2  
AGND  
AGND  
AGND  
A
B
C
D
E
F
A
B
C
D
E
F
AVDD3  
AVDD3  
AGND  
VIN–B  
VIN+B  
AGND  
AGND  
FD_B  
DGND  
DVDD  
D1+  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DGND  
DVDD  
D1–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DGND  
DVDD  
D4–  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AGND  
CSB  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AGND  
AGND  
AGND  
SPIVDD  
AGND  
AGND  
DRVDD  
D6–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRVDD  
D0–  
AGND  
SYNC+  
AVDD1  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRVDD  
DRVDD  
AGND  
SYNC–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
DRGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
D7–  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AGND  
AGND  
V_1P0  
AVDD2  
AGND  
AGND  
DRGND  
D8–  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AGND  
SPIVDD  
AGND  
AGND  
DRGND  
D9–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
D10–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AVDD3  
AVDD3  
AGND  
VIN–A  
VIN+A  
AGND  
AGND  
FD_A  
G
H
J
G
H
J
PDWN/  
STBY  
SCLK  
SDIO  
DCO–  
OVR–  
D13–  
D11–  
DCO+  
OVR+  
D13+  
K
L
K
L
DGND  
DVDD  
D5–  
M
N
P
M
N
P
D2–  
D3–  
D12–  
D2+  
1
D3+  
2
D4+  
3
D5+  
4
D6+  
5
D0+  
6
DRVDD  
7
DRGND  
8
D7+  
9
D8+  
10  
D9+  
D10+  
12  
D11+  
13  
D12+  
14  
11  
1.25V ANALOG SUPPLY  
2.50V ANALOG SUPPLY  
3.3V ANALOG SUPPLY  
1.25V DIGITAL SUPPLY  
ANALOG GROUND  
DIGITAL GROUND  
ADC I/O  
1.25V LVDS DRIVER SUPPLY  
1.22V TO 3.4V SPI SUPPLY  
LVDS INTERFACE  
SPI INTERFACE  
LVDS DRIVER GROUND  
Figure 12. Pin Configuration—Parallel Interleaved LVDS Mode (Top View)  
Table 8. Pin Function Descriptions—Parallel Interleaved LVDS Mode  
Pin No.  
Mnemonic  
Type  
Description  
Power Supplies  
A5, A10, B5, B10, C5, C10, D5, D7, D10, E5, E10  
AVDD1  
AVDD2  
Supply  
Supply  
Analog Power Supply (1.25 V Nominal).  
Analog Power Supply (2.50 V Nominal).  
A4, A11, B4, B11, C4, C11, D4, D11, E4, E11, F4,  
F11, G11, J10  
B1, B14, C1, C14  
L1, L2, M3, M4  
M5 to M7, N7, P7  
J5, J11  
AVDD3  
DVDD  
Supply  
Supply  
Supply  
Supply  
Ground  
Ground  
Ground  
Analog Power Supply (3.3 V Nominal)  
Digital Power Supply (1.25 V Nominal).  
DRVDD  
SPIVDD  
DGND  
DRGND  
AGND  
Digital Driver Power Supply (1.25 V Nominal).  
Digital Power Supply for SPI (1.22 V to 3.4 V).  
Ground Reference for DVDD.  
K1, K2, L3, L4  
M8 to M12, N8, P8  
Ground Reference for DRVDD.  
Analog Ground.  
A1 to A3, A6, A9, A12 to A14, B2, B3, B6 to B9,  
B12, B13, C2, C3, C6, C9, C12, C13, D1 to D3,  
D6, D8, D9, D12 to D14, E2, E3, E6 to E9, E12,  
E13, F2, F3, F5 to F10, F12, F13, G1 to G10, G12  
to G14, H1 to H3, H5 to H9, H11 to H14, J2, J3,  
J6 to J9, J12, K3, K5 to K12, L5 to L12  
Analog  
E14, F14  
VIN−A,  
VIN+A  
VIN−B,  
VIN+B  
Input  
Input  
ADC A Analog Input Complement/True.  
ADC B Analog Input Complement/True.  
E1, F1  
Rev. B | Page 19 of 81  
 
AD6679  
Data Sheet  
Pin No.  
Mnemonic  
Type  
Description  
H10  
V_1P0  
Input/DNC  
1.0 V Reference Voltage Input/Do Not Connect. This pin  
is configurable through the SPI as a no connect or as an  
input. Do not connect this pin if using the internal  
reference. This pin requires a 1.0 V reference voltage  
input if using an external voltage reference source.  
A7, A8  
CLK+, CLK−  
FD_A, FD_B  
Input  
Clock Input True/Complement.  
CMOS Outputs  
J14, J1  
Output  
Input  
Fast Detect Outputs for Channel A and Channel B.  
Active High LVDS Sync Input—True/Complement.  
Digital Inputs  
C7, C8  
SYNC+,  
SYNC−  
Data Outputs  
N6, P6  
M2, M1  
N1, P1  
N2, P2  
N3, P3  
N4, P4  
N5, P5  
N9, P9  
N10, P10  
N11, P11  
N12, P12  
N13, P13  
N14, P14  
M13, M14  
L13, L14  
K13, K14  
D0−, D0+  
D1−, D1+  
D2−, D2+  
D3−, D3+  
D4−, D4+  
D5−, D5+  
D6−, D6+  
D7−, D7+  
D8−, D8+  
D9−, D9+  
D10−, D10+  
D11−, D11+  
D12−, D12+  
D13−, D13+  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
LVDS Lane 0 Output Data—Complement/True.  
LVDS Lane 1 Output Data—Complement/True.  
LVDS Lane 2 Output Data—Complement/True.  
LVDS Lane 3 Output Data—Complement/True.  
LVDS Lane 4 Output Data—Complement/True.  
LVDS Lane 5 Output Data—Complement/True.  
LVDS Lane 6 Output Data—Complement/True.  
LVDS Lane 7 Output Data—Complement/True.  
LVDS Lane 8 Output Data—Complement/True.  
LVDS Lane 9 Output Data—Complement/True.  
LVDS Lane 10 Output Data—Complement/True.  
LVDS Lane 11 Output Data—Complement/True.  
LVDS Lane 12 Output Data—Complement/True.  
LVDS Lane 13 Output Data—Complement/True.  
LVDS Overrange Output Data—Complement/True.  
LVDS Digital Clock Output Data—Complement/True.  
OVR−, OVR+ Output  
DCO−, DCO+ Output  
Device Under Test (DUT) Controls  
K4  
J4  
H4  
J13  
SDIO  
SCLK  
CSB  
PDWN/STBY  
Input/output SPI Serial Data Input/Output.  
Input  
Input  
Input  
SPI Serial Clock.  
SPI Chip Select (Active Low).  
Power-Down Input (Active High)/Standby. The  
operation of this pin depends on the SPI mode and can  
be configured in power-down or standby mode.  
Rev. B | Page 20 of 81  
Data Sheet  
AD6679  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
AGND  
A
AGND  
AGND  
AVDD2  
AVDD1  
AGND  
CLK+  
CLK–  
AGND  
AVDD1  
AVDD2  
AGND  
AGND  
AGND  
A
B
C
D
E
F
AVDD3  
B
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DGND  
DVDD  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DGND  
DVDD  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AGND  
CSB  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRVDD  
B D0/D1  
AGND  
SYNC+  
AVDD1  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRVDD  
DRVDD  
AGND  
SYNC–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
DRGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AGND  
AGND  
V_1P0  
AVDD2  
AGND  
AGND  
DRGND  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
A D6/D7–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AVDD3  
AVDD3  
AGND  
VIN–A  
VIN+A  
AGND  
AGND  
FD_A  
AVDD3  
C
AGND  
D
VIN–B  
E
VIN+B  
F
AGND  
G
AGND  
G
H
J
AGND  
H
AGND  
PDWN/  
STBY  
FD_B  
J
SCLK  
SPIVDD  
AGND  
SPIVDD  
AGND  
DGND  
K
SDIO  
DCO–  
OVR–  
DCO+  
OVR+  
K
L
DVDD  
L
DGND  
DVDD  
AGND  
AGND  
B D2/D3  
B D4/D5  
+
+
B D2/D3  
B D6/D7  
+
DRVDD  
B D12/D13  
DRGND  
A D4/D5–  
A D12/D13– A D12/D13+  
A D8/D9– A D10/D11–  
M
N
P
M
N
P
B D8/D9  
+
B D10/D11  
+
+
A D0/D1  
A D2/D3–  
B D4/D5  
1
B D6/D7  
2
B D8/D9  
3
B D10/D11  
4
B D12/D13  
5
B D0/D1  
6
+
DRVDD  
7
DRGND  
8
A D0/D1  
9
+
A D2/D3  
10  
+
A D4/D5  
11  
+
A D6/D7  
12  
+
A D8/D9  
13  
+
A D10/D11  
14  
+
1.25V ANALOG SUPPLY  
2.50V ANALOG SUPPLY  
3.3V ANALOG SUPPLY  
1.25V DIGITAL SUPPLY  
ANALOG GROUND  
DIGITAL GROUND  
ADC I/O  
1.25V LVDS DRIVER SUPPLY  
1.22V TO 3.4V SPI SUPPLY  
LVDS INTERFACE  
SPI INTERFACE  
LVDS DRIVER GROUND  
Figure 13. Pin Configuration—Channel Multiplexed (Even/Odd) LVDS Mode (Top View)  
Table 9. Pin Function Descriptions—Channel Multiplexed (Even/Odd) LVDS Mode1  
Pin No.  
Mnemonic  
Type  
Description  
Power Supplies  
A5, A10, B5, B10, C5, C10, D5, D7, D10, E5,  
E10  
A4, A11, B4, B11, C4, C11, D4, D11, E4, E11,  
F4, F11, G11, J10  
AVDD1  
AVDD2  
Supply  
Supply  
Analog Power Supply (1.25 V Nominal).  
Analog Power Supply (2.50 V Nominal).  
B1, B14, C1, C14  
L1, L2, M3, M4  
M5 to M7, N7, P7  
J5, J11  
AVDD3  
DVDD  
Supply  
Supply  
Supply  
Supply  
Ground  
Ground  
Ground  
Analog Power Supply (3.3 V Nominal)  
Digital Power Supply (1.25 V Nominal).  
DRVDD  
SPIVDD  
DGND  
DRGND  
AGND  
Digital Driver Power Supply (1.25 V Nominal).  
Digital Power Supply for SPI (1.22 V to 3.4 V).  
Ground Reference for DVDD.  
K1, K2, L3, L4  
M8 to M12, N8, P8  
Ground Reference for DRVDD.  
Analog Ground.  
A1 to A3, A6, A9, A12 to A14, B2, B3, B6 to  
B9, B12, B13, C2, C3, C6, C9, C12, C13, D1 to  
D3, D6, D8, D9, D12 to D14, E2, E3, E6 to E9,  
E12, E13, F2, F3, F5 to F10, F12, F13, G1 to  
G10, G12 to G14, H1 to H3, H5 to H9, H11 to  
H14, J2, J3, J6 to J9, J12, K3, K5 to K12, L5 to  
L12  
Analog  
E14, F14  
E1, F1  
H10  
VIN−A, VIN+A Input  
ADC A Analog Input Complement/True.  
ADC B Analog Input Complement/True.  
1.0 V Reference Voltage Input/Do Not Connect. This pin  
is configurable through the SPI as a no connect or as an  
input. Do not connect this pin if using the internal  
reference. This pin requires a 1.0 V reference voltage  
input if using an external voltage reference source.  
VIN−B, VIN+B  
V_1P0  
Input  
Input/DNC  
A7, A8  
CLK+, CLK−  
Input  
Clock Input True/Complement.  
Rev. B | Page 21 of 81  
AD6679  
Data Sheet  
Pin No.  
Mnemonic  
Type  
Description  
CMOS Outputs  
J14, J1  
FD_A, FD_B  
Output  
Input  
Fast Detect Outputs for Channel A and Channel B.  
Active High LVDS Sync Input—True/Complement.  
Digital Inputs  
C7, C8  
SYNC+,  
SYNC−  
Data Outputs  
N9, P9  
A D0/D1−,  
A D0/D1+  
A D2/D3−,  
A D2/D3+  
A D4/D5−,  
A D4/D5+  
A D6/D7−,  
A D6/D7+  
A D8/D9−,  
A D8/D9+  
A D10/D11−,  
A D10/D11+  
A D12/D13−,  
A D12/D13+  
B D0/D1−,  
B D0/D1+  
B D2/D3−,  
B D2/D3+  
B D4/D5−,  
B D4/D5+  
B D6/D7−,  
B D6/D7+  
B D8/D9−,  
B D8/D9+  
B D10/D11−,  
B D10/D11+  
B D12/D13−,  
B D12/D13+  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
LVDS Channel A Data 0/Data 1 Output Data—  
Complement/True.  
LVDS Channel A Data 2/Data 3 Output Data—  
Complement/True.  
LVDS Channel A Data 4/Data 5 Output Data—  
Complement/True.  
LVDS Channel A Data 6/Data 7 Output Data—  
Complement/True.  
LVDS Channel A Data 8/Data 9 Output Data—  
Complement/True.  
LVDS Channel A Data 10/Data 11 Output Data—  
Complement/True.  
LVDS Channel A Data 12/Data 13 Output Data—  
Complement/True.  
LVDS Channel B Data 0/Data 1 Output Data—  
Complement/True.  
LVDS Channel B Data 2/Data 3 Output Data—  
Complement/True.  
LVDS Channel B Data 4/Data 5 Output Data—  
Complement/True.  
LVDS Channel B Data 6/Data 7 Output Data—  
Complement/True.  
LVDS Channel B Data 8/Data 9 Output Data—  
Complement/True.  
LVDS Channel B Data 10/Data 11 Output Data—  
Complement/True.  
LVDS Channel B Data 12/Data 13 Output Data—  
Complement/True.  
N10, P10  
N11, P11  
N12, P12  
N13, P13  
N14, P14  
M13, M14  
N6, P6  
M2, M1  
N1, P1  
N2, P2  
N3, P3  
N4, P4  
N5, P5  
L13, L14  
K13, K14  
OVR−, OVR+  
DCO−, DCO+  
Output  
Output  
LVDS Overrange Output Data—Complement/True.  
LVDS Digital Clock Output Data—Complement/True.  
DUT Controls  
K4  
J4  
H4  
J13  
SDIO  
SCLK  
CSB  
PDWN/STBY  
Input/output SPI Serial Data Input/Output.  
Input  
Input  
Input  
SPI Serial Clock.  
SPI Chip Select (Active Low).  
Power-Down Input (Active High). The operation of this  
pin depends on the SPI mode and can be configured in  
power-down or standby mode.  
1 When using channel multiplexed (even/odd) LVDS mode for one converter, the Channel B outputs are disabled and can be left unconnected.  
Rev. B | Page 22 of 81  
 
Data Sheet  
AD6679  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
AGND  
A
AGND  
AGND  
AVDD2  
AVDD1  
AGND  
CLK+  
CLK–  
AGND  
AVDD1  
AVDD2  
AGND  
AGND  
AGND  
A
B
C
D
E
F
AVDD3  
B
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DGND  
DVDD  
DNC  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DGND  
DVDD  
DNC  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AGND  
CSB  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AGND  
AGND  
AGND  
SPIVDD  
AGND  
AGND  
DRVDD  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRVDD  
DNC  
AGND  
SYNC+  
AVDD1  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRVDD  
DRVDD  
AGND  
SYNC–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
DRGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AGND  
AGND  
V_1P0  
AVDD2  
AGND  
AGND  
DRGND  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
DATA5–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AVDD3  
AVDD3  
AGND  
VIN–A  
VIN+A  
AGND  
AGND  
FD_A  
AVDD3  
C
AGND  
D
VIN–B  
E
VIN+B  
F
AGND  
G
G
H
J
AGND  
H
PDWN/  
STBY  
FD_B  
J
SCLK  
SDIO  
SPIVDD  
AGND  
DGND  
K
DCO–  
FCO–  
DCO+  
K
L
DVDD  
L
DGND  
DVDD  
AGND  
FCO+  
DNC  
M
DRGND  
DATA4–  
STATUS–  
DATA6–  
STATUS+  
M
N
P
DNC  
N
DNC  
DATA0  
DATA1  
+
DATA2  
DATA3  
+
DATA7  
+
DNC  
P
DNC  
2
DNC  
3
DATA0  
4
+
DATA1  
5
DNC  
6
DRVDD  
7
DRGND  
8
DATA2+  
9
DATA3  
10  
DATA4  
11  
+
DATA5  
12  
+
DATA6  
13  
+
DATA7  
14  
1
1.25V ANALOG SUPPLY  
2.50V ANALOG SUPPLY  
3.3V ANALOG SUPPLY  
1.25V DIGITAL SUPPLY  
ANALOG GROUND  
DIGITAL GROUND  
ADC I/O  
DO NOT CONNECT  
1.25V LVDS DRIVER SUPPLY  
1.22V TO 3.4V SPI SUPPLY  
LVDS INTERFACE  
SPI INTERFACE  
LVDS DRIVER GROUND  
Figure 14. Pin Configuration—LVDS Byte Mode (Top View)  
Table 10. Pin Function Descriptions—LVDS Byte Mode  
Pin No.  
Mnemonic  
Type  
Description  
Power Supplies  
A5, A10, B5, B10, C5, C10, D5, D7, D10, E5, E10 AVDD1  
Supply  
Supply  
Analog Power Supply (1.25 V Nominal).  
Analog Power Supply (2.50 V Nominal).  
A4, A11, B4, B11, C4, C11, D4, D11, E4, E11, F4, AVDD2  
F11, G11, J10  
B1, B14, C1, C14  
L1, L2, M3, M4  
M5 to M7, N7, P7  
J5, J11  
AVDD3  
DVDD  
Supply  
Supply  
Supply  
Supply  
Ground  
Ground  
Ground  
Analog Power Supply (3.3 V Nominal)  
Digital Power Supply (1.25 V Nominal).  
Digital Driver Power Supply (1.25 V Nominal).  
Digital Power Supply for SPI (1.22 V to 3.4 V).  
Ground Reference for DVDD.  
DRVDD  
SPIVDD  
DGND  
K1, K2, L3, L4  
M8 to M12, N8, P8  
DRGND  
Ground Reference for DRVDD.  
A1 to A3, A6, A9, A12 to A14, B2, B3, B6 to B9, AGND  
B12, B13, C2, C3, C6, C9, C12, C13, D1 to D3,  
D6, D8, D9, D12 to D14, E2, E3, E6 to E9, E12,  
E13, F2, F3, F5 to F10, F12, F13, G1 to G10,  
G12 to G14, H1 to H3, H5 to H9, H11 to H14,  
J2, J3, J6 to J9, J12, K3, K5 to K12, L5 to L12  
Analog Ground.  
Analog  
E14, F14  
VIN−A,  
VIN+A  
VIN−B,  
VIN+B  
Input  
ADC A Analog Input Complement/True.  
ADC B Analog Input Complement/True.  
E1, F1  
H10  
Input  
V_1P0  
Input/DNC  
1.0 V Reference Voltage Input/Do Not Connect. This pin is  
configurable through the SPI as a no connect or an input.  
Do not connect this pin if using the internal reference.  
This pin requires a 1.0 V reference voltage input if using  
an external voltage reference source.  
A7, A8  
CLK+, CLK−  
Input  
Clock Input True/Complement.  
Rev. B | Page 23 of 81  
AD6679  
Data Sheet  
Pin No.  
Mnemonic  
Type  
Description  
CMOS Outputs  
J14, J1  
FD_A, FD_B Output  
Fast Detect Outputs for Channel A and Channel B.  
Active High LVDS Sync Input—True/Complement.  
Digital Inputs  
C7, C8  
SYNC+,  
SYNC−  
Input  
Data Outputs  
N4, P4  
DATA0−,  
DATA0+  
DATA1−,  
DATA1+  
DATA2−,  
DATA2+  
DATA3−,  
DATA3+  
DATA4−,  
DATA4+  
DATA5−,  
DATA5+  
DATA6−,  
DATA6+  
DATA7−,  
DATA7+  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
LVDS Byte Data 0—Complement/True.  
LVDS Byte Data 1—Complement/True.  
LVDS Byte Data 2—Complement/True.  
LVDS Byte Data 3—Complement/True.  
LVDS Byte Data 4—Complement/True.  
LVDS Byte Data 5—Complement/True.  
LVDS Byte Data 6—Complement/True.  
LVDS Byte Data 7—Complement/True.  
LVDS Status Output Data—Complement/True.  
N5, P5  
N9, P9  
N10, P10  
N11, P11  
N12, P12  
N13, P13  
N14, P14  
M13, M14  
STATUS−,  
STATUS+  
L13, L14  
K13, K14  
FCO−, FCO+ Output  
LVDS Frame Clock Output Data—Complement/True.  
LVDS Digital Clock Output Data—Complement/True.  
DCO−,  
DCO+  
Output  
DUT Controls  
K4  
J4  
H4  
J13  
SDIO  
SCLK  
CSB  
Input/output SPI Serial Data Input/Output.  
Input  
Input  
SPI Serial Clock.  
SPI Chip Select (Active Low).  
PDWN/STBY Input  
Power-Down Input (Active High). The operation of this  
pin depends on the SPI mode and can be configured in  
power-down or standby mode.  
No Connects  
M1, M2, N1 to N3, N6, P1 to P3, P6  
DNC  
DNC  
Do Not Connect. Do not connect to these pins.  
Rev. B | Page 24 of 81  
Data Sheet  
AD6679  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD1 = 1.25 V, AVDD2 = 2.50 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, AIN = −1.0 dBFS, VDR mode  
(no violation of VDR mask), clock divider = 2, otherwise default SPI settings, TA = 25°C, 128k FFT sample, unless otherwise noted.  
0
0
A
= 1dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 68.9dBFS  
ENOB = 10.9 BITS  
SFDR = 83dBFS  
SNR = 67.3dBFS  
ENOB = 10.8 BITS  
SFDR = 86dBFS  
–20  
–20  
BUFFER CONTROL 1 = 2.0×  
BUFFER CONTROL 1 = 4.5×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
0
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
0
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 15. Single Tone FFT with fIN = 10.3 MHz  
Figure 18. Single-Tone FFT with fIN = 450.3 MHz  
0
–20  
0
–20  
A
= 1dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 68.7dBFS  
ENOB = 10.9 BITS  
SFDR = 84dBFS  
SNR = 63.9dBFS  
ENOB = 10.3 BITS  
SFDR = 81dBFS  
BUFFER CONTROL 1 = 2.0×  
BUFFER CONTROL 1 = 5.0×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 16. Single-Tone FFT with fIN = 170.3 MHz  
Figure 19. Single-Tone FFT with fIN = 765.3 MHz  
0
–20  
0
–20  
A
= 1dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 67.8dBFS  
ENOB = 10.8 BITS  
SFDR = 82dBFS  
SNR = 62.8dBFS  
ENOB = 10.1 BITS  
SFDR = 76dBFS  
BUFFER CONTROL 1 = 4.5×  
BUFFER CONTROL 1 = 5.0×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 17. Single-Tone FFT with fIN = 340.3 MHz  
Figure 20. Single-Tone FFT with fIN = 985.3 MHz  
Rev. B | Page 25 of 81  
 
AD6679  
Data Sheet  
0
95  
90  
85  
80  
75  
70  
65  
A
= 1dBFS  
IN  
SNR = 61.7dBFS  
ENOB = 9.9 BITS  
SFDR = 70dBFS  
BUFFER CONTROL 1 = 8.0×  
–20  
SFDR  
–40  
–60  
–80  
–100  
–120  
SNR  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
200  
250  
300  
350  
400  
450  
500  
SAMPLE RATE (MHz)  
Figure 21. Single-Tone FFT with fIN = 1205.3 MHz  
Figure 24. SNR/SFDR vs. Sample Rate (fS); fIN = 170.3 MHz;  
0
–20  
95  
90  
85  
80  
75  
70  
65  
60  
A
= 1dBFS  
SFDR, 2.0×  
SNRFS, 2.0×  
SFDR, 3.0×  
SNRFS, 3.0×  
SFDR, 4.0×  
SNRFS, 4.0×  
IN  
SNR = 60.1dBFS  
ENOB = 9.7 BITS  
SFDR = 71dBFS  
BUFFER CONTROL 1 = 8.0×  
–40  
–60  
–80  
–100  
–120  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
ANALOG INPUT FREQUENCY (MHz)  
Figure 22. Single-Tone FFT with fIN = 1630.3 MHz  
Figure 25. SNR/SFDR vs. Analog Input Frequency (fIN);  
f
IN < 500 MHz; Buffer Control 1 Setting = 2.0×, 3.0×, and 4.0×  
0
–20  
0
A
= 1dBFS  
IN  
A
AND A  
= –7dBFS  
IN2  
SNR = 59.0dBFS  
ENOB = 9.5 BITS  
IN1  
SFDR = 88dBFS  
–20  
–40  
IMD2 = 95dBFS  
IMD3 = 88dBFS  
BUFFER CONTROL 1 = 2.0×  
SFDR = 69dBFS  
BUFFER CONTROL 1 = 8.0×  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
50  
100  
150  
200  
250  
FREQUENCY (MHz)  
Figure 23. Single-Tone FFT with fIN = 1950.3 MHz  
Figure 26. Two-Tone FFT; fIN1 = 184 MHz, fIN2 = 187 MHz  
Rev. B | Page 26 of 81  
Data Sheet  
AD6679  
0
100  
80  
SFDR (dBc)  
SNR (dBc)  
A
AND A  
= –7dBFS  
IN2  
IN1  
SFDR = 87dBFS  
IMD2 = 94dBFS  
IMD3 = 87dBFS  
BUFFER CONTROL 1 = 2.0×  
–20  
–40  
60  
SFDR (dBFS)  
40  
–60  
SNR (dBc)  
20  
–80  
0
–100  
–120  
–20  
–40  
0
50  
100  
150  
200  
250  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 30. SNR/SFDR vs. Input Amplitude, fIN = 170.3 MHz  
Figure 27. Two-Tone FFT; fIN1 = 338 MHz, fIN2 = 341 MHz  
90  
85  
80  
75  
70  
65  
0
SFDR  
–20  
–40  
SFDR (dBc)  
IMD3 (dBc)  
–60  
–80  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
SNR  
–140  
–40  
–25  
–10  
0
15  
25  
40  
55  
70  
85  
90  
84  
78  
72  
66  
60 54 48 42 36 30 24 18 12 6  
TEMPERATURE (°C)  
INPUT AMPLITUDE (dBFS)  
Figure 31. SNR/SFDR vs. Temperature, fIN = 170.3 MHz  
Figure 28. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with fIN1 = 184 MHz  
and fIN2 = 187 MHz  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
0
–20  
SFDR (dBc)  
–40  
IMD3 (dBc)  
–60  
–80  
SFDR (dBFS)  
–100  
–120  
IMD3 (dBFS)  
–140  
90  
84  
78  
72  
66  
60 54 48 42 36 30 24 18 12 6  
SAMPLE RATE (MSPS)  
INPUT AMPLITUDE (dBFS)  
Figure 32. Power Dissipation vs. Sample Rate (fS), Default SPI  
Figure 29. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with fIN1 = 338 MHz  
and fIN2 = 341 MHz  
Rev. B | Page 27 of 81  
AD6679  
Data Sheet  
EQUIVALENT CIRCUITS  
AVDD3  
AVDD3  
VIN+x  
AVDD3  
3pF 1.5pF  
SWING CONTROL  
(SPI)  
400Ω  
V
CM  
BUFFER  
10pF  
DRVDD  
D0+ TO D13+;  
DATA+  
DATA–  
AVDD3  
AVDD3  
A Dx/Dy+ AND B Dx/Dy+;  
DATA0+ TO DATA7+  
DRGND  
DRVDD  
OUTPUT  
DRIVER  
VIN–x  
D0– TO D13–;  
A Dx/Dy– AND B Dx/Dy–;  
DATA0– TO DATA7–  
A
IN  
3pF 1.5pF  
CONTROL  
(SPI)  
DRGND  
Figure 36. Digital Outputs  
Figure 33. Analog Inputs  
SPIVDD  
AVDD1  
ESD  
25Ω  
CLK+  
CLK–  
PROTECTED  
SPIVDD  
1kΩ  
SCLK  
30kΩ  
AVDD1  
ESD  
PROTECTED  
25Ω  
20kΩ  
20kΩ  
V
= 0.85V  
CM  
Figure 34. Clock Inputs  
Figure 37. SCLK Inputs  
AVDD1  
1kΩ  
SPIVDD  
ESD  
SYNC+  
PROTECTED  
30kΩ  
1kΩ  
20kΩ  
CSB  
LEVEL  
TRANSLATOR  
V
= 0.85V  
CM  
ESD  
PROTECTED  
AVDD1  
1kΩ  
20kΩ  
SYNC–  
Figure 35. SYNC Inputs  
Figure 38. CSB Input  
Rev. B | Page 28 of 81  
 
 
Data Sheet  
AD6679  
SPIVDD  
SPIVDD  
ESD  
ESD  
PROTECTED  
SDO  
PROTECTED  
SPIVDD  
SDI  
30kΩ  
1kΩ  
1kΩ  
PDWN/  
STBY  
SDIO  
30kΩ  
ESD  
PROTECTED  
ESD  
PROTECTED  
PDWN  
CONTROL (SPI)  
Figure 39. SDIO  
Figure 41. PDWN/STBY Input  
SPIVDD  
AVDD2  
ESD  
ESD  
PROTECTED  
PROTECTED  
FD  
V_1P0  
FD_A/FD_B  
TEMPERATURE DIODE  
(FD_A ONLY)  
ESD  
PROTECTED  
ESD  
PROTECTED  
V_1P0 PIN  
CONTROL (SPI)  
FD_x PIN CONTROL (SPI)  
Figure 40. FD_A/FD_B Outputs  
Figure 42. V_1P0 Input/Output  
Rev. B | Page 29 of 81  
AD6679  
Data Sheet  
THEORY OF OPERATION  
The AD6679 has two analog input channels and 14 LVDS  
output lane pairs. The AD6679 is designed to sample wide  
bandwidth analog signals of up to 2 GHz. The AD6679 is  
optimized for wide input bandwidth, high sampling rates,  
excellent linearity, and low power in a small package.  
maximum bandwidth of the ADC. Such use of low Q inductors  
or ferrite beads is required when driving the converter front end  
at high IF frequencies. Place either a differential capacitor or  
two single-ended capacitors on the inputs to provide a matching  
passive network. This ultimately creates a low-pass filter (LPF)  
at the input, which limits unwanted broadband noise. For more  
information, refer to the AN-742 Application Note, the AN-827  
Application Note, and the Analog Dialogue article Transformer-  
Coupled Front-End for Wideband A/D Converters(Volume 39,  
April 2005) at www.analog.com. In general, the precise values  
depend on the application.  
The dual ADC cores feature a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth inputs supporting a variety of  
user-selectable input ranges. An integrated voltage reference  
eases design considerations.  
The AD6679 has several functions that simplify the AGC  
function in a communications receiver. The programmable  
threshold detector allows monitoring of the incoming signal  
power using the fast detect bits of the ADC output data stream,  
which are enabled and programmed via Register 0x245 through  
Register 0x24C. If the input signal level exceeds the programmable  
threshold, the fast detect indicator goes high. Because this  
threshold indicator has low latency, the user can quickly reduce  
the system gain to avoid an overrange condition at the ADC input.  
For best dynamic performance, match the source impedances  
driving VIN+x and VIN−x such that common-mode settling  
errors are symmetrical. These errors are reduced by the common-  
mode rejection of the ADC. An internal reference buffer creates  
a differential reference that defines the span of the ADC core.  
Maximum SNR performance is achieved by setting the ADC to  
the largest span in a differential configuration. In the case of the  
AD6679, the available span is programmable through the SPI  
port from 1.46 V p-p to 2.06 V p-p differential with 2.06 V p-p  
differential being the default.  
The LVDS outputs can be configured depending on the decimation  
ratio. Multiple device synchronization is supported through the  
SYNC input pins.  
Differential Input Configurations  
There are several ways to drive the AD6679, either actively or  
passively. However, optimum performance is achieved by  
driving the analog input differentially.  
ADC ARCHITECTURE  
The architecture consists of an input buffered pipelined ADC.  
The input buffer provides a termination impedance to the  
analog input signal. This termination impedance can be  
changed using the SPI to meet the termination needs of the  
driver/amplifier. The default termination value is set to 400 Ω. The  
equivalent circuit diagram of the analog input termination is  
shown in Figure 33. The input buffer is optimized for high  
linearity, low noise, and low power.  
For applications in which SNR and SFDR are key parameters,  
differential transformer coupling is the recommended input  
configuration (see Figure 43 and Figure 44) because the noise  
performance of most amplifiers is not adequate to achieve the  
true performance of the AD6679.  
For low to midrange frequencies, it is recommended to use a  
double balun or double transformer network (see Figure 43) for  
optimum performance from the AD6679. For higher  
frequencies in the second or third Nyquist zone, it is better to  
remove some of the front-end passive components to ensure  
wideband operation (see Figure 44).  
The input buffer provides a linear high input impedance (for  
ease of drive) and reduces the kickback from the ADC. The  
quantized outputs from each stage are combined into a final  
16-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate with a new input  
sample while the remaining stages operate with the preceding  
samples. Sampling occurs on the rising edge of the clock.  
10  
10Ω  
ETC1-11-13/  
MABA007159  
0.1µF  
4pF  
25Ω  
1:1Z  
ADC  
ANALOG INPUT CONSIDERATIONS  
2pF  
0.1µF  
25Ω  
10Ω  
The analog input to the AD6679 is a differential buffer. The  
internal common-mode voltage of the buffer is 2.05 V. The  
clock signal alternately switches the input circuit between  
sample mode and hold mode. When the input circuit is switched  
into sample mode, the signal source must be capable of charging  
the sample capacitors and settling within one-half of a clock cycle.  
A small resistor, in series with each input, can help reduce the  
peak transient current inserted from the output stage of the  
driving source. In addition, low Q inductors or ferrite beads can  
be placed on each section of the input to reduce high differen-  
tial capacitance at the analog inputs and, thus, achieve the  
10Ω  
0.1µF  
4pF  
Figure 43. Differential Transformer Coupled Configuration for First and  
Second Nyquist Frequencies  
25  
0.1µF  
25Ω  
MARKI  
BAL-0006  
ADC  
OR  
0.1µF  
25Ω  
25Ω  
BAL-0006SMG  
0.1µF  
Figure 44. Differential Transformer Coupled Configuration for Second and  
Third Nyquist Frequencies  
Rev. B | Page 30 of 81  
 
 
 
 
 
Data Sheet  
AD6679  
250  
230  
210  
190  
170  
150  
130  
110  
90  
Input Common Mode  
The analog inputs of the AD6679 are internally biased to the  
common mode, as shown in Figure 45. The common-mode  
buffer has a limited range in that the performance suffers  
greatly if the common-mode voltage drops by more than  
100 mV. Therefore, in dc-coupled applications, set the  
common-mode voltage to 2.05 V 100 mV to ensure proper  
ADC operation.  
Analog Input Controls and SFDR Optimization  
The AD6679 offers flexible controls for the analog inputs such  
as input termination, buffer current, and input full-scale  
adjustment. All of the available controls are shown in Figure 45.  
AVDD3  
70  
50  
1.5×  
2.5×  
3.5×  
4.5×  
5.5×  
6.5×  
7.5×  
8.5×  
BUFFER CURRENT SETTING  
Figure 46. Typical IAVDD3 vs. Buffer Current Setting in Register 0x018  
VIN+x  
Register 0x019, Register 0x01A, Register 0x11A, and Register 0x935  
offer secondary bias controls for the input buffer for frequencies  
>500 MHz. Use Register 0x934 to reduce input capacitance to  
achieve wider signal bandwidth but doing so may result in  
slightly lower linearity and noise performance. These register  
settings do not affect the AVDD3 power as much as Register 0x018  
does. For frequencies <500 MHz, it is recommended to use the  
default settings for these registers. Table 11 shows the recom-  
mended values for the buffer current control registers for various  
speed grades.  
3pF  
AVDD3  
400  
V
CM  
BUFFER  
10pF  
AVDD3  
VIN–x  
3pF  
AIN CONTROL  
(SPI) REGISTERS  
(REG 0x008, REG 0x015,  
REG 0x016, REG 0x018,  
REG 0x025)  
Register 0x11A can be used when sampling in higher Nyquist  
zones (>1000 MHz) but is not necessary. Using Register 0x11A  
can help the ADC sampling network to optimize the sampling  
and settling times internal to the ADC for high frequency opera-  
tion. For frequencies greater than 500 MHz, it is recommended  
to operate the ADC core at a 1.46 V full-scale setting. This setting  
offers better SFDR without any significant decrease in SNR.  
Figure 45. Analog Input Controls  
Use Register 0x018, Register 0x019, Register 0x01A, Register 0x11A,  
Register 0x934, and Register 0x935 to adjust the buffer behavior on  
each channel to optimize the SFDR over various input frequencies  
and bandwidths of interest.  
Figure 47, Figure 48, and Figure 49 show the SFDR vs. input  
frequency for various buffer settings for the AD6679. The  
recommended settings shown in Table 11 were used to collect  
the data while changing the contents of register 0x018 only.  
95  
Input Buffer Control Registers (Register 0x018,  
Register 0x019, Register 0x01A, Register 0x11A,  
Register 0x934, Register 0x935)  
The input buffer has many registers that set the bias currents  
and other settings for operation at different frequencies. These  
bias currents and settings can be changed to suit the input  
frequency range of operation. Register 0x018 controls the buffer  
bias current to reduce the effects of charge kickback from the  
ADC core. This setting can be scaled from a low setting of 1.0× to  
a high setting of 8.5×. The default setting in Register 0x018 is  
2.0×. These settings are sufficient for operation in the first  
Nyquist zone. As the input buffer currents are set, the amount  
of current required by the AVDD3 supply changes. This  
relationship is shown in Figure 46. For a complete list of buffer  
current settings, see Table 41.  
4.5×  
3.0×  
85  
75  
65  
55  
45  
35  
2.0×  
1.5×  
1.0×  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
INPUT FREQUENCY (MHz)  
Figure 47. Buffer Current Sweeps (SFDR vs. Input Frequency and IBUFF);  
10 MHz < fIN < 500 MHz; Front-End Network Shown in Figure 43  
Rev. B | Page 31 of 81  
 
 
 
AD6679  
Data Sheet  
90  
Absolute Maximum Input Swing  
4.5×  
5.0×  
6.0×  
7.0×  
8.0×  
The absolute maximum input swing allowed at the inputs of the  
AD6679 is 4.3 V p-p differential. Signals operating near or at  
this level can cause permanent damage to the ADC.  
85  
80  
75  
70  
65  
VOLTAGE REFERENCE  
A stable and accurate 1.0 V voltage reference is built into the  
AD6679. This internal 1.0 V reference sets the full-scale input  
range of the ADC. The full-scale input range can be adjusted via  
Register 0x025. For more information on adjusting the input  
swing, see Table 41. Figure 50 shows the block diagram of the  
internal 1.0 V reference controls.  
500 550 600 650 700 750 800 850 900 950 1000  
VIN+A/  
VIN+B  
INPUT FREQUENCY (MHz)  
VIN–A/  
VIN–B  
Figure 48. Buffer Current Sweeps (SFDR vs. Input Frequency and IBUFF);  
500 MHz < fIN < 1000 MHz; Front-End Network Shown in Figure 44  
80  
75  
70  
65  
60  
ADC  
INTERNAL  
V_1P0  
GENERATOR  
CORE  
FULL-SCALE  
VOLTAGE  
ADJUST  
INPUT FULL-SCALE  
RANGE ADJUST  
SPI REGISTER  
(REG 0x025 AND REG 0x024)  
V_1P0  
V_1P0 PIN  
CONTROL SPI  
REGISTER  
(REG 0x025 AND  
REG 0x024)  
4.5×  
5.0×  
55  
6.0×  
7.0×  
Figure 50. Internal Reference Configuration and Controls  
50  
8.0×  
8.0×  
45  
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000  
INPUT FREQUENCY (MHz)  
Figure 49. Buffer Current Sweeps (SFDR vs. Input Frequency and IBUFF);  
1 GHz < fIN < 2 GHz; Front-End Network Shown in Figure 44  
Table 11. SFDR Optimization for Input Frequencies  
Input Full-  
Scale  
Input Full-  
Scale  
Buffer  
Buffer  
Buffer  
Buffer  
Buffer  
Input  
Input  
Control 1  
(Register  
0x018)  
Control 2  
(Register  
0x019)  
Control 3  
(Register  
0x01A)  
Control 4  
(Register  
0x11A)  
Control 5  
(Register  
0x935)  
Range  
(Register  
0x025)  
Control  
(Register  
0x030)  
Capacitance  
(Register  
0x934)  
Termination  
(Register  
0x016)1  
Frequency  
DC to 250 MHz  
0x20  
(2.0×)  
0x70  
(4.5×)  
0x80  
(5.0×)  
0xF0  
0x60  
(Setting 3)  
0x60  
(Setting 3)  
0x40  
(Setting 1)  
0x40  
0x0A  
(Setting 3)  
0x0A  
(Setting 3)  
0x08  
(Setting 1)  
0x08  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x00 (off)  
0x04 (on)  
0x04 (on)  
0x00 (off)  
0x00 (off)  
0x0C  
(2.06 V p-p)  
0x0C  
(2.06 V p-p)  
0x08  
(1.46 V p-p)  
0x08  
0x04  
0x04  
0x18  
0x18  
0x1F  
0x0C/0x1C/0x6C  
0x0C/0x1C/0x6C  
0x0C/0x1C/0x6C  
0x0C/0x1C/0x6C  
250 MHz to  
500 MHz  
500 MHz to  
1 GHz  
0x1F  
0x1F/0x002  
0x1F/0x002  
1 GHz to 2 GHz  
(8.5×)  
(Setting 1)  
(Setting 1)  
(1.46 V p-p)  
1 The input termination can be changed to accommodate the application with little or no impact to ac performance.  
2 The input capacitance can be set to 1.5 pF to achieve wider input bandwidth but doing so results in slightly lower ac performance.  
Rev. B | Page 32 of 81  
 
 
 
 
 
Data Sheet  
AD6679  
Register 0x024 enables the user to use either this internal 1.0 V  
reference, or to provide an external 1.0 V reference. When using  
an external voltage reference, provide a 1.0 V reference. The  
full-scale adjustment is made using the SPI, irrespective of the  
reference voltage. For more information on adjusting the full-  
scale level of the AD6679, refer to the Memory Map Register  
Table section.  
0.1µF  
1:1Z  
CLK+  
ADC  
CLK–  
CLOCK  
INPUT  
100Ω  
50Ω  
0.1µF  
Figure 52. Transformer Coupled Differential Clock  
Another option is to ac couple a differential CML or LVDS  
signal to the sample clock input pins as shown in Figure 53 and  
Figure 54.  
The use of an external reference may be necessary, in some  
applications, to enhance the gain accuracy of the ADC or  
improve thermal drift characteristics. Figure 51 shows the  
typical drift characteristics of the internal 1.0 V reference.  
3.3V  
71Ω  
33Ω  
10pF  
1.0010  
1.0009  
1.0008  
1.0007  
1.0006  
1.0005  
1.0004  
1.0003  
1.0002  
1.0001  
1.0000  
0.9999  
0.9998  
33Ω  
Z
Z
= 50Ω  
0.1µF  
0
CLK+  
ADC  
CLK–  
0.1µF  
= 50Ω  
0
Figure 53. Differential CML Sample Clock  
0.1µF  
0.1µF  
0.1µF  
100Ω  
0.1µF  
CLOCK INPUT  
CLOCK INPUT  
CLK+  
LVDS  
CLK+  
ADC  
DRIVER  
CLK–  
CLK–  
1
1
50Ω  
50Ω  
–50  
0
25  
90  
TEMPERATURE (°C)  
Figure 51. Typical V_1P0 Drift  
1
50Ω RESISTORS ARE OPTIONAL.  
Figure 54. Differential LVDS Sample Clock  
The external reference must be a stable 1.0 V reference. The  
ADR130 is a good option for providing the 1.0 V reference.  
Figure 55 shows how the ADR130 can be used to provide the  
external 1.0 V reference to the AD6679. The gray areas show  
unused blocks within the AD6679 while the ADR130 provides  
the external reference.  
Clock Duty Cycle Considerations  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to the clock duty cycle. Commonly, a 5% tolerance  
is required on the clock duty cycle to maintain dynamic  
performance characteristics. In applications where the clock  
duty cycle cannot be guaranteed to be 50%, a higher multiple  
frequency clock can be supplied to the AD6679. For example,  
the AD6679 can be clocked at 2 GHz with the internal clock  
divider set to 4. This ensures a 50% duty cycle, high slew rate  
internal clock for the ADC. See the Memory Map section for  
more details on using this feature.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, drive the AD6679 sample clock  
inputs (CLK+ and CLK−) with a differential signal. This signal  
is typically ac-coupled to the CLK+ and CLK− pins via a  
transformer or clock drivers. These pins are biased internally  
and require no additional biasing.  
Figure 52 shows one preferred method for clocking the  
AD6679. The low jitter clock source is converted from a single-  
ended signal to a differential signal using an RF transformer.  
INTERNAL  
V_1P0  
GENERATOR  
FULL-SCALE  
VOLTAGE  
ADJUST  
ADR130  
1
2
3
6
5
4
NC  
NC  
GND SET  
V_1P0  
0.1µF  
INPUT  
V
V
OUT  
IN  
0.1µF  
FULL-SCALE  
CONTROL  
Figure 55. External Reference Using the ADR130  
Rev. B | Page 33 of 81  
 
 
 
 
 
 
AD6679  
Data Sheet  
Input Clock Divider  
Clock Jitter Considerations  
The AD6679 contains an input clock divider with the ability to  
divide the Nyquist input clock by 1, 2, 4, or 8. The divide ratio  
can be selected using Register 0x10B. This is shown in Figure 56.  
The maximum frequency at the output of the divider is 500 MHz.  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) is calculated by  
SNR = 20 × log10(2 × π × fA × tJ)  
The maximum frequency at the CLK inputs is 4 GHz. This is  
the limit of the divider. In applications where the clock input is  
a multiple of the sample clock, take care to program the  
appropriate divider ratio into the clock divider before applying  
the clock signal. This ensures that the current transients during  
device startup are controlled.  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. IF undersampling  
applications are particularly sensitive to jitter (see Figure 57).  
130  
RMS CLOCK JITTER REQUIREMENT  
120  
110  
CLK+  
16 BITS  
14 BITS  
12 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
CLK–  
÷2  
÷4  
÷8  
10 BITS  
8 BITS  
REG 0x10B  
0.125ps  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
Figure 56. Clock Divider Circuit  
The AD6679 clock divider can be synchronized using the  
external SYNC input. A valid SYNC input causes the clock  
divider to reset to a programmable state. This feature is enabled  
by setting Bit 7 of Register 0x10D. This synchronization feature  
allows multiple devices to have their clock dividers aligned to  
guarantee simultaneous input sampling.  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
Figure 57. Ideal SNR vs. Analog Input Frequency and Jitter  
Treat the clock input as an analog signal when aperture jitter  
may affect the dynamic range of the AD6679. Separate the power  
supplies for the clock drivers from the ADC output driver  
supplies to avoid modulating the clock signal with digital noise.  
If the clock is generated from another type of source (by gating,  
dividing, or other methods), retime it using the original clock at  
the last step. See the AN-501 Application Note and the AN-756  
Application Note for more in-depth information about jitter  
performance as it relates to ADCs.  
After programming the desired clock divider settings, changing  
the input clock frequency or glitching the input clock a datapath  
soft reset is recommended by writing 0x02 to Register 0x001.  
This reset function restarts all the datapath and clock generation  
circuitry in the device. The reset occurs on the first clock cycle  
after the register is programmed, and the device requires 5 ms  
to recover. This reset does not affect the contents of the memory  
map registers.  
Figure 58 shows the estimated SNR of the AD6679 across input  
frequency for different clock induced jitter values. Estimate the  
SNR by using the following equation:  
Input Clock Divider ½ Period Delay Adjustment  
The input clock divider inside the AD6679 provides phase delay  
in increments of ½ the input clock cycle. Program Register 0x10C  
to enable this delay independently for each channel.  
SNR  
  
SNR  
10  
JITTER  
ADC  
+10  
  
10  
SNR(dBFS) =10log 10  
Clock Fine Delay Adjustment  
To adjust the AD6679 sampling edge instant, write to Register  
0x117 and Register 0x118. Setting Bit 0 of Register 0x117 enables  
the fine delay feature, and Register 0x118, Bits[7:0], set the value  
of the delay. This value can be programmed individually for each  
channel. The clock delay can be adjusted from −151.7 ps to  
+150 ps in ~1.7 ps increments. The clock delay adjustment  
takes effect immediately when it is enabled via SPI writes.  
Enabling the clock fine delay adjustment in Register 0x117  
causes a datapath reset.  
Rev. B | Page 34 of 81  
 
 
Data Sheet  
AD6679  
75  
70  
65  
60  
55  
50  
The temperature diode voltage can be output to the FD_A pin  
using the SPI. Use Register 0x028, Bit 0, to enable or disable the  
diode. Register 0x028 is a local register. Channel A must be  
selected in the device index register (Register 0x008) to enable  
the temperature diode readout. Configure the FD_A pin to  
output the diode voltage by programming Register 0x040,  
Bits[2:0]. See Table 41 for more information.  
25fs  
50fs  
75fs  
100fs  
125fs  
150fs  
175fs  
200fs  
The voltage response of the temperature diode (with SPIVDD =  
1.8 V) is shown in Figure 59.  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
45  
1M  
10M  
100M  
1G  
10G  
INPUT FREQUENCY (Hz)  
Figure 58. Estimated SNR Degradation for the AD6679 vs.  
Input Frequency and Jitter  
POWER-DOWN/STANDBY MODE  
The AD6679 has a PDWN/STBY pin that configures the device  
in power-down or standby mode. The default operation is the  
power-down function. The PDWN/STBY pin is a logic high  
pin. The power-down option can also be set via Register 0x03F  
and Register 0x040.  
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
TEMPERATURE (°C)  
TEMPERATURE DIODE  
Figure 59. Temperature Diode Voltage vs. Temperature  
The AD6679 contains a diode-based temperature sensor for  
measuring the temperature of the die. This diode can output a  
voltage and serve as a coarse temperature sensor to monitor the  
internal die temperature.  
Rev. B | Page 35 of 81  
 
 
 
 
AD6679  
Data Sheet  
VIRTUAL CONVERTER MAPPING  
The AD6679 contains a configurable signal path that allows  
different features to be enabled for different applications. These  
features are controlled through the chip application mode  
register (0x200). The chip operating mode is controlled by  
Bits[3:0] and the Chip Q ignore is controlled by Bit 5.  
To support the different application layer modes, the AD6679  
treats each sample stream (real or I or Q) as originating from  
separate virtual converters. Table 12 shows the number of  
virtual converters required for each chip mode.  
The AD6679 supports up to four digital DDC blocks. Each  
DDC block outputs either two sample streams (I/Q) for the  
complex data components (real + imaginary) or one sample  
stream for real (I) data. The AD6679 can be configured to use up  
to eight virtual converters depending on the DDC configuration.  
Figure 60 shows the virtual converters and their relationship to  
DDC outputs when complex outputs are used.  
The AD6679 contains the following digital features:  
Two analog-to-digital converter (ADC) cores  
Four digital downconverter (DDC) channels  
Two noise shaped requantizer (NSR) blocks with optional  
decimate by two blocks  
Two variable dynamic range (VDR) blocks  
Table 12 shows the virtual converter mapping for each chip  
operating mode when channel swapping is disabled.  
After the chip application mode has been selected, the output  
decimation ratio is set using the chip decimation ratio in  
Register 0x201, Bits[2:0]. The output sample rate is the ADC  
sample rate divided by the chip decimation ratio.  
Table 12. Virtual Converter Mapping  
Chip  
Virtual Converter Mapping1  
No. of  
Virtual  
Operating  
Mode  
Chip Q  
Ignore  
Converters (Register  
Supported 0x200[3:0]) 0x200[5])  
(Register  
0
1
2
3
4
5
6
7
1
One DDC  
mode (0x1)  
Real  
(I only)  
(0x1)  
DDC 0  
I samples  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
2
One DDC  
mode (0x1)  
Complex  
(I/Q)  
DDC 0  
I samples Q samples  
DDC 0  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
(0x0)  
2
Two DDC  
mode (0x2)  
Real  
(I only)  
(0x1)  
DDC 0  
I samples I samples  
DDC 1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
4
Two DDC  
mode (0x2)  
Complex  
(I/Q)  
DDC 0  
DDC 0  
DDC 1  
DDC 1  
N/A  
N/A  
N/A  
N/A  
I samples Q samples I samples Q samples  
(0x0)  
4
Four DDC  
mode (0x3)  
Real  
(I only)  
(0x1)  
DDC 0  
I samples I samples  
DDC 1  
DDC 2  
I samples I samples  
DDC 3  
N/A  
N/A  
N/A  
N/A  
8
Four DDC  
mode (0x3)  
Complex  
(I/Q)  
DDC 0  
DDC 0  
DDC 1  
DDC 1  
DDC 2  
DDC 2  
DDC 3  
DDC 3  
I samples Q samples I samples Q samples I samples Q samples I samples Q samples  
(0x0)  
1 to 2  
1 to 2  
NSR mode  
(0x7)  
Real or  
complex  
(0x0)  
Real or  
complex  
(0x0)  
ADC A  
samples  
ADC B  
samples  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
VDR mode  
(0x8)  
ADC A  
samples  
ADC B  
samples  
1 N/A means not applicable.  
Rev. B | Page 36 of 81  
 
 
Data Sheet  
AD6679  
DDC 0  
DDC 1  
DDC 2  
DDC 3  
ADC A  
SAMPLING  
AT fS  
REAL/I  
REAL/I  
REAL/I  
CONVERTER 0  
Q
I
I
REAL/Q  
Q
Q
CONVERTER 1  
REAL/I  
REAL/I  
CONVERTER 2  
Q
I
I
REAL/Q  
Q
Q
I/Q  
CROSSBAR  
MUX  
CONVERTER 3  
OUTPUT  
INTERFACE  
REAL/I  
REAL/I  
CONVERTER 4  
Q
I
I
REAL/Q  
Q
Q
CONVERTER 5  
ADC B  
SAMPLING  
AT fS  
REAL/I  
REAL/I  
CONVERTER 6  
Q
REAL/Q  
I
I
REAL/Q  
Q
Q
CONVERTER 7  
Figure 60. DDCs and Virtual Converter Mapping  
Rev. B | Page 37 of 81  
 
AD6679  
Data Sheet  
ADC OVERRANGE AND FAST DETECT  
In receiver applications, it is desirable to have a mechanism to  
reliably determine when the converter is about to be clipped.  
The standard overrange bit, available via the STATUS /OVR  
pins, provides information on the state of the analog input  
that is of limited usefulness. Therefore, it is helpful to have a  
programmable threshold below full scale that allows time to  
reduce the gain before the clip actually occurs. In addition,  
because input signals can have significant slew rates, the latency  
of this function is of major concern. Highly pipelined converters  
can have significant latency. The AD6679 contains fast detect  
circuitry for individual channels to monitor the threshold and  
assert the FD_A and FD_B pins.  
The operation of the upper threshold and lower threshold registers,  
along with the dwell time registers, is shown in Figure 61.  
The FD_x indicator is asserted if the input magnitude exceeds  
the value programmed in the fast detect upper threshold  
registers, located in Register 0x247 and Register 0x248. The  
selected threshold register is compared with the signal  
magnitude at the output of the ADC. The fast upper threshold  
detection has a latency of 28 clock cycles. The approximate  
upper threshold magnitude is defined by  
Upper Threshold Magnitude (dBFS) = 20log(Threshold  
Magnitude/213)  
The FD_x indicators are not cleared until the signal drops  
below the lower threshold for the programmed dwell time. The  
lower threshold is programmed in the fast detect lower thresh-  
old registers, located in Register 0x249 and Register 0x24A. The  
fast detect lower threshold register is a 13-bit register that is  
compared with the signal magnitude at the output of the ADC.  
This comparison is subject to the ADC pipeline latency but is  
accurate in terms of converter resolution. The lower threshold  
magnitude is defined by  
ADC OVERRANGE (OR)  
The ADC overrange indicator is asserted when an overrange is  
detected on the input of the ADC. The overrange indicator can  
be output via the STATUS pins. The latency of this overrange  
indicator matches the sample latency.  
The AD6679 constantly monitors the analog input level and  
records any overrange condition in any of the eight virtual  
converters. For more information on the virtual converters,  
refer to Figure 63. The overrange status of each virtual converter  
is registered as a sticky bit (that is, it is set until cleared) in  
Register 0x563. The contents of Register 0x563 can be cleared  
using Register 0x562 by toggling the bits corresponding to the  
virtual converter to set and reset the position.  
Lower Threshold Magnitude (dBFS) = 20log(Threshold  
Magnitude/213)  
For example, to set an upper threshold of −6 dBFS, write  
0x0FFF to Register 0x247 and Register 0x248; and to set a lower  
threshold of −10 dBFS, write 0x0A1D to Register 0x249 and  
Register 0x24A.  
FAST THRESHOLD DETECTION (FD_A AND FD_B)  
The fast detect (FD) bit (enabled in the control bits via  
Register 0x559) is set whenever the absolute value of the input  
signal exceeds the programmable upper threshold level. The FD  
bit is cleared only when the absolute value of the input signal  
drops below the lower threshold level for greater than the  
programmable dwell time. This feature provides hysteresis and  
prevents the FD bit from excessively toggling.  
The dwell time can be programmed from 1 to 65,535 sample  
clock cycles by placing the desired value in the fast detect dwell  
time registers, located in Register 0x24B and Register 0x24C.  
See the Memory Map section (Register 0x245 to Register 0x24C in  
Table 41) for more details.  
UPPER THRESHOLD  
DWELL TIME  
TIMER RESET BY  
RISE ABOVE  
LOWER  
THRESHOLD  
LOWER THRESHOLD  
TIMER COMPLETES BEFORE  
SIGNAL RISES ABOVE  
LOWER THRESHOLD  
DWELL TIME  
FD_A OR FD_B  
Figure 61. Threshold Settings for FD_A and FD_B Signals  
Rev. B | Page 38 of 81  
 
 
 
 
Data Sheet  
AD6679  
SIGNAL MONITOR  
The signal monitor block provides additional information about  
the signal being digitized by the ADC. The signal monitor  
computes the peak magnitude of the digitized signal. This  
information can be used to drive an AGC loop to optimize the  
range of the ADC in the presence of real-world signals.  
SMPR are supported. The peak detector function is enabled by  
setting Bit 1 of Register 0x270 in the signal monitor control  
register. The 24-bit SMPR must be programmed before  
activating this mode.  
After enabling this mode, the value in the SMPR is loaded into a  
monitor period timer that decrements at the decimated clock  
rate. The magnitude of the input signal is compared with the  
value in the internal magnitude storage register (not accessible  
to the user), and the greater of the two is updated as the current  
peak level. The initial value of the magnitude storage register is  
set to the current ADC input signal magnitude. This comparison  
continues until the monitor period timer reaches a count of 1.  
The results of the signal monitor block can be obtained by  
reading back the internal values from the SPI port. A global, 24-  
bit programmable period controls the duration of the measure-  
ment. Figure 62 shows the simplified block diagram of the  
signal monitor block.  
The peak detector captures the largest signal within the  
observation period. This period observes only the magnitude of  
the signal. The resolution of the peak detector is a 13-bit value  
and the observation period is 24 bits and represents converter  
output samples. The peak magnitude is derived by using the  
following equation:  
When the monitor period timer reaches a count of 1, the 13-bit  
peak level value is transferred to the signal monitor holding  
register, which can be read through the memory map. The  
monitor period timer is reloaded with the value in the SMPR,  
and the countdown is restarted. In addition, the magnitude of  
the first input sample is updated in the internal magnitude  
storage register, and the comparison and update procedure, as  
explained previously, continues.  
Peak Magnitude (dBFS) = 20 log(Peak Detector Value/213)  
The magnitude of the input port signal is monitored over a  
programmable time period that is determined by the signal  
monitor period registers (SMPRs). Only even values of the  
SIGNAL MONITOR  
FROM  
PERIOD REGISTER  
DOWN  
COUNTER  
IS  
MEMORY  
(SMPR)  
MAP  
COUNT = 1?  
REG 0x271, REG 0x272, REG 0x273  
LOAD  
CLEAR  
LOAD  
MAGNITUDE  
SIGNAL  
MONITOR  
HOLDING  
REGISTER  
TO STATUS± PINS  
AND MEMORY MAP  
FROM  
STORAGE  
INPUT  
REGISTER  
LOAD  
COMPARE  
A > B  
Figure 62. Signal Monitor Block  
Rev. B | Page 39 of 81  
 
 
AD6679  
Data Sheet  
DIGITAL DOWNCONVERTER (DDC)  
The AD6679 includes four digital downconverters (DDCs) that  
provide filtering and reduce the output data rate. This digital  
processing section includes an NCO, up to four half-band  
decimating filter, a finite impulse response (FIR) filter, a gain  
stage, and a complex to real conversion stage. Each of these  
processing blocks has control lines that allow it to be  
independently enabled and disabled to provide the desired  
processing function. The DDC can be configured to output  
either real data or complex output data.  
to use both DDC Output Port I and DDC Output Port Q. For  
more information, see Figure 71.  
DDC GENERAL DESCRIPTION  
The four DDC blocks extract a portion of the full digital  
spectrum captured by the ADC(s). They are intended for IF  
sampling or oversampled baseband radios requiring wide  
bandwidth input signals.  
Each DDC block contains the following signal processing  
stages:  
DDC I/Q INPUT SELECTION  
Frequency translation stage (optional)  
Filtering stage  
Gain stage (optional)  
The AD6679 has two ADC channels and four DDC channels.  
Each DDC channel has two input ports that can be paired to  
support both real and complex inputs through the I/Q crossbar  
mux. For real signals, both DDC input ports must select the  
same ADC channel (that is, DDC Input Port I = ADC Channel A  
and DDC Input Port Q = ADC Channel A). For complex signals,  
each DDC input port must select different ADC channels (that  
is, DDC Input Port I = ADC Channel A and DDC Input Port Q  
= ADC Channel B).  
Complex to real conversion stage (optional)  
Frequency Translation Stage (Optional)  
This stage consists of a 12-bit complex NCO and quadrature  
mixers that can be used for frequency translation of both real  
and complex input signals. This stage shifts a portion of the  
available digital spectrum down to baseband.  
The inputs to each DDC are controlled by the DDC input selec-  
tion registers (Register 0x311, Register 0x331, Register 0x351, and  
Register 0x371). See Table 41 for information on how to  
configure the DDCs.  
Filtering Stage  
After shifting down to baseband, this stage decimates the  
frequency spectrum using a chain of up to four half-band low-  
pass filters for rate conversion. The decimation process lowers  
the output data rate, which, in turn, reduces the output interface  
rate.  
DDC I/Q OUTPUT SELECTION  
Each DDC channel has two output ports that can be paired to  
support both real and complex outputs. For real output signals,  
only the DDC Output Port I is used (the DDC Output Port Q is  
invalid). For complex I/Q output signals, both DDC Output  
Port I and DDC Output Port Q are used.  
Gain Stage (Optional)  
Due to losses associated with mixing a real input signal down to  
baseband, this stage compensates by adding an additional 0 dB  
or 6 dB of gain.  
The I/Q outputs to each DDC channel are controlled by the  
DDC complex to real enable bit, Bit 3, in the DDC control  
registers (Register 0x310, Register 0x330, Register 0x350, and  
Register 0x370).  
Complex to Real Conversion Stage (Optional)  
When real outputs are necessary, this stage converts the  
complex outputs back to real outputs by performing an fS/4  
mixing operation together with a filter to remove the complex  
component of the signal.  
The Chip Q ignore bit in the chip mode register (Register 0x200,  
Bit 5) controls the chip output muxing of all the DDC channels.  
When all DDC channels use real outputs, set this bit high to  
ignore all DDC Q output ports. When any of the DDC channels  
are set to use complex I/Q outputs, the user must clear this bit  
Figure 63 shows the detailed block diagram of the DDCs  
implemented in the AD6679.  
Rev. B | Page 40 of 81  
 
 
 
 
Data Sheet  
AD6679  
DDC 0  
DDC 1  
DDC 2  
DDC 3  
REAL/I  
I
REAL/I  
CONVERTER 0  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 1  
ADC  
REAL/I  
SYNC±  
I
SAMPLING  
AT fS  
REAL/I  
REAL/I  
CONVERTER 2  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 3  
SYNC±  
I
REAL/I  
REAL/I  
CONVERTER 4  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 5  
ADC  
SAMPLING  
AT fS  
REAL/I  
SYNC±  
I
REAL/I  
REAL/I  
CONVERTER 6  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 7  
SYNC  
SYNC±  
SYNCHRONIZATION  
CONTROL CIRCUITS  
Figure 63. DDC Detailed Block Diagram  
Figure 64 shows an example usage of one of the four DDC  
blocks with a real input signal and four half-band filters (HB4 +  
HB3 + HB2 + HB1). It shows both complex (decimate by 16)  
and real (decimate by 8) output options.  
If the DDC soft reset is not issued, the output may potentially  
show amplitude variations.  
Table 13 through Table 17 show the DDC samples when the  
chip decimation ratio is set to 1, 2, 4, 8, or 16, respectively.  
When DDCs have different decimation ratios, the chip decimation  
ratio must be set to the lowest decimation ratio of all the DDC  
channels. In this scenario, samples of higher decimation ratio  
DDCs are repeated to match the chip decimation ratio sample  
rate.  
When DDCs have different decimation ratios, the chip  
decimation ratio (Register 0x201) must be set to the lowest  
decimation ratio of all the DDC blocks. In this scenario,  
samples of higher decimation ratio DDCs are repeated to match  
the chip decimation ratio sample rate. Whenever the NCO  
frequency is set or changed, the DDC soft reset must be issued.  
Rev. B | Page 41 of 81  
 
AD6679  
Data Sheet  
ADC  
SAMPLING  
AT fS  
ADC  
REAL  
REAL  
REAL INPUT—SAMPLED AT fS  
BANDWIDTH OF  
INTEREST  
BANDWIDTH OF  
INTEREST IMAGE  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
FREQUENCY TRANSLATION STAGE (OPTIONAL)  
I
DIGITAL MIXER + NCO FORfS/3 TUNING, THE FREQUENCY  
TUNING WORD = ROUND ((fS/3)/fS × 4096) = +1365 (0x555)  
NCO TUNES CENTER OF  
BANDWIDTH OF INTEREST  
TO BASEBAND  
cos(wt)  
REAL  
12-BIT  
NCO  
90°  
0°  
–sin(wt)  
Q
BANDWIDTH OF  
INTEREST IMAGE  
(–6dB LOSS DUE TO  
NCO + MIXER)  
DIGITAL FILTER  
RESPONSE  
BANDWIDTH OF INTEREST  
(–6dB LOSS DUE TO  
NCO + MIXER)  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
FILTERING STAGE  
4 DIGITAL HALF-BAND FILTERS  
(HB4 + HB3 + HB2 + HB1)  
HB4 FIR  
HB3 FIR  
HB2 FIR  
HB1 FIR  
HALF-  
HALF-  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
BAND  
BAND  
I
I
FILTER  
FILTER  
2
2
2
2
2
2
HB4 FIR  
HB3 FIR  
HB2 FIR  
HB1 FIR  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
Q
Q
6dB GAIN TO  
COMPENSATE FOR  
NCO + MIXER LOSS  
COMPLEX (I/Q) OUTPUTS  
DECIMATE BY 16  
GAIN STAGE (OPTIONAL)  
0dB OR 6dB GAIN  
DIGITAL FILTER  
RESPONSE  
I
I
2
+6dB  
GAIN STAGE (OPTIONAL)  
0dB OR 6dB GAIN  
Q
Q
2
+6dB  
fS/32  
fS/32  
fS/32  
fS/32  
DC  
COMPLEX TO REAL  
DC  
fS/8  
fS/16  
fS/16  
fS/8  
fS/16  
fS/16  
CONVERSION STAGE (OPTIONAL)  
DOWNSAMPLE BY 2  
fS/4 MIXING + COMPLEX FILTER TO REMOVE Q  
I
I
+6dB  
+6dB  
REAL (I) OUTPUTS  
DECIMATE BY 8  
COMPLEX  
TO  
REAL  
REAL/I  
Q
Q
6dB GAIN TO  
COMPENSATE FOR  
NCO + MIXER LOSS  
fS/32  
fS/32  
DC  
fS/8  
fS/16  
fS/16  
fS/8  
Figure 64. DDC Theory of Operation Example (Real Input, Decimate by 16)  
Rev. B | Page 42 of 81  
 
Data Sheet  
AD6679  
Table 13. DDC Samples When Chip Decimation Ratio = 1  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB1 FIR  
(DCM1 =  
1)  
HB2 FIR +  
HB1 FIR  
HB3 FIR + HB2  
FIR + HB1 FIR  
(DCM1 = 4)  
HB4 FIR + HB3 FIR +  
HB2 FIR + HB1 FIR  
(DCM1 = 8)  
HB2 FIR +  
HB1 FIR  
HB3 FIR + HB2  
FIR + HB1 FIR  
(DCM1 = 8)  
HB4 FIR + HB3 FIR +  
HB2 FIR + HB1 FIR  
(DCM1 = 16)  
HB1 FIR  
(DCM1 = 2)  
(DCM1 = 2) (DCM1 = 4)  
N
N
N
N
N
N
N
N
N + 1  
N + 2  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 8  
N + 9  
N + 8  
N + 9  
N + 10  
N + 11  
N + 10  
N + 11  
N + 12  
N + 13  
N + 12  
N + 13  
N + 14  
N + 15  
N + 14  
N + 15  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 8  
N + 9  
N + 8  
N + 9  
N + 10  
N + 11  
N + 10  
N + 11  
N + 12  
N + 13  
N + 12  
N + 13  
N + 14  
N + 15  
N + 14  
N + 15  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 16  
N + 17  
N + 18  
N + 19  
N + 20  
N + 21  
N + 22  
N + 23  
N + 24  
N + 25  
N + 26  
N + 27  
N + 28  
N + 29  
N + 30  
N + 31  
N + 1  
1 DCM means decimation.  
Table 14. DDC Samples When Chip Decimation Ratio = 2  
Real (I) Output (Complex to Real Enabled)  
HB4 FIR +  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR +  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB1 FIR  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 16)  
N
N
N
N
N
N
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 1  
Rev. B | Page 43 of 81  
 
AD6679  
Data Sheet  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR +  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB4 FIR +  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB3 FIR +  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB2 FIR +  
HB1 FIR  
HB1 FIR  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 2)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 16)  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N
N + 1  
N
N + 1  
N
N + 1  
1 DCM means decimation.  
Table 15. DDC Samples When Chip Decimation Ratio = 4  
Real (I) Output (Complex to Real Enabled)  
HB4 FIR + HB3 FIR +  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR + HB3 FIR +  
HB2 FIR + HB1 FIR  
(DCM1 = 16)  
HB3 FIR + HB2 FIR +  
HB2 FIR + HB1 FIR  
HB2 FIR + HB1 FIR  
(DCM1 = 4)  
HB3 FIR + HB2 FIR +  
HB1 FIR (DCM1 = 8)  
HB1 FIR (DCM1 = 4)  
(DCM1 = 8)  
N
N
N
N
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
1 DCM means decimation.  
Table 16. DDC Samples When Chip Decimation Ratio = 8  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB3 FIR + HB2 FIR + HB1 FIR  
HB4 FIR + HB3 FIR + HB2 FIR +  
HB1 FIR (DCM1 = 16)  
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 8)  
(DCM1 = 8)  
N
N
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
1 DCM means decimation.  
Table 17. DDC Samples When Chip Decimation Ratio = 16  
Real (I) Output (Complex to Real Enabled)  
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 16)  
Not applicable  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR + HB3 FIR + HB2 FIR + HB1 FIR (DCM1 = 16)  
N
Not applicable  
Not applicable  
Not applicable  
N + 1  
N + 2  
N + 3  
1 DCM means decimation.  
Rev. B | Page 44 of 81  
 
 
Data Sheet  
AD6679  
For example, if the chip decimation ratio is set to decimate by 4,  
DDC 0 is set to use HB2 + HB1 filters (complex outputs, decimate  
by 4) and DDC 1 is set to use HB4 + HB3 + HB2 + HB1 filters  
(real outputs, decimate by 8). DDC 1 repeats its output data two  
times for every one DDC 0 output. The resulting output samples  
are shown in Table 18.  
Table 18. DDC Output Samples When Chip DCM1 = 4, DDC 0 DCM1 = 4 (Complex), and DDC 1 DCM1 = 8 (Real)  
DDC 0 DDC 1  
Output Port Q Output Port Q  
Not applicable  
DDC Input Samples  
N
Output Port I  
Output Port I  
I0 (N)  
Q0 (N)  
I1 (N)  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
I0 (N + 1)  
I0 (N + 2)  
I0 (N + 3)  
Q0 (N + 1)  
Q0 (N + 2)  
Q0 (N + 3)  
N + 8  
N + 9  
I1 (N + 1)  
Not applicable  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
1 DCM means decimation.  
Rev. B | Page 45 of 81  
 
AD6679  
Data Sheet  
FREQUENCY TRANSLATION  
Variable IF Mode  
GENERAL DESCRIPTION  
The NCO and the mixers are enabled. The NCO output  
frequency can be used to digitally tune the IF frequency.  
Frequency translation is accomplished by using a 12-bit  
complex NCO with a digital quadrature mixer. This stage  
translates either a real or complex input signal from an IF to a  
baseband complex digital output (carrier frequency = 0 Hz).  
0 Hz IF (ZIF) Mode  
The mixers are bypassed, and the NCO is disabled.  
fS/4 Hz IF Mode  
The frequency translation stage of each DDC can be controlled  
individually and supports four different IF modes using Bits[5:4]  
of the DDC control registers (Register 0x310, Register 0x330,  
Register 0x350, and Register 0x370). These IF modes are  
The mixers and the NCO are enabled in a special downmixing  
by fS/4 mode to save power.  
Test Mode  
Variable IF mode  
0 Hz IF, or zero IF (ZIF), mode  
fS/4 Hz IF mode  
The input samples are forced to 0.999 to positive full scale. The  
NCO is enabled. This test mode allows the NCOs to drive the  
decimation filters directly.  
Test mode  
Figure 65 and Figure 66 show examples of the frequency  
translation stage for both real and complex inputs.  
NCO FREQUENCY TUNING WORD (FTW) SELECTION  
12-BIT NCO FTW = MIXING FREQUENCY/ADC SAMPLE RATE × 4096  
I
cos(wt)  
ADC  
SAMPLING  
AT fS  
ADC + DIGITAL MIXER + NCO  
REAL INPUT—SAMPLED AT fS  
REAL  
REAL  
12-BIT  
NCO  
90°  
0°  
COMPLEX  
–sin(wt)  
Q
BANDWIDTH OF  
INTEREST IMAGE  
BANDWIDTH OF  
INTEREST  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
–6dB LOSS DUE TO  
NCO + MIXER  
12-BIT NCO FTW =  
ROUND ((fS/3)/fS × 4096) = +1365 (0x555)  
POSITIVE FTW VALUES  
fS/32  
fS/32  
DC  
12-BIT NCO FTW =  
ROUND ((fS/3)/fS × 4096) = –1365 (0xAAB)  
NEGATIVE FTW VALUES  
fS/32  
fS/32  
DC  
Figure 65. DDC NCO Frequency Tuning Word Selection—Real Inputs  
Rev. B | Page 46 of 81  
 
 
 
Data Sheet  
AD6679  
NCO FREQUENCY TUNING WORD (FTW) SELECTION  
12-BIT NCO FTW = MIXING FREQUENCY/ADC SAMPLE RATE × 4096  
QUADRATURE MIXER  
ADC  
SAMPLING  
AT fS  
I
+
I
I
I
I
Q
QUADRATURE ANALOG MIXER +  
Q
2 ADCs + QUADRATURE DIGITAL  
MIXER + NCO  
12-BIT  
NCO  
REAL  
90°  
PHASE  
90°  
0°  
COMPLEX  
Q
COMPLEX INPUT—SAMPLED AT fS  
I
I
+
ADC  
SAMPLING  
AT fS  
Q
Q
Q
Q
+
BANDWIDTH OF  
INTEREST  
IMAGE DUE TO  
ANALOG I/Q  
MISMATCH  
fS/32  
fS/32  
fS/16  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
DC  
12-BIT NCO FTW =  
ROUND ((fS/3)/fS × 4096) = +1365 (0x555)  
POSITIVE FTW VALUES  
fS/32  
fS/32  
DC  
Figure 66. DDC NCO Frequency Tuning Word Selection—Complex Inputs  
Setting Up the NCO FTW and POW  
DDC NCO PLUS MIXER LOSS AND SFDR  
The NCO frequency value is given by the 12-bit, twos  
complement number entered in the NCO FTW. Frequencies  
between −fS/2 and +fS/2 (fS/2 excluded) are represented using  
the following frequency words:  
When mixing a real input signal down to baseband, 6 dB of loss  
is introduced in the signal due to filtering of the negative image.  
The NCO introduces an additional 0.05 dB of loss. The total  
loss of a real input signal mixed down to baseband is 6.05 dB.  
For this reason, it is recommended to compensate for this loss  
by enabling the 6 dB of gain in the gain stage of the DDC to  
recenter the dynamic range of the signal within the full scale of  
the output bits.  
0x800 represents a frequency of −fS/2.  
0x000 represents dc (frequency is 0 Hz).  
0x7FF represents a frequency of +fS/2 − fS/212.  
Calculate the NCO frequency tuning word using the following  
equation:  
When mixing a complex input signal down to baseband, the  
maximum value each I/Q sample can reach is 1.414 × full scale  
after it passes through the complex mixer. To avoid an  
overrange of the I/Q samples and to keep the data bit-widths  
aligned with real mixing, 3.06 dB of loss is introduced in the  
mixer for complex signals. The NCO introduces an additional  
0.05 dB of loss. The total loss of a complex input signal mixed  
down to baseband is −3.11 dB.  
mod  
fC , fS  
fS  
12  
NCO _ FTW  
round  
2
where:  
NCO_FTW is a 12-bit, twos complement number representing  
the NCO FTW.  
fC is the desired carrier frequency in Hz.  
fS is the AD6679 sampling frequency (clock rate) in Hz.  
mod( ) is a remainder function. For example, mod(110,100) =  
10 and for negative numbers, mod(−32,10) = −2.  
round( ) is a rounding function. For example, round(3.6) = 4  
and for negative numbers, round(−3.4) = −3.  
The worst case spurious signal from the NCO is greater than  
102 dBc SFDR for all output frequencies.  
NUMERICALLY CONTROLLED OSCILLATOR  
The AD6679 has a 12-bit NCO for each DDC that enables the  
frequency translation process. The NCO allows the input  
spectrum to be tuned to dc, where it can be effectively filtered  
by the subsequent filter blocks to prevent aliasing. The NCO  
can be set up by providing a frequency tuning word (FTW) and  
a phase offset word (POW).  
Note that this equation applies to the aliasing of signals in the  
digital domain (that is, aliasing introduced when digitizing  
analog signals).  
Rev. B | Page 47 of 81  
 
 
 
 
AD6679  
Data Sheet  
For example, if the ADC sampling frequency (fS) is 500 MSPS  
and the carrier frequency (fC) is 140.312 MHz, then  
Use the following two methods to synchronize multiple PAWs  
within the chip:  
Using the SPI. Use the DDC NCO soft reset bit in the DDC  
synchronization control register (Register 0x300, Bit 4) to  
reset all the PAWs in the chip. This is accomplished by  
setting the DDC NCO soft reset bit high and then setting  
this bit low. Note that this method synchronizes DDC  
channels within the same AD6679 chip only.  
mod 140.312,500  
   
NCO_FTW round 212  
1149 MHz  
500  
This, in turn, converts to 0x47D in the 12-bit twos complement  
representation for NCO_FTW. Calculate the actual carrier  
frequency, fC_ACTUAL, based on the following equation:  
Using the SYNC pins. When the SYNC pins are  
enabled in the SYNC control registers (Register 0x120  
and Register 0x121) and the DDC synchronization is  
enabled in the DDC synchronization control register  
(Register 0x300, Bits[1:0]), any subsequent SYNC event  
resets all the PAWs in the chip. Note that this method  
synchronizes DDC channels within the same AD6679 chip  
or DDC channels within separate AD6679 chips.  
NCO_FTWfS  
fC_ACTUAL  
140.26MHz  
212  
A 12-bit POW is available for each NCO to create a known  
phase relationship between multiple AD6679 chips or  
individual DDC channels inside one AD6679 chip.  
The following procedure must be followed to update the FTW  
and/or POW registers to ensure proper operation of the NCO:  
1. Write to the FTW registers for all the DDCs.  
2. Write to the POW registers for all the DDCs.  
3. Synchronize the NCOs either through the DDC NCO soft  
reset bit (Register 0x300, Bit 4), accessible through the SPI  
or through the assertion of the SYNC pin.  
Mixer  
The NCO is accompanied by a mixer. Its operation is similar to  
an analog quadrature mixer. It performs the downconversion of  
input signals (real or complex) by using the NCO frequency as a  
local oscillator. For real input signals, this mixer performs a real  
mixer operation (with two multipliers). For complex input  
signals, the mixer performs a complex mixer operation (with  
four multipliers and two adders). The mixer adjusts its  
operation based on the input signal (real or complex) provided  
to each individual channel. The selection of real or complex  
inputs can be controlled individually for each DDC block using  
Bit 7 of the DDC control registers (Register 0x310, Register 0x330,  
Register 0x350, and Register 0x370).  
It is important to note that the NCOs must be synchronized  
either through the SPI or through the SYNC pin after all  
writes to the FTW or POW registers are complete. This  
synchronization is necessary to ensure the proper operation  
of the NCO.  
NCO Synchronization  
Each NCO contains a separate phase accumulator word (PAW)  
that determines the instantaneous phase of the NCO. The initial  
reset value of each PAW is determined by the POW. The phase  
increment value of each PAW is determined by the FTW. See  
the Setting Up the NCO FTW and POW section for more  
information.  
Rev. B | Page 48 of 81  
 
Data Sheet  
AD6679  
FIR FILTERS  
tion that is optimized for low power consumption. The HB4  
OVERVIEW  
filter is used only when complex outputs (decimate by 16) or  
real outputs (decimate by 8) are enabled; otherwise, it is  
bypassed. Table 19 and Figure 67 show the coefficients and  
response of the HB4 filter.  
There are four sets of decimate by 2, low-pass, half-band, FIR  
filters (labeled HB1 FIR, HB2 FIR, HB3 FIR, and HB4 FIR in  
Figure 63) following the frequency translation stage. After the  
carrier of interest is tuned down to dc (carrier frequency =  
0 Hz), these filters efficiently lower the sample rate, while  
providing sufficient alias rejection from unwanted adjacent  
carriers around the bandwidth of interest.  
Table 19. HB4 Filter Coefficients  
HB4 Coefficient  
Number  
Normalized  
Coefficient  
Decimal  
Coefficient (15-Bit)  
C1, C11  
C2, C10  
C3, C9  
C4, C8  
C5, C7  
C6  
0.006042  
0
−0.049316  
0
0.293273  
0.500000  
99  
0
−808  
0
4805  
8192  
HB1 FIR is always enabled and cannot be bypassed. The HB2,  
HB3, and HB4 FIR filters are optional and can be bypassed for  
higher output sample rates.  
Table 20 shows the different bandwidths selectable by including  
different half-band filters. In all cases, the DDC filtering stage  
on the AD6679 provides <−0.001 dB of pass-band ripple and  
>100 dB of stop band alias rejection.  
0
Table 21 shows the amount of stop-band alias rejection for  
multiple pass-band ripple/cutoff points. The decimation ratio of  
the filtering stage of each DDC can be controlled individually  
through Bits[1:0] of the DDC control registers (Register 0x310,  
Register 0x330, Register 0x350, and Register 0x370).  
–20  
–40  
–60  
HALF-BAND FILTERS  
–80  
The AD6679 offers four half-band filters to enable digital signal  
processing of the ADC converted data. These half-band filters  
are bypassable and can be individually selected.  
–100  
–120  
HB4 Filter  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
The first decimate by 2, half-band, low-pass, FIR filter (HB4)  
uses an 11-tap, symmetrical, fixed coefficient filter implementa-  
Figure 67. HB4 Filter Response  
Table 20. DDC Filter Characteristics  
Real Output  
Complex (I/Q) Output  
ADC  
Sample  
Rate  
Alias  
Protected  
Bandwidth Improve-  
(MHz)  
192.5  
96.3  
Pass-  
Band  
Ripple  
Output  
Sample Rate  
Decima-  
Ideal SNR  
Alias  
Rejection  
(dB)  
Half Band Filter  
Selection  
Decima-  
tion  
Output Sample  
Rate (MSPS)  
(MSPS)  
tion Ratio  
(MSPS)  
Ratio  
ment1 (dB) (dB)  
500  
HB1  
1
2
4
8
500  
2
250 (I) + 250 (Q)  
125 (I) + 125 (Q)  
62.5 (I) + 62.5 (Q)  
31.25 (I) + 31.25 (Q)  
1
<−0.001  
>100  
HB1 + HB2  
HB1 + HB2 + HB3  
250  
4
4
125  
8
48.1  
7
HB1 + HB2 + HB3  
+ HB4  
62.5  
16  
24.1  
10  
1 Ideal SNR improvement due to oversampling and filtering = 10log(bandwidth/(fS/2)).  
Table 21. DDC Filter Alias Rejection  
Alias Rejection  
(dB)  
Pass-Band Ripple/Cutoff  
Point (dB)  
Alias Protected Bandwidth for Real  
(I) Outputs1  
Alias Protected Bandwidth for Complex  
(I/Q) Outputs  
>100  
90  
85  
63.3  
25  
19.3  
10.7  
<−0.001  
<−0.001  
<−0.001  
<−0.006  
−0.5  
<38.5% × fOUT  
<38.7% × fOUT  
<38.9% × fOUT  
<40% × fOUT  
44.4% × fOUT  
45.6% × fOUT  
48% × fOUT  
<77% × fOUT  
<77.4% × fOUT  
<77.8% × fOUT  
<80% × fOUT  
88.8% × fOUT  
91.2% × fOUT  
96% × fOUT  
−1.0  
−3.0  
1 fOUT = ADC input sample rate ÷ DDC decimation.  
Rev. B | Page 49 of 81  
 
 
 
 
 
 
 
AD6679  
Data Sheet  
HB3 Filter  
0
–20  
The second decimate by 2, half-band, low-pass, FIR filter (HB3)  
uses an 11-tap, symmetrical, fixed coefficient filter implementa-  
tion that is optimized for low power consumption. The HB3  
filter is only used when complex outputs (decimate by 8 or 16)  
or real outputs (decimate by 4 or 8) are enabled; otherwise, it is  
bypassed. Table 22 and Figure 68 show the coefficients and  
response of the HB3 filter.  
–40  
–60  
–80  
Table 22. HB3 Filter Coefficients  
–100  
–120  
HB3 Coefficient  
Number  
Normalized  
Coefficient  
Decimal Coefficient  
(18-Bit)  
C1, C11  
C2, C10  
C3, C9  
C4, C8  
C5, C7  
C6  
0.006554  
0
−0.050819  
0
0.294266  
0.500000  
859  
0
−6661  
0
38,570  
65,536  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
Figure 69. HB2 Filter Response  
HB1 Filter  
The fourth and final decimate by 2, half-band, low-pass, FIR  
filter (HB1) uses a 55-tap, symmetrical, fixed coefficient filter  
implementation that is optimized for low power consumption.  
The HB1 filter is always enabled and cannot be bypassed. Table 24  
and Figure 70 show the coefficients and response of the HB1 filter.  
0
–20  
–40  
Table 24. HB1 Filter Coefficients  
HB1 Coefficient  
Number  
Normalized  
Coefficient  
Decimal  
Coefficient (21-Bit)  
–60  
C1, C55  
C2, C54  
C3, C53  
C4, C52  
C5, C51  
C6, C50  
C7, C49  
C8, C48  
C9, C47  
C10, C46  
C11, C45  
C12, C44  
C13, C43  
C14, C42  
C15, C41  
C16, C40  
C17, C39  
C18, C38  
C19, C37  
C20, C36  
C21, C35  
C22, C34  
C23, C33  
C24, C32  
C25, C31  
C26, C30  
C27, C29  
C28  
−0.000023  
0
0.000097  
0
−0.000288  
0
0.000696  
0
−0.0014725  
0
0.002827  
0
−0.005039  
0
0.008491  
0
−0.013717  
0
0.021591  
0
−0.033833  
0
0.054806  
0
−0.100557  
0
0.316421  
0.500000  
−24  
0
102  
0
−302  
0
730  
0
−1544  
0
2964  
0
−5284  
0
8903  
0
−14,383  
0
22,640  
0
−35,476  
0
57,468  
0
−105,442  
0
331,792  
524,288  
–80  
–100  
–120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
Figure 68. HB3 Filter Response  
HB2 Filter  
The third decimate by 2, half-band, low-pass, FIR filter (HB2)  
uses a 19-tap, symmetrical, fixed coefficient filter implementa-  
tion that is optimized for low power consumption.  
The HB2 filter is only used when complex or real outputs  
(decimate by 4, 8, or 16) are enabled; otherwise, it is bypassed.  
Table 23 and Figure 69 show the coefficients and response of  
the HB2 filter.  
Table 23. HB2 Filter Coefficients  
HB2 Coefficient  
Number  
Normalized  
Coefficient  
Decimal Coefficient  
(19-Bit)  
C1, C19  
C2, C18  
C3, C17  
C4, C16  
C5, C15  
C6, C14  
C7, C13  
C8, C12  
C9, C11  
C10  
0.000614  
0
−0.005066  
0
0.022179  
0
−0.073517  
0
0.305786  
0.500000  
161  
0
−1328  
0
5814  
0
−19,272  
0
80,160  
131,072  
Rev. B | Page 50 of 81  
 
 
 
 
 
Data Sheet  
AD6679  
0
DDC GAIN STAGE  
Each DDC contains an independently controlled gain stage.  
The gain is selectable as either 0 dB or 6 dB. When mixing a real  
input signal down to baseband, it is recommended that the user  
enable the 6 dB of gain to recenter the dynamic range of the  
signal within the full scale of the output bits.  
–20  
–40  
–60  
When mixing a complex input signal down to baseband, the  
mixer has already recentered the dynamic range of the signal  
within the full scale of the output bits, and no additional gain is  
necessary. However, the optional 6 dB gain compensates for low  
signal strengths. The downsample by 2 portion of the HB1 FIR  
filter is bypassed when using the complex to real conversion stage.  
–80  
–100  
–120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
DDC COMPLEX TO REAL CONVERSION  
Figure 70. HB1 Filter Response  
Each DDC contains an independently controlled complex to  
real conversion block. The complex to real conversion block  
reuses the last filter (HB1 FIR) in the filtering stage along with  
an fS/4 complex mixer to upconvert the signal. After upconvert-  
ing the signal, the Q portion of the complex mixer is no longer  
needed and is dropped.  
Figure 71 shows a simplified block diagram of the complex to  
real conversion.  
HB1 FIR  
GAIN STAGE  
COMPLEX TO  
REAL ENABLE  
LOW-PASS  
FILTER  
I
0dB  
OR  
I
I
0
2
I/REAL  
6dB  
1
COMPLEX TO REAL CONVERSION  
0dB  
OR  
6dB  
cos(wt)  
+
90°  
REAL  
fS/4  
0°  
sin(wt)  
0dB  
OR  
6dB  
Q
LOW-PASS  
FILTER  
Q
0dB  
OR  
6dB  
Q
Q
2
HB1 FIR  
Figure 71. Complex to Real Conversion Block  
Rev. B | Page 51 of 81  
 
 
 
 
AD6679  
Data Sheet  
DDC EXAMPLE CONFIGURATIONS  
Table 25 describes the register settings for multiple DDC example configurations.  
Table 25. DDC Example Configurations  
Chip  
Chip  
DDC  
DDC  
Output  
Type  
No. of Virtual  
Converters  
Required  
Application Decimation Input  
Layer  
Bandwidth  
Per DDC1  
Ratio  
Type  
Register Settings2  
One DDC  
2
Complex  
Complex  
38.5% × fS  
2
Register 0x200 = 0x01 (one DDC; I/Q selected)  
Register 0x201 = 0x01 (chip decimate by 2)  
Register 0x310 = 0x83 (complex mixer, 0 dB gain,  
variable IF, complex outputs, HB1 filter)  
Register 0x311 = 0x04 (DDC I input = ADC  
Channel A, DDC Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320,  
Register 0x321 = FTW and POW set as required  
by application for DDC 0  
One DDC  
4
Complex  
Complex  
19.25% × fS  
2
Register 0x200 = 0x01 (one DDC, I/Q selected)  
Register 0x201 = 0x02 (chip decimate by 4)  
Register 0x310= 0x80 (complex mixer, 0 dB gain,  
variable IF, complex outputs, HB2 + HB1 filters)  
Register 0x311 = 0x04 (DDC I input = ADC  
Channel A, DDC Q input = ADC Channel B)  
Register 0x314, Register 0x315= FTW and POW  
set as required by application for DDC 0  
Two DDCs  
2
Real  
Real  
19.25%× fS  
2
Register 0x200 = 0x22 (two DDCs, I only selected)  
Register 0x201 = 0x01 (chip decimate by 2)  
Register 0x310, Register 0x330 = 0x48 (real mixer,  
6 dB gain, variable IF, real output, HB2 + HB1  
filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC  
Channel A, DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x05 (DDC 1 I input = ADC  
Channel B, DDC 1 Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320,  
Register 0x321 = FTW and POW set as required  
by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340,  
Register 0x341 = FTW and POW set as required  
by application for DDC 1  
Two DDCs  
2
Complex  
Complex  
38.5%× fS  
4
Register 0x200 = 0x22 (two DDCs, I only selected)  
Register 0x201 = 0x01 (chip decimate by 2)  
Register 0x310, Register 0x330 = 0x4B (complex  
mixer, 6 dB gain, variable IF, complex output, HB1  
filter)  
Register 0x311, Register 0x331 = 0x04 (DDC 0  
I input = ADC Channel A, DDC 0 Q input = ADC  
Channel B)  
Register 0x314, Register 0x315, Register 0x320,  
Register 0x321 = FTW and POW set as required  
by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340,  
Register 0x341 = FTW and POW set as required  
by application for DDC 1  
Rev. B | Page 52 of 81  
 
 
Data Sheet  
AD6679  
Chip  
Application Decimation Input  
Chip  
DDC  
DDC  
Output  
Type  
No. of Virtual  
Converters  
Required  
Bandwidth  
Per DDC1  
Layer  
Ratio  
Type  
Register Settings2  
Two DDCs  
4
Complex  
Complex  
19.25% × fS  
4
Register 0x200 = 0x02 (two DDCs, I/Q selected)  
Register 0x201 = 0x02 (chip decimate by 4)  
Register 0x310, Register 0x330 = 0x80 (complex  
mixer, 0 dB gain, variable IF, complex outputs,  
HB2 + HB1 filters)  
Register 0x311, Register 0x331 = 0x04 (DDC I input  
= ADC Channel A, DDC Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320,  
Register 0x321 = FTW and POW set as required  
by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340,  
Register 0x341 = FTW and POW set as required  
by application for DDC 1  
Two DDCs  
4
Complex  
Real  
9.63% × fS  
2
Register 0x200 = 0x22 (two DDCs, I only selected)  
Register 0x201 = 0x02 (chip decimate by 4)  
Register 0x310, Register 0x330 = 0x89 (complex  
mixer, 0 dB gain, variable IF, real output, HB3 +  
HB2 + HB1 filters)  
Register 0x311, Register 0x331 = 0x04 (DDC I  
input = ADC Channel A, DDC Q input = ADC  
Channel B)  
Register 0x314, Register 0x315, Register 0x320,  
Register 0x321 = FTW and POW set as required  
by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340,  
Register 0x341 = FTW and POW set as required  
by application for DDC 1  
Two DDCs  
4
Real  
Real  
9.63% × fS  
2
Register 0x200 = 0x22 (two DDCs, I only selected)  
Register 0x201 = 0x02 (chip decimate by 4)  
Register 0x310, Register 0x330 = 0x49 (real mixer,  
6 dB gain, variable IF, real output, HB3 + HB2 +  
HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC  
Channel A, DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x05 (DDC 1 I input = ADC  
Channel B, DDC 1 Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320,  
Register 0x321 = FTW and POW set as required  
by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340,  
Register 0x341 = FTW and POW set as required  
by application for DDC 1  
Two DDCs  
4
Real  
Complex  
19.25% × fS  
4
Register 0x200 = 0x02 (two DDCs, I/Q selected)  
Register 0x201 = 0x02 (chip decimate by 4)  
Register 0x310, Register 0x330 = 0x40 (real mixer,  
6 dB gain, variable IF, complex output, HB2 +  
HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC  
Channel A, DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x05 (DDC 1 I input = ADC  
Channel B, DDC 1 Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320,  
Register 0x321 = FTW and POW set as required  
by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340,  
Register 0x341 = FTW and POW set as required  
by application for DDC 1  
Rev. B | Page 53 of 81  
 
AD6679  
Data Sheet  
Chip  
Chip  
DDC  
DDC  
Output  
Type  
No. of Virtual  
Converters  
Required  
Application Decimation Input  
Layer  
Bandwidth  
Per DDC1  
Ratio  
Type  
Register Settings2  
Two DDCs  
8
Real  
Real  
4.81% × fS  
2
Register 0x200 = 0x22 (two DDCs, I only selected)  
Register 0x201 = 0x03 (chip decimate by 8)  
Register 0x310, Register 0x330 = 0x4A (real  
mixer, 6 dB gain, variable IF, real output, HB4 +  
HB3 + HB2 + HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC  
Channel A, DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x05 (DDC 1 I input = ADC  
Channel B, DDC 1 Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320,  
Register 0x321 = FTW and POW set as required  
by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340,  
Register 0x341 = FTW and POW set as required  
by application for DDC 1  
Four DDCs  
8
Real  
Complex  
9.63% × fS  
8
Register 0x200 = 0x03 (four DDCs, I/Q selected)  
Register 0x201 = 0x03 (chip decimate by 8)  
Register 0x310, Register 0x330, Register 0x350,  
Register 0x370 = 0x41 (real mixer, 6 dB gain,  
variable IF, complex output, HB3 + HB2 + HB1  
filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC  
Channel A, DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x00 (DDC 1 I input = ADC  
Channel A, DDC 1 Q input = ADC Channel A)  
Register 0x351 = 0x05 (DDC 2 I input = ADC  
Channel B, DDC 2 Q input = ADC Channel B)  
Register 0x371 = 0x05 (DDC 3 I input = ADC  
Channel B, DDC 3 Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320,  
Register 0x321 = FTW and POW set as required  
by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340,  
Register 0x341 = FTW and POW set as required  
by application for DDC 1  
Register 0x354, Register 0x355, Register 0x360,  
Register 0x361 = FTW and POW set as required  
by application for DDC 2  
Register 0x374, Register 0x375, Register 0x380,  
Register 0x381 = FTW and POW set as required  
by application for DDC 3  
Four DDCs  
8
Real  
Real  
4.81% × fS  
4
Register 0x200 = 0x23 (four DDCs, I only selected)  
Register 0x201 = 0x03 (chip decimate by 8)  
Register 0x310, Register 0x330, Register 0x350,  
Register 0x370 = 0x4A (real mixer, 6 dB gain,  
variable IF, real output, HB4 + HB3 + HB2 + HB1  
filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC  
Channel A, DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x00 (DDC 1 I input = ADC  
Channel A, DDC 1 Q input = ADC Channel A)  
Register 0x351 = 0x05 (DDC 2 I input = ADC  
Channel B, DDC 2 Q input = ADC Channel B)  
Register 0x371 = 0x05 (DDC 3 I input = ADC  
Channel B, DDC 3 Q input = ADC Channel B)  
Rev. B | Page 54 of 81  
Data Sheet  
AD6679  
Chip  
Application Decimation Input  
Chip  
DDC  
DDC  
Output  
Type  
No. of Virtual  
Converters  
Required  
Bandwidth  
Per DDC1  
Layer  
Ratio  
Type  
Register Settings2  
Register 0x314, Register 0x315, Register 0x320,  
Register 0x321 = FTW and POW set as required  
by application for DDC 0  
Register 0x334, Register 0x335, Register 0x340,  
Register 0x341 = FTW and POW set as required  
by application for DDC 1  
Register 0x354, Register 0x355, Register 0x360,  
Register 0x361 = FTW and POW set as required  
by application for DDC 2  
Register 0x374, Register 0x375, Register 0x380,  
Register 0x381 = FTW and POW set as required  
by application for DDC 3  
Four DDCs  
16  
Real  
Complex  
4.81% × fS  
8
Register 0x200 = 0x03 (four DDCs, I/Q selected)  
Register 0x201 = 0x04 (chip decimate by 16)  
Register 0x310, Register 0x330, Register 0x350,  
Register 0x370 = 0x42 (real mixer, 6 dB gain,  
variable IF, complex output, HB4 + HB3 + HB2 +  
HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input = ADC  
Channel A, DDC 0 Q input = ADC Channel A)  
Register 0x331 = 0x00 (DDC 1 I input = ADC  
Channel A, DDC 1 Q input = ADC Channel A)  
Register 0x351 = 0x05 (DDC 2 I input = ADC  
Channel B, DDC 2 Q input = ADC Channel B)  
Register 0x371 = 0x05 (DDC 3 I input = ADC  
Channel B, DDC 3 Q input = ADC Channel B)  
Register 0x314, Register 0x315, Register 0x320,  
Register 0x321 = FTW and POW set as required  
by application for DDC 0  
Register 0x334, Register 0x335, Register 0x040,  
Register 0x341 = FTW and POW set as required  
by application for DDC 1  
Register 0x354, Register 0x355, Register 0x360,  
Register 0x361 = FTW and POW set as required  
by application for DDC 2  
Register 0x374, Register 0x375, Register 0x380,  
Register 0x381 = FTW and POW set as required  
by application for DDC 3  
1 fS is the ADC sample rate. Bandwidths listed are <−0.001 dB of pass-band ripple and >100 dB of stop band alias rejection.  
2 The NCOs must be synchronized either through the SPI or through the SYNC pins after all writes to the FTW or POW registers are complete. This is necessary to  
ensure the proper operation of the NCO. See the NCO Synchronization section for more information.  
Rev. B | Page 55 of 81  
 
AD6679  
Data Sheet  
NOISE SHAPING REQUANTIZER (NSR)  
When operating the AD6679 with the NSR enabled, a  
decimating half-band filter that is optimized at certain input  
frequency bands can also be enabled. This filter offers the user  
the flexibility in signal bandwidth process and image rejection.  
Careful frequency planning can offer advantages in analog  
filtering preceding the ADC. The filter can function either in  
high-pass or low-pass mode. The filter can be optionally  
enabled on the AD6679 when the NSR is enabled. When  
operating with NSR enabled, the decimating half-band filter  
mode (low pass or high pass) is selected by setting Bit 7 in  
Register 0x41E.  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
DECIMATING HALF-BAND FILTER  
0
0.05 0.10 0.150 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
The AD6679 optional decimating half-band filter reduces the  
input sample rate by a factor of 2 while rejecting aliases that fall  
into the band of interest. For an input sample clock of 500 MHz,  
this reduces the output sample rate to 250 MSPS. This filter is  
designed to provide >40 dB of alias protection for 39.5% of the  
output sample rate (79% of the Nyquist band). For an ADC  
sample rate of 500 MSPS, the filter provides a maximum usable  
bandwidth of 98.75 MHz.  
NORMALIZED FREQUENCY (× RAD/SAMPLE)  
Figure 72. Low-Pass Half-Band Filter Response  
The half-band filter can also be utilized in high-pass mode. The  
usable bandwidth remains at 39.5% of the output sample rate  
(19.75% of the input sample clock), which is the same as in low-  
pass mode). Figure 73 shows the normalized response of the  
half-band filter in high-pass mode. In high-pass mode, operation  
is allowed in the second and third Nyquist zones, which includes  
frequencies from fS/2 to 3fS/2, where fS is the decimated sample  
rate. For example, with an input clock of 500 MHz, the output  
sample rate is 250 MSPS, fS/2 = 125 MHz, and 3fS/2 = 375 MHz.  
10  
Half-Band Filter Coefficients  
The 19-tap, symmetrical, fixed-coefficient half-band filter has  
low power consumption due to its polyphase implementation.  
Table 26 lists the coefficients of the half-band filter in low-pass  
mode. In high-pass mode, Coefficient C9 is multiplied by −1.  
The normalized coefficients used in the implementation and  
the decimal equivalent values of the coefficients are listed.  
Coefficients not listed in Table 26 are 0s.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
Table 26. Fixed Coefficients for Half-Band Filter  
Coefficient  
Number  
Normalized  
Coefficient  
Decimal Coefficient  
(12-Bit)  
0
0.012207  
−0.022949  
0.045410  
−0.094726  
0.314453  
0.500000  
25  
−47  
93  
−194  
644  
1024  
C2, C16  
C4, C14  
C6, C12  
C8, C10  
C9  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
Figure 73. High-Pass Half-Band Filter Response  
Half-Band Filter Features  
NSR OVERVIEW  
The half-band decimating filter provides approximately 39.5%  
of the output sample rate in usable bandwidth (19.75% of the  
input sample clock). The filter provides >40 dB of rejection. The  
normalized response of the half-band filter in low-pass mode is  
shown in Figure 72. In low-pass mode, operation is allowed in  
the first Nyquist zone, which includes frequencies of up to fS/2,  
where fS is the decimated sample rate. For example, with an  
input clock of 500 MHz, the output sample rate is 250 MSPS  
and fS/2 = 125 MHz.  
The AD6679 features an NSR to allow higher than 9-bit SNR to  
be maintained in a subset of the Nyquist band. The harmonic  
performance of the receiver is unaffected by the NSR feature.  
When enabled, the NSR contributes an additional 3.0 dB of loss  
to the input signal, such that a 0 dBFS input is reduced to  
−3.0 dBFS at the output pins. This loss does not degrade the SNR  
performance of the AD6679.  
The NSR feature can be independently controlled per channel  
via the SPI.  
Two different bandwidth modes are provided; select the mode  
from the SPI port. In each of the two modes, the center frequency  
Rev. B | Page 56 of 81  
 
 
 
 
 
 
Data Sheet  
AD6679  
0
–20  
of the band can be tuned such that IFs can be placed anywhere  
in the Nyquist band. The NSR feature is enabled by default on  
the AD6679. The bandwidth and mode of the NSR operation  
are selected by setting the appropriate bits in Register 0x420 and  
Register 0x422. By selecting the appropriate profile and mode  
bits in these two registers, the NSR feature can be enabled for  
the desired mode of operation.  
A
= 1dBFS  
IN  
SNR = 75.0dBFS  
ENOB = 11.6 BITS  
SFDR = 85dBFS  
BUFFER CONTROL 1 = 2.0×  
–40  
–60  
–80  
21% BW Mode (>100 MHz at 491.52 MSPS)  
–100  
–120  
–140  
The first NSR mode offers excellent noise performance across a  
bandwidth that is 21% of the ADC output sample rate (42% of  
the Nyquist band) and can be centered by setting the NSR mode  
bits in the NSR mode register (Address 0x420) to 000. In this  
mode, the useful frequency range can be set using the 6-bit  
tuning word in the NSR tuning register (Address 0x422). There  
are 59 possible tuning words (TW), from 0 to 58; each step is  
0.5% of the ADC sample rate. The following three equations  
describe the left band edge (f0), the channel center (fCENTER), and  
the right band edge (f1), respectively:  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 75. 21% BW Mode, Tuning Word = 26 (fS/4 Tuning)  
0
A
= 1dBFS  
IN  
SNR = 74.9dBFS  
ENOB = 11.6 BITS  
SFDR = 90dBFS  
–20  
BUFFER CONTROL 1 = 2.0×  
–40  
f0 = fADC × 0.005 × TW  
–60  
fCENTER = f0 + 0.105 × fADC  
–80  
f1 = f0 + 0.21 × fADC  
Figure 74 to Figure 76 show the typical spectrum that can be  
expected from the AD6679 in the 21% BW mode for three  
different tuning words.  
–100  
–120  
–140  
0
A
= 1dBFS  
IN  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
SNR = 75.2dBFS  
ENOB = 11.6 BITS  
SFDR = 87dBFS  
–20  
–40  
BUFFER CONTROL 1 = 2.0×  
Figure 76. 21% BW Mode, Tuning Word = 58  
28% BW Mode (>130 MHz at 491.52 MSPS)  
–60  
The second NSR mode offers excellent noise performance  
across a bandwidth that is 28% of the ADC output sample rate  
(56% of the Nyquist band) and can be centered by setting the  
NSR mode bits in the NSR mode register (Address 0x420) to  
001. In this mode, the useful frequency range can be set using  
the 6-bit tuning word in the NSR tuning register (Address 0x422).  
There are 44 possible tuning words (TW, from 0 to 43); each step is  
0.5% of the ADC sample rate. The following three equations  
describe the left band edge (f0), the channel center (fCENTER), and  
the right band edge (f1), respectively:  
–80  
–100  
–120  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 74. 21% BW Mode, Tuning Word = 0  
f0 = fADC × 0.005 × TW  
fCENTER = f0 + 0.14 × fADC  
f1 = f0 + 0.28 × fADC  
Figure 77 to Figure 79 show the typical spectrum that can be  
expected from the AD6679 in the 28% BW mode for three  
different tuning words.  
Rev. B | Page 57 of 81  
 
 
AD6679  
Data Sheet  
0
0
–20  
A
= 1dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 72.5dBFS  
ENOB = 11.2 BITS  
SFDR = 86dBFS  
SNR = 71.6dBFS  
ENOB = 11.1 BITS  
SFDR = 90dBFS  
–20  
BUFFER CONTROL 1 = 2.0×  
BUFFER CONTROL 1 = 2.0×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 77. 28% BW Mode, Tuning Word = 0  
Figure 79. 28% BW Mode, Tuning Word = 43  
0
A
= 1dBFS  
IN  
SNR = 71.7dBFS  
ENOB = 11.1 BITS  
SFDR = 85dBFS  
–20  
–40  
BUFFER CONTROL 1 = 2.0×  
–60  
–80  
–100  
–120  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 78. 28% BW Mode, Tuning Word = 19 (fS/4 Tuning)  
Rev. B | Page 58 of 81  
 
 
Data Sheet  
AD6679  
VARIABLE DYNAMIC RANGE (VDR)  
The AD6679 features a variable dynamic range (VDR) digital  
processing block to allow up to 14-bit dynamic range to be  
maintained in a subset of the Nyquist band. Across the full  
Nyquist band, a minimum of a 9-bit dynamic range is available  
at all times. This operation is suitable for applications such as  
digital predistortion processing (DPD). The harmonic  
performance of the receiver is unaffected by this feature. When  
enabled, VDR does not contribute loss to the input signal but  
operates by effectively changing the output resolution at the  
output pins. This feature can be independently controlled per  
channel via the SPI.  
Table 27. VDR Reduced Output Resolution Values  
VDR High/Low  
Resolution Bit  
Output Resolution  
(Bits)  
VDR Punish Bit  
0
1
Not applicable  
Not applicable  
14 or 13  
≤12  
Not applicable  
Not applicable  
0
1
14  
≤13  
The frequency zones of the mask are defined by the bandwidth  
mode selected in Register 0x430. The upper amplitude limit for  
input signals located in these frequency zones is −30 dBFS. If  
the input signal level in the disallowed frequency zones goes  
above an amplitude level of −30 dBFS (into the gray shaded  
areas), the VDR block triggers a reduction in the output  
resolution, as shown in Figure 80. The VDR block engages and  
begins limiting output resolution gradually as the signal  
amplitudes increase in the mask regions. As the signal  
amplitude level increases into the mask regions, the output  
resolution is gradually lowered. For every 6 dB increase in  
signal level above −30 dBFS, one bit of output resolution is  
discarded from the output data by the VDR block, as shown in  
Table 28. These zones can be tuned within the Nyquist band by  
setting Bits[3:0] in Register 0x434 to determine the VDR center  
frequency (fVDR). The VDR center frequency in complex mode  
can be adjusted from 1/16 fS to 15/16 fS in 1/16 fS steps. In real  
mode, fVDR can be adjusted from 1/8 fS to 3/8 fS in 1/16 fS steps.  
The VDR block operates in either complex or real mode. In  
complex mode, VDR has selectable bandwidths of 25% and 43%  
of the output sample rate. In real mode, the bandwidth of  
operation is limited to 25% of the output sample rate. The  
bandwidth and mode of the VDR operation are selected by  
setting the appropriate bits in Register 0x430.  
When the VDR block is enabled, input signals that violate a  
defined mask (signified by gray shaded areas in Figure 80)  
result in the reduction of the output resolution of the AD6679.  
The VDR block analyzes the peak value of the aggregate signal  
level in the disallowed zones to determine the reduction of the  
output resolution. To indicate that the AD6679 is reducing  
output, the VDR punish bit or a VDR high/low resolution bit  
can optionally be on the STATUS /OVR pins by programming  
the appropriate value into Register 0x559. The VDR high/low  
resolution bit can alternatively be programmed to output on the  
STATUS pins and simply indicates if VDR is reducing output  
resolution (bit value is a 1), or if full resolution is available (bit  
value is a 0). These VDR high/low resolution and VDR punish  
bits can be decoded by using Table 27. Note that only one can  
be output at a given time.  
Table 28. VDR Reduced Output Resolution Values  
Signal Amplitude Violating Defined  
VDR Mask  
Output Resolution  
(Bits)  
Amplitude ≤ −30 dBFS  
14  
13  
12  
11  
10  
9
−30 dBFS < amplitude ≤ −24 dBFS  
−24 dBFS < amplitude ≤ −18 dBFS  
−18 dBFS < amplitude ≤ −12 dBFS  
−12 dBFS < amplitude ≤ −6 dBFS  
−6 dBFS < amplitude ≤ 0 dBFS  
dBFS  
–30  
0
0
fS  
fS  
INTERMODULATION PRODUCTS < –30dBFS  
INTERMODULATION PRODUCTS > –30dBFS  
Figure 80. VDR Operation—Reduction in Output Resolution  
Rev. B | Page 59 of 81  
 
 
 
 
AD6679  
Data Sheet  
VDR REAL MODE  
VDR COMPLEX MODE  
The real mode of VDR works over a bandwidth of 25% of the  
sample rate (50% of the Nyquist band). The output bandwidth  
of the AD6679 can be 25% only when operating in real mode.  
Figure 81 shows the frequency zones for the 25% bandwidth  
real output VDR mode tuned to a center frequency (fVDR) of fS/4  
(tuning word = 0x04). The frequency zones where the  
amplitude may not exceed −30 dBFS are the upper and lower  
portions of the Nyquist band signified by the red shaded areas.  
dBFS  
The complex mode of VDR works with selectable bandwidths  
of 25% of the sample rate (50% of the Nyquist band) and 43% of  
the sample rate (86% of the Nyquist band). Figure 82 and Figure 83  
show the frequency zones for VDR in the complex mode. When  
operating VDR in complex mode, place in-phase (I) input  
signal data in Channel A and place quadrature (Q) signal data  
in Channel B.  
Figure 82 shows the frequency zones for the 25% bandwidth  
VDR mode with a center frequency of fS/4 (tuning word =  
0x04). The frequency zones where the amplitude may not  
exceed −30 dBFS are the upper and lower portions of the  
Nyquist band extending into the complex domain.  
dBFS  
–30  
–30  
0
–1/2 fS  
1/8 fS  
3/8 fS 1/2 fS  
Figure 82. 25% VDR Bandwidth, Complex Mode  
0
1/8 fS  
3/8 fS  
1/2 fS  
The center frequency (fVDR) of the VDR function can be tuned  
within the Nyquist band from 0 to 15/16fS in 1/16 fS steps. In  
complex mode, Tuning Word 0 (0x00) through Tuning Word 15  
(0x0F) are valid. Table 31 and Table 32 show the tuning words  
and frequency values for the 25% complex mode. Table 31  
shows the relative frequency values, and Table 32 shows the  
absolute frequency values based on a sample rate of 491.52 MSPS.  
Figure 81. 25% VDR Bandwidth, Real Mode  
The center frequency (fVDR) of the VDR function can be tuned  
within the Nyquist band from 1/8 fS to 3/8 fS in 1/16 fS steps. In  
real mode, Tuning Word 2 (0x02) through Tuning Word 6  
(0x06) are valid. Table 29 shows the relative frequency values,  
and Table 30 shows the absolute frequency values based on a  
sample rate of 491.52 MSPS.  
Table 31. VDR Tuning Words and Relative Frequency  
Values, 25% BW, Complex Mode  
Table 29. VDR Tuning Words and Relative Frequency  
Values, 25% BW, Real Mode  
Lower  
Center  
Frequency  
Upper Band  
Edge  
Tuning  
Word  
Lower Band  
Edge  
Center  
Frequency  
Upper Band  
Edge  
Tuning Word Band Edge  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
−1/8 fS  
−1/16 fS  
0
1/16 fS  
1/8 fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/8 fS  
7/16 fS  
1/2 fS  
9/16 fS  
5/8 fS  
11/16 fS  
3/4 fS  
13/16 fS  
0
1/8 fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/8 fS  
7/16 fS  
1/2 fS  
9/16 fS  
5/8 fS  
11/16 fS  
3/4 fS  
13/16 fS  
7/8 fS  
15/16 fS  
fS  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
0
1/8 fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/8 fS  
1/4 fS  
5/16 fS  
3/8 fS  
7/16 fS  
1/2 fS  
1/16 fS  
1/8 fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/8 fS  
7/16 fS  
1/2 fS  
9/16 fS  
5/8 fS  
11/16 fS  
3/4 fS  
13/16 fS  
7/8 fS  
15/16 fS  
1/16 fS  
1/8 fS  
3/16 fS  
1/4 fS  
Table 30. VDR Tuning Words and Absolute Frequency  
Values, 25% BW, Real Mode with fS = 491.52 MSPS  
Center  
Tuning  
Word  
Lower Band  
Edge (MHz)  
Frequency  
(MHz)  
Upper Band  
Edge (MHz)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
0
61.44  
92.16  
122.88  
153.6  
184.32  
122.88  
153.6  
184.32  
215.04  
245.76  
30.72  
61.44  
92.16  
122.88  
17/16 fS  
Rev. B | Page 60 of 81  
 
 
 
 
 
 
 
Data Sheet  
AD6679  
Table 32. VDR Tuning Words and Absolute Frequency  
Values, 25% BW, Complex Mode (fS = 491.52 MSPS)  
Table 33. VDR Tuning Words and Relative Frequency  
Values, 43% BW, Complex Mode  
Center  
Lower  
Center  
Tuning  
Word  
Band Edge Frequency  
Upper Band  
Edge (MHz)  
Lower Band  
Tuning Word Edge (MHz)  
Frequency  
(MHz)  
Upper Band  
Edge (MHz)  
(MHz)  
−61.44  
−30.72  
0.00  
(MHz)  
0.00  
30.72  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
61.44  
92.16  
122.88  
153.6  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
−14/65 fS  
−11/72 fS  
−1/11 fS  
−1/36 fS  
1/29 fS  
7/72 fS  
4/25 fS  
2/9 fS  
2/7 fS  
25/72 fS  
34/83 fS  
17/36 fS  
23/43 fS  
43/72 fS  
31/47 fS  
13/18 fS  
0
14/65 fS  
5/18 fS  
1/16 fS  
1/8 fS  
3/16 fS  
1/4 fS  
5/16 fS  
3/8 fS  
7/16 fS  
1/2 fS  
9/16 fS  
5/8 fS  
11/16 fS  
3/4 fS  
13/16 fS  
7/8 fS  
15/16 fS  
61.44  
16/47 fS  
29/72 fS  
20/43 fS  
19/36 fS  
49/83 fS  
47/72 fS  
5/7 fS  
30.72  
92.16  
61.44  
92.16  
122.88  
153.6  
184.32  
215.04  
245.76  
276.48  
307.2  
337.92  
368.64  
399.36  
430.08  
460.8  
122.88  
153.6  
184.32  
215.04  
245.76  
276.48  
307.2  
337.92  
368.64  
399.36  
430.08  
460.8  
184.32  
215.04  
245.76  
276.48  
307.2  
337.92  
368.64  
399.36  
7/9 fS  
21/25 fS  
65/72 fS  
28/29 fS  
37/36 fS  
12/11 fS  
83/72 fS  
491.52  
522.24  
Table 33 and Table 34 show the tuning words and frequency  
values for the 43% complex mode. Table 33 shows the relative  
frequency values, and Table 34 shows the absolute frequency  
values based on a sample rate of 491.52 MSPS. Figure 83 shows  
the frequency zones for the 43% BW VDR mode with a center  
frequency (fVDR) of fS/4 (tuning word = 0x04). The frequency  
zones where the amplitude may not exceed −30 dBFS are the  
upper and lower portions of the Nyquist band extending into  
the complex domain.  
Table 34. VDR Tuning Words and Absolute Frequency  
Values, 43% BW, Complex Mode (fS = 491.52 MSPS)  
Center  
Lower Band  
Tuning Word Edge (MHz)  
Frequency  
(MHz)  
Upper Band  
Edge (MHz)  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
−105.37  
−75.09  
−44.68  
−13.65  
16.95  
0.00  
30.72  
61.44  
92.16  
122.88  
153.6  
184.32  
215.04  
245.76  
276.48  
307.2  
337.92  
368.64  
399.36  
430.08  
460.8  
105.87  
136.53  
167.33  
197.97  
228.61  
259.41  
290.17  
320.85  
351.09  
382.29  
412.88  
443.73  
474.57  
505.17  
536.2  
dBFS  
47.79  
78.64  
–30  
109.23  
140.43  
170.67  
201.35  
232.11  
262.91  
293.55  
324.19  
354.99  
–1/2 fS  
0
1/4 fS  
1/2 fS  
20/43 fS  
1/29 fS  
Figure 83. 43% VDR Bandwidth, Complex Mode  
566.61  
Rev. B | Page 61 of 81  
 
 
 
 
AD6679  
Data Sheet  
DIGITAL OUTPUTS  
The AD6679 output drivers are for standard ANSI LVDS, but  
optionally the drive current can be reduced using Register 0x56A.  
The reduced drive current for the LVDS outputs potentially  
reduces the digitally induced noise.  
The minimum conversion rate of the AD6679 is 300 MSPS. At  
clock rates below 300 MSPS, dynamic performance may degrade.  
DATA CLOCK OUTPUT  
The AD6679 also provides a data clock output (DCO) intended  
for capturing the data in an external register. Figure 4 through  
Figure 11 show the timing diagrams of the AD6679 output  
modes. The DCO relative to the data output can be adjusted using  
Register 0x569. There are delay settings with approximately 90°  
per step ranging from 0° to 270°. Data is output in a DDR format  
and is aligned to the rising and falling edges of the clock derived  
from the DCO.  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI control.  
The AD6679 has a flexible three-state ability for the digital output  
pins. The three-state mode is enabled when the device is set for  
power-down mode.  
TIMING  
ADC OVERRANGE  
The AD6679 provides latched data with a pipeline delay of  
33 input sample clock cycles. Data outputs are available one  
propagation delay (tPD) after the rising edge of the clock signal.  
The ADC overrange (OR) indicator is asserted when an overrange  
is detected on the input of the ADC. The overrange condition is  
determined at the output of the ADC pipeline and, therefore, is  
subject to a latency of 33 ADC clocks. An overrange at the input is  
indicated by the OR bit, 33 clock cycles after it occurs.  
Minimize the length of the output data lines and the corresponding  
loads to reduce transients within the AD6679. These transients  
can degrade converter dynamic performance.  
Table 35. LVDS Output Configurations1  
Maximum  
Virtual  
Converter  
Resolution  
(Bits)  
DDC Decimation  
Rates Supported  
NSR  
Decimation  
Rates  
No. of Virtual  
Converters  
Supported  
Output  
Line  
VDR  
Supported  
Real  
Output  
Complex  
Output  
Parallel Output Mode  
Rate2, 3  
Supported  
Outputs Required  
Parallel Interleaved,  
One Virtual Converter  
(Register 0x568 = 0x0)  
Parallel Interleaved,  
Two Virtual Converters  
(Register 0x568 = 0x1)  
Channel Multiplexed,  
One Virtual Converter  
(Register 0x568 = 0x2)  
Channel Multiplexed,  
Two Virtual Converters  
(Register 0x568 = 0x3)  
Byte Mode, One Virtual  
Converter  
(Register 0x568 = 0x4)  
Byte Mode, Two Virtual  
Converters  
(Register 0x568 = 0x5)  
1
2
1
2
1
2
4
8
14  
14  
14  
14  
16  
16  
16  
16  
1 × fOUT  
2 × fOUT  
2 × fOUT  
2 × fOUT  
2 × fOUT  
4 × fOUT  
8 × fOUT  
16 × fOUT  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
2
1, 2, 4, 8  
N/A  
DCO , OVR , and  
D0 to D13  
1, 2, 4, 8  
1, 2, 4, 8  
1, 2, 4, 8  
1, 2, 4, 8  
2, 4, 8  
2, 4, 8, 16  
N/A  
DCO , OVR , and  
D0 to D13  
DCO , OVR ,  
A Dx/Dy  
2, 4, 8, 16  
N/A  
DCO , OVR , A Dx/  
Dy , and B Dx/Dy  
DCO , STATUS , and  
DATA0 to DATA7  
2, 4, 8, 16  
24, 4, 8, 16  
44, 8, 16  
DCO , STATUS , and  
DATA0 to DATA7  
Byte Mode, Four Virtual  
Converters  
(Register 0x568 = 0x6)  
Byte Mode, Eight Virtual  
Converters  
N/A  
N/A  
24, 4, 8  
N/A  
DCO , STATUS , and  
DATA0 to DATA7  
DCO , STATUS , and  
DATA0 to DATA7  
(Register 0x568 = 0x7)  
1 N/A means not applicable.  
2 fOUT = ADC Sample Rate ÷ chip decimation ratio, where fOUT is the output sample rate.  
3 Maximum output line rate is 1000 Mbps.  
4 fOUT ≤ 125 MSPS.  
Rev. B | Page 62 of 81  
 
 
 
 
Data Sheet  
AD6679  
Table 36. Pin Mapping Comparison Between Parallel Interleaved, Channel Multiplexed, and Byte Modes  
Pin No.  
K13, K14  
L13, L14  
M13, M14  
N14, P14  
N13, P13  
N12, P12  
N11, P11  
N10, P10  
N9, P9  
N5, P5  
N4, P4  
N3, P3  
N2, P2  
N1, P1  
M2, M1  
N6, P6  
Parallel Interleaved Output  
DCO−, DCO+  
OVR−, OVR+  
D13−, D13+  
D12−, D12+  
D11−, D11+  
D10−, D10+  
D9−, D9+  
D8−, D8+  
D7−, D7+  
D6−, D6+  
D5−, D5+  
Channel Multiplexed (Even/Odd) Output  
Byte Output  
DCO−, DCO+  
FCO−, FCO+  
DCO−, DCO+  
OVR−, OVR+  
A D12/D13−, A D12/D13+  
A D10/D11−, A D10/D11+  
A D8/D9−, A D8/D9+  
A D6/D7−, A D6/D7+  
A D4/D5−, A D4/D5+  
A D2/D3−, A D2/D3+  
A D0/D1−, A D0/D1+  
B D12/D13−, B D12/D13+  
B D10/D11−, B D10/D11+  
B D8/D9−, B D8/D9+  
B D6/D7−, B D6/D7+  
B D4/D5−, B D4/D5+  
B D2/D3−, B D2/D3+  
B D0/D1−, B D0/D1+  
STATUS−, STATUS+  
DATA7−, DATA7+  
DATA6−, DATA6+  
DATA5−, DATA5+  
DATA4−, DATA4+  
DATA3−, DATA3+  
DATA2−, DATA2+  
DATA1−, DATA1+  
DATA0−, DATA0+  
Not applicable  
D4−, D4+  
D3−, D3+  
D2−, D2+  
D1−, D1+  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
D0−, D0+  
Rev. B | Page 63 of 81  
AD6679  
Data Sheet  
MULTICHIP SYNCHRONIZATION  
The AD6679 has a SYNC input that allows the user flexible  
options for synchronizing the internal blocks. The SYNC  
input is a source synchronous system reference signal that  
enables multichip synchronization. The input clock divider,  
DDCs, and signal monitor block can be synchronized using the  
SYNC input. For the highest level of timing accuracy, SYNC  
must meet the setup and hold requirements relative to the  
CLK input.  
The AD6679 supports several features that aid users in meeting  
the requirements for capturing a SYNC signal. The SYNC  
sample event is defined as either a synchronous low to high  
transition or a synchronous high to low transition. Additionally,  
the AD6679 allows the SYNC signal to be sampled using  
either the rising edge or falling edge of the CLK input. The  
AD6679 also can ignore a programmable number (up to 16) of  
SYNC events. The SYNC control options can be selected using  
Register 0x120 and Register 0x121.  
The flowchart in Figure 84 shows the internal mechanism by  
which multichip synchronization can be achieved in the AD6679.  
START  
INCREMENT  
SYNC± IGNORE  
COUNTER  
NO  
NO  
NO  
SYNC±  
IGNORE  
COUNTER  
EXPIRED?  
(REG 0x121)  
UPDATE  
SETUP/HOLD  
DETECTOR STATUS  
(REG 0x128)  
RESET  
SYNC± IGNORE  
COUNTER  
SYNC±  
ENABLED?  
(REG 0x120)  
NO  
YES  
SYNC±  
ASSERTED?  
YES  
YES  
CLOCK  
DIVIDER  
AUTO ADJUST  
ENABLED?  
(REG 0x10D)  
INPUT  
CLOCK  
INCREMENT  
SYNC±  
COUNTER  
(REG 0x12A)  
CLOCK  
DIVIDER  
> 1?  
ALIGN CLOCK  
DIVIDER  
PHASE TO  
SYNC  
YES  
YES  
YES  
DIVIDER  
ALIGNMENT  
REQUIRED?  
(REG 0x10B)  
NO  
NO  
NO  
ALIGN PHASE OF ALL  
INTERNAL CLOCKS  
TO SYNC±  
CLOCK  
ALIGNMENT  
REQUIRED?  
YES  
NO  
SIGNAL  
MONITOR  
SYNC  
ENABLED?  
(REG 0x26F)  
DDC NCO  
ALIGN DDC  
ALIGN SIGNAL  
MONITOR  
COUNTERS  
YES  
YES  
ALIGNMENT  
ENABLED?  
(REG 0x300)  
NCO PHASE  
BACK TO START  
ACCUMULATOR  
NO  
NO  
Figure 84. Multichip Synchronization  
Rev. B | Page 64 of 81  
 
 
Data Sheet  
AD6679  
status values, respectively, for different phases of SYNC . The  
setup detector returns the status of the SYNC signal before the  
CLK edge and the hold detector returns the status of the  
SYNC signal after the CLK edge. Register 0x128 stores the  
status of SYNC and indicates whether the SYNC signal was  
captured by the ADC.  
SYNC SETUP AND HOLD WINDOW MONITOR  
To assist in ensuring a valid SYNC capture, the AD6679 has a  
SYNC setup and hold window monitor. This feature allows the  
system designer to determine the location of the SYNC signals  
relative to the CLK signals by reading back the amount of  
setup and hold margin on the interface through the memory  
map. Figure 85 and Figure 86 show both the setup and hold  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
REG 0x128[3:0]  
–8  
7
6
5
4
3
2
1
0
CLK±  
INPUT  
SYNC±  
INPUT  
VALID  
FLIP FLOP  
HOLD (MIN)  
FLIP FLOP  
SETUP (MIN)  
FLIP FLOP  
HOLD (MIN)  
Figure 85. SYNC Setup Detector  
Rev. B | Page 65 of 81  
 
 
AD6679  
Data Sheet  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
7
REG 0x128[7:4]  
6
5
4
3
2
1
0
CLK±  
INPUT  
SYNC±  
INPUT  
VALID  
FLIP FLOP  
SETUP (MIN)  
FLIP FLOP  
HOLD (MIN)  
FLIP FLOP  
HOLD (MIN)  
Figure 86. SYNC Hold Detector  
Table 37 shows the description of the contents of Register 0x128 and how to interpret them.  
Table 37. SYNC Setup and Hold Monitor, Register 0x128  
Register 0x128, Bits[7:4] Hold Register 0x128, Bits[3:0] Setup  
Status  
Status  
Description  
0x0  
0x0 to 0x7  
Possible setup error; the smaller this number, the smaller the setup  
margin  
0x0 to 0x8  
0x8  
0x8  
0x8  
0x9 to 0xF  
0x0  
No setup or hold error (best hold margin)  
No setup or hold error (best setup and hold margin)  
No setup or hold error (best setup margin)  
0x9 to 0xF  
0x0  
Possible hold error; the larger this number, the smaller the hold  
margin  
0x0  
0x0  
Possible setup or hold error  
Rev. B | Page 66 of 81  
 
 
Data Sheet  
AD6679  
TEST MODES  
(if present, the analog signal is ignored); however, they do  
require an encode clock.  
ADC TEST MODES  
The AD6679 has various test options that aid in the system level  
implementation. The AD6679 has ADC test modes that are  
available in Register 0x550. These test modes are described in  
Table 38. When an output test mode is enabled, the analog  
section of the ADC is disconnected from the digital back-end  
blocks and the test pattern is run through the output formatting  
block. Some of the test patterns are subject to output formatting,  
and some are not. The PN generators from the PN sequence  
tests can be reset by setting Bit 4 or Bit 5 of Register 0x550.  
These tests can be performed with or without an analog signal  
If the application mode has been set to select a DDC mode of  
operation, the test modes must be enabled for each DDC  
enabled. The test patterns can be enabled via Bit 2 and Bit 0 of  
Register 0x327, Register 0x347, Register 0x367, and Register 0x387,  
depending on which DDC(s) have been selected. The (I) output  
data uses the test patterns selected for Channel A and the (Q)  
output data uses the test patterns selected for Channel B. For  
more information, see the AN-877 Application Note, Interfacing  
to High Speed ADCs via SPI.  
Table 38. ADC Test Modes  
Output Test Mode  
Bit Sequence  
Default/Seed  
Value  
Pattern Name  
Off (default)  
Expression  
Sample (N, N + 1, N + 2, …)  
Not applicable  
0000  
Not applicable  
Not applicable  
0001  
0010  
Midscale short  
Positive Full-scale  
short  
00 0000 0000 0000 Not applicable  
01 1111 1111 1111 Not applicable  
Not applicable  
Not applicable  
0011  
Negative Full-scale  
short  
10 0000 0000 0000 Not applicable  
Not applicable  
0100  
0101  
0110  
0111  
Checkerboard  
PN sequence, long  
PN sequence, short x9 + x5 + 1  
One-/zero-word  
toggle  
10 1010 1010 1010 Not applicable  
0x1555, 0x2AAA, 0x1555, 0x2AAA, 0x1555  
0x3FD7, 0x0002, 0x26E0, 0x0A3D, 0x1CA6  
0x125B, 0x3C9A, 0x2660, 0x0c65, 0x0697  
0x0000, 0x3FFF, 0x0000, 0x3FFF, 0x0000  
x23 + x18 + 1  
0x3AFF  
0x0092  
11 1111 1111 1111 Not applicable  
1000  
User input  
Register 0x551 to  
Register 0x558  
Not applicable  
Not applicable  
For repeat mode: User Pattern 1[15:2], User Pattern 2[15:2],  
User Pattern 3[15:2], User Pattern 4[15:2], User Pattern 1[15:2]…  
For single mode: User Pattern 1[15:2], User Pattern 2[15:2],  
User Pattern 3[15:2], User Pattern 4[15:2], 0x0000…  
(x) % 214, (x + 1) % 214, (x + 2) % 214, (x + 3) % 214  
1111  
Ramp output  
(x) % 214  
Rev. B | Page 67 of 81  
 
 
 
AD6679  
Data Sheet  
SERIAL PORT INTERFACE (SPI)  
The AD6679 SPI allows the user to configure the converter for  
specific functions or operations through a structured register  
space provided inside the ADC. The SPI gives the user added  
flexibility and customization, depending on the application.  
Addresses are accessed via the serial port and can be written to  
or read from via the serial port. Memory is organized into bytes  
that can be further divided into fields. These fields are docu-  
mented in the Memory Map section. For detailed operational  
information, see the Serial Control Interface Standard.  
command is issued. This bit allows the SDIO pin to change  
direction from an input to an output.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the SDIO pin to change  
direction from an input to an output at the appropriate point in  
the serial frame.  
CONFIGURATION USING THE SPI  
Data can be sent in MSB first mode or in LSB first mode. MSB  
first is the default configuration on power-up and can be  
changed via the SPI port configuration register. For more  
information about this and other features, see the Serial Control  
Interface Standard.  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO  
pin, and the CSB pin (see Table 39). The SCLK (serial clock) pin is  
used to synchronize the read and write data presented from/to the  
ADC. The SDIO (serial data input/output) pin is a dual-purpose  
pin that allows data to be sent to and read from the internal  
ADC memory map registers. The CSB (chip select bar) pin is an  
active low control that enables or disables the read and write  
cycles.  
HARDWARE INTERFACE  
The pins described in Table 39 compose the physical interface  
between the user programming device and the serial port of the  
AD6679. The SCLK pin and the CSB pin function as inputs  
when using the SPI. The SDIO pin is bidirectional, functioning  
as an input during write phases and as an output during  
readback.  
Table 39. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which  
synchronizes serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
The SPI is flexible enough to be controlled by either FPGAs or  
microcontrollers. One method for SPI configuration is described  
in detail in the AN-812 Application Note, Microcontroller-  
Based Serial Port Interface (SPI) Boot Circuit.  
CSB  
Chip select bar. An active low control that gates the read  
and write cycles.  
Do not activate the SPI port during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used  
for other devices, it may be necessary to provide buffers between  
this bus and the AD6679 to prevent these signals from  
transitioning at the converter inputs during critical sampling  
periods.  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. See Figure 3 and  
Table 5 for an example of the serial timing and its definitions.  
Other modes involving the CSB pin are available. The CSB pin  
can be held low indefinitely, which permanently enables the  
device; this is called streaming. The CSB pin can stall high  
between bytes to allow additional external timing. When CSB is  
tied high, SPI functions are placed in a high impedance mode.  
This mode turns on any SPI pin secondary functions.  
SPI ACCESSIBLE FEATURES  
Table 40 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the Serial Control Interface Standard. The AD6679 device  
specific features are described in the Memory Map section.  
All data is composed of 8-bit words. The first bit of each  
individual byte of serial data indicates whether a read or write  
Table 40. Features Accessible Using the SPI  
Feature Name  
Description  
Allows the user to set either power-down mode or standby mode  
Mode  
Clock  
Test Input/Output  
Output Mode  
Allows the user to access the clock divider via the SPI  
Allows the user to set test modes to have known data on output bits  
Allows the user to set up outputs  
Serializer/Deserializer (SERDES) Output Setup  
Allows the user to vary SERDES settings, including swing and emphasis  
Rev. B | Page 68 of 81  
 
 
 
 
 
 
Data Sheet  
AD6679  
MEMORY MAP  
Channel Specific Registers  
READING THE MEMORY MAP REGISTER TABLE  
Some channel setup functions such as analog input differential  
termination (Register 0x016) can be programmed to a different  
value for each channel. In these cases, channel address locations  
are internally duplicated for each channel. These registers and bits  
are designated in Table 41 as local. These local registers and bits  
can be accessed by setting the appropriate Channel A or  
Channel B bits in Register 0x008. If both bits are set, the  
subsequent write affects the registers of both channels. In a read  
cycle, set only Channel A or Channel B to read one of the two  
registers. If both bits are set during an SPI read cycle, the device  
returns the value for Channel A. Registers and bits designated as  
global in Table 41 affect the entire device and the channel features  
for which independent settings are not allowed between  
channels. The settings in Register 0x008 do not affect the global  
registers and bits.  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into seven sections: the  
Analog Devices, Inc., SPI registers, the analog input buffer  
control registers, ADC function registers, the DDC function  
registers, NSR decimate by 2 and noise shaping requantizer  
registers, variable dynamic range registers, and the digital  
outputs and test modes registers.  
Table 41 (see the Memory Map Register Table section)  
documents the default hexadecimal value for each hexadecimal  
address shown. The column with the heading Bit 7 (MSB) is the  
start of the default hexadecimal value given. For example,  
Address 0x561, the output format register, has a hexadecimal  
default value of 0x01. This means that Bit 0 = 1, and the  
remaining bits are 0s. This setting is the default output format  
value, which is twos complement. For more information on this  
function and others, see Table 41.  
SPI Soft Reset  
After issuing a soft reset by programming 0x81 to Register 0x000,  
the AD6679 requires 5 ms to recover. Therefore, when program-  
ming the AD6679 for application setup, ensure that an adequate  
delay is programmed into the firmware after asserting the soft  
reset and before starting the device setup.  
Open and Reserved Locations  
All address and bit locations that are not included in Table 41  
are not currently supported for this device. Write unused bits of  
a valid address location with 0s unless the default value is set  
otherwise. Writing to these locations is required only when part  
of an address location is open (for example, Address 0x561). If  
the entire address location is open (for example, Address 0x013),  
do not write to this address location.  
Datapath Soft Reset  
After programming the desired clock divider settings, changing  
the input clock frequency, or glitching the input clock, a datapath  
soft reset is recommended by writing 0x02 to Register 0x001.  
This reset function restarts all the datapath and clock generation  
circuitry in the device. The reset occurs on the first clock cycle  
after the register is programmed and the device requires 5 ms to  
recover. This reset does not affect the contents of the memory  
map registers.  
Default Values  
After the AD6679 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 41.  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
“X” denotes “don’t care.  
Rev. B | Page 69 of 81  
 
 
AD6679  
Data Sheet  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 41 are not currently supported for this device.  
Table 41. Memory Map Registers  
Reg.  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Default Notes  
Analog Devices SPI Registers  
Address  
ascension  
0
0
Address  
ascension 0 = MSB  
LSB first  
Soft reset  
(self  
clearing):  
clears  
memory  
map  
0x00  
0x000 INTERFACE_CONFIG_  
A
Soft  
reset  
(self  
clearing):  
clears  
memory  
map  
LSB first  
0 = MSB  
1 = LSB  
1 = LSB  
registers  
registers  
0x001 INTERFACE_CONFIG_B Single  
0
0
0
0
0
Datapath  
soft  
reset  
0
0x00  
instruc-  
tion  
(self  
clearing):  
does not  
clear  
memory  
map  
registers  
0x002 DEVICE_CONFIG  
(local)  
0
0
0
0
0
0
0
0
00 = normal  
operation  
10 = standby  
0x00  
11 = power-down  
0x003 CHIP_TYPE  
011 = high speed ADC  
0x03  
0xD3  
0x00  
X
Read  
only  
0x004 CHIP_ID (low byte)  
0x005 CHIP_ID (high byte)  
0x006 CHIP_GRADE  
0x008 Device index  
Read  
only  
0
0
0
0
0
0
0
0
1
0
0
0
0
Read  
only  
Chip speed grade  
0101 = 500 MSPS  
X
Read  
only  
0
0
Channel  
B
Channel  
A
0x03  
0x00A Scratch pad  
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
1
0
1
0
0x00  
0x01  
0x56  
0x00B SPI revision  
0x00C Vendor ID (low byte)  
Read  
only  
0x00D Vendor ID (high byte)  
0
0
0
0
0
1
0
0
0x04  
Read  
only  
Analog Input Buffer Control Registers  
0x015 Analog Input (local)  
0
0
0
0
0
0
0
Input  
0x00  
disable  
0 =  
normal  
operation  
1 = input  
disabled  
0x016 Input termination  
(local)  
Analog input differential termination  
0000 = 400 Ω (default)  
0001 = 200 Ω  
1
1
0
0
0x0C  
0x1F  
0010 = 100 Ω  
0110 = 50 Ω  
0x934 Input capacitance  
0
0
0
0x1F = 3 pF to GND (default)  
0x00 = 1.5 pF to GND  
Rev. B | Page 70 of 81  
 
 
Data Sheet  
AD6679  
Reg.  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Default Notes  
0x018 Buffer Control 1  
(local)  
0000 = 1.0× buffer current  
0001 = 1.5× buffer current  
0010 = 2.0× buffer current (default)  
0011 = 2.5× buffer current  
0100 = 3.0× buffer current  
0101 = 3.5× buffer current  
0
0
0
0
0x20  
1111 = 8.5× buffer current  
0x019 Buffer Control 2  
(local)  
0100 = Setting 1  
0101 = Setting 2  
0
0
0
0
0x60  
0110 = Setting 3 (default)  
0111 = Setting 4  
(see Table 11 for setting per frequency range)  
0x01A Buffer Control 3 (local)  
0x11A Buffer Control 4 (local)  
0
0
0
0
0
1000 = Setting 1  
1001 = Setting 2  
1010 = Setting 3 (default)  
0x0A  
0x00  
(see Table 11 for setting per frequency range)  
0
High  
0
0
0
0
0
frequency  
setting  
0 = off  
(default)  
1 = on  
0x935  
Buffer Control 5 (local)  
0
0
0
0
0
0
0
0
Low  
0
0
0x04  
frequency  
operation  
0 = off  
1 = on  
(default)  
0x025 Input full-scale range  
(local)  
0
Full-scale adjust  
0000 = 1.94 V p-p  
1000 = 1.46 V p-p  
1001 = 1.58 V p-p  
1010 = 1.70 V p-p  
0x0C  
0x04  
Differ-  
ential;  
use in  
con-  
junction  
with  
1011 = 1.82 V p-p  
1100 = 2.06 V p-p (default)  
Reg.  
0x030  
0x030  
Input full-scale control  
(local)  
0
0
0
Full-scale control  
0
0
Used in  
con-  
junction  
with  
See Table 11 for recommended  
settings for different frequency bands;  
default values:  
Full scale range ≥ 1.82 V = 001  
Full scale range < 1.82 V = 110  
Reg.  
0x025  
ADC Function Registers  
0x024 V_1P0 control  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.0 V  
0x00  
0x00  
reference  
select  
0 =  
internal  
1 =  
external  
0x028 Temperature diode  
(local)  
Diode  
selection  
0 = no  
diode  
selected  
1 =  
temper-  
ature  
diode  
selected  
0x03F PDWN/STBY pin  
control (local)  
0 =  
PDWN/  
0
0
0
0
0
0
0
0x00  
Used in  
con-  
STBY  
enabled  
1 =  
junction  
with  
Reg.  
disabled  
0x040  
Rev. B | Page 71 of 81  
AD6679  
Data Sheet  
Reg.  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Default Notes  
0x040 Chip pin control  
PDWN/STBY function  
00 = power down  
01 = standby  
Fast Detect B (FD_B)  
000 = Fast Detect B output  
111 = disabled  
Fast Detect A (FD_A)  
0x3F  
000 = Fast Detect A output  
011 = temperature diode  
111 = disabled  
10 = disabled  
0x10B Clock divider  
0
0
0
0
0
0
000 = divide by 1  
001 = divide by 2  
011 = divide by 4  
111 = divide by 8  
0x00  
0x00  
0x10C Clock divider phase  
(local)  
0
0
0
Independently controls Channel A and  
Channel B clock divider phase offset  
0000 = 0 input clock cycles delayed  
0001 = ½ input clock cycles delayed  
0010 = 1 input clock cycles delayed  
0011 = 1½ input clock cycles delayed  
0100 = 2 input clock cycles delayed  
0101 = 2½ input clock cycles delayed  
1111 = 7½ input clock cycles delayed  
Clock divider positive 0x00  
Clock  
divider  
must be  
>1  
0x10D Clock divider and  
SYNC control  
Clock  
divider  
auto-  
phase  
adjust  
0 =  
0
0
0
Clock divider  
negative skew  
window  
00 = no negative  
skew  
01 = 1 device clock of  
negative skew  
skew window  
00 = no positive skew  
01 = 1 device clock of  
positive skew  
10 = 2 device clocks  
of positive skew  
disabled  
1 =  
enabled  
10 = 2 device clocks  
of negative skew  
11 = 3 device clocks  
of negative skew  
11 = 3 device clocks  
of positive skew  
0x117  
Clock delay control  
0
0
0
0
0
0
0
Clock fine 0x00  
Enabling  
the clock  
fine  
delay  
adjust  
enable  
0 =  
disabled  
1 =  
delay  
adjust  
causes a  
data-  
enabled  
path  
soft  
reset  
0x118  
Clock fine delay  
Clock Fine Delay Adjust[7:0]  
Twos complement coded control to adjust the fine sample clock skew in ~1.7 ps steps  
0x00  
Used in  
con-  
≤−88 = −151.7 ps skew  
−87 = −150.0 ps skew  
junction  
with  
Reg.  
0 = 0 ps skew  
0x117  
≥ +87 = +150 ps skew  
0x11C Clock status  
0
0
0
0
0
0
0
0
0
0
0
0
0
0 = no  
input  
clock  
detected  
1 = input  
clock  
0x00  
0x00  
0x00  
Read  
only  
detected  
SYNC  
transition  
select  
0 = low to  
high  
1 = high to  
low  
CLK  
SYNC mode select  
00 = disabled  
01 = continuous  
10 = N shot  
0
0x120 SYNC Control 1  
edge  
select  
0 =  
rising  
1 =  
falling  
0x121 SYNC Control 2  
0
SYNC N-shot ignore counter select  
0000 = next SYNC only  
Mode  
select  
0001 = ignore the first SYNC transitions  
0010 = ignore the first two SYNC transitions  
(Reg.  
0x120,  
Bits[2:1])  
must be  
N-shot  
1111 = ignore the first 16 SYNC transitions  
Rev. B | Page 72 of 81  
Data Sheet  
AD6679  
Reg.  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Default Notes  
0x128 SYNC Status 1  
SYNC hold status  
See Table 37  
SYNC setup status  
See Table 37  
Read  
only  
0x129 SYNC and clock  
divider status  
0
0
0
0
Clock divider phase when SYNC is captured  
0000 = in phase  
Read  
only  
0001 = SYNC is ½ cycle delayed from clock  
0010 = SYNC is 1 cycle delayed from clock  
0011 = 1½ input clock cycles delayed  
0100 = 2 input clock cycles delayed  
0101 = 2½ input clock cycles delayed  
1111 = 7½ input clock cycles delayed  
0x12A SYNC counter  
SYNC counter, Bits[7:0] increment when a SYNC signal is captured  
Read  
only  
0x200 Chip application  
mode  
0
0
Chip Q  
ignore  
0 =  
normal  
(I/Q)  
1 =  
ignore  
(I only)  
0
Chip operating mode  
0001 = DDC 0 on  
0010 = DDC 0 and DDC 1 on  
0011 = DDC 0, DDC 1, DDC 2, and DDC 3 on  
0111 = NSR enabled (default)  
1000 = VDR enabled  
0x07  
0x00  
0x201 Chip decimation ratio  
0x228 Customer offset  
0
0
0
0
0
0
0
Chip decimation ratio select  
000 = decimate by 1  
001 = decimate by 2  
010 = decimate by 4  
011 = decimate by 8  
100 = decimate by 16  
Offset adjust in LSBs from +127 to −128 (twos complement format)  
0x00  
0x00  
0x245 Fast detect (FD)  
control (local)  
0
0
Force  
FD_A/  
FD_B  
pins  
Force  
0
Enable  
fast  
detect  
value of  
FD_A/  
FD_B  
output  
0 =  
pins; if  
normal  
func-  
tion  
1 =  
force to  
value  
force pins  
is true,  
this value  
is output  
on FD_x  
pins  
0x247 FD upper threshold  
LSB (local)  
Fast Detect Upper Threshold[7:0]  
Fast Detect Upper Threshold[12:8]  
Fast Detect Lower Threshold[7:0]  
Fast Detect Lower Threshold[12:8]  
Fast Detect Dwell Time[7:0]  
Fast Detect Dwell Time[15:8]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x248 FD upper threshold  
MSB (local)  
0
0
0
0
0
0
0x249 FD lower threshold  
LSB (local)  
0x24A FD lower threshold  
MSB (local)  
0x24B FD dwell time LSB  
(local)  
0x24C FD dwell time MSB  
(local)  
0x26F Signal monitor  
synchronization  
control  
0
0
0
0
0
0
0
0
0
Synchronization  
mode  
00 = disabled  
01 = continuous  
11 = one-shot  
0x00  
See the  
Signal  
Monitor  
section  
0x270 Signal monitor  
control (local)  
0
0
0
Peak  
0
0x00  
detector  
0 =  
disabled  
1 =  
enabled  
Rev. B | Page 73 of 81  
AD6679  
Data Sheet  
Reg.  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Default Notes  
0x271 Signal Monitor Period  
Register 0 (local)  
Signal Monitor Period[7:1]  
Signal Monitor Period[15:8]  
Signal Monitor Period[23:16]  
0
0x80  
0x00  
0x00  
0x01  
In dec-  
imated  
output  
clock  
cycles  
0x272 Signal Monitor Period  
Register 1 (local)  
In dec-  
imated  
output  
clock  
cycles  
0x273 Signal Monitor Period  
Register 2 (local)  
In dec-  
imated  
output  
clock  
cycles  
0x274 Signal monitor result  
control (local)  
0
0
0
Result  
0
0
0
Result  
selection  
update  
1 = update  
results (self  
clear)  
0 =  
Reserved  
1 = peak  
detector  
0x275 Signal Monitor Result  
Register 0 (local)  
Signal Monitor Result[7:0]  
When Register 0x0274, Bit 0 = 1, Result Bits[19:7] = Peak Detector Absolute Value[12:0];  
Read  
only,  
Result Bits[6:0] = 0  
updated  
based  
on Reg.  
0x274,  
Bit 4  
0x276 Signal Monitor Result  
Register 1 (local)  
Signal Monitor Result[15:8]  
Read  
only,  
updated  
based  
on Reg.  
0x274,  
Bit 4  
0x277 Signal Monitor Result  
Register 1 (local)  
0
0
0
0
Signal Monitor Result[19:16]  
Read  
only,  
updated  
based  
on Reg.  
0x274,  
Bit 4  
0x278 Signal monitor period  
counter result (local)  
Period Count Result[7:0]  
Read  
only,  
updated  
based  
on Reg  
0x274,  
Bit 4  
Digital Downconverter (DDC) Function Registers—See the Digital Downconverter (DDC) Section  
0x300 DDC synchronization  
control  
0
0
0
DDC NCO  
soft reset  
0 = normal  
operation  
1 = reset  
0
0
Synchronization  
mode  
00 = disabled  
01 = continuous  
11 = one shot  
0x00  
Rev. B | Page 74 of 81  
Data Sheet  
AD6679  
Reg.  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
IF mode  
Bit 3  
Bit 2  
Bit 1  
Default Notes  
0x310 DDC 0 control  
Mixer  
select  
0 = real  
mixer  
1 =  
Gain  
Complex  
to real  
enable  
0 =  
disabled  
1 =  
0
Decimation rate  
select  
(complex to real  
disabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by 8  
10 = decimate by 16  
(complex to real  
enabled)  
0x00  
select  
0 = 0 dB  
gain  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode  
(mixer bypassed, NCO  
disabled)  
10 = fADC/4 Hz IF mode  
(fADC/4 downmixing  
mode)  
1 = 6 dB  
complex gain  
mixer  
enabled  
11 = test mode (mixer  
inputs forced to +FS,  
NCO enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by 8  
0x311 DDC 0 input selection  
0
0
0
0
0
Q input  
select  
0
I input  
select  
0x00  
0 = Ch. A  
1 = Ch. B  
0 = Ch. A  
1 = Ch. B  
0x314 DDC 0 frequency LSB  
0x315 DDC 0 frequency MSB  
0x320 DDC 0 phase LSB  
0x321 DDC 0 phase MSB  
DDC 0 NCO FTW[7:0], twos complement  
DDC 0 NCO FTW[11:8], twos complement  
DDC 0 NCO POW[7:0], twos complement  
0x00  
0x00  
0x00  
0x00  
0x00  
X
X
X
X
X
0
X
0
X
0
X
0
DDC 0 NCO POW[11:8], twos complement  
0x327 DDC 0 output test  
mode selection  
0
Q output  
test  
0
I output  
test  
mode  
enable  
0 =  
disabled  
1 =  
mode  
enable  
0 =  
disabled  
1 =  
enabled  
from  
Ch. B  
enabled  
from  
Ch. A  
0x330 DDC 1 control  
Mixer  
select  
0 = real  
mixer  
1 =  
complex gain  
mixer  
Gain  
IF mode  
Complex  
to real  
enable  
0 =  
disabled  
1 =  
0
Decimation rate  
select  
(complex to real  
0x00  
select  
0 = 0 dB  
gain  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode  
(mixer bypassed, NCO  
disabled)  
disabled)  
1 = 6 dB  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by 8  
enabled  
10 = fADC/4 Hz IF mode  
(fADC/4 downmixing  
mode)  
11 = test mode (mixer  
inputs forced to +FS,  
NCO enabled)  
10 = decimate by 16  
(complex to real  
enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by 8  
0x331 DDC 1 input selection  
0
0
0
0
0
Q input  
select  
0
I input  
select  
0x05  
0 = Ch. A  
1 = Ch. B  
0 = Ch. A  
1 = Ch. B  
0x334 DDC 1 frequency LSB  
0x335 DDC 1 frequency MSB  
0x340 DDC 1 phase LSB  
0x341 DDC 1 phase MSB  
DDC 1 NCO FTW[7:0], twos complement  
DDC1 NCO FTW[11:8], twos complement  
DDC 1 NCO POW[7:0], twos complement  
0x00  
0x00  
0x00  
0x00  
0x00  
X
X
X
X
X
0
X
0
X
0
X
0
DDC1 NCO POW[11:8], twos complement  
0x347 DDC 1 output test  
mode selection  
0
Q output  
test  
0
I output  
test  
mode  
enable  
0 =  
disabled  
1 =  
mode  
enable  
0 =  
disabled  
1 =  
enabled  
from  
enabled  
from  
Ch. B  
Ch. A  
Rev. B | Page 75 of 81  
AD6679  
Data Sheet  
Reg.  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
IF mode  
Bit 3  
Bit 2  
Bit 1  
Default Notes  
0x350 DDC 2 control  
Mixer  
select  
0 = real  
mixer  
1 =  
Gain  
Complex  
to real  
enable  
0 =  
disabled  
1 =  
0
Decimation rate  
select  
(complex to real  
disabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by 8  
10 = decimate by 16  
(complex to real  
enabled)  
0x00  
select  
0 = 0 dB  
gain  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode  
(mixer bypassed, NCO  
disabled)  
10 = fADC/4 Hz IF mode  
(fADC/4 downmixing  
mode)  
1 = 6 dB  
complex gain  
mixer  
enabled  
11 = test mode (mixer  
inputs forced to +FS,  
NCO enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by 8  
0x351 DDC 2 input selection  
0
0
0
0
0
Q input  
select  
0
I input  
select  
0x00  
0 = Ch. A  
1 = Ch. B  
0 = Ch. A  
1 = Ch. B  
0x354 DDC 2 frequency LSB  
0x355 DDC 2 frequency MSB  
0x360 DDC 2 phase LSB  
0x361 DDC 2 phase MSB  
DDC 2 NCO FTW[7:0], twos complement  
DDC 2 NCO FTW[11:8], twos complement  
DDC 2 NCO POW[7:0], twos complement  
0x00  
0x00  
0x00  
0x00  
0x00  
X
X
X
X
X
0
X
0
X
0
X
0
DDC 2 NCO POW[11:8], twos complement  
0x367 DDC 2 output test  
mode selection  
0
Q output  
test  
0
I output  
test  
mode  
enable  
0 =  
disabled  
1 =  
mode  
enable  
0 =  
disabled  
1 =  
enabled  
from  
Ch. B  
enabled  
from  
Ch. A  
0x370 DDC 3 control  
Mixer  
select  
0 = real  
mixer  
1 =  
complex gain  
mixer  
Gain  
IF mode  
Complex  
to real  
enable  
0 =  
disabled  
1 =  
0
Decimation rate  
select  
(complex to real  
0x00  
select  
0 = 0 dB  
gain  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode  
(mixer bypassed, NCO  
disabled)  
disabled)  
1 = 6 dB  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by 8  
enabled  
10 = fADC/4 Hz IF mode  
(fADC/4 downmixing  
mode)  
11 = test mode (mixer  
inputs forced to +FS,  
NCO enabled)  
10 = decimate by 16  
(complex to real  
enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by 8  
0x371 DDC 3 input selection  
0
0
0
0
0
Q input  
select  
0
I input  
select  
0x05  
0 = Ch. A  
1 = Ch. B  
0 = Ch. A  
1 = Ch. B  
0x374 DDC 3 frequency LSB  
0x375 DDC 3 frequency MSB  
0x380 DDC 3 phase LSB  
0x381 DDC 3 phase MSB  
DDC 3 NCO FTW[7:0], twos complement  
DDC 3 NCO FTW[11:8], twos complement  
DDC 3 NCO POW[7:0], twos complement  
0x00  
0x00  
0x00  
0x00  
0x00  
X
X
X
X
X
0
X
0
X
0
X
0
DDC 3 NCO POW[11:8], twos complement  
0x387 DDC 3 output test  
mode selection  
0
Q output  
test  
0
I output  
test  
mode  
enable  
0 =  
disabled  
1 =  
mode  
enable  
0 =  
disabled  
1 =  
enabled  
from  
enabled  
from  
Ch. B  
Ch. A  
NSR Decimate by 2 and Noise Shaping Requantizer (NSR)  
Rev. B | Page 76 of 81  
Data Sheet  
AD6679  
Reg.  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Default Notes  
0x41E NSR decimate by 2  
High-  
pass  
X
0
0
X
X
X
NSR  
decimate  
0x00  
filter  
by 2  
(HPF)/  
low-pass  
filter  
enable  
0 =  
disabled  
mode  
0 =  
1 =  
enabled  
enable  
LPF  
1 =  
enable  
HPF  
0x420 NSR mode  
0x422 NSR tuning  
X
X
X
X
X
NSR mode  
000 = 21% BW mode  
001 = 28% BW mode  
X
0x00  
0x00  
X
NSR tuning word; see the Noise Shaping Requantizer (NSR) section;  
equations for the tuning word are dependent on the NSR mode  
Variable Dynamic Range (VDR)  
0x430 VDR control  
X
X
X
0
X
X
VDR BW  
mode  
0 = dual  
real  
0x01  
0 = 25%  
BW  
mode  
mode  
1 = dual  
complex  
mode  
1 = 43%  
BW  
mode  
(Channel  
A = I,  
(only  
Channel  
B = Q)  
available  
for dual  
complex  
mode)  
0x434 VDR tuning  
X
X
0
X
X
VDR center frequency; see the Variable  
0x00  
0x00  
Dynamic Range (VDR) section for more details  
on the center frequency, which is dependent  
on the VDR mode  
Digital Outputs and Test Modes  
User  
Reset PN  
long gen  
0 = long  
PN  
enable  
1 = long  
PN reset  
Reset PN  
short gen  
0 = short  
PN enable  
1 = short  
PN reset  
Test mode selection  
0000 = off (normal operation)  
0001 = midscale short  
0010 = positive full scale  
0011 = negative full scale  
0100 = alternating checkerboard  
0101 = PN sequence, long  
0110 = PN sequence, short  
0111 = 1/0 word toggle  
0x550 ADC test modes  
(local)  
pattern  
selection  
0 =  
contin-  
uous  
repeat  
1 =  
single  
pattern  
1000 = user pattern test mode (used with  
Register 0x550, Bit 7, and User Pattern 1 to  
User Pattern 4 registers)  
1111 = ramp output  
0x551 User Pattern 1 LSB  
0x552 User Pattern 1 MSB  
0x553 User Pattern 2 LSB  
0x554 User Pattern 2 MSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x00  
0x00  
0x00  
0x00  
Used  
with  
Reg.  
0x550  
Used  
with  
Reg.  
0x550  
Used  
with  
Reg.  
0x550  
Used  
with  
Reg.  
0x550  
Rev. B | Page 77 of 81  
AD6679  
Data Sheet  
Reg.  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Default Notes  
0x555 User Pattern 3 LSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x00  
0x00  
0x00  
0x00  
0x00  
Used  
with  
Reg.  
0x550  
0x556  
User Pattern 3 MSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Used  
with  
Reg.  
0x550  
0x557 User Pattern 4 LSB  
0x558 User Pattern 4 MSB  
Used  
with  
Reg.  
0x550  
Used  
with  
Reg.  
0x550  
0x559 Output Mode  
Control 1  
Status bit selection  
000 = tie low (1’b0)  
001 = overrange bit  
010 = signal monitor bit  
011 = fast detect (FD) bit or VDR  
punish bit  
100 = VDR high/low resolution bit  
101 = system reference  
0x561 Output format  
0
0
0
0
0
Sample  
invert  
0 =  
normal  
1 =  
sample  
invert  
Data format select  
00 = offset binary  
01 = twos  
0x01  
0x00  
complement (default)  
0x562 Output overrange  
(OR) clear  
Virtual  
Con-  
Virtual  
Con-  
Virtual  
Con-  
Virtual  
Converter 4 Con-  
Virtual  
Virtual  
Con-  
Virtual  
Con-  
Virtual  
Con-  
verter 7  
OR  
0 = OR  
bit  
enabled  
1 = OR  
bit  
verter 6  
OR  
0 = OR  
bit  
enabled  
1 = OR  
bit  
verter 5  
OR  
0 = OR  
bit  
enabled  
1 = OR  
bit  
OR  
verter 3  
OR  
0 = OR  
bit  
verter 2  
OR  
0 = OR bit 0 = OR  
enabled bit  
verter 1  
OR  
verter 0  
OR  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
enabled 1 = OR bit enabled  
1 = OR  
bit  
cleared  
1 = OR  
bit  
cleared  
cleared  
cleared  
cleared  
cleared  
Virtual  
Con-  
verter 7  
OR  
0 = no  
OR  
Virtual  
Con-  
verter 6  
OR  
0 = no  
OR  
Virtual  
Con-  
verter 5  
OR  
0 = no  
OR  
Virtual  
Converter 4 Con-  
OR  
0 = no OR  
1 = OR  
occurred  
Virtual  
Virtual  
Con-  
verter 2  
Virtual  
Con-  
verter 1  
Virtual  
Con-  
verter 0  
0x00  
0x00  
Read  
only  
0x563 Output overrange  
status  
verter 3  
OR  
0 = no  
OR  
1 = OR  
occurred  
OR  
OR  
OR  
0 = no OR 0 = no  
0 = no OR  
1 = OR  
occurred  
1 = OR  
occurred  
OR  
1 = OR  
occurred  
1 = OR  
occurred occurred  
1 = OR  
1 = OR  
occurred  
0x564 Output channel select  
0
0
0
0
0
0
0
Converter  
channel  
swap  
0 =  
normal  
channel  
ordering  
1 =  
channel  
swap  
enabled  
Rev. B | Page 78 of 81  
Data Sheet  
AD6679  
Reg.  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Default Notes  
Output data mode  
0x568 Output mode  
0
0
Frame clock mode (only  
used when in output  
data mode is in byte  
mode)  
00 = frame clock always  
off  
0
000 = parallel interleaved mode  
(one virtual converter)  
001 = parallel interleaved mode  
(two virtual converters)  
010 = channel multiplexed  
(even/odd) mode  
(one virtual converter)  
011 = channel multiplexed  
(even/odd) mode  
01 = frame clock always  
on  
10 = reserved  
11 = frame clock  
conditionally on based  
on PN23 sequence  
(two virtual converters)  
100 = byte mode  
(one virtual converter)  
101 = byte mode  
(two virtual converters)  
110 = byte mode  
(four virtual converters)  
111 = byte mode  
(eight virtual converters)  
0x569 DCO output delay  
0
0
0
0
0
0
DCO clock delay  
00 = 0°  
0x01  
01 = 90° (available  
when DCO rate is less  
than sample clock  
rate)  
10 = 180°  
11 = 270° (available  
when DCO rate is less  
than sample clock  
rate)  
0x56A Output adjust  
0
1
0
0
LVDS output drive current adjust  
000 = 2 mA  
0
0x4C  
001 = 2.25 mA  
010 = 2.5 mA  
011 = 2.75 mA  
100 = 3.0 mA  
101 = 3.25 mA  
110 = 3.5 mA (default)  
111 = 3.75 mA  
0x56B Output slew rate  
adjust  
0
0
0
0
0
0
Output slew rate  
control  
0x00  
00 = 80 ps  
01 = 150 ps  
10 = 200 ps  
11 = 250 ps  
Rev. B | Page 79 of 81  
AD6679  
Data Sheet  
APPLICATIONS INFORMATION  
AVDD1  
1.25V  
POWER SUPPLY RECOMMENDATIONS  
ADP1741  
1.8V  
The AD6679 must be powered by the following six supplies:  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD =  
1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V. For applications  
requiring an optimal high power efficiency and low noise  
performance, it is recommended that the ADP2164 and  
ADP2370 switching regulators be used to convert the 3.3 V,  
5.0 V, or 12 V input rails to an intermediate rail (1.8 V and  
3.8 V). These intermediate rails are then postregulated by very  
low noise, low dropout (LDO) regulators (ADP1741, ADM7172,  
and ADP125). Figure 87 shows the recommended method.  
For more detailed information on the recommended power  
solution, see the AD6679 evaluation board wiki, Evaluating the  
AD6679 IF Diversity Receiver.  
DVDD  
1.25V  
ADP1741  
ADP125  
DRVDD  
1.25V  
SPIVDD  
(1.8V OR 3.3V)  
3.6V  
3.3V  
AVDD3  
3.3V  
ADM7172  
OR  
AVDD2  
2.5V  
ADP1741  
Figure 87. High Efficiency, Low Noise Power Solution for the AD6679  
It is not necessary to split all of these power domains in all  
cases. The recommended solution shown in Figure 87 provides  
the lowest noise, highest efficiency power delivery system for  
the AD6679. If only one 1.25 V supply is available, it must be  
routed to AVDD1 first and then tapped off and isolated with a  
ferrite bead or a filter choke preceded by decoupling capacitors  
for SPIVDD, DVDD, and DRVDD, in that order. The user can  
use several different decoupling capacitors to cover both high  
and low frequencies. These capacitors must be located close to  
the point of entry at the PCB level and close to the devices, with  
minimal trace lengths.  
Rev. B | Page 80 of 81  
 
 
 
Data Sheet  
AD6679  
OUTLINE DIMENSIONS  
12.10  
12.00 SQ  
11.90  
A1 BALL  
PAD CORNER  
A1 BALL  
PAD CORNER  
14 13 12 11 10 9  
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
8.20 SQ  
10.40 REF  
SQ  
G
H
J
K
L
0.80  
11.20 SQ  
M
N
P
TOP VIEW  
BOTTOM VIEW  
0.80 REF  
DETAIL A  
1.49  
1.38  
1.27  
1.15  
1.05  
0.95  
DETAIL A  
0.75  
REF  
0.38  
0.33  
0.28  
0.30 REF  
0.50  
0.45  
0.40  
SEATING  
PLANE  
COPLANARITY  
0.12  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-275-GGAB-1.  
Figure 88. 196-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]  
(BP-196-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
BP-196-3  
BP-196-3  
AD6679BBPZ-500  
AD6679BBPZRL7-500  
AD6679-500EBZ  
−40°C to +85°C  
−40°C to +85°C  
196-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]  
196-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]  
Evaluation Board for AD6679-500  
1 Z = RoHS Compliant Part.  
©2015–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13059-0-4/16(B)  
Rev. B | Page 81 of 81  
 
 

相关型号:

AD6679_17

135 MHz BW IF Diversity Receiver
ADI

AD667AD

Microprocessor-Compatible 12-Bit D/A Converter
ADI

AD667AE

12-Bit Digital-to-Analog Converter
ETC

AD667BD

Microprocessor-Compatible 12-Bit D/A Converter
ADI

AD667BE

IC IC,D/A CONVERTER,SINGLE,12-BIT,BIPOLAR,LLCC,28PIN, Digital to Analog Converter
ADI

AD667JCHIPS

12-Bit Digital-to-Analog Converter
ETC

AD667JN

Microprocessor-Compatible 12-Bit D/A Converter
ADI

AD667JN/+

12-Bit Digital-to-Analog Converter
ETC

AD667JNZ

Microprocessor-Compatible 12-Bit D/A Converter
ADI

AD667JP

Microprocessor-Compatible 12-Bit D/A Converter
ADI

AD667JP-REEL

12-Bit Digital-to-Analog Converter
ETC

AD667JPZ

Microprocessor-Compatible 12-Bit D/A Converter
ADI