AD706ARZ-REEL7 [ADI]

Dual Picoampere Input Current Bipolar Op Amp;
AD706ARZ-REEL7
型号: AD706ARZ-REEL7
厂家: ADI    ADI
描述:

Dual Picoampere Input Current Bipolar Op Amp

放大器 光电二极管
文件: 总11页 (文件大小:359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Picoampere Input Current  
Bipolar Op Amp  
Data Sheet  
AD706  
FEATURES  
CONNECTION DIAGRAM  
High DC Precision  
100 V Max Offset Voltage  
1.5 V/C Max Offset Drift  
Plastic Mini-DIP (N) and  
Plastic SOIC (R) Packages  
200 pA Max Input Bias Current  
0.5 V p-p Voltage Noise, 0.1 Hz to 10 Hz  
750 A Supply Current  
Available in 8-Lead Plastic Mini-DlP  
and Surface-Mount (SOIC) Packages  
Available in Tape and Reel in Accordance with  
EIA-481A Standard  
AMPLIFIER 1  
AMPLIFIER 2  
AD706  
OUTPUT  
–IN  
1
2
3
4
8
7
6
5
Vꢂ  
OUTPUT  
–IN  
IN  
V–  
IN  
Quad Version: AD704  
TOP VIEW  
APPLICATIONS  
Low Frequency Active Filters  
Precision Instrumentation  
Precision Integrators  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD706 is a dual, low power, bipolar op amp that has the  
low input bias current of a JFET amplifier, but which offers a  
significantly lower IB drift over temperature. It utilizes superbeta  
bipolar input transistors to achieve picoampere input bias current  
levels (similar to FET input amplifiers at room temperature),  
while its IB typically only increases by 5ϫ at 125°C (unlike a  
JFET amp, for which IB doubles every 10°C for a 1000ϫ  
increase at 125°C). The AD706 also achieves the microvolt  
offset voltage and low noise characteristics of a precision bipolar  
input amplifier.  
1. The AD706 is a dual low drift op amp that offers JFET  
level input bias currents, yet has the low IB drift of a bipolar  
Dual PicoampereBiIpnoputra Cl uOp  
AD706  
r
A
  m
ren  
  p
D
a
t
S
h
e
e
t
R
                                                                     h
   .
i
    r
u
    i
    i
d
y
n
    g
    D
        v
        s
    s
e
u
e
    t
        o
    s
b
r
            n
   o
g
        a
   n
    u
o
   b
    t
        e
              T
n
   T
   c
   2
   l
y
.
   .
2
x
   9
6
N
D
       o
,
   A
   .
   0
-
1
   ,
r
e
.
T
d
    a
    s
    n
    r
        i
        e
        d
r
    m
    r
    a
h
            r
        e
    o
    t
            i
        p
c
v
o
n
r
T
c
n
   a
   S
p
r
0©2  
Way, P  
www.  
   a
   a
   o
          .
          m
amplifier. It may be used in circuits using dual op amps  
such as the LT1024.  
2. The AD706 provides both low drift and high dc precision.  
3. The AD706 can be used in applications where a chopper  
amplifier would normally be required but without the  
chopper’s inherent noise.  
Since it has < 200 pA of bias current, the AD706 does not  
require the commonly used “balancing” resistor. Furthermore,  
the current noise is only 50 fA/Hz, which makes this amplifier  
usable with very high source impedances. At 600 A max supply  
current (per amplifier), the AD706 is well suited for today’s  
high density boards.  
100  
10  
TYPICAL JFET AMP  
1
The AD706 is an excellent choice for use in low frequency  
active filters in 12-bit and 14-bit data acquisition systems, in  
precision instrumentation, and as a high quality integrator. The  
AD706 is internally compensated for unity gain and is available  
in five performance grades. The AD706J is rated over the  
commercial temperature range of 0°C to +70°C. The AD706A is  
rated for the extended industrial temperature range of –40°C  
to +85°C.  
0.1  
AD706  
0.01  
–55  
+25  
+110  
+125  
TEMPERATURE – C  
The AD706 is offered in two varieties of an 8-lead package:  
plastic mini-DIP and surface-mount (SOIC).  
Figure 1. Input Bias Current vs. Temperature  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2002–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
AD706* PRODUCT PAGE QUICK LINKS  
Last Content Update: 08/25/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD706 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
EVAL-OPAMP-2 Evaluation Board  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all AD706 EngineerZone Discussions.  
AD706: Dual Picoampere Input Current Bipolar Op Amp  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TOOLS AND SIMULATIONS  
Analog Filter Wizard  
TECHNICAL SUPPORT  
Analog Photodiode Wizard  
AD706 SPICE Macro Models  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
(@ TA = +25C, VCM = 0 V and 15 V dc, unless otherwise noted.)  
AD706–SPECIFICATIONS  
AD706J/A  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT OFFSET VOLTAGE  
Initial Offset  
Offset  
30  
40  
0.2  
132  
126  
0.3  
100  
150  
1.5  
µV  
T
MIN to TMAX  
µV  
vs. Temperature, Average TC  
vs. Supply (PSRR)  
MIN to TMAX  
µV/°C  
dB  
dB  
VS = 2 V to 18 V  
VS = 2.5 V to 18 V  
110  
106  
T
Long Term Stability  
µV/Month  
INPUT BIAS CURRENT1  
VCM = 0 V  
50  
200  
250  
pA  
pA  
VCM  
=
13.5 V  
vs. Temperature, Average TC  
0.3  
pA/°C  
T
MIN to TMAX  
VCM = 0 V  
VCM 13.5 V  
300  
400  
pA  
TMIN to TMAX  
=
pA  
INPUT OFFSET CURRENT  
V
CM = 0 V  
30  
150  
250  
pA  
pA  
VCM 13.5 V  
=
vs. Temperature, Average TC  
0.6  
80  
80  
pA/°C  
T
MIN to TMAX  
VCM = 0 V  
VCM 13.5 V  
250  
350  
pA  
TMIN to TMAX  
=
pA  
MATCHING CHARACTERISTICS  
Offset Voltage  
150  
250  
300  
500  
µV  
µV  
pA  
pA  
dB  
dB  
dB  
dB  
T
T
T
T
MIN to TMAX  
MIN to TMAX  
MIN to TMAX  
MIN to TMAX  
Input Bias Current2  
Common-Mode Rejection  
Power Supply Rejection  
Crosstalk (Figure 2a)  
106  
106  
106  
104  
@ f = 10 Hz  
RL = 2 kΩ  
150  
dB  
FREQUENCY RESPONSE  
Unity Gain Crossover Frequency  
Slew Rate  
0.8  
0.15  
0.15  
MHz  
V/µs  
V/µs  
G = –1  
TMIN to TMAX  
INPUT IMPEDANCE  
Differential  
Common Mode  
40||2  
300||2  
MΩ||pF  
GΩ||pF  
INPUT VOLTAGE RANGE  
Common-Mode Voltage  
Common-Mode Rejection Ratio  
13.5  
110  
108  
14  
132  
128  
V
dB  
dB  
VCM  
TMIN to TMAX  
=
13.5 V  
INPUT CURRENT NOISE  
INPUT VOLTAGE NOISE  
0.1 Hz to 10 Hz  
f = 10 Hz  
3
50  
pA p-p  
fA/Hz  
0.1 Hz to 10 Hz  
f = 10 Hz  
f = 1 kHz  
0.5  
17  
15  
µV p-p  
nV/Hz  
nV/Hz  
22  
OPEN-LOOP GAIN  
VO = 12 V  
R
LOAD = 10 kΩ  
MIN to TMAX  
200  
150  
2000  
1500  
V/mV  
V/mV  
T
VO  
LOAD = 2 kΩ  
TMIN to TMAX  
= 10 V  
R
200  
150  
1000  
1000  
V/mV  
V/mV  
OUTPUT CHARACTERISTICS  
Voltage Swing  
R
T
LOAD = 10 kΩ  
13  
13  
14  
14  
V
V
MIN to TMAX  
Current  
Short Circuit  
Gain = +1  
15  
10,000  
mA  
pF  
Capacitive Load Drive Capability  
–2–  
REV. F  
AD706  
SPECIFICATIONS (continued)  
AD706J/A  
Typ  
Parameter  
Conditions  
Min  
Max  
Unit  
POWER SUPPLY  
Rated Performance  
Operating Range  
15  
V
V
mA  
mA  
2.0  
18  
1.2  
1.4  
Quiescent Current, Total  
0.75  
0.8  
TMIN to TMAX  
TRANSISTOR COUNT  
Number of Transistors  
90  
NOTES  
1Bias current specifications are guaranteed maximum at either input.  
2Input bias current match is the difference between corresponding inputs (IB of –IN of Amplifier 1 minus IB of –IN of Amplifier 2).  
VOS1  
VCM  
VOS2  
VCM  
CMRR match is the difference between  
for Amplifier 1 and  
for Amplifier 2, expressed in dB.  
VOS1  
VOS2  
VSUPPLY  
PSRR match is the difference between  
for Amplifier 1 and  
for Amplifier 2, expressed in dB.  
VSUPPLY  
All min and max specifications are guaranteed.  
Specifications subject to change without notice.  
ESD CAUTION  
ABSOLUTE MAXIMUM RATINGS1  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Internal Power Dissipation  
(Total: Both Amplifiers)2 . . . . . . . . . . . . . . . . . . . . 650 mW  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage3 . . . . . . . . . . . . . . . . . . . . . . +0.7 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C  
Operating Temperature Range  
AD706J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
AD706A . . . . . . . . . . . . . . . . . . . . . . . . . . . .40°C to +85°C  
Lead Temperature (Soldering 10 secs) . . . . . . . . . . . . . 300°C  
NOTES  
METALIZATION PHOTOGRAPH  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
Dimensions shown in inches and (mm).  
Contact factory for latest dimensions.  
1
OUTPUT A  
+V  
8-Lead Plastic Package: θJA = 100°C/W  
8
S
8-Lead Small Outline Package: θJA = 155°C/W  
3The input pins of this amplifier are protected by back-to-back diodes. If the  
differential voltage exceeds 0.7 V, external series protection resistors should be  
added to limit the input current to less than 25 mA.  
2
–INPUT A  
+INPUT A  
OUTPUT B  
7
3
6
5
–INPUT B  
+INPUT B  
–V  
S
4
0.074 (1.88)  
REV.  
–3–  
F
AD706–Typical Performance Characteristics  
(Default Conditions: 5 V, CL = 5 pF, G = 2, Rg = Rf = 1 k, RL = 2 k, VO = 2 V p-p, Frequency = 1 MHz, TA = 25C)  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
SAMPLE SIZE: 2400  
SAMPLE  
SAMPLE  
SIZE: 3000  
SIZE: 5100  
–80  
–40  
0
40  
80  
–160  
–80  
0
80  
160  
–120  
–60  
0
60  
120  
INPUT OFFSET VOLTAGE – V  
INPUT BIAS CURRENT – pA  
INPUT OFFSET CURRENT – pA  
TPC 1. Typical Distribution  
of Input Offset Voltage  
TPC 2. Typical Distribution  
of Input Bias Current  
TPC 3. Typical Distribution  
of Input Offset Current  
V  
35  
30  
25  
20  
15  
10  
5
100  
10  
S
–0.5  
–1.0  
–1.5  
SOURCE RESISTANCE  
MAY BE EITHER BALANCED  
OR UNBALANCED  
FOR INDUSTRIAL  
TEMPERATURE  
RANGE  
1.5  
1.0  
0.5  
1.0  
–V  
S
0
0.1  
1k  
10k  
100k  
1M  
0
5
10  
15  
20  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
SOURCE RESISTANCE – ꢄ  
SUPPLY VOLTAGE – Volts  
TPC 4. Input Common-Mode Voltage  
Range vs. Supply Voltage  
TPC 5. Large Signal Frequency  
Response  
TPC 6. Offset Voltage Drift  
vs. Source Resistance  
4
3
60  
200  
SAMPLE SIZE: 375  
–55C TO 125C  
40  
20  
160  
120  
80  
40  
0
POSITIVE I  
B
0
2
1
0
–20  
NEGATIVE I  
B
–40  
–60  
0
1
2
3
4
5
–15 –10  
–5  
0
5
10  
15  
–0.8  
–0.4  
0
0.4  
0.8  
OFFSET VOLTAGE DRIFT – V/C  
WARM-UP TIME – Minutes  
COMMON-MODE VOLTAGE – Volts  
TPC 7. Typical Distribution  
of Offset Voltage Drift  
TPC 8. Change in Input Offset  
Voltage vs. Warm-Up Time  
TPC 9. Input Bias Current vs.  
Common-Mode Voltage  
F
–4–  
REV.  
AD706  
1000  
100  
10  
1000  
100  
10  
0.5V  
100ꢄ  
10kꢄ  
20Mꢄ  
VOUT  
1
1
5
0
10  
1
10  
100  
1000  
1
10  
100  
1000  
TIME – Seconds  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 10. Input Noise Voltage  
Spectral Density  
TPC 11. Input Noise Current  
Spectral Density  
TPC 12. 0.1 Hz to 10 Hz  
Noise Voltage  
1000  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
900  
800  
700  
600  
+125C  
+25C  
– PSRR  
60  
+ PSRR  
40  
60  
20  
40  
–55C  
0
0.1  
20  
0.1  
0
5
10  
15  
20  
1
10  
100 1k  
10k 100k 1M  
1
10  
100 1k  
10k 100k 1M  
SUPPLY VOLTAGE – Volts  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 13. Quiescent Supply  
Current vs. Supply Voltage  
TPC 14. Common-Mode Rejection  
Ratio vs. Frequency  
TPC 15. Power Supply Rejection  
Ratio vs. Frequency  
0
140  
120  
100  
80  
+V  
S
10M  
–0.5  
–1.0  
–1.5  
30  
–55C  
60  
PHASE  
+25C  
90  
+125C  
60  
120  
150  
180  
210  
240  
1M  
40  
+1.5  
+1.0  
+0.5  
GAIN  
20  
0
–V  
S
–20  
0.01 0.1  
100k  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY – Hz  
0
5
10  
15  
20  
1
2
4
6
8 10  
100  
SUPPLY VOLTAGE – Volts  
LOAD RESISTANCE – kꢄ  
TPC 17. Open-Loop Gain and  
Phase Shift vs. Frequency  
TPC 18. Output Voltage Swing vs.  
Supply Voltage  
TPC 16. Open-Loop Gain vs. Load  
Resistance vs. Load Resistance  
REV.  
–5–  
F
AD706  
–80  
1000  
100  
10  
–100  
–120  
–140  
–160  
AV = –1000  
1
AV = + 1  
0.1  
0.01  
I
= +1mA  
100  
OUT  
0.001  
10  
100  
1k  
10k  
100k  
1
10  
1k  
10k  
100k  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 2a. Crosstalk vs. Frequency  
Figure 3. Magnitude of Closed-Loop Output  
Impedance vs. Frequency  
+V 0.1F  
S
R
F
2
3
V
OUT1  
1/2  
1
AD706  
20V p-p  
+V  
8
S
4
0.1F  
R
2kꢄ  
0.1F  
L
SINE WAVE  
GENERATOR  
V
OUT  
–V  
1/2  
S
AD706  
V
4
IN  
R
L
C
L
2kꢄ  
20kꢄ  
+V  
S
0.1F  
SQUARE  
WAVE  
INPUT  
–V  
S
1F  
0.1F  
2.21kꢄ  
8
6
V
OUT2  
Figure 4a. Unity Gain Follower (For large signal  
applications, resistor RF limits the current  
through the input protection diodes.)  
1/2  
AD706  
5
7
V
V
OUT2  
CROSSTALK = 20 LOG  
–20dB  
10  
OUT1  
Figure 2b. Crosstalk Test Circuit  
Figure 4b. Unity Gain Follower Large  
Signal Pulse Response, RF = 10 k,  
CL = 1,000 pF  
Figure 4c. Unity Gain Follower  
Small Signal Pulse Response,  
RF = 0 , CL = 100 pF  
Figure 4d. Unity Gain Follower  
Small Signal Pulse Response,  
RF = 0 , CL = 1000 pF  
–6–  
REV.  
F
AD706  
10kꢄ  
+V  
S
+
0.1F  
10kꢄ  
V
IN  
8
V
OUT  
1/2  
AD706  
R
2.5kꢄ  
4
L
+
C
L
SQUARE  
WAVE  
INPUT  
0.1µF  
–V  
S
Figure 5a. Unity Gain Inverter Connection  
Figure 5b. Unity Gain Inverter Large  
Signal Pulse Response, CL = 1,000 pF  
Figure 5c. Unity Gain Inverter Small  
Signal Pulse Response, CL = 100 pF  
Figure 5d. Unity Gain Inverter Small  
Signal Pulse Response, CL = 1000 pF  
Figure 6 shows an in-amp circuit that has the obvious advantage  
of requiring only one AD706, rather than three op amps, with  
subsequent savings in cost and power consumption. The transfer  
function of this circuit (without RG) is  
CMR is still dependent upon the ratio matching of Resistors R1  
through R4. Resistor values for this circuit, using the optional  
gain resistor, RG, can be calculated using  
R1= R4 = 49.9kΩ  
49.9kΩ  
0.9G 1  
99.8kΩ  
0.06 G  
R
4  
R2 = R3 =  
V
= (V V ) 1+  
OUT  
IN1  
IN2  
R3  
for R1 = R4 and R2 = R3.  
RG =  
Input resistance is high, thus permitting the signal source to  
have an unbalanced output impedance.  
where G = The desired circuit gain.  
Table I provides practical 1% resistance values. Note that  
without resistor RG, R2 and R3 = 49.9 k/G–1.  
R
(OPTIONAL)  
G
R1  
R2  
R3  
R4  
Table I. Operating Gains of Amplifiers A1 and A2 and  
Practical 1% Resistor Values for the Circuit of Figure 6  
49.9k  
49.9k  
+V  
S
0.1  
F
1/2  
8
2
Circuit Gain Gain of A1 Gain of A2 R2, R3  
R1, R4  
AD706  
1
5
+
A1  
R
*
P
1.10  
1.33  
1.50  
2.00  
10.1  
101.0  
1001  
11.00  
4.01  
3.00  
2.00  
1.11  
1.01  
1.001  
1.10  
1.33  
1.50  
2.00  
10.10  
101.0  
1001  
499 kΩ  
150 kΩ  
100 kΩ  
49.9 kΩ  
49.9 kΩ  
49.9 kΩ  
V
A2  
7
3
IN1  
+
1/2  
AD706  
OUTPUT  
1k  
6
4
R
*
P
V
IN2  
0.1  
F
49.9 k49.9 kΩ  
5.49 k49.9 kΩ  
–V  
S
1k  
R4  
R3  
2R4  
)
V
= (V  
– V  
)
(1+  
) + (  
OUT  
IN1  
IN2  
R
G
499 Ω  
49.9 Ω  
49.9 kΩ  
49.9 kΩ  
FOR R1 = R4, R2 = R3  
*OPTIONAL INPUT PROTECTION RESISTOR FOR GAINS GREATER  
THAN 100 OR INPUT VOLTAGES EXCEEDING THE SUPPLY VOLTAGE.  
For a much more comprehensive discussion of in-amp applica-  
tions, refer to the Instrumentation Amplifier Applications Guide—  
available free from Analog Devices, Inc.  
Figure 6. Two Op Amp Instrumentation Amplifier  
Furthermore, the circuit gain may be fine trimmed using an  
optional trim resistor, RG. Like the three op amp circuit, CMR  
increases with gain, once initial trimming is accomplished—but  
REV.  
–7–  
F
 
AD706  
C1  
+
+V  
S
C3  
R1  
R2  
1Mꢄ  
0.1F  
1Mꢄ  
R3  
1Mꢄ  
R4  
3
2
INPUT  
1Mꢄ  
1/2  
8
1/2  
AD706  
C2  
1
5
6
AD706  
7
4
C4  
OUTPUT  
*WITHOUT THE NETWORK,  
PINS 1 AND 2, AND 6 AND 7  
OF THE AD706 ARE TIED  
TOGETHER.  
0.1F  
–V  
S
R6  
2Mꢄ  
C6  
0.01F  
R5  
2Mꢄ  
C5  
0.01F  
CAPACITORS C1 AND C2  
ARE SOUTHERN ELECTRONICS  
MPCC, POLYCARB 5%, 50V  
OPTIONAL BALANCE  
RESISTOR NETWORKS*  
Figure 7. 1 Hz, 4-Pole Active Filter  
180  
1 Hz, 4-Pole, Active Filter  
Figure 7 shows the AD706 in an active filter application. An  
important characteristic of the AD706 is that both the input bias  
current, input offset current, and their drift remain low over  
most of the op amp’s rated temperature range. Therefore, for  
most applications, there is no need to use the normal balancing  
resistor. Adding the balancing resistor enhances performance at  
high temperatures, as shown by Figure 8.  
WITHOUT OPTIONAL  
120  
60  
0
BALANCE RESISTOR, R3  
WITH OPTIONAL BALANCE  
RESISTOR, R3  
–60  
–120  
–180  
–40  
0
40  
TEMPERATURE – C  
80  
120  
Figure 8. VOS vs. Temperature Performance  
of the 1 Hz Filter  
Table II. 1 Hz, 4-Pole, Low Pass Filter Recommended Component Values  
Section 1  
Frequency  
(Hz)  
Section 2  
Frequency  
(Hz)  
Desired Low  
Pass Response  
C1  
(F)  
C2  
(F)  
C3  
(F)  
C4  
(F)  
Q
Q
Bessel  
Butterworth  
0.1 dB Chebychev  
0.2 dB Chebychev  
0.5 dB Chebychev  
1.0 dB Chebychev  
1.43  
1.00  
0.648  
0.603  
0.540  
0.492  
0.522  
0.541  
0.619  
0.646  
0.705  
0.785  
1.60  
1.00  
0.948  
0.941  
0.932  
0.925  
0.806 0.116  
0.107  
0.147  
0.198  
0.204  
0.209  
0.206  
0.160  
0.416  
0.733  
0.823  
1.00  
0.0616  
0.0609  
0.0385  
0.0347  
0.0290  
0.0242  
1.31  
2.18  
2.44  
2.94  
3.56  
0.172  
0.304  
0.341  
0.416  
0.508  
1.23  
NOTE  
Specified Values are for a –3 dB point of 1.0 Hz. For other frequencies simply scale capacitors C1 through C4 directly, i.e. for 3 Hz  
Bessel response, C1 = 0.0387 µF, C2 = 0.0357 µF, C3 = 0.0533 µF, C4 = 0.0205 µF.  
–8–  
REV. F  
 
 
AD706  
Data Sheet  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 9. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 10. 8-Lead Plastic Dual-in-line Package [PDIP]  
Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N, 13”Tape and Reel  
8-Lead SOIC_N, 7”Tape and Reel  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N, 13”Tape and Reel  
8-Lead SOIC_N, 7”Tape and Reel  
Package Option  
AD706AR  
AD706ARZ  
AD706ARZ-REEL  
AD706ARZ-REEL7  
AD706JNZ  
AD706JRZ  
AD706JRZ-REEL  
AD706JRZ-REEL7  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to + 70°C  
0°C to + 70°C  
0°C to + 70°C  
0°C to + 70°C  
R-8  
R-8  
R-8  
R-8  
N-8  
R-8  
R-8  
R-8  
Rev. F | Page 10 of 11  
Data Sheet  
AD706  
REVISION HISTORY  
8/2017—Rev. E to Rev. F  
Changes to Figure 6...........................................................................6  
Updated Outline Dimensions........................................................10  
Changes to Ordering Guide...........................................................10  
10/2003—Rev. D to Rev. E  
Removed K Version ........................................................... Universal  
Changes to Features and Product Description..............................1  
Renumbered TPCs ...........................................................................4  
Renumbered Figured ........................................................................6  
Updated Outline Dimensions..........................................................9  
10/2002—Rev. C to Rev. D  
Deleted 8-Lead CERDIP (Q-8) Package ......................... Universal  
Changes to Features and Product Description..............................1  
Changes to Specifications Section...................................................2  
Changes to Absolute Maximum Ratings Section..........................3  
Changes to Ordering Guide.............................................................3  
Updated Outline Dimensions........................................................15  
©2002–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00820-0-8/17(F)  

相关型号:

AD706BQ

Dual Picoampere Input Current Bipolar Op Amp
ADI

AD706JCHIPS

IC DUAL OP-AMP, 150 uV OFFSET-MAX, 0.8 MHz BAND WIDTH, UUC, DIE, Operational Amplifier
ADI

AD706JN

Dual Picoampere Input Current Bipolar Op Amp
ADI

AD706JNZ

Dual Picoampere Input Current Bipolar Op Amp
ADI

AD706JR

Dual Picoampere Input Current Bipolar Op Amp
ADI

AD706JR

DUAL OP-AMP, 150 uV OFFSET-MAX, 0.8 MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8
ROCHESTER

AD706JR-REEL

Dual Picoampere Input Current Bipolar Op Amp
ADI

AD706JR-REEL7

Dual Picoampere Input Current Bipolar Op Amp
ADI

AD706JR-REEL7

DUAL OP-AMP, 150 uV OFFSET-MAX, 0.8 MHz BAND WIDTH, PDSO8, PLASTIC, MS-012AA, SOIC-8
ROCHESTER

AD706JRZ

Dual Picoampere Input Current Bipolar Op Amp
ADI

AD706JRZ

DUAL OP-AMP, 150 uV OFFSET-MAX, 0.8 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012AA, SOIC-8
ROCHESTER

AD706JRZ-REEL

Dual Picoampere Input Current Bipolar Op Amp
ADI