AD705AQ [ADI]

Picoampere Input Current Bipolar Op Amp; Picoampere输入电流双极运算放大器
AD705AQ
型号: AD705AQ
厂家: ADI    ADI
描述:

Picoampere Input Current Bipolar Op Amp
Picoampere输入电流双极运算放大器

运算放大器
文件: 总8页 (文件大小:454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Picoampere Input Current  
Bipolar Op Amp  
a
AD705  
FEATURES  
DC PERFORMANCE  
CONNECTION DIAGRAM  
25 V max Offset Voltage (AD705T)  
0.6 V/؇C max Drift (AD705K/T)  
100 pA max Input Bias Current (AD705K)  
600 pA max IB Over MIL Temperature Range (AD705T)  
114 dB min CMRR (AD705K/T)  
114 dB min PSRR (AD705T)  
200 V/mV min Open Loop Gain  
0.5 V p-p typ Noise, 0.1 Hz to 10 Hz  
600 A max Supply Current  
Plastic Mini-DIP (N)  
Cerdip (Q) and  
Plastic SOIC (R) Packages  
OFFSET  
NULL  
OFFSET  
NULL  
TOP VIEW  
1
2
3
4
8
7
6
5
–IN  
+IN  
V–  
V+  
OUTPUT  
OVER  
COMP  
AD705  
AC PERFORMANCE  
0.15 V/µs Slew Rate  
800 kHz Unity Gain Crossover Frequency  
10,000 pF Capacitive Load Drive Capability  
Low Cost  
Available in 8-Pin Plastic Mini-DlP, Hermetic Cerdip  
and Surface Mount (SOIC) Packages  
MIL-STD-883B Processing Available  
Dual Version Available: AD706  
Quad Version: AD704  
levels, the commonly used “balancing” resistor (connected be-  
tween the noninverting input of a bipolar op amp and ground) is  
not required.  
The AD705 is an excellent choice for use in low frequency ac-  
tive filters in 12- and 14-bit data acquisition systems, in preci-  
sion instrumentation and as a high quality integrator.  
APPLICATIONS  
The AD705 is internally compensated for unity gain and is  
available in five performance grades. The AD705J and AD705K  
are rated over the commercial temperature range of 0°C to  
+70°C. The AD705A and AD705B are rated over the industrial  
temperature range of –40°C to +85°C. The AD705T is rated  
over the military temperature range of –55°C to +125°C and is  
available processed to MIL-STD-883B, Rev. C.  
Low Frequency Active Filters  
Precision Instrumentation  
Precision Integrators  
PRODUCT DESCRIPTION  
The AD705 is a low power bipolar op amp that has the low in-  
put bias current of a BiFET amplifier but which offers a signifi-  
cantly lower IB drift over temperature. The AD705 offers many  
of the advantages of BiFET and bipolar op amps without their  
inherent disadvantages. It utilizes superbeta bipolar input tran-  
sistors to achieve the picoampere input bias current levels of  
FET input amplifiers (at room temperature), while its IB typi-  
cally only increases 5 times vs. BiFET amplifiers which exhibit a  
1000X increase over temperature. This means that, at room  
temperature, while a typical BiFET may have less IB than the  
AD705, the BiFET’s input current will increase to a level of  
several nA at +125°C. Superbeta bipolar technology also per-  
mits the AD705 to achieve the microvolt offset voltage and low  
noise characteristics of a precision bipolar input amplifier.  
The AD705 is offered in three varieties of 8-pin package: plastic  
DIP, hermetic cerdip and surface mount (SOIC). “J” grade  
chips are also available.  
PRODUCT HIGHLIGHTS  
1. The AD705 is a low drift op amp that offers BiFET level  
input bias currents, yet has the low IB drift of a bipolar ampli-  
fier. It upgrades the performance of circuits using op amps  
such as the LT1012.  
2. The combination of Analog Devices’ advanced superbeta  
processing technology and factory trimming provides both  
low drift and high dc precision.  
3. The AD705 can be used in applications where a chopper am-  
plifier would normally be required but without the chopper’s  
inherent noise and other problems.  
The AD705 is a high quality replacement for the industry-  
standard OP07 amplifier while drawing only one sixth of its  
power supply current. Since it has only 1/20th the input bias  
current of an OP07, the AD705 can be used with much higher  
source impedances, while providing the same level of dc preci-  
sion. In addition, since the input bias currents are at picoAmp  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
(@ T = +25؇C, VCM = 0 V, and VS = ؎15 V dc, unless otherwise noted)  
AD705–SPECIFICATIONS  
A
AD705J/A  
Typ  
AD705K/B  
Typ  
AD705T  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
INPUT OFFSET VOLTAGE  
Initial Offset  
30  
90  
10  
35  
10  
25  
µV  
Offset  
TMIN to TMAX  
45  
150  
1.2  
25  
60  
0.6  
25  
60  
0.6  
µV  
µV/°C  
dB  
dB  
µV/month  
vs. Temp, Average TC  
vs. Supply (PSRR)  
TMIN to TMAX  
0.2  
129  
126  
0.3  
0.2  
129  
126  
0.3  
0.2  
129  
126  
0.3  
VS = ±2 V to ±18 V  
VS = ±2.5 V to ±18 V  
110  
108  
110  
108  
114  
108  
Long Term Stability  
INPUT BIAS CURRENT1  
VCM = 0 V  
VCM = ±13.5 V  
60  
80  
0.3  
80  
100  
150  
200  
30  
50  
0.3  
50  
70  
100  
150  
30  
50  
0.6  
90  
120  
100  
150  
pA  
pA  
pA/°C  
pA  
pA  
vs. Temp, Average TC  
TMIN to TMAX  
TMIN to TMAX  
VCM = 0 V  
VCM = ±13.5 V  
250  
450  
150  
350  
600  
750  
INPUT OFFSET CURRENT  
V
CM = 0 V  
40  
40  
0.3  
80  
80  
150  
200  
30  
30  
0.3  
50  
50  
100  
150  
30  
30  
0.4  
80  
80  
100  
150  
pA  
pA  
pA/°C  
pA  
pA  
VCM = ±13.5 V  
vs. Temp, Average TC  
TMIN to TMAX  
TMIN to TMAX  
VCM = 0 V  
VCM = ±13.5 V  
250  
450  
150  
350  
250  
450  
FREQUENCY RESPONSE  
Unity Gain  
Crossover Frequency  
Slew Rate, Unity Gain  
Slew Rate  
0.4  
0.1  
0.05  
0.8  
0.15  
0.15  
0.4  
0.1  
0.05  
0.8  
0.15  
0.15  
0.4  
0.1  
0.05  
0.8  
0.15  
0.15  
MHz  
V/µs  
V/µs  
G = –1  
TMIN to TMAX  
INPUT IMPEDANCE  
Differential  
Common Mode  
40ʈ2  
300ʈ2  
40ʈ2  
300ʈ2  
40ʈ2  
300ʈ2  
MʈpF  
GʈpF  
INPUT VOLTAGE RANGE  
Common-Mode Voltage  
±13.5  
±14  
±13.5  
±14  
±13.5  
±14  
V
COMMON-MODE  
REJECTION RATIO  
VCM = ±13.5 V  
TMIN to TMAX  
110  
108  
132  
128  
114  
108  
132  
128  
114  
108  
132  
128  
dB  
dB  
INPUT VOLTAGE NOISE  
0.1 Hz to 10 Hz  
f = 10 Hz  
f = 1 kHz  
0.5  
17  
15  
0.5  
17  
15  
1.0  
22  
0.5  
17  
15  
1.0  
22  
µV p-p  
nV/Hz  
nV/Hz  
22  
INPUT CURRENT NOISE  
OPEN-LOOP GAIN  
f = 10 Hz  
50  
50  
50  
fA/Hz  
VO = ±12 V  
RLOAD = 10 kΩ  
TMIN to TMAX  
VO = ±10 V  
300  
200  
2000  
1500  
400  
300  
2000  
1500  
400  
300  
2000  
1500  
V/mV  
V/mV  
RLOAD = 2 kΩ  
TMIN to TMAX  
200  
150  
1000  
1000  
300  
200  
1000  
1000  
300  
200  
1000  
1000  
V/mV  
V/mV  
OUTPUT CHARACTERISTICS  
Voltage Swing  
RLOAD = 10 kΩ  
TMIN to TMAX  
Short Circuit  
±13  
؎13  
±14  
±14  
±15  
±13  
؎13  
±14  
±14  
±15  
±13  
؎13  
±14  
±14  
±15  
V
V
mA  
Current  
Capacitive Load  
Drive Capability  
Output Resistance  
Gain = +1  
Open Loop  
10,000  
200  
10,000  
200  
10,000  
200  
pF  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
±15  
±15  
±15  
V
V
µA  
µA  
؎2.0  
؎18  
600  
800  
؎2.0  
؎18  
600  
800  
؎2.0  
؎18  
600  
800  
380  
400  
380  
400  
380  
400  
TMIN to TMAX  
TEMPERATURE RANGE  
FOR RATED PERFORMANCE  
Commercial (0°C to +70°C)  
Industrial (–40°C to +85°C)  
Military (–55°C to +125°C)  
AD705J  
AD705A  
AD705K  
AD705B  
AD705T  
–2–  
REV. B  
AD705  
AD705J/A  
Typ  
AD705K/B  
Typ  
AD705T  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
PACKAGE OPTIONS  
8-Pin Cerdip (Q-8)  
8-Pin Plastic Mini-DIP (N-8)  
8-Pin SOIC (R-8)  
Chips  
AD705AQ  
AD705JN  
AD705JR  
AD705BQ  
AD705KN  
AD705TQ  
AD705JCHIPS  
TRANSISTOR COUNT  
# of Transistors  
45  
45  
45  
NOTES  
1Bias current specifications are guaranteed maximum at either input.  
All min and max specifications are guaranteed  
Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
METALIZATION PHOTOGRAPH  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . . 650 mW  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage3 . . . . . . . . . . . . . . . . . . . . . ±0.7 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C  
Storage Temperature Range (Q) . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
Dimensions shown in inches and (mm).  
0.074 (1.88)  
+V  
7
V
NULL  
8
S
OUT  
6
7
6
8
5 OVER COMP  
5
AD705J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
AD705A/B . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
AD705T . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
0.0677  
(1.72)  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . +300°C  
1
NOTES  
NULL 1  
–IN 2  
4
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
4 –V  
S
2
3
3
+IN  
8-Pin Plastic Package:  
8-Pin Cerdip Package:  
θJA = 165°C/Watt  
θJA = 110°C/Watt  
8-Pin Small Outline Package: θJA = 155°C/Watt  
3The input pins of these amplifiers are protected by back-to-back diodes. If the  
differential voltage exceeds ±0.7 V, external series protection resistors should be  
added to limit the input current to less than 25 mA.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD705AQ  
AD705BQ  
AD705JCHIPS  
AD705JN  
AD705JR  
AD705JR-REEL  
AD705JR-REEL7  
AD705KN  
AD705TQ  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
–55°C to +125°C  
–55°C to +125°C  
8-Pin Ceramic DIP  
8-Pin Ceramic DIP  
Bare Die  
8-Pin Plastic DIP  
8-Pin Plastic SOIC  
8-Pin Plastic SOIC  
8-Pin Plastic SOIC  
8-Pin Plastic DIP  
8-Pin Ceramic DIP  
8-Pin Ceramic DIP  
Q-8  
Q-8  
N-8  
R-8  
R-8  
R-8  
N-8  
Q-8  
Q-8  
AD705TQ/883B  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD705 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–3–  
(@ +25؇C, V = ؎15 V, unless otherwise noted)  
AD705–Typical Characteristics  
S
100  
200  
160  
200  
SAMPLE SIZE: 510  
SAMPLE SIZE:  
1040  
SAMPLE SIZE: 610  
80  
160  
120  
80  
60  
40  
20  
0
120  
80  
40  
0
40  
0
80 –60 40 20  
0
+20 +40 +60 +80  
–120  
0
+60  
+120  
–120  
–60  
0
+60  
+120  
–60  
INPUT OFFSET VOLTAGE – Microvolts  
INPUT BIAS CURRENT – Picoamperes  
INPUT OFFSET CURRENT – Picoamperes  
Figure 1. Typical Distribution of  
Input Offset Voltage  
Figure 3. Typical Distribution of  
Input Offset Current  
Figure 2. Typical Distribution of  
Input Bias Current  
+V  
S
100  
35  
30  
SOURCE RESISTANCE  
MAY BE EITHER BALANCED  
OR UNBALANCED  
–0.5  
–1.0  
–1.5  
25  
20  
10  
15  
+1.5  
+1.0  
1.0  
0.1  
10  
5
+0.5  
–V  
S
0
1k  
0
5
10  
15  
20  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
SUPPLY VOLTAGE – ±Volts  
SOURCE RESISTANCE –  
FREQUENCY – Hz  
Figure 4. Input Common-Mode  
Voltage Range vs. Supply Voltage  
Figure 5. Large Signal Frequency  
Response  
Figure 6. Offset Voltage Drift vs.  
Source Resistance  
50  
4
3
2
1
0
60  
40  
SAMPLE SIZE: 85  
–55°C TO +125°C  
40  
30  
20  
20  
POSITIVE I  
B
0
–20  
–40  
–60  
NEGATIVE I  
B
10  
0
–0.4  
–0.2  
0
+0.2  
+0.4  
0
1
2
3
4
5
–15  
–10  
–5  
0
+5  
+10  
+15  
WARM-UP TIME IN MINUTES  
OFFSET VOLTAGE DRIFT – µV/°C  
COMMON MODE VOLTAGE – Volts  
Figure 7. Typical Distribution of  
Offset Voltage Drift  
Figure 8. Change in Input Offset  
Voltage vs. Warm-Up Time  
Figure 9. Input Bias Current vs.  
Common-Mode Voltage  
–4–  
REV. B  
AD705  
1000  
100  
10  
1000  
100  
10  
0.5µV  
100  
10kΩ  
20MΩ  
9
V
= in(2 • 10 )  
OUT  
1
1
0
5
10  
1
10  
100  
1000  
1
10  
100  
1000  
TIME – Seconds  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 10. Input Noise Voltage  
Spectral Density  
Figure 11. Input Noise Current  
Spectral Density  
Figure 12. 0.1 Hz to 10 Hz Noise  
Voltage  
180  
160  
140  
120  
100  
160  
140  
120  
100  
500  
450  
80  
60  
40  
20  
0
400  
+125°C  
PSRR  
80  
+25°C  
+
PSRR  
60  
40  
20  
350  
+55°C  
300  
0.1  
1
10  
100  
1k  
10k 100k 1M  
0.1  
1
10  
100  
1k  
10k 100k 1M  
0
5
10  
15  
20  
FREQUENCY – Hz  
FREQUENCY – Hz  
SUPPLY VOLTAGE – ±Volts  
Figure 13. Quiescent Supply  
Current vs. Supply Voltage  
Figure 15. Power Supply Rejection  
vs. Frequency  
Figure 14. Common-Mode  
Rejection vs. Frequency  
+V  
10M  
S
140  
0
–0.5  
–1.0  
–1.5  
120  
100  
30  
60  
90  
120  
150  
–55°C  
PHASE  
+25°C  
80  
60  
40  
1M  
+125°C  
GAIN  
+1.5  
+1.0  
20  
0
180  
+0.5  
–V  
S
100k  
20  
0.01 0.1  
0
5
10  
15  
20  
2
4
1
6
10  
20  
40 60 100  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY – Hz  
LOAD RESISTANCE – kΩ  
SUPPLY VOLTAGE – ±Volts  
Figure 16. Open Loop Gain vs.  
Load Resistance over Temperature  
Figure 18. Output Voltage Limit vs.  
Supply Voltage  
Figure 17. Open Loop Gain and  
Phase Shift vs. Frequency  
REV. B  
–5–  
AD705  
R
1
1M  
1000  
100  
10  
F
GAIN BANDWIDTH  
+V  
S
0.1µF  
A
= –1000  
V
0.1  
100k  
10k  
1k  
7
2
3
V
6
AD705  
OUT  
1
0.1  
SLEW RATE  
R
2k  
L
C
V
L
IN  
4
A
= +1  
V
0.01  
ADDING AN EXTERNAL  
CAPACITOR BETWEEN  
PIN 5 AND GROUND  
0.1µF  
–V  
S
0.01  
INCREASES THE AMPLIFIER'S  
COMPENSATION  
I
= +1mA  
1k  
OUT  
SQUARE WAVE  
INPUT  
0.001  
0.001  
1
10  
100  
10k  
100k  
1
10  
100  
1000  
10,000  
FREQUENCY – Hz  
VALUE OF OVERCOMPENSATION CAPACITOR – pF  
Figure 20. Magnitude of Closed  
Loop Output Impedance vs.  
Frequency  
Figure 19. Slew Rate & Gain  
Bandwidth Product vs. Value of  
Overcompensation Capacitor  
Figure 21a. Unity Gain Follower  
(For Large Signal Applications,  
Resistor RF Limits the Current  
Through the Input Protection  
Diodes)  
5µs  
20µs  
5µs  
100  
90  
100  
90  
100  
90  
10  
10  
10  
0%  
0%  
0%  
2V  
20mV  
20mV  
Figure 21b. Unity Gain Follower  
Large Signal Pulse Response  
RF = 10 k, CL = 50 pF  
Figure 21c. Unity Gain Follower  
Small Signal Pulse Response  
RF = 0 , CL = 100 pF  
Figure 21d. Unity Gain Follower  
Small Signal Pulse Response  
RF = 0 , CL = 1000 pF  
10kΩ  
50µs  
2V  
5µs  
+V  
S
100  
90  
100  
90  
0.1µF  
10kΩ  
7
V
2
3
IN  
V
6
AD705  
OUT  
R
2.5kΩ  
L
C
L
4
10  
10  
0%  
0%  
0.1µF  
–V  
S
20mV  
SQUARE WAVE  
INPUT  
Figure 22a. Unity Gain Inverter  
Figure 22b. Unity Gain Inverter  
Large Signal Pulse Response  
CL = 50 pF  
Figure 22c. Unity Gain Inverter  
Small Signal Pulse Response  
CL = 100 pF  
–6–  
REV. B  
AD705  
A High Performance Differential Amplifier Circuit  
5µs  
Figure 25 shows a high input impedance, differential amplifier  
circuit that features a high common-mode voltage, and which  
operates at low power. Table I details its performance with  
changes in gain. To optimize the common-mode rejection of  
this circuit at low frequencies and dc, apply a 1 volt, 1 Hz sine  
wave to both inputs. Measuring the output with an oscilloscope,  
adjust trimming potentiometer R6 for minimum output. For the  
best CMR at higher frequencies, capacitor C2 should be replaced  
with a 1.5 pF to 20 pF trimmer capacitor.  
100  
90  
10  
0%  
20mV  
Both the IC socket and any standoffs at the op amp’s input ter-  
minals should be made of Teflon* to maintain low input current  
drift over temperature.  
Figure 22d. Unity Gain Inverter Small Signal  
Pulse Response C, = 1000 pF  
*Teflon is a registered trademark of E.I. DuPont, Co.  
10pF  
*
C1  
5pF  
10kΩ  
R3  
200k  
R2  
10MΩ  
+V  
S
R5*  
0.1µF  
+V  
7
S
SQUARE WAVE  
INPUT  
7
2
3
R1  
100MΩ  
0.1µF  
V
R4*  
6
AD705  
OUT  
2
5kΩ  
V
IN–  
5
V
IN  
V
6
AD705  
OUT  
4
*
RESPONSE IS  
3
NEARLY IDENTICAL  
FOR CAPACITANCE  
VALUES OF 0 TO 100pF  
4
SOURCE  
R2+R3  
R1  
R5  
R4  
CIRCUIT GAIN, G = –  
= G (V – V  
IN+)  
(1+  
)
0.1µF  
–V  
S
0.1µF  
V
OUT  
IN–  
–V  
S
DC CMR  
ADJUST  
COMMON MODE INPUT RANGE =  
10 (V – 1.5V) FOR V = ±15V,  
R1'  
100MΩ  
R2'  
4.1nF  
S
S
10MΩ  
V
RANGE = ±135V  
CM  
R6  
500kΩ  
V
IN+  
C2  
5pF  
RESISTORS R1 AND R1', R2 AND  
R2' ARE VICTOREEN MOX-200  
1/4 WATT, 1% METAL OXIDE.  
Figure 23a. Follower Connected  
in Feed-Forward Mode  
GND  
*SEE TABLE I  
WARNING: POTENTIAL DANGER FROM HIGH SOURCE VOLTAGE.  
THIS DIFFERENTIAL AMPLIFIER DOES NOT PROVIDE GALVANIC  
ISOLATION. INPUT SOURCE MUST BE REFERRED TO THE SAME  
GROUND CONNECTION AS THIS AMPLIFIER.  
5V  
5µs  
100  
90  
INPUT  
Figure 25. A High Performance Differentials  
Amplifier Circuit  
Table I. Typical Performance of Differential Amplifier  
Circuit Operating at Various Gains  
10  
OUTPUT  
0%  
5V  
Circuit R4  
R5  
()  
Trimmed RTI Average Circuit  
DC CMR Drift TC Bandwidth  
Gain  
()  
(dB)  
(V/؇C)  
–3 dB  
Figure 23b. Follower Feed-Forward  
Pulse Response  
1
10  
100  
1.13 k10 kΩ  
100 Ω  
10.2 Ω  
85  
9.76 kΩ ≥85  
10 kΩ ≥85  
30  
30  
30  
4.4 kHz  
2.8 kHz  
930 Hz  
V
ADJUST  
OS  
+V  
S
20kΩ  
1
0.1µF  
8
2
3
7
6
AD705  
5
4
OVERCOMPENSATION  
CAPACITOR  
–V  
S
0.1µF  
Figure 24. Offset Null and Overcompensation  
Connections  
REV. B  
–7–  
AD705  
A 1 Hz, 2-Pole, Active Filter  
Table II. Recommended Component Values  
for the 1 Hz Low-Pass Filter  
Table II gives recommended component values for the 1 Hz fil-  
ter of Figure 26. An unusual characteristic of the AD705 is that  
both the input bias current and the input offset current and their  
drift remain low over most of the op amps rated temperature  
range. Therefore, for most applications, there is no need to use  
the normal balancing resistor tied between the noninverting ter-  
minal of the op amp and ground. Eliminating the standard bal-  
ancing resistor reduces board space and lowers circuit noise.  
However, this resistor is needed at temperatures above 110°C,  
because input bias current starts to change rapidly, as shown by  
Figure 27.  
Desired Low  
Pole  
Pole Q C1 Value C2 Value  
Pass Response  
Frequency  
(Hz)  
(F)  
(F)  
Bessel Response  
Butterworth Response 1.00  
0.1 dB Chebychev  
0.2 dB Chebychev  
0.5 dB Chebychev  
1.0 dB Chebychev  
1.27  
0.58  
0.707  
0.77  
0.80  
0.86  
0.96  
0.14  
0.23  
0.26  
0.28  
0.32  
0.38  
0.11  
0.11  
0.11  
0.11  
0.11  
0.10  
0.93  
0.90  
0.85  
0.80  
Specified values are for a –3 dB point of 1.0 Hz. For other frequencies,  
simply scale capacitors C1 and C2 directly; i.e., for 3 Hz Bessel response,  
C1 = 0.046 µF, C2 = 0.037 µF.  
C1  
+V  
7
S
90  
R1  
1MΩ  
R2  
1MΩ  
0.1µF  
3
2
INPUT  
WITHOUT OPTIONAL  
BALANCE RESISTOR, R3  
60  
C2  
V
6
AD705  
OUT  
4
30  
0.1µF  
–V  
S
0
OPTIONAL BALANCE  
RESISTOR NETWORK  
WITH OPTIONAL BALANCE  
R3  
2MΩ  
RESISTOR, R3  
–30  
WITHOUT THE NETWORK,  
PINS 2 AND 6 OF THE AD705  
ARE TIED TOGETHER.  
C3  
0.01µF  
–60  
–90  
CAPACITORS C1, C2 AND C3 ARE SOUTHERN ELECTRONICS MPCC,  
POLYCARBONATE, ±5%, 50 VOLT.  
–60 –40 –20  
0
+20 +40 +60 +80 +100 +120 +140  
TEMPERATURE – °C  
Figure 26. A 1 Hz, 2-Pole Active Filter  
Figure 27. VOS vs. Temperature of 1 Hz Filter  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Cerdip (Q) Package  
Plastic Mini-DIP (N) Package  
8-Pin SOIC (R) Package  
0.005 (0.13) MIN  
0.055 (1.4) MAX  
8
5
8
5
8
1
5
4
0.25  
(6.35)  
0.25R  
(0.64)  
0.31  
(7.87)  
0.154 ± 0.004  
(3.91 ± 0.10)  
PIN 1  
PIN 1  
1
4
0.236 ± 0.012  
(6.00 ± 0.20)  
1
4
0.39 (9.91)  
MAX  
0.405 (10.29) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.193 ± 0.008  
(4.90 ± 0.10)  
0.035 ± 0.01  
(0.89 ± 0.25)  
0.200  
(5.08)  
MAX  
0.165 ± 0.01  
(4.19 ± 0.25)  
0.098 ± 0.006  
(2.49 ± 0.23)  
0.008 ± 0.004  
(0.203 ± 0.075)  
0.150  
(3.81)  
MIN  
0.18 ± 0.03  
(4.57 ± 0.76)  
0.200 (5.08)  
0.125 (3.18)  
0.125 (3.18)  
MIN  
0.0500  
(1.27)  
BSC  
0.017 ± 0.003  
(0.42 ± 0.07)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
0.100 0.070 (1.78)  
SEATING  
PLANE  
0.100  
(2.54)  
0.033  
(0.84)  
NOM  
0.018 ± 0.003  
(0.46 ± 0.08)  
(2.54)  
BSC  
0.030 (0.76)  
TYP  
0.310 (7.87)  
0.220 (5.59)  
0.30 (7.62)  
REF  
0.033 ± 0.017  
(0.83 ± 0.43)  
0.011 ± 0.002  
(0.269 ± 0.03)  
0.32 (8.13)  
0.29 (7.37)  
0.011 ± 0.003  
(0.28 ± 0.08)  
0.015 (0.38)  
0.008 (0.20)  
0-15  
°
0-15  
°
–8–  
REV. B  

相关型号:

AD705BQ

Picoampere Input Current Bipolar Op Amp
ADI

AD705JCHIPS

Picoampere Input Current Bipolar Op Amp
ADI

AD705JN

Picoampere Input Current Bipolar Op Amp
ADI

AD705JR

Picoampere Input Current Bipolar Op Amp
ADI

AD705JR-REEL

Picoampere Input Current Bipolar Op Amp
ADI

AD705JR-REEL7

Picoampere Input Current Bipolar Op Amp
ADI

AD705JR/+

IC,OP-AMP,SINGLE,BIPOLAR,SOP,8PIN,PLASTIC
ADI

AD705KN

Picoampere Input Current Bipolar Op Amp
ADI

AD705T/883B

IC OP-AMP, 25 uV OFFSET-MAX, CDIP8, CERDIP-8, Operational Amplifier
ADI

AD705TQ

Picoampere Input Current Bipolar Op Amp
ADI

AD705TQ/883B

Picoampere Input Current Bipolar Op Amp
ADI

AD706

Dual Picoampere Input Current Bipolar Op Amp
ADI