AD708JNZ [ADI]

Ultralow Offset Voltage Dual Op Amp; 超低失调电压双通道运算放大器
AD708JNZ
型号: AD708JNZ
厂家: ADI    ADI
描述:

Ultralow Offset Voltage Dual Op Amp
超低失调电压双通道运算放大器

运算放大器 光电二极管
文件: 总16页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Offset Voltage  
Dual Op Amp  
AD708  
FEATURES  
PIN CONFIGURATION  
Very high dc precision  
30 μV maximum offset voltage  
0.3 μV/°C maximum offset voltage drift  
0.35 μV p-p maximum voltage noise (0.1 Hz to 10 Hz)  
5 million V/V minimum open-loop gain  
130 dB minimum CMRR  
AD708  
OUTPUT A  
–IN A  
1
2
3
4
8
7
6
5
+V  
S
OUTPUT B  
–IN B  
A  
+IN A  
+
B –  
–V  
+
+IN B  
S
TOP VIEW  
(Not to Scale)  
120 dB minimum PSRR  
Matching characteristics  
Figure 1. PDIP (N) and CERDIP (Q) Packages  
30 μV maximum offset voltage match  
0.3 μV/°C maximum offset voltage drift match  
130 dB minimum CMRR match  
Available in 8-lead narrow body, PDIP, and  
hermetic CERDIP and CERDIP/883B packages  
GENERAL DESCRIPTION  
The AD708 is a high precision, dual monolithic operational  
amplifier. Each amplifier individually offers excellent dc  
precision with maximum offset voltage and offset voltage drift  
of any dual bipolar op amp.  
The AD708S is rated over the military temperature range of  
−55°C to +125°C and is available in a CERDIP military version  
processed to MIL-STD-883B.  
PRODUCT HIGHLIGHTS  
The matching specifications are among the best available in any  
dual op amp. In addition, the AD708 provides 5 V/μV mini-  
mum open-loop gain and guaranteed maximum input voltage  
noise of 350 nV p-p (0.1 Hz to 10 Hz). All dc specifications  
show excellent stability over temperature, with offset voltage  
drift typically 0.1 μV/°C and input bias current drift of  
25 pA/°C maximum.  
1. The combination of outstanding matching and individual  
specifications make the AD708 ideal for constructing high  
gain, precision instrumentation amplifiers.  
2. The low offset voltage drift and low noise of the AD708  
allow the designer to amplify very small signals without  
sacrificing overall system performance.  
The AD708 is available in four performance grades. The  
AD708J is rated over the commercial temperature range of  
0°C to 70°C and is available in a narrow body, PDIP. The  
AD708A and AD708B are rated over the industrial temperature  
range of −40°C to +85°C and are available in a CERDIP.  
3. The AD708 10 V/ꢀV typical open-loop gain and 140 dB  
common-mode rejection make it ideal for precision  
applications.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD708  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 10  
Crosstalk Performance .............................................................. 10  
Operation with a Gain of −100................................................. 11  
High Precision Programmable Gain Amplifier ..................... 11  
Bridge Signal Conditioner......................................................... 12  
Precision Absolute Value Circuit ............................................. 12  
Selection of Passive Components............................................. 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Matching Characteristics............................................................. 9  
REVISION HISTORY  
1/06—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Removed TO-99 Package ..................................................Universal  
Deleted AD707 References................................................Universal  
Deleted LT1002 Reference............................................................... 1  
Deleted Figure 1................................................................................ 1  
Deleted Metalization Photograph .................................................. 5  
Moved Figure 25, Figure 26, and Figure 27  
to Theory of Operation section .................................................... 10  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 13  
2/91—Rev. A to Rev. B  
Rev. C | Page 2 of 16  
 
AD708  
SPECIFICATIONS  
@ 25°C and 15 V dc, unless otherwise noted.  
Table 1.  
AD708J/AD708A  
AD708B  
AD708S  
Parameter  
INPUT OFFSET VOLTAGE2  
Conditions  
TMIN to TMAX  
Min1 Typ Max1 Min1 Typ Max1 Min1 Typ Max1 Unit  
30  
50  
0.3  
0.3  
1.0  
2.0  
15  
0.5  
2.0  
2
5
5
μV  
μV  
μV/°C  
μV/month  
nA  
nA  
pA/°C  
nA  
nA  
pA/°C  
100  
150  
1.0  
50  
65  
0.4  
30  
50  
0.3  
15  
0.1  
0.3  
0.5  
1.0  
10  
0.1  
0.2  
1
15  
0.1  
0.3  
0.5  
1.0  
10  
0.1  
0.2  
1
Drift  
Long Term Stability  
INPUT BIAS CURRENT  
2.5  
4.0  
40  
1.0  
2.0  
25  
1
4
30  
1
1.5  
25  
TMIN to TMAX  
Average Drift  
OFFSET CURRENT  
VCM = 0 V  
TMIN to TMAX  
2.0  
4.0  
60  
1.0  
1.5  
25  
Average Drift  
MATCHING CHARACTERISTICS3  
Offset Voltage  
50  
μV  
80  
30  
TMIN to TMAX  
150  
1.0  
4.0  
5.0  
75  
μV  
μV/°C  
nA  
nA  
dB  
dB  
dB  
dB  
dB  
50  
Offset Voltage Drift  
Input Bias Current  
0.4  
1.0  
2.0  
0.3  
1.0  
2.0  
TMIN to TMAX  
TMIN to TMAX  
TMIN to TMAX  
Common-Mode Rejection  
Power Supply Rejection  
140  
140  
140  
120  
110  
110  
110  
135  
130  
130  
120  
120  
140  
130  
130  
120  
120  
140  
Channel Separation  
INPUT VOLTAGE NOISE  
0.1 Hz to 10 Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
0.23 0.6  
10.3 18  
10.0 13.0  
0.23 0.6  
10.3 12  
10.0 11.0  
0.23  
10.3 12  
10.0 11  
9.6  
14  
0.32 0.8  
0.14 0.23  
0.12 0.17  
140  
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
pA p-p  
pA/√Hz  
pA/√Hz  
pA/√Hz  
dB  
0.35  
9.6  
14  
11.0  
35  
9.6  
14  
11.0  
35  
11  
35  
INPUT CURRENT NOISE  
0.1 Hz to 10 Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
0.32 0.9  
0.14 0.27  
0.12 0.18  
140  
0.32 0.8  
0.14 0.23  
0.12 0.17  
140  
COMMON-MODE REJECTION RATIO VCM = 13 V  
TMIN to TMAX  
120  
120  
130  
130  
130  
130  
140  
140  
140  
dB  
OPEN-LOOP GAIN  
VO = 10 V  
RLOAD ≥ 2 kΩ  
TMIN to TMAX  
10  
10  
10  
10  
10  
7
V/μV  
V/μV  
dB  
3
3
5
5
4
4
POWER SUPPLY REJECTION RATIO  
VS = 3 V to 18 V  
TMIN to TMAX  
130  
130  
130  
130  
130  
130  
110  
110  
120  
120  
120  
120  
dB  
FREQUENCY RESPONSE  
Closed-Loop Bandwidth  
Slew Rate  
0.5  
0.15  
0.9  
0.3  
0.5  
0.15  
0.9  
0.3  
0.5  
0.15  
0.9  
0.3  
MHz  
V/μs  
INPUT RESISTANCE  
Differential  
60  
200  
200  
400  
200  
400  
MΩ  
GΩ  
Common Mode  
Rev. C | Page 3 of 16  
 
 
AD708  
AD708J/AD708A  
AD708B  
AD708S  
Parameter  
Conditions  
RLOAD ≥ 10 kΩ  
RLOAD ≥ 2 kΩ  
RLOAD ≥ 1 kΩ  
TMIN to TMAX  
Min1 Typ Max1 Min1 Typ Max1 Min1 Typ Max1 Unit  
OUTPUT VOLTAGE  
14  
14.0  
13.0  
12.5  
13.0  
60  
14  
13  
12.5  
13  
V
V
V
V
13.5  
12.5  
12.0  
12.0  
13.5  
12.5  
12.0  
12.0  
13.5  
12.5  
12.0  
12.0  
13.0  
12.5  
13.0  
60  
OPEN-LOOP OUTPUT RESISTANCE  
POWER SUPPLY  
60  
Ω
Quiescent Current  
Power Consumption  
4.5  
135  
12  
5.5  
165  
18  
4.5  
135  
12  
5.5  
165  
18  
4.5  
135  
12  
5.5  
165  
18  
mA  
mW  
mW  
V
VS = 15 V  
VS = 3 V  
Operating Range  
3
18  
3
18  
3
18  
1 All min and max specifications are guaranteed. Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to  
calculate outgoing quality levels.  
2 Input offset voltage specifications are guaranteed after five minutes of operation at TA = 25°C.  
3 Matching is defined as the difference between parameters of the two amplifiers.  
Rev. C | Page 4 of 16  
 
 
 
AD708  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
Parameter  
Rating  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Supply Voltage  
Internal Power Dissipation1  
Input Voltage2  
22 V  
VS  
Output Short-Circuit Duration  
Differential Input Voltage  
Storage Temperature Range (Q)  
Storage Temperature Range (N)  
Lead Temperature (Soldering 60 sec)  
Indefinite  
+VS and −VS  
−65°C to +150°C  
−65°C to +125°C  
300°C  
1 Thermal Characteristics  
8-lead PDIP: θJC = 33°C/W, θJA = 100°C/W  
8-lead CERDIP: θJC = 30°C/W, θJA = 110°C/W  
2 For supply voltages less than 22 V, the absolute maximum input voltage is  
equal to the supply voltage.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 5 of 16  
 
 
 
AD708  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 15 V and TA = 25°C, unless otherwise noted.  
+V  
S
8
7
6
5
4
3
2
1
0
–0.5  
+V  
–1.0  
–1.5  
1.5  
1.0  
–V  
0.5  
–V  
S
0
5
10  
15  
20  
25  
0
3
6
9
12  
15  
18  
21  
24  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
Figure 2. Input Common-Mode Range vs. Supply Voltage  
Figure 5. Supply Current vs. Supply Voltage  
+V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
S
256 UNITS TESTED  
–55°C TO +125°C  
–0.5  
+V  
OUT  
–1.0  
–1.5  
R
R
= 10k  
= 2kΩ  
L
L
1.5  
1.0  
0.5  
–V  
OUT  
–V  
S
0
5
10  
15  
20  
25  
–0.4  
–0.3  
–0.2  
–0.1  
0
0.1  
0.2  
0.3  
0.4  
SUPPLY VOLTAGE (±V)  
OFFSET VOLTAGE DRIFT (µV/°C)  
Figure 3. Output Voltage Swing vs. Supply Voltage  
Figure 6. Typical Distribution of Offset Voltage Drift  
35  
30  
25  
20  
15  
10  
5
100  
10  
I
= 1mA  
O
A
= +1000  
V
1
A
= +1  
V
±15V SUPPLIES  
0.1  
0.01  
0.001  
0.0001  
0
10  
100  
1k  
10k  
0.1  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
100k  
LOAD RESISTANCE ()  
Figure 7. Output Impedance vs. Frequency  
Figure 4. Output Voltage Swing vs. Load Resistance  
Rev. C | Page 6 of 16  
 
AD708  
40  
35  
30  
25  
20  
15  
10  
5
16  
14  
12  
10  
8
V
= ±10V  
OUT  
6
4
R
R
= 10k  
= 2kΩ  
L
L
2
0
0
0
1
10  
100  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
DIFFERENTIAL VOLTAGE (±V)  
TEMPERATURE (°C)  
Figure 11. Open-Loop Gain vs. Temperature  
Figure 8. Input Bias Current vs. Differential Input Voltage  
16  
14  
12  
10  
8
45  
40  
35  
30  
25  
20  
15  
10  
5
R
= 2kΩ  
LOAD  
1/F CORNER  
0.7Hz  
6
4
2
0
0
0
5
10  
15  
20  
25  
0.1  
1
10  
100  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 9. Input Noise Spectral Density  
Figure 12. Open-Loop Gain vs. Supply Voltage  
140  
120  
100  
80  
0
R
C
= 2kꢀ  
= 1000pF  
L
L
1s  
30  
60  
90  
PHASE  
MARGIN = 43°  
60  
120  
150  
180  
40  
GAIN  
20  
0
–20  
0.01 0.1  
1
10  
100  
1k  
10k 100k 1M 10M  
TIME (1s/DIV)  
FREQUENCY (Hz)  
Figure 10. 0.1 Hz to 10 Hz Voltage Noise  
Figure 13. Open-Loop Gain and Phase vs. Frequency  
Rev. C | Page 7 of 16  
AD708  
160  
140  
120  
100  
80  
2mV/DIV  
60  
40  
CH1  
20  
0
0.1  
TIME (2µs/DIV)  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 14. Common-Mode Rejection vs. Frequency  
Figure 17. Small Signal Transient Response; AV = +1, RL = 2 kΩ, CL = 50 pF  
35  
30  
25  
20  
15  
10  
5
R
= 2kꢀ  
25°C  
= ±15V  
F
= 2.8kHz  
L
MAX  
2mV/DIV  
V
S
CH1  
0
1k  
TIME (2µs/DIV)  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 18. Small Signal Transient Response; AV = +1, RL = 2 kΩ, CL = 1000 pF  
Figure 15. Large Signal Frequency Response  
160  
140  
120  
100  
80  
60  
40  
20  
0
0.001  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 16. Power Supply Rejection vs. Frequency  
Rev. C | Page 8 of 16  
AD708  
MATCHING CHARACTERISTICS  
32  
16  
14  
12  
10  
8
25°C  
28  
24  
20  
16  
12  
8
6
4
4
2
0
0
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
OFFSET VOLTAGE MATCH (µV)  
OFFSET CURRENT MATCH (nA)  
Figure 19. Typical Distribution of Offset Voltage Match  
Figure 22. Typical Distribution of Input Offset Current Match  
32  
28  
24  
20  
16  
12  
8
160  
140  
120  
100  
80  
–55°C TO +125°C  
60  
40  
4
20  
0
0
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
OFFSET DRIFT MATCH (µV/°C)  
TEMPERATURE (°C)  
Figure 20. Typical Distribution of Offset Voltage Drift Match  
Figure 23. PSRR Match vs. Temperature  
16  
14  
12  
10  
8
160  
140  
120  
100  
80  
6
60  
4
40  
2
20  
0
0
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
INPUT BIAS CURRENT MATCH (nA)  
TEMPERATURE (°C)  
Figure 21. Typical Distribution of Input Bias Current Match  
Figure 24. CMRR Match vs. Temperature  
Rev. C | Page 9 of 16  
 
AD708  
THEORY OF OPERATION  
CROSSTALK PERFORMANCE  
The AD708 exhibits very low crosstalk as shown in Figure 25,  
Figure 26, and Figure 27. Figure 25 shows the offset voltage  
induced on Side B of the AD708 when Side A output is moving  
slowly (0.2 Hz) from −10 V to +10 V under no load. This is the  
least stressful situation to the part because the overall power in  
the chip does not change. Only the location of the power in the  
output device changes. Figure 26 shows the input offset voltage  
change to Side B when Side A is driving a 2 kΩ load. Here the  
power changes in the chip with the maximum power change  
occurring at 7.5 V. Figure 27 shows crosstalk under the most  
severe conditions. Side A is connected as a follower with  
0 V input, and is forced to sink and source 5 mA of output  
current.  
A
V
OUTA  
V
= ±10V  
IN  
2kꢀ  
10kꢀ  
B
V
OUTB  
10ꢀ  
10ꢀ  
2V  
Power = (30 V)(5 mA) = 150 mW  
Even this large change in power causes only an 8 μV (linear)  
change in the input offset voltage of Side B.  
A
V
OUTA  
V
= ±10V  
IN  
V
= 2V/DIV  
10kꢀ  
OUTA  
Figure 26. Crosstalk with 2 kΩ Load  
B
V
OUTB  
10ꢀ  
10ꢀ  
I
= ±5mA  
IN  
A
2kꢀ  
V
= ±10V  
IN  
2V  
10kꢀ  
B
V
OUTB  
10ꢀ  
10ꢀ  
2V  
V
= 2V/DIV  
OUTA  
Figure 25. Crosstalk with No Load  
IN = 1mA/DIV  
A
Figure 27. Crosstalk Under Forced Source and Sink Conditions  
Rev. C | Page 10 of 16  
 
 
 
 
AD708  
1/2  
AD708  
OPERATION WITH A GAIN OF −100  
V
INA  
To show the outstanding dc precision of the AD708 in a real  
application, Table 3 shows an error budget calculation for a gain  
of −100. This configuration is shown in Figure 28.  
OUT  
1–4  
10k  
10kꢀ  
10kꢀ  
A0  
A1  
S1  
S2  
S3  
S4  
9.9kꢀ  
R
A
Table 3.  
10kꢀ  
10kꢀ  
Maximum Error Contribution  
AV = 100 (S Grade)  
(Full Scale: VOUT = 10 V, VIN = 100 mV)  
AD7502  
AD707  
100ꢀ  
1kꢀ  
10kꢀ  
–V  
S
S
S8  
S7  
S6  
S5  
Error Sources  
+V  
9.9kꢀ  
VOS  
30 μV/100 mV  
= 300 ppm  
= 10 ppm  
= 20 ppm  
= 4 ppm  
R
B
IOS  
(100 kΩ)(1 nA)/10 V  
10 V/(5 × 106)/100 mV  
0.35 mV/100 mV  
OUT  
5–8  
10kꢀ  
10kꢀ  
10kꢀ  
Gain (2 kΩ Load)  
Noise  
V
INB  
1/2  
AD708  
VOS Drift  
(0.3 mV/°C)/100 mV  
= 3 ppm/°C  
Total Unadjusted  
Error  
Figure 29. Precision PGA  
@ 25°C  
= 334 ppm > 11 bits  
= 634 ppm > 10 bits  
The gains of the circuit are controlled by the select lines, A0 and  
A1, of the AD7502 multiplexer, and are 1, 10, 100, and 1000 in  
this design.  
−55°C to +125°C  
With Offset  
Calibrated Out @ 25°C  
−55°C to +125°C  
= 34 ppm > 14 bits  
= 334 ppm > 11 bits  
The input stage attains very high dc precision due to the 30 μV  
maximum offset voltage match of the AD708S and the 1 nA  
maximum input bias current match. The accuracy is main-  
tained over temperature because of the ultralow drift  
performance of the AD708.  
100k  
+V  
7
S
0.1µF  
0.1µF  
1kꢀ  
To achieve 0.1% gain accuracy, along with high common-mode  
rejection, the circuit should be trimmed.  
2
V
IN  
1/2  
AD708  
6
V
OUT  
To maximize common-mode rejection  
4
3
+
1kꢀ  
1. Set the select lines for gain = 1 and ground VINB  
.
–V  
S
2. Apply a precision dc voltage to VINA and trim RA until  
VO = −VINA to the required precision.  
Figure 28. Gain of −100 Configuration  
This error budget assumes no error in the resistor ratio and no  
error from power supply variation (the 120 dB minimum PSRR  
of the AD708S makes this a good assumption). The external  
resistors can cause gain error from mismatch and drift over  
temperature.  
3. Connect VINB to VINA and apply an input voltage equal to  
the full-scale common mode expected.  
4. Trim RB until VO = 0 V.  
To minimize gain errors  
HIGH PRECISION PROGRAMMABLE GAIN  
AMPLIFIER  
1. Select gain = 10 with the control lines and apply a  
differential input voltage.  
The three op amp programmable gain amplifier shown in  
Figure 29 takes advantage of the outstanding matching  
characteristics of the AD708 to achieve high dc precision.  
2. Adjust the 100 Ω potentiometer to VO = 10 VIN  
(adjust VIN magnitude as necessary).  
3. Repeat Step 1 and Step 2 for gain = 100 and gain = 1000,  
adjusting the 1 kΩ and 10 kΩ potentiometers, respectively.  
The design shown in Figure 29 should allow for 0.1% gain  
accuracy and 0.1 μV/V common-mode rejection when 1%  
resistors and 5% potentiometers are used.  
Rev. C | Page 11 of 16  
 
 
 
 
AD708  
AD708 enables this circuit to accurately resolve the input signal.  
In addition, the tight offset voltage drift match maintains the  
resolution of the circuit over the full military temperature  
range. The high dc open-loop gain and exceptional gain  
linearity allows the circuit to perform well at both large and  
small signal levels.  
BRIDGE SIGNAL CONDITIONER  
The AD708 can be used in the circuit shown in Figure 30 to  
produce an accurate and inexpensive dynamic bridge condi-  
tioner. The low offset voltage match and low offset voltage drift  
match of the AD708 combine to achieve circuit performance  
better than all but the best instrumentation amplifiers. The  
outstanding specifications of the AD708, such as open-loop  
gain, input offset currents, and low input bias currents, do not  
limit circuit accuracy.  
In this circuit, the only significant dc errors are due to the offset  
voltage of the two amplifiers, the input offset current match of  
the amplifiers, and the mismatch of the resistors. Errors  
associated with the AD708S contribute less than 0.001% error  
over −55°C to +125°C.  
As configured, the circuit only requires a gain resistor, RG, of  
suitable accuracy and a stable, accurate voltage reference. The  
transfer function is  
Maximum error at 25°C  
VO = VREF [ΔR/(R + ΔR)][RG/R]  
30 μV +  
10 kΩ
)
(
1 nA  
( )  
= 40 μV/10 μV = 4 ppm  
10 V  
The only significant errors due to the AD708S are  
V
V
OS_OUT = (VOS_MATCH)(2RG/R) = 30 mV  
Maximum error at +125°C or −55°C  
50 μV +  
2 nA
)
(
10 kΩ  
OS_OUT (T) = (VOS_DRIFT)(2RG/R) = 0.3 mV/°C  
(
)
= 7 ppm @ +125°C  
10 V  
To achieve high accuracy, Resistor RG should be 0.1% or better  
with a low drift coefficient.  
Figure 32 shows VOUT vs. VIN for this circuit with a 3 mV input  
signal at 0.05 Hz. Note that the circuit exhibits very low offset at  
the zero crossing. This circuit can also produce VOUT = −|VIN| by  
reversing the polarity of the two diodes.  
+15V  
AD580  
2.5V  
R
G
175k  
R
R
R = 350ꢀ  
R + ΔR  
V
1/2  
AD708  
REF  
1mV  
1mV  
V
O
1/2  
AD708  
887ꢀ  
–15V  
Figure 30. Bridge Signal Conditioning Circuit  
10k  
10kꢀ  
IN459  
10kꢀ  
5kꢀ  
1
V
= |V |  
IN  
O
V
= 1mV/DIV  
IN  
1
IN459  
1/2  
AD708  
10kꢀ  
5kꢀ  
Figure 32. Absolute Value Circuit Performance  
(Input Signal = 0.05 Hz)  
3.75kꢀ  
V
IN  
1/2  
AD708  
SELECTION OF PASSIVE COMPONENTS  
NOTE  
Use high quality passive components to take full advantage of  
the high precision and low drift characteristics of the AD708.  
Discrete resistors and resistor networks with temperature  
coefficients of less than 10 ppm/°C are available from Vishay,  
Caddock, Precision Replacement Parts (PRP), and others.  
1
LOW LEAKAGE DIODES  
Figure 31. Precision Absolute Value Circuit  
PRECISION ABSOLUTE VALUE CIRCUIT  
The AD708 is ideally suited to the precision absolute value  
circuit shown in Figure 31. The low offset voltage match of the  
Rev. C | Page 12 of 16  
 
 
 
AD708  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
0.005 (0.13)  
MIN  
0.055 (1.40)  
MAX  
8
5
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.310 (7.87)  
0.220 (5.59)  
1
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
0.320 (8.13)  
0.290 (7.37)  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.150 (3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.022 (0.56)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.018 (0.46)  
0.014 (0.36)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
COMPLIANT TO JEDEC STANDARDS MS-001-BA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 33. 8-Lead Plastic Dual In-Line Package [PDIP]  
Figure 34. 8-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-8)  
Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model  
AD708JN  
AD708JNZ1  
AD708AQ  
AD708BQ  
AD708SQ/883B  
Temperature Range  
0°C to +70°C  
0°C to +70°C  
−40°C to +85°C  
−40°C to +85°C  
−55°C to +125°C  
Package Description  
Package Option  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Ceramic Dual In-Line Package [CERDIP]  
8-Lead Ceramic Dual In-Line Package [CERDIP]  
8-Lead Ceramic Dual In-Line Package [CERDIP]  
N-8  
N-8  
Q-8  
Q-8  
Q-8  
1 Z = Pb-free part.  
Rev. C | Page 13 of 16  
 
 
AD708  
NOTES  
Rev. C | Page 14 of 16  
AD708  
NOTES  
Rev. C | Page 15 of 16  
AD708  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C05789-0-1/06(C)  
Rev. C | Page 16 of 16  
 

相关型号:

AD708JQ

IC IC,OP-AMP,DUAL,BIPOLAR,DIP,8PIN,CERAMIC, Operational Amplifier
ADI

AD708KH

IC IC,OP-AMP,DUAL,BIPOLAR,CAN,8PIN,METAL, Operational Amplifier
ADI

AD708KN

IC IC,OP-AMP,DUAL,BIPOLAR,DIP,8PIN,PLASTIC, Operational Amplifier
ADI

AD708KQ

Voltage-Feedback Operational Amplifier
ETC

AD708S

IC DUAL OP-AMP, 30 uV OFFSET-MAX, 0.9 MHz BAND WIDTH, UUC8, DIE-8, Operational Amplifier
ADI

AD708SCHIPS

IC DUAL OP-AMP, 50 uV OFFSET-MAX, 0.9 MHz BAND WIDTH, UUC8, DIE-8, Operational Amplifier
ADI

AD708SGRADECHIPS

Ultralow Offset Voltage Dual Op Amp
ADI

AD708SH

Ultralow Offset Voltage Dual Op Amp
ADI

AD708SH/883B

Ultralow Offset Voltage Dual Op Amp
ADI

AD708SQ

Ultralow Offset Voltage Dual Op Amp
ADI

AD708SQ/883B

Ultralow Offset Voltage Dual Op Amp
ADI

AD708TH

IC IC,OP-AMP,DUAL,BIPOLAR,CAN,8PIN,METAL, Operational Amplifier
ADI