AD7091R-2BCPZ-RL7 [ADI]

2-/4-/8-Channel, 1 MSPS, Ultralow Power, 12-Bit SAR ADC;
AD7091R-2BCPZ-RL7
型号: AD7091R-2BCPZ-RL7
厂家: ADI    ADI
描述:

2-/4-/8-Channel, 1 MSPS, Ultralow Power, 12-Bit SAR ADC

文件: 总42页 (文件大小:861K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2-/4-/8-Channel, 1 MSPS,  
Ultralow Power, 12-Bit SAR ADC  
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
REF  
/
IN  
Ultralow system power  
REF  
OUT  
MUX  
ADC  
V
REGCAP  
OUT  
IN  
DD  
Flexible power/throughput rate management  
Normal mode  
1.4 mW at 1 MSPS  
Power-down mode  
550 nA typical at VDD = 5.25 V  
2.5V  
VREF  
V
V
0
1
IN  
12-BIT  
SUCCESSIVE  
APPROXIMATION  
ADC  
T/H  
IN  
V
V
2
3
IN  
V
DRIVE  
IN  
I/P  
435 nA typical at VDD = 3 V  
Programmable ALERT interrupt pin (4-/8-channel models)  
High performance  
1 MSPS throughput with no latency/pipeline delay  
SNR: 70 dB typical at 10 kHz input frequency  
THD: −80 dB typical at 10 kHz input frequency  
INL: 0.7 LSB typical, 1.0 LSB maximum  
Small system footprint  
V
V
4
MUX  
IN  
RESET  
CONVST  
SDO  
5
IN  
ON-CHIP  
OSC  
V
V
6
7
IN  
CONTROL LOGIC  
AND REGISTERS  
IN  
SDI  
SCLK  
CS  
CHANNEL  
SEQUENCER  
AD7091R-8  
On-chip accurate 2.5 V reference, 5 ppm/°C typical drift  
MUXOUT/ADCIN to allow single buffer amplifier  
Daisy-chain mode  
GND  
ALERT/  
BUSY/  
GPO  
GND  
1
GPO  
0
Figure 1.  
16-lead, 20-lead, and 24-lead 4 mm × 4 mm LFCSP packages  
16-lead, 20-lead, and 24-lead TSSOP packages  
Easy to use  
GENERAL DESCRIPTION  
The AD7091R-2/AD7091R-4/AD7091R-8 family is a multichannel  
12-bit, ultralow power, successive approximation analog-to-  
digital converter (ADC) that is available in two, four, or eight  
analog input channel options. The AD7091R-2/AD7091R-4/  
AD7091R-8 operate from a single 2.7 V to 5.25 V power supply  
and are capable of achieving a sampling rate of 1 MSPS.  
SPI/QSPI™/MICROWIRE™/DSP compatible digital interface  
Integrated programmable channel sequencer  
BUSY indication available (4-/8-channel models)  
Built in features for control and monitoring applications  
GPOx pins available (4-/8-channel models)  
Wide operating range  
Temperature range: −40°C to +125°C  
Specified for VDD of 2.7 V to 5.25 V  
The AD7091R-2/AD7091R-4/AD7091R-8 family offers up to eight  
single-ended analog input channels with a channel sequencer  
that allows a preprogrammed selection of channels to be converted  
sequentially. The AD7091R-2/AD7091R-4/ AD7091R-8 also  
feature an on-chip conversion clock, an on-chip accurate 2.5 V  
reference, and a high speed serial interface.  
APPLICATIONS  
Battery-powered systems  
Personal digital assistants  
Medical instruments  
The AD7091R-2/AD7091R-4/AD7091R-8 have a serial port  
interface (SPI) that allows data to be read after the conversion  
while achieving a 1 MSPS throughput rate. The conversion process  
Mobile communications  
Instrumentation and control systems  
Data acquisition systems  
Optical sensors  
CONVST  
and data acquisition are controlled using the  
pin.  
Diagnostic/monitoring functions  
The AD7091R-2/AD7091R-4/AD7091R-8 use advanced design  
techniques to achieve ultralow power dissipation at high  
throughput rates. They also feature flexible power management  
options. An on-chip configuration register allows the user to set up  
different operating conditions. These include power management,  
alert functionality, busy indication, channel sequencing, and  
general-purpose output pins. The MUXOUT and ADCIN pins  
allow signal conditioning of the multiplexer output prior to  
acquisition by the ADC.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2013–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Addressing Registers.................................................................. 23  
Conversion Result Register....................................................... 24  
Channel Register ........................................................................ 25  
Configuration Register .............................................................. 26  
Alert Indication Register........................................................... 28  
Channel x Low Limit Register.................................................. 30  
Channel x High Limit Register................................................. 30  
Channel x Hysteresis Register .................................................. 30  
Serial Port Interface........................................................................ 31  
Reading Conversion Result....................................................... 31  
Writing Data to the Registers ................................................... 31  
Reading Data from the Registers.............................................. 31  
Power-On Device Initialization................................................ 33  
Modes of Operation ....................................................................... 34  
Normal Mode.............................................................................. 34  
Power-Down Mode.................................................................... 34  
ALERT (AD7091R-4 and AD7091R-8 Only) .......................... 35  
BUSY (AD7091R-4 and AD7091R-8 Only)............................. 35  
Channel Sequencer .................................................................... 36  
Daisy Chain................................................................................. 37  
Outline Dimensions....................................................................... 39  
Ordering Guide .......................................................................... 42  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 13  
Terminology .................................................................................... 18  
Theory of Operation ...................................................................... 19  
Circuit Information.................................................................... 19  
Converter Operation.................................................................. 19  
ADC Transfer Function............................................................. 19  
Reference ..................................................................................... 19  
Power Supply............................................................................... 20  
Device Reset................................................................................ 20  
Typical Connection Diagram.................................................... 20  
Analog Input ............................................................................... 20  
Driver Amplifier Choice............................................................ 21  
Registers........................................................................................... 23  
REVISION HISTORY  
12/15—Rev. B to Rev. C  
Change to the Reference Section.................................................. 19  
Changes to Table 5.............................................................................8  
Added Figure 8 ..................................................................................9  
Changes to Table 6.............................................................................9  
Added Figure 10 ............................................................................. 11  
Changes to Table 7.......................................................................... 11  
Added Power Supply Section and Table 8; Renumbered  
Sequentially ..................................................................................... 20  
Added Driver Amplifier Choice Section and Table 9................ 21  
Changes to Table 16 ....................................................................... 26  
Changed Serial Interface Section to Serial Port Interface  
Section.............................................................................................. 31  
Changes to Figure 52...................................................................... 33  
Updated Outline Dimensions....................................................... 38  
Changes to Ordering Guide.......................................................... 41  
11/14—Rev. A to Rev. B  
Added Endnote 1.............................................................................. 3  
Added Total Power Dissipation (Normal Mode) of 0.080 mW ... 4  
Changes to Table 2............................................................................ 5  
Added Device Reset Section and Figure 43; Renumbered  
Sequentially ..................................................................................... 20  
Added Power-On Device Initialization Section and Figure 53..33  
7/14—Rev. 0 to Rev. A  
Added 16-Lead LFCSP, 20-Lead LFCSP, and  
24-Lead LFCSP ...................................................................Universal  
Changes to Features Section............................................................ 1  
Changes to General Description Section ...................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 4............................................................................ 7  
Added Figure 6; Renumbered Sequentially .................................. 8  
12/13—Revision 0: Initial Version  
Rev. C | Page 2 of 42  
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
SPECIFICATIONS  
VDD = 2.7 V to 5.25 V, VDRIVE = 1.8 V to 5.25 V, VREF = 2.5 V internal reference, fSAMPLE = 1 MSPS, fSCLK = 50 MHz, TA = TMIN to TMAX, unless  
otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Signal-to-Noise Ratio (SNR)  
Signal-to-Noise-and-Distortion (SINAD) Ratio  
Total Harmonic Distortion (THD)  
Spurious-Free Dynamic Range (SFDR)  
Channel-to-Channel Isolation  
Aperture Delay  
fIN = 10 kHz sine wave  
66.5  
65.5  
70  
69  
−80  
−81  
−95  
5
dB  
dB  
dB  
dB  
dB  
ns  
fIN = 1 kHz sine wave  
Aperture Jitter  
40  
ps  
Full Power Bandwidth  
At −3 dB  
At −0.1 dB  
1.5  
1.2  
MHz  
MHz  
DC ACCURACY  
Resolution  
12  
Bits  
Integral Nonlinearity (INL)  
VDD ≥ 3.0 V  
VDD ≥ 2.7 V  
Guaranteed no missing codes to 12 bits  
TA = 25°C  
TA = 25°C  
−1  
0.7  
0.8  
0.3  
0.2  
0.2  
2
0.0  
0.0  
2
+1  
LSB  
LSB  
LSB  
mV  
−1.25  
−0.9  
−1.5  
−1.5  
+1.25  
+0.9  
+1.5  
+1.5  
Differential Nonlinearity (DNL)  
Offset Error  
Offset Error Matching  
Offset Error Drift  
Gain Error  
Gain Error Matching  
Gain Error Drift  
mV  
ppm/°C  
% FS  
% FS  
ppm/°C  
TA = 25°C  
TA = 25°C  
−0.1  
−0.1  
+0.1  
+0.1  
ANALOG INPUT  
Input Voltage Range1  
DC Leakage Current  
Input Capacitance2  
At ADCIN  
0
−1  
VREF  
+1  
V
µA  
pF  
pF  
Ω
During acquisition phase  
Outside acquisition phase  
VDD = 5.0 V  
10  
1.5  
50  
Multiplexer On Resistance  
VDD = 2.5 V  
100  
Ω
VOLTAGE REFERENCE INPUT/OUTPUT  
3
REFOUT  
REFIN  
Internal reference output, TA = 25°C  
External reference input  
2.49  
1.0  
2.5  
2.51  
VDD  
V
V
3
Drift  
Power-On Time  
5
50  
ppm/°C  
ms  
CREF = 2.2 µF  
LOGIC INPUTS  
Input High Voltage (VIH)  
Input Low Voltage (VIL)  
Input Current (IIN)  
0.7 × VDRIVE  
−1  
V
V
µA  
0.3 × VDRIVE  
+1  
Typically 10 nA, VIN = 0 V or VDRIVE  
LOGIC OUTPUTS  
Output High Voltage (VOH)  
Output Low Voltage (VOL)  
Floating State Leakage Current  
Output Coding  
ISOURCE = 200 µA  
ISINK = 200 µA  
VDRIVE − 0.2  
−1  
V
V
µA  
0.4  
+1  
Straight (natural) binary  
Rev. C | Page 3 of 42  
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CONVERSION RATE  
Conversion Time  
Transient Response  
Throughput Rate  
POWER REQUIREMENTS  
VDD  
600  
400  
1
ns  
ns  
MSPS  
Full-scale step input  
2.7  
2.7  
1.8  
5.25  
5.25  
5.25  
V
V
V
VDRIVE  
VDRIVE Range4  
Specified performance  
Functional  
IDD  
VIN = 0 V  
VDD = 5.25 V  
Normal Mode—Static5  
22  
21.6  
500  
50  
46  
570  
530  
17  
6
µA  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 3 V  
Normal Mode—Operational  
Power-Down Mode  
VDD = 5.25 V, fSAMPLE = 1 MSPS  
VDD = 3 V, fSAMPLE = 1 MSPS  
VDD = 5.25 V  
450  
0.550  
0.550  
0.435  
VDD = 5.25 V, TA = −40°C to +85°C  
VDD = 3 V  
15  
IDRIVE  
VIN = 0 V  
VDRIVE = 5.25 V  
Normal Mode—Static6  
2
1
30  
10  
4
µA  
µA  
µA  
µA  
µA  
µA  
VDRIVE = 3 V  
3.5  
70  
15  
1
Normal Mode—Operational  
Power-Down Mode  
VDRIVE = 5.25 V, fSAMPLE = 1 MSPS  
VDRIVE = 3 V, fSAMPLE = 1 MSPS  
VDRIVE = 5.25 V  
VDRIVE = 3 V  
VIN = 0 V  
VDD = VDRIVE = 5.25 V  
VDD = VDRIVE = 3 V  
1
Total Power Dissipation7  
Normal Mode—Static  
0.130  
0.070  
2.8  
1.4  
0.080  
3
0.290  
0.149  
3.4  
mW  
mW  
mW  
mW  
mW  
µW  
Normal Mode—Operational  
Power-Down Mode  
VDD = VDRIVE = 5.25 V, fSAMPLE = 1 MSPS  
VDD = VDRIVE = 3 V, fSAMPLE = 1 MSPS  
VDD = VDRIVE = 3 V, fSAMPLE = 100 SPS  
VDD = 5.25 V  
VDD = 5.25 V, TA = −40°C to +85°C  
VDD = VDRIVE = 3 V  
1.7  
95  
33  
50  
3
1.4  
µW  
µW  
1 Multiplexer input voltage should not exceed VDD  
.
2 Sample tested during initial release to ensure compliance.  
3 When referring to a single function of a multifunction pin in the parameters, only the portion of the pin name that is relevant to the specification is listed. For full pin  
names of multifunction pins, refer to the Pin Configurations and Function Descriptions section.  
4 Device is functional and meets dynamic performance/dc accuracy specifications with VDRIVE down to 1.8 V, but the device is not capable of achieving a throughput of  
1 MSPS.  
5
CS  
CS  
CS  
SCLK operates in burst mode, and idles high. With a free running SCLK and pulled low, the IDD static current is increased by 30 µA typical at VDD = 5.25 V.  
6
CS  
SCLK operates in burst mode, and idles high. With a free running SCLK and pulled low, the IDRIVE static current is increased by 32 µA typical at VDRIVE = 5.25 V.  
7 Total power dissipation includes contributions from VDD, VDRIVE, and REFIN (see Note 2).  
Rev. C | Page 4 of 42  
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
TIMING SPECIFICATIONS  
VDD = 2.7 V to 5.25 V, VDRIVE = 1.8 V to 5.25 V, TA = TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
tCONVERT  
tACQ  
tCYC  
tCNVPW  
tSCLK  
Min  
Typ  
Max  
Unit  
ns  
Conversion Time: CONVST Falling Edge to Data Available  
Acquisition Time  
Time Between Conversions (Normal Mode)  
CONVST Pulse Width  
600  
400  
1000  
10  
ns  
ns  
ns  
500  
SCLK Period (Normal Mode)  
VDRIVE Above 2.7 V  
VDRIVE Above 1.8 V  
16  
22  
ns  
ns  
SCLK Period (Chain Mode)  
tSCLK  
VDRIVE Above 2.7 V  
VDRIVE Above 1.8 V  
SCLK Low Time  
SCLK High Time  
SCLK Falling Edge to Data Remains Valid  
SCLK Falling Edge to Data Valid Delay  
VDRIVE Above 4.5 V  
VDRIVE Above 3.3 V  
VDRIVE Above 2.7 V  
20  
25  
6
6
5
ns  
ns  
ns  
ns  
ns  
tSCLKL  
tSCLKH  
tHSDO  
tDSDO  
12  
13  
14  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
VDRIVE Above 1.8 V  
End of Conversion to CS Falling Edge  
CS Low to SDO Enabled  
tEOCCSL  
tEN  
5
5
5
CS High or Last SCLK Falling Edge to SDO High Impedance  
SDI Data Setup Time Prior to SCLK Rising Edge  
SDI Data Hold Time After SCLK Rising Edge  
Last SCLK Falling Edge to Next CONVST Falling Edge  
RESET Pulse Width  
tDIS  
tSSDISCLK  
tHSDISCLK  
tQUIET  
5
2
50  
10  
50  
2
tRESETPW  
tRESET_DELAY  
tCYC_RESET  
RESET Pulse Delay Upon Power Up  
Time Between Conversions (Power On Software Reset)  
Y% V  
DRIVE  
500µA  
I
OL  
X% V  
DRIVE  
tDELAY  
tDELAY  
2
V
2
V
IH  
2
IH  
TO SDO  
1.4V  
2
V
V
IL  
IL  
C
L
20pF  
NOTES  
1
FOR V  
2
3.0V, X = 90 AND Y = 10; FOR V  
> 3.0V, X = 70 AND Y = 30.  
DRIVE  
DRIVE  
500µA  
I
OH  
MINIMUM V AND MAXIMUM V USED. SEE SPECIFICATIONS FOR DIGITAL  
IH IL  
INPUTS PARAMETER IN TABLE 2.  
Figure 3. Voltage Levels for Timing  
Figure 2. Load Circuit for Digital Interface Timing  
Rev. C | Page 5 of 42  
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
Timing Diagram  
tCYC  
EOC  
tACQ  
tCNVPW  
CONVST  
tQUIET  
tCONVERT  
tEOCCSL  
CS  
tHSDO  
tSCLK  
tSCLKH  
1
2
3
4
5
6
7
15  
16  
SCLK  
SDO  
tSCLKL  
tDSDO  
tEN  
tDIS  
TRISTATE  
TRISTATE  
DB11  
DB10  
DB9  
DB1  
DB0  
DB0  
CH_ID2 CH_ID1  
CH_ID0  
ALERT  
tSSDISCLK  
tHSDISCLK  
ADD2  
SDI  
ADD3  
ADD0  
RW  
ADD4  
ADD1  
DB9  
DB1  
Figure 4. Serial Port Timing  
Rev. C | Page 6 of 42  
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 3.  
Parameter  
Rating  
VDD to GND  
VDRIVE to GND  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to VREF + 0.3 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3 V to VDRIVE + 0.3 V  
10 mA  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Table 4. Thermal Resistance  
Package Type  
24-Lead LFCSP  
24-Lead TSSOP  
20-Lead LFCSP  
20-Lead TSSOP  
16-Lead LFCSP  
16-Lead TSSOP  
θJA  
θJC  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Analog Input Voltage to GND  
Digital Input1 Voltage to GND  
Digital Output2 Voltage to GND  
Input Current to Any Pin Except Supplies3  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
ESD  
47.3  
27.78  
14.94  
29.18  
18.43  
29.64  
28.31  
73.54  
49.05  
84.29  
50.58  
106.03  
Human Body Model (HBM)  
Field Induced Charged Device Model  
(FICDM)  
1.5 kV  
500 V  
ESD CAUTION  
1
RESET CONVST  
, SDI, SCLK, and  
CS  
.
The digital input pins include the following:  
,
2 The digital output pins include the following: SDO, GPO1, and ALERT/BUSY/GPO0.  
3 Transient currents of up to 100 mA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. C | Page 7 of 42  
 
 
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
12 SCLK  
DD  
11  
10  
9
SDO  
SDI  
REGCAP  
AD7091R-2  
TOP VIEW  
(Not to Scale)  
1
2
3
4
5
6
7
8
16  
15  
14  
CS  
V
DRIVE  
REF /REF  
IN  
OUT  
RESET  
CONVST  
SCLK  
GND  
GND  
V
DD  
AD7091R-2  
TOP VIEW  
(Not to Scale)  
REGCAP  
13 SDO  
REF /REF  
12  
11  
10  
9
SDI  
IN  
OUT  
GND  
GND  
ADC  
MUX  
OUT  
IN  
NOTES  
1. THE EXPOSED PAD IS NOT CONNECTED  
INTERNALLY. IT IS RECOMMENDED THAT  
THE PAD BE SOLDERED TO GND.  
V
0
V 1  
IN  
IN  
Figure 5. 2-Channel, 16-Lead TSSOP Pin Configuration  
Figure 6. 2-Channel, 16-Lead LFCSP Pin Configuration  
Table 5. 2-Channel, 16-Lead LFCSP and 16-Lead TSSOP Pin Function Descriptions  
Pin No.  
TSSOP  
LFCSP Mnemonic  
Description  
1
2
3
4
15  
16  
1
CS  
Chip Select Input. When CS is held low, the serial bus enables, and CS frames the output data on the SPI.  
Reset. Logic input.  
RESET  
VDD  
REGCAP  
Power Supply Input. The VDD range is from 2.7 V to 5.25 V. Decouple this supply pin to GND.  
Decoupling Capacitor Pin for Voltage Output from Internal Regulator. Decouple this output pin  
separately to GND using a 1.0 μF capacitor.  
2
5
3
REFIN/REFOUT Voltage Reference Output, 2.5 V. Decouple this pin to GND. Typical recommended decoupling  
capacitor value is 2.2 μF. The user can either access the internal 2.5 V reference or overdrive the  
internal reference with the voltage applied to this pin. The reference voltage range for an externally  
applied reference is 1.0 V to VDD.  
6, 11  
7
4, 9  
5
GND  
MUXOUT  
Chip Ground Pins. These pins are the ground reference point for all circuitry on the AD7091R-2.  
Multiplexer Output. The output of the multiplexer appears at this pin. If no external filtering or  
buffering is required, tie this pin directly to the ADCIN pin; otherwise, tie the output of the  
conditioning network to the ADCIN pin.  
8
9
10  
6
7
8
VIN0  
VIN1  
ADCIN  
Analog Input 0. Single-ended analog input. The analog input range is 0 V to VREF  
Analog Input 1. Single-ended analog input. The analog input range is 0 V to VREF  
ADC Input. This pin allows access to the on-chip track-and-hold. If no external filtering or buffering is  
required, tie this pin directly to the MUXOUT pin; otherwise tie the input of the conditioning network  
to the MUXOUT pin.  
.
.
12  
13  
10  
11  
SDI  
Serial Data Input Bus. This input provides the data written to the on-chip control registers. Data  
clocks into the registers on the falling edge of the SCLK input. Provide data MSBs first.  
Serial Data Output Bus. The conversion output data is supplied to this pin as a serial data stream. The  
bits are clocked out on the falling edge of the SCLK input, and 13 SCLKs are required to access the  
data. The data is provided MSB first.  
SDO  
14  
15  
12  
13  
SCLK  
CONVST  
Serial Clock. This pin acts as the serial clock input.  
Convert Start Input Signal. Edge triggered logic input. The falling edge of CONVST places the track-  
and-hold mode into hold mode and initiates a conversion.  
16  
14  
VDRIVE  
EPAD  
Logic Power Supply Input. The voltage supplied at this pin determines at what voltage the interface  
operates. Connect decoupling capacitors between VDRIVE and GND. Typical recommended values are 10 μF  
and 0.1 μF. The voltage range on this pin is 1.8 V to 5.25 V and may be different to the voltage range  
at VDD.  
Exposed Pad. The exposed pad is not connected internally. It is recommended that the pad be  
soldered to GND.  
Not  
applicable  
17  
Rev. C | Page 8 of 42  
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
V
15 SDO  
14 SDI  
DD  
1
2
3
4
5
REGCAP  
AD7091R-4  
TOP VIEW  
(Not to Scale)  
REF /REF  
GND  
13  
IN  
OUT  
12 ADC  
GND  
IN  
1
2
CS  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
DRIVE  
MUX  
V 1  
IN  
11  
OUT  
RESET  
CONVST  
SCLK  
SDO  
3
V
DD  
4
REGCAP  
AD7091R-4  
TOP VIEW  
(Not to Scale)  
REF /REF  
5
SDI  
IN  
OUT  
6
GND  
GND  
MUX  
7
ADC  
IN  
OUT  
8
V
V
0
2
V
1
IN  
IN  
IN  
9
NOTES  
V
3
IN  
1. THE EXPOSED PAD IS NOT CONNECTED  
INTERNALLY. IT IS RECOMMENDED THAT  
THE PAD BE SOLDERED TO GND.  
10  
ALERT/BUSY/GPO  
GPO  
1
0
Figure 7. 4-Channel, 20-Lead TSSOP Pin Configuration  
Figure 8. 4-Channel, 20-Lead LFCSP Pin Configuration  
Table 6. 4-Channel, 20-Lead LFCSP and 20-Lead TSSOP Pin Function Descriptions  
Pin No.  
TSSOP  
LFCSP Mnemonic  
Description  
1
19  
CS  
Chip Select Input. When CS is held low, the serial bus enables, and CS frames the output data on  
the SPI.  
2
3
4
20  
1
2
RESET  
VDD  
REGCAP  
Reset. Logic input.  
Power Supply Input. The VDD range is from 2.7 V to 5.25 V. Decouple this supply pin to GND.  
Decoupling Capacitor Pin for Voltage Output from Internal Regulator. Decouple this output pin  
separately to GND using a 1.0 μF capacitor.  
5
3
REFIN/REFOUT  
Voltage Reference Output, 2.5 V. Decouple this pin to GND. Typical recommended decoupling  
capacitor value is 2.2 μF. The user can either access the internal 2.5 V reference or overdrive the  
internal reference with the voltage applied to this pin. The reference voltage range for an  
externally applied reference is 1.0 V to VDD.  
6, 15  
7
4, 13  
5
GND  
MUXOUT  
Chip Ground Pins. These pins are the ground reference point for all circuitry on the AD7091R-4.  
Multiplexer Output. The output of the multiplexer appears at this pin. If no external filtering or  
buffering is required, tie this pin directly to the ADCIN pin; otherwise, tie the output of the  
conditioning network to the ADCIN pin.  
8
9
10  
6
7
8
VIN0  
VIN2  
Analog Input 0. Single-ended analog input. The analog input range is 0 V to VREF  
Analog Input 2. Single-ended analog input. The analog input range is 0 V to VREF  
.
.
ALERT/BUSY/GPO0 Alert Output Pin (ALERT). This is a multifunction pin determined by the configuration register.  
When functioning as ALERT, this pin is a logic output indicating that a conversion result has  
fallen outside the limit of the register settings.  
When the ALERT/BUSY/GPO0 pin is configured as a BUSY output, use this pin to indicate when a  
conversion is taking place.  
The pin can also function as a general-purpose digital output.  
11  
12  
13  
14  
9
GPO1  
VIN3  
VIN1  
General-Purpose Digital Output.  
Analog Input 3. Single-ended analog input. The analog input range is 0 V to VREF  
Analog Input 1. Single-ended analog input. The analog input range is 0 V to VREF  
ADC Input. This pin allows access to the on-chip track-and-hold. If no external filtering or  
buffering is required, tie this pin directly to the MUXOUT pin; otherwise, tie the input of the  
conditioning network to the MUXOUT pin.  
10  
11  
12  
.
.
ADCIN  
16  
17  
14  
15  
SDI  
Serial Data Input Bus. This input provides data written to the on-chip control registers. Data  
clocks into the registers on the falling edge of the SCLK input. Provide data MSB first.  
Serial Data Output Bus. The conversion output data is supplied to this pin as a serial data  
stream. The bits are clocked out on the falling edge of the SCLK input, and 13 SCLKs are  
required to access the data. The data is provided MSB first.  
SDO  
Rev. C | Page 9 of 42  
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
Pin No.  
TSSOP  
18  
19  
LFCSP Mnemonic  
Description  
16  
17  
SCLK  
CONVST  
Serial Clock. This pin acts as the serial clock input.  
Convert Start Input Signal. Edge triggered logic input. The falling edge of CONVST places the  
track-and-hold mode into hold mode and initiates a conversion.  
20  
18  
VDRIVE  
EPAD  
Logic Power Supply Input. The voltage supplied at this pin determines at what voltage the  
interface operates. Connect decoupling capacitors between VDRIVE and GND. Typical recommended  
values are 10 µF and 0.1 µF. The voltage range on this pin is 1.8 V to 5.25 V and may be different  
to the voltage range at VDD.  
Exposed Pad. The exposed pad is not connected internally. It is recommended that the pad be  
soldered to GND.  
Not  
applicable  
21  
Rev. C | Page 10 of 42  
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
1
18 SDI  
V
DD  
REGCAP 2  
GND  
17  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
7
8
CS  
V
DRIVE  
REF /REF  
16 ADC  
IN  
OUT  
3
4
5
6
AD7091R-8  
TOP VIEW  
(Not to Scale)  
IN  
RESET  
CONVST  
SCLK  
SDO  
15  
GND  
MUX  
V
1
3
IN  
OUT  
V
14 V  
DD  
IN  
V
0
IN  
13 GPO  
1
REGCAP  
REF /REF  
SDI  
IN  
OUT  
AD7091R-8  
TOP VIEW  
(Not to Scale)  
GND  
GND  
MUX  
ADC  
IN  
OUT  
V
V
0
2
V
1
IN  
IN  
IN  
9
V
3
IN  
10  
11  
12  
ALERT/BUSY/GPO  
GPO  
1
0
NOTES  
V
4
V
5
IN  
IN  
IN  
IN  
1. THE EXPOSED PAD IS NOT CONNECTED  
INTERNALLY. IT IS RECOMMENDED THAT  
THE PAD BE SOLDERED TO GND.  
V
6
V
7
Figure 9. 8-Channel, 24-Lead TSSOP Pin Configuration  
Figure 10. 8-Channel, 24-Lead LFCSP Pin Configuration  
Table 7. 8-Channel, 24-Lead LFCSP and 24-Lead TSSOP Pin Function Descriptions  
Pin No.  
TSSOP  
LFCSP Mnemonic  
Description  
1
23  
CS  
Chip Select Input. When CS is held low, the serial bus enables, and CS frames the output data  
on the SPI.  
2
3
4
24  
1
2
RESET  
VDD  
REGCAP  
Reset. Logic input.  
Power Supply Input. The VDD range is from 2.7 V to 5.25 V. Decouple this supply pin to GND.  
Decoupling Capacitor Pin for Voltage Output from Internal Regulator. Decouple this output pin  
separately to GND using a 1.0 μF capacitor.  
5
3
REFIN/REFOUT  
Voltage Reference Output, 2.5 V. Decouple this pin to GND. Typical recommended decoupling  
capacitor value is 2.2 μF. The user can either access the internal 2.5 V reference or overdrive the  
internal reference with the voltage applied to this pin. The reference voltage range for an  
externally applied reference is 1.0 V to VDD.  
6, 19  
7
4, 17  
5
GND  
MUXOUT  
Chip Ground Pins. These pins are the ground reference point for all circuitry on the AD7091R-8.  
Multiplexer Output. The output of the multiplexer appears at this pin. If no external filtering or  
buffering is required, tie this pin directly to the ADCIN pin; otherwise, tie the output of the  
conditioning network to the ADCIN pin.  
8
9
10  
6
7
8
VIN0  
VIN2  
Analog Input 0. Single-ended analog input. The analog input range is 0 V to VREF  
Analog Input 2. Single-ended analog input. The analog input range is 0 V to VREF  
.
.
ALERT/BUSY/GPO0 Alert Output Pin (ALERT). This is a multifunction pin determined by the configuration register.  
When functioning as ALERT, this pin is a logic output indicating that a conversion result has  
fallen outside the limit of the register settings.  
When the ALERT/BUSY/GPO0 pin is configured as a BUSY output, use this pin to indicate when a  
conversion is taking place.  
The pin can also function as a general-purpose digital output.  
11  
12  
13  
14  
15  
16  
17  
18  
9
VIN4  
VIN6  
VIN7  
VIN5  
GPO1  
VIN3  
VIN1  
Analog Input 4. Single-ended analog input. The analog input range is 0 V to VREF  
Analog Input 6. Single-ended analog input. The analog input range is 0 V to VREF  
Analog Input 7. Single-ended analog input. The analog input range is 0 V to VREF  
Analog Input 5. Single-ended analog input. The analog input range is 0 V to VREF  
General-Purpose Digital Output.  
.
.
.
.
10  
11  
12  
13  
14  
15  
16  
Analog Input 3. Single-ended analog input. The analog input range is 0 V to VREF  
Analog Input 1. Single-ended analog input. The analog input range is 0 V to VREF  
.
.
ADCIN  
ADC Input. This pin allows access to the on-chip track-and-hold. If no external filtering or  
buffering is required, tie this pin directly to the MUXOUT pin; otherwise, tie the input of the  
conditioning network to the MUXOUT pin.  
Rev. C | Page 11 of 42  
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
Pin No.  
TSSOP  
LFCSP Mnemonic  
Description  
20  
18  
SDI  
Serial Data Input Bus. Data to be written to the on-chip control registers is provided on this input.  
Data is clocked into the registers on the falling edge of the SCLK input. Provide data MSB first.  
21  
19  
SDO  
Serial Data Output Bus. The conversion output data is supplied to this pin as a serial data  
stream. The bits are clocked out on the falling edge of the SCLK input, and 13 SCLKs are  
required to access the data. The data is provided MSB first.  
22  
23  
20  
21  
SCLK  
CONVST  
Serial Clock. This pin acts as the serial clock input.  
Convert Start Input Signal. Edge triggered logic input. The falling edge of CONVST places the  
track-and-hold mode into hold mode and initiates a conversion.  
24  
22  
VDRIVE  
EPAD  
Logic Power Supply Input. The voltage supplied at this pin determines at what voltage the  
interface operates. Connect decoupling capacitors between VDRIVE and GND. Typical  
recommended values are 10 µF and 0.1 µF. The voltage range on this pin is 1.8 V to 5.25 V and  
may be different to the voltage range at VDD.  
Exposed Pad. The exposed pad is not connected internally. It is recommended that the pad be  
soldered to GND.  
Not  
applicable  
25  
Rev. C | Page 12 of 42  
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.2  
0
0.4  
0.2  
0
–0.2  
–0.2  
V
V
T
= 3.0V  
–0.4  
–0.6  
–0.8  
–1.0  
DD  
–0.4  
–0.6  
–0.8  
–1.0  
V
V
T
= 3.0V  
DD  
= 2.5V  
REF  
= 2.5V  
REF  
= 25°C  
fSAAMPLE = 1MSPS  
= 25°C  
fSAAMPLE = 1MSPS  
POSITIVE INL = +0.74LSB  
NEGATIVE INL = –0.37LSB  
POSITIVE DNL = +0.48LSB  
NEGATIVE DNL = –0.50LSB  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
CODE  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
CODE  
Figure 11. Integral Nonlinearity vs. Code  
Figure 14. Differential Nonlinearity vs. Code  
60000  
50000  
40000  
35000  
30000  
25000  
V
= V  
= 3.0V  
DD  
DRIVE  
V
= V  
= 3.0V  
DD  
DRIVE  
65k SAMPLES  
= 25°C  
65k SAMPLES  
= 25°C  
T
A
T
A
40000  
30000  
20000  
10000  
20000  
15000  
10000  
5000  
0
0
2047  
2048  
2049  
2044  
2045  
2046  
2047  
CODE  
CODE  
Figure 12. Histogram of a DC Input at Code Center  
Figure 15. Histogram of a DC Input at Code Transition  
0
0
V
V
T
= 3.0V  
DD  
V
V
T
= 3.0V  
DD  
= 2.5V INTERNAL  
= 25°C  
–20  
–20  
REF  
= 2.5V EXTERNAL  
= 25°C  
REF  
fIAN = 10kHz  
fIAN = 10kHz  
–40  
–60  
–40  
–60  
fSAMPLE = 1MSPS  
fSAMPLE = 1MSPS  
SNR = 69.44dB  
SINAD = 69.19dB  
THD = –84.21dB  
SFDR = –85.82dB  
SNR = 69.52dB  
SINAD = 69.21dB  
THD = –84.25dB  
SFDR = –85.79dB  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–160  
–140  
–160  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (kHz)  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (kHz)  
Figure 13. 10 kHz Fast Fourier Transform (FFT),  
DD = 3.0 V, VREF = 2.5 V External  
Figure 16. 10 kHz FFT, VDD = 3.0 V, VREF = 2.5 V Internal  
V
Rev. C | Page 13 of 42  
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
72  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= 25°C  
fSAAMPLE = 1MSPS  
70  
V
= 2.5V  
REF  
2.7V  
3.0V  
5.0V  
68  
66  
64  
62  
60  
2.7V  
3.0V  
5.0V  
T
= 25°C  
fSAAMPLE = 1MSPS  
V
= 2.5V  
REF  
1
10  
INPUT FREQUENCY (kHz)  
100  
1
10  
100  
INPUT FREQUENCY (kHz)  
Figure 17. SNR vs. Analog Input Frequency for Various Supply Voltages  
Figure 20. THD vs. Analog Input Frequency for Various Supply Voltages  
69.6  
69.5  
69.4  
69.3  
72  
70  
2.7V  
3.0V  
5.0V  
68  
66  
64  
62  
60  
V
T
= 5.0V  
DD  
69.2  
69.1  
69.0  
68.9  
= 25°C  
fSAAMPLE = 1MSPS  
fIN = 10kHz  
T
= 25°C  
fSAAMPLE = 1MSPS  
V
= 2.5V  
REF  
–10  
–9  
–8  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
1
10  
100  
INPUT LEVEL (dB)  
INPUT FREQUENCY (kHz)  
Figure 18. SINAD vs. Analog Input Frequency for Various Supply Voltages  
Figure 21. SNR vs. Input Level  
–78  
–80  
12.00  
11.80  
72.0  
71.0  
THD  
SFDR  
SNR  
SINAD  
ENOB  
11.60  
11.40  
11.20  
70.0  
69.0  
–82  
–84  
68.0  
67.0  
66.0  
65.0  
64.0  
11.00  
10.80  
V
T
= 5.0V  
= 25°C  
DD  
–86  
–88  
–90  
V
T
= 5.0V  
DD  
fSAAMPLE = 1MSPS  
fIN = 10kHz  
= 25°C  
10.60  
fSAAMPLE = 1MSPS  
fIN = 10kHz  
10.40  
10.20  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
Figure 19. SNR, SINAD, and ENOB vs. Reference Voltage  
Figure 22. THD and SFDR vs. Reference Voltage  
Rev. C | Page 14 of 42  
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
–80  
–81  
600  
550  
500  
450  
–82  
–83  
–84  
–85  
400  
V
f
= 5.0V  
DD  
–86  
–87  
–88  
–89  
–90  
5.25V  
5.0V  
3.3V  
= 1MSPS  
350  
SAMPLE  
fIN = 10kHz  
300  
250  
200  
fSAMPLE = 1MSPS  
2.7V  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
–40  
25  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 26. Operational IDD Supply Current vs. Temperature  
for Various VDD Supply Voltages  
Figure 23. THD vs. Temperature  
70  
70.8  
70.6  
60  
V
V
f
= 3.0V  
DD  
70.4  
70.2  
70.0  
69.8  
5.25V  
5.0V  
3.3V  
2.7V  
= 2.5V  
REF  
50  
= 10kHz  
IN  
f
= 1MSPS  
SAMPLE  
40  
30  
20  
69.6  
69.4  
69.2  
69.0  
10  
0
–40  
25  
85  
125  
–55 –35  
–15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 24. SNR vs. Temperature  
Figure 27. Operational IDRIVE Supply Current vs. Temperature for  
Various VDRIVE Supply Voltages  
500  
8
7
450  
400  
I
I
I
I
(µA) AT V = V  
= 3.00V  
DD  
DD  
DRIVE  
(µA) AT V = V = 3.00V  
DRIVE  
DD  
DRIVE  
(µA) AT V = V = 5.00V  
DD  
DD  
DRIVE  
(µA) AT V = V  
= 5.00V  
5.25V  
5.0V  
3.3V  
2.7V  
DRIVE  
DD  
DRIVE  
6
5
350  
300  
250  
200  
150  
100  
50  
4
3
2
1
0
0
100  
200  
300  
400  
500  
600  
700  
800  
900 1000  
–40  
25  
85  
125  
THROUGHPUT (kSPS)  
TEMPERATURE (°C)  
Figure 25. Operating Current vs. Throughput  
Figure 28. Total Power-Down Current vs. Temperature for Various Supplies  
Rev. C | Page 15 of 42  
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
12  
100  
95  
V
= 1.8V, +25°C  
DRIVE  
V
= 1.8V, +125°C  
DRIVE  
10  
8
90  
85  
80  
75  
70  
V
= 1.8V, –40°C  
= 3V, +25°C  
DRIVE  
V
= 3V, +125°C  
DRIVE  
6
T
= 25°C  
fSAAMPLE = 1MSPS  
4
V
= 2.5V EXTERNAL  
V
REF  
DRIVE  
V
V
= V  
= V  
= 5.00V  
= 3.00V  
DD  
DD  
DRIVE  
DRIVE  
V
= 3V, –40°C  
DRIVE  
2
0
10  
20  
30  
40  
50  
1
10  
100  
1000  
SDO CAPACITANCE LOAD (pF)  
RIPPLE FREQUENCY (kHz)  
Figure 29. tDSDO Delay vs. SDO Capacitance Load and Supply  
Figure 32. PSRR vs. Ripple Frequency  
1.5  
0.10  
0.08  
CH 0  
CH 1  
1.0  
0.5  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
0.06  
0.04  
0.02  
0
0
CH 0  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
–0.5  
–1.0  
–1.5  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
–55  
–35  
–15  
5
25  
45  
65  
85  
105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 30. Offset Error vs. Temperature  
Figure 33. Gain Error vs. Temperature  
1.5  
1.0  
0.10  
0.08  
0.06  
0.04  
0.02  
0.5  
0
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.5  
–1.0  
–1.5  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 34. Gain Error Match vs. Temperature  
Figure 31. Offset Error Match vs. Temperature  
Rev. C | Page 16 of 42  
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
–60  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
T
= 25°C  
A
V
T
= 5.0V  
= 25°C  
fSAAMPLE = 1MSPS  
DD  
V
= 3V  
DD  
–70  
fIN = 10kHz  
fSAMPLE = 1MSPS  
–80  
–90  
–100  
–110  
–120  
1
10  
INPUT FREQUENCY (kHz)  
100  
10  
100  
1k  
10k  
SOURCE IMPEDANCE ()  
Figure 35. Channel-to-Channel Isolation vs. Input Frequency  
Figure 38. THD vs. Source Impedance  
–85  
–87  
2.510  
2.505  
2.500  
2.495  
2.490  
–89  
–91  
–93  
–95  
–97  
V
f
= 5.0V  
DD  
–99  
–101  
–103  
–105  
= 1MSPS  
SAMPLE  
f
= 10kHz  
IN  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 36. Channel-to-Channel Isolation vs. Temperature  
Figure 39. Internal Reference Voltage vs. Temperature  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
2.490  
2.488  
2.486  
2.484  
V
= V  
= 3V  
DD  
DRIVE  
+25°C  
–40°C  
+85°C  
+125°C  
0
20  
40  
60  
80  
100  
CURRENT LOAD (µA)  
Figure 37. Reference Voltage Output (VREF) vs. Current Load  
for Various Temperatures  
Rev. C | Page 17 of 42  
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
TERMINOLOGY  
Integral Nonlinearity (INL)  
Signal-to-Noise-and-Distortion (SINAD) Ratio  
INL is the maximum deviation from a straight line passing  
through the endpoints of the ADC transfer function. For the  
AD7091R-2/AD7091R-4/AD7091R-8, the endpoints of the  
transfer function are zero scale, a point ½ LSB below the first  
code transition, and full scale, a point ½ LSB above the last code  
transition.  
SINAD is the measured ratio of signal-to-noise-and-distortion  
at the output of the ADC. The signal is the rms amplitude of the  
fundamental. Noise is the sum of all nonfundamental signals up  
to half the sampling frequency (fS/2), excluding dc.  
The ratio is dependent on the number of quantization levels in the  
digitization process; the more levels, the smaller the quantization  
noise. The theoretical SINAD ratio for an ideal N-bit converter  
with a sine wave input is given by  
Differential Nonlinearity (DNL)  
DNL is the difference between the measured and the ideal  
1 LSB change between any two adjacent codes in the ADC.  
SINAD = (6.02N + 1.76) dB  
Offset Error  
Thus, for a 12-bit converter, the SINAD ratio is 74 dB.  
The offset error is the deviation of the first code transition  
(00 … 000 to 00 … 001) from the ideal (such as GND + 0.5 LSB).  
Channel-to-Channel Isolation  
Channel-to-channel isolation is a measure of the level of  
crosstalk between the selected channel and all of the other  
channels. It is measured by applying a full-scale, 10 kHz sine  
wave signal to all unselected input channels and determining  
the degree to which the signal attenuates in the selected channel  
that has a dc signal applied to it. Figure 35 shows the worst case  
across all channels for the AD7091R-2/AD7091R-4/AD7091R-8.  
Offset Error Match  
Offset error match is the difference in offset error between any  
two input channels.  
Gain Error  
For the AD7091R-2/AD7091R-4/AD7091R-8, the gain error is  
the deviation of the last code transition (111 … 110 to 111 …  
111) from the ideal (such as VREF − 1.5 LSB) after the offset  
error has been adjusted out.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of harmonics to the fundamental.  
For the AD7091R-2/AD7091R-4/AD7091R-8, it is defined as  
Gain Error Match  
Gain error match is the difference in gain error between any two  
input channels.  
V22 +V32 +V42 +V52 +V62  
THD  
where:  
dB = 20log  
( )  
V
1
Transient Response Time  
The track-and-hold amplifier returns to track mode after the  
end of conversion. The track-and-hold acquisition time is the  
time required for the output of the track-and-hold amplifier to  
reach its final value, within 0.5 LSB, after the end of conversion.  
See the Serial Port Interface section for more details.  
V1 is the rms amplitude of the fundamental.  
V2, V3, V4, V5, and V6 are the rms amplitudes of the second  
through the sixth harmonic.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels, between the rms amplitude  
of the input signal and the peak spurious signal.  
Rev. C | Page 18 of 42  
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
THEORY OF OPERATION  
When the ADC starts a conversion, SW2 opens and SW1 moves  
to Position B, causing the comparator to become unbalanced (see  
Figure 41). Using the control logic, the charge redistribution DAC  
adds and subtracts fixed amounts of charge from the sampling  
capacitor to bring the comparator back into a balanced condition.  
When the SAR decisions are made, the comparator inputs are  
rebalanced. From these SAR decisions, the control logic  
generates the ADC output code.  
CIRCUIT INFORMATION  
The AD7091R-2/AD7091R-4/AD7091R-8 are 12-bit, fast  
(1 MSPS), ultralow power, single-supply ADCs. The devices  
operate from a 2.7 V to 5.25 V supply. The AD7091R-2/  
AD7091R-4/AD7091R-8 are capable of throughput rates  
of 1 MSPS.  
The AD7091R-2/AD7091R-4/AD7091R-8 provide an on-chip,  
track-and-hold ADC and a serial interface housed in a 16-lead,  
20-lead, or 24-lead TSSOP or LFCSP package, which offers  
considerable space-saving advantages over alternative solutions.  
The serial clock input accesses data from the device. The clock  
for the successive approximation ADC is generated internally.  
The reference voltage for the AD7091R-2/AD7091R-4/AD7091R-8  
is provided externally, or it is generated internally by an  
ADC TRANSFER FUNCTION  
The output coding of the AD7091R-2/AD7091R-4/AD7091R-8  
is straight binary. The designed code transitions occur midway  
between successive integer LSB values, such as ½ LSB, 1½ LSB, and  
so on. The LSB size for the AD7091R-2/AD7091R-4/AD7091R-8  
is VREF/4096. The ideal transfer characteristic for the AD7091R-2/  
AD7091R-4/AD7091R-8 is shown in Figure 42.  
accurate on-chip reference source. The analog input range for  
the AD7091R-2/AD7091R-4/AD7091R-8 is 0 V to VREF  
.
The AD7091R-2/AD7091R-4/AD7091R-8 also feature a power-  
down option to save power between conversions. The power-down  
feature is implemented across the standard serial interface as  
described in the Modes of Operation section.  
111...111  
111...110  
111...000  
1LSB = V  
/4096  
REF  
011...111  
CONVERTER OPERATION  
000...010  
000...001  
000...000  
The AD7091R-2/AD7091R-4/AD7091R-8 are successive  
approximation ADCs based on a charge redistribution digital-  
to-analog converter (DAC). Figure 40 and Figure 41 show  
simplified schematics of the ADC. Figure 40 shows the ADC  
during its acquisition phase. When SW2 is closed and SW1 is in  
Position A, the comparator is held in a balanced condition, and  
the sampling capacitor acquires the signal on VIN.  
1LSB  
+V  
– 1LSB  
REF  
0V  
ANALOG INPUT  
Figure 42. AD7091R-2/AD7091R-4/AD7091R-8 Transfer Characteristic  
REFERENCE  
The AD7091R-2/AD7091R-4/AD7091R-8 can operate with  
either the internal 2.5 V on-chip reference or an externally  
applied reference. The logic state of the P_DOWN LSB bit in  
the configuration register determines whether the internal  
reference is used. The internal reference is selected for the  
ADCs when the P_DOWN LSB bit is set to 1.  
CHARGE  
REDISTRIBUTION  
DAC  
SAMPLING  
CAPACITOR  
A
V
IN  
CONTROL  
LOGIC  
SW1  
B
When the P_DOWN LSB bit is set to 0, supply an external  
reference in the range of 1.0 V to VDD through the REFIN/REFOUT  
pin. At power-up, the internal reference disables by default.  
ACQUISITION  
PHASE  
SW2  
COMPARATOR  
AGND  
V
/2  
DD  
The internal reference circuitry consists of a 2.5 V band gap  
reference and a reference buffer. When operating the AD7091R-2/  
AD7091R-4/AD7091R-8 in internal reference mode, the 2.5 V  
internal reference is available at the REFIN/REFOUT pin, which  
is typically decoupled to GND using a 2.2 μF capacitor. It is  
recommended to buffer the internal reference before applying  
it elsewhere in the system.  
Figure 40. ADC Acquisition Phase  
CHARGE  
REDISTRIBUTION  
DAC  
SAMPLING  
CAPACITOR  
A
V
IN  
CONTROL  
LOGIC  
SW1  
B
SW2  
CONVERSION  
PHASE  
COMPARATOR  
The reference buffer requires 50 ms to power up and charge the  
2.2 μF decoupling capacitor during the power-up time.  
AGND  
V
/2  
DD  
Figure 41. ADC Conversion Phase  
Rev. C | Page 19 of 42  
 
 
 
 
 
 
 
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
The typical value for the regulator bypass (REGCAP) decoupling  
capacitor is 1.0 μF. The voltage applied to the VDRIVE input  
controls the voltage of the serial interface; therefore, connect  
this pin to the supply voltage of the microprocessor. Set VDRIVE  
in the 1.8 V to 5.25 V range. Typical values for the VDRIVE  
decoupling capacitors are 0.1 μF and 10 μF. The conversion  
result is output in a 16-bit word with the MSBs first.  
POWER SUPPLY  
The AD7091R-2/AD7091R-4/AD7091R-8 use two power supply  
pins: a core supply (VDD) and a digital input/output interface  
supply (VDRIVE). VDRIVE allows direct interface with any logic  
between 1.8 V and 5.25 V. To reduce the number of supplies  
needed, VDRIVE and VDD can be tied together depending upon  
the logic levels of the system. Additionally, the AD7091R-2/  
AD7091R-4/AD7091R-8 are insensitive to power supply variation  
over a wide frequency range, as shown in Figure 32. AD7091R-2/  
AD7091R-4/AD7091R-8 operation is independent of power  
supply sequencing between VDRIVE and VDD.  
When an externally applied reference is required, disable the  
internal reference using the configuration register. Choose the  
externally applied reference voltage in the 1.0 V to 5.25 V VDD  
range and connect it to the REFIN/REFOUT pin.  
For applications where power consumption is a concern, use the  
power-down mode of the ADC to improve power performance.  
See the Modes of Operation section for additional details.  
The AD7091R-2/AD7091R-4/AD7091R-8 power down  
automatically at the end of each conversion phase; therefore,  
the power scales linearly with the sampling rate. The automatic  
power-down feature makes the AD7091R-2/AD7091R-4/  
AD7091R-8 devices ideal for low sampling rates (of even a few  
hertz) and battery-powered applications.  
ANALOG INPUT  
Figure 44 shows an equivalent circuit of the analog input structure  
of the AD7091R-2/AD7091R-4/AD7091R-8. The two diodes, D1  
and D2, provide ESD protection for the analog input. Take care  
to ensure that the analog input signal never exceeds the supply  
rails by more than 300 mV because this causes these diodes to  
become forward-biased and start conducting current into the  
substrate. These diodes can conduct a maximum of 10 mA  
without causing irreversible damage to the device.  
Table 8. Recommended Power Management Devices1  
Product  
Description  
ADP7102  
20 V, 300 mA, low noise, CMOS LDO  
ADM7160 Ultralow noise, 200 mA linear regulator  
ADP162 Ultralow quiescent current, CMOS linear regulator  
1 For the latest recommended power management devices, see the AD7091R-2/  
AD7091R-4/AD7091R-8 product pages.  
V
V
DD  
REF  
D1  
D3  
DEVICE RESET  
C2  
3.6pF  
R1  
Upon power up, a reset pulse of at least 10 ns in width must be  
V
IN  
provided on the  
pin to ensure proper initialization of  
RESET  
D2  
C1  
400fF  
the device. Failure to apply the reset pulse may result in a device  
malfunction. See Figure 43 for reset pulse timing relative to  
power supply establishment. If the system has a limited number  
of digital pins and one cannot be allocated to the reset pin of the  
ADC, a software reset may be issued in place of the hardware  
reset signal (see the Power-On Device Initialization section).  
tRESET_DELAY  
CONVERSION PHASE–SWITCH OPEN  
TRACK PHASE–SWITCH CLOSED  
Figure 44. Equivalent Analog Input Circuit  
The C1 capacitor in Figure 44 is typically about 400 fF and can  
primarily be attributed to pin capacitance. The R1 resistor is a  
lumped component composed of the on resistance of a switch.  
This resistor is typically about 500 Ω. The C2 capacitor is the  
ADC sampling capacitor and typically has a capacitance of 3.6 pF.  
V
DD  
V
DRIVE  
In applications where harmonic distortion and signal-to-noise  
ratio are critical, drive the analog inputs from low impedance  
sources. Large source impedances significantly affect the ac  
performance of the ADC that can necessitate using input buffer  
amplifiers, as shown in Figure 45. The choice of the op amp is a  
function of the particular application.  
tRESETPW  
RESET  
RESET  
Figure 43.  
Pin Power Up Timing  
TYPICAL CONNECTION DIAGRAM  
Figure 45 shows a typical connection diagram for the AD7091R-2/  
AD7091R-4/AD7091R-8.  
When no amplifiers are used to drive the analog input, limit the  
source impedance to low values. The maximum source impedance  
depends on the amount of THD that can be tolerated. The THD  
increases as the source impedance increases and performance  
degrades.  
Connect a positive power supply in the 2.7 V to 5.25 V range to  
the VDD pin. Typical values for these decoupling capacitors are  
0.1 μF and 10 μF. Place these capacitors near the device pins.  
Take care to decouple the REFIN/REFOUT pin to achieve specified  
performance. The typical value for the REFIN/REFOUT capacitor  
is 2.2 μF, which provides an analog input range of 0 V to VREF  
.
Rev. C | Page 20 of 42  
 
 
 
 
 
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
Use an external filter on the analog input signal paths to the  
AD7091R-2/AD7091R-4/AD7091R-8 VINx pins to achieve the  
specified performance. This filter can be a one-pole low-pass  
RC filter, or similar.  
For ac applications, the driver must have a THD  
performance that is commensurate with the AD7091R-2/  
AD7091R-4/AD7091R-8.  
If the buffer is placed between MUXOUT and ADCIN, the driver  
amplifier and the AD7091R-2/AD7091R-4/AD7091R-8  
analog input circuit must settle for a full-scale step onto  
the capacitor array at a 12-bit level (0.0244%, 244 ppm).  
In an amplifier data sheet, settling at 0.1% to 0.01% is more  
commonly specified and may differ significantly from the  
settling time at a 12-bit level. Be sure to verify the amplifier  
settling time prior to driver selection.  
Connect the MUXOUT pin directly to the ADCIN pin. Insert a  
buffer amplifier in the path, if desired. When sequencing  
channels, do not place a filter between MUXOUT and the input to  
any buffering because doing so leads to crosstalk. If buffering is  
not employed, do not place a filter between MUXOUT and ADCIN  
when sequencing channels because doing so leads to crosstalk.  
DRIVER AMPLIFIER CHOICE  
Table 9. Recommended Driver Amplifiers1  
Product Description  
ADA4805-1 Low noise, ultralow power, wide bandwidth amplifier  
AD8031  
AD8032  
AD8615  
Although the AD7091R-2/AD7091R-4/AD7091R-8 are easy to  
drive, a driver amplifier must meet the following requirements:  
The noise generated by the driver amplifier must be kept as  
low as possible to preserve the SNR and transition noise  
performance of the AD7091R-2/AD7091R-4/AD7091R-8.  
The noise from the driver is filtered by the one-pole, low-  
pass filter of the AD7091R-2/AD7091R-4/AD7091R-8  
analog input circuit, made by R1 and C2, or by the external  
filter, if one is used. Because the typical noise of the  
AD7091R-2/AD7091R-4/AD7091R-8 is 280 µV rms,  
the SNR degradation due to the amplifier is  
Low voltage, low power, single channel amplifier  
Low voltage, low power, dual channel amplifier  
Low frequency, low voltage amplifier  
1 For the latest recommended ADC driver products, see the AD7091R-2/  
AD7091R-4/AD7091R-8 product pages.  
280  
SNRLOSS = 20 log  
π
2802 + f3dB (NeN )2  
2
where:  
f−3dB is the input bandwidth, in megahertz, of the AD7091R-2/  
AD7091R-4/AD7091R-8 (1.5 MHz), or the cutoff frequency  
of the input filter, if one is used.  
N is the noise gain of the amplifier (for example, gain = 1  
in buffer configuration; see Figure 45).  
eN is the equivalent input noise voltage of the op amp, in  
nV/√Hz.  
Rev. C | Page 21 of 42  
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
WITH BUSY  
INDICATION  
V
DRIVE  
47k  
10µF  
100nF  
10µF  
100nF  
SDO  
V
V
DRIVE  
MICROCONTROLLER/  
MICROPROCESSOR/  
DSP  
DD  
REGCAP  
SCLK  
CS  
1µF  
CONVST  
SDI  
ANALOG  
INPUT  
V
0
IN  
1
ALERT  
AD7091R-2/  
AD7091R-4/  
AD7091R-8  
ADC  
IN  
ANALOG  
INPUT  
V
X
IN  
REF  
/
IN  
REF  
OUT  
MUX  
GND  
OUT  
2.2µF  
33Ω  
560pF  
NOTES  
OPTIONAL  
BUFFER  
1
THIS PIN IS FOR THE AD7091R-4/AD7091R-8.  
Figure 45. Typical Connection Diagram with Optional Buffer  
WITH BUSY  
INDICATION  
V
DRIVE  
47k  
10µF  
100nF  
10µF  
100nF  
SDO  
V
V
DRIVE  
MICROCONTROLLER/  
MICROPROCESSOR/  
DSP  
DD  
REGCAP  
SCLK  
CS  
1µF  
33Ω  
CONVST  
SDI  
V
0
IN  
ANALOG  
INPUT  
560pF  
1
ALERT  
AD7091R-2/  
AD7091R-4/  
AD7091R-8  
ADC  
33Ω  
IN  
V
X
IN  
REF  
REF  
/
IN  
ANALOG  
INPUT  
OUT MUX  
GND  
OUT  
560pF  
2.2µF  
NOTES  
1
THIS PIN IS FOR THE AD7091R-4/AD7091R-8.  
Figure 46. Typical Connection Diagram Without Optional Buffer  
Rev. C | Page 22 of 42  
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
REGISTERS  
The AD7091R-2/AD7091R-4/AD7091R-8 have user  
programmable registers. Table 10 contains the complete list  
of registers.  
ADDRESSING REGISTERS  
A serial transfer on the AD7091R-2/AD7091R-4/AD7091R-8  
consists of 16 SCLK cycles. The six MSBs on the SDI line during  
the 16 SCLK transfer are decoded to determine which register is  
addressed. The six MSBs consist of the register address (ADDx),  
Bits[4:0], and the read/write bit. The register address bits  
determine which of the on-chip registers are selected. The  
read/write bit determines if the data on the SDI line following  
the read/write bit loads into the addressed register. If the  
read/write bit is 1, the bits load into the register addressed by  
the register select bits. Data loads into the register on the rising  
The registers are either read/write (R/W) or read only (R). Data  
is written to or read back from the read/write registers. Read  
only registers is only read. Any write to a read only register or  
unimplemented register address is considered no operation  
(NOP). A NOP command is an SPI command that is ignored by  
the AD7091R-2/AD7091R-4/AD7091R-8. After a write to a read  
only register, the output on the subsequent SPI frame is all zeros  
if there was no conversion before the next SPI frame. Similarly,  
any read of an unimplemented register outputs zeros.  
CS  
edge of . If the read/write bit is 0, the command is seen as a  
read request. The requested register data is available on the  
subsequent message on the SDO line.  
Table 10. Register Description  
Access  
Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
Register Name  
Default  
0x0000  
0x0000  
0x00C0  
0x0000  
0x0000  
0x01FF  
0x01FF  
0x0000  
0x01FF  
0x01FF  
0x0000  
0x01FF  
0x01FF  
0x0000  
0x01FF  
0x01FF  
0x0000  
0x01FF  
0x01FF  
0x0000  
0x01FF  
0x01FF  
0x0000  
0x01FF  
0x01FF  
0x0000  
0x01FF  
0x01FF  
0x0000  
AD7091R-8  
R
R/W  
R/W  
R
AD7091R-4  
R
R/W  
R/W  
R
AD7091R-2  
R
R/W  
R/W  
R
Conversion result  
Channel  
Configuration  
Alert indication  
Channel 0 low limit  
Channel 0 high limit  
Channel 0 hysteresis  
Channel 1 low limit  
Channel 1 high limit  
Channel 1 hysteresis  
Channel 2 low limit  
Channel 2 high limit  
Channel 2 hysteresis  
Channel 3 low limit  
Channel 3 high limit  
Channel 3 hysteresis  
Channel 4 low limit  
Channel 4 high limit  
Channel 4 hysteresis  
Channel 5 low limit  
Channel 5 high limit  
Channel 5 hysteresis  
Channel 6 low limit  
Channel 6 high limit  
Channel 6 hysteresis  
Channel 7 low limit  
Channel 7 high limit  
Channel 7 hysteresis  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NOP  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
0x1F  
Reserved  
0x0000  
NOP  
NOP  
NOP  
Rev. C | Page 23 of 42  
 
 
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
CONVERSION RESULT REGISTER  
The conversion result register is a 16-bit, read only register that stores the results from the most recent ADC conversion in straight binary  
format. The channel ID of the converted channel and the alert status are also included in the register.  
Figure 47. Conversion Result Register  
Table 11. Conversion Result Register Map  
MSB  
LSB  
B0  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
CH_ID  
ALERT  
CONV_RESULT  
Table 12. Bit Descriptions for the Conversion Result Register  
Bit(s)  
Name  
Description  
Reset  
Access  
[15:13]  
CH_ID  
3-bit channel ID of channel converted  
0x0  
R
B151, 2  
B142  
B13  
0
Analog Input Channel  
0
0
0
1
1
0
0
1
1
VIN0  
VIN1  
VIN2  
VIN3  
VIN4  
VIN5  
VIN6  
VIN7  
0
1
0
0
0
1
1
0
1
1
1
0
1
1
12  
ALERT  
ALERT flag  
0: No ALERT occurred  
1: ALERT occurred  
0
R
R
[11:0]  
CONV_RESULT  
12-bit conversion result  
0x000  
1 Always zero on the AD7091R-4.  
2 Always zero on the AD7091R-2.  
Rev. C | Page 24 of 42  
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
CHANNEL REGISTER  
The channel register on the AD7091R-2/AD7091R-4/AD7091R-8 is an 8-bit, read/write register. Each of the eight analog input channels has  
one corresponding bit in the channel register. To select a channel for inclusion in the channel conversion sequence, set the corresponding  
channel bit to 1 in the channel register. There is a latency of one conversion before the channel conversion sequence is updated. If the channel  
register is programmed with a new value, the conversion sequence is reset to the lowest numbered channel in the new value.  
Figure 48. Channel Registers  
Table 13. Channel Register Map  
MSB  
LSB  
B0  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
Reserved  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
Table 14. Bit Descriptions for the Channel Register  
Bit(s)  
[15:8]  
7
Name  
Reserved  
CH7  
Description  
Reset  
Access  
Reserved  
0x00  
0x0  
R
Convert on Channel 7  
0: Disable Channel 7  
1: Enable Channel 7  
Convert on Channel 6  
0: Disable Channel 6  
1: Enable Channel 6  
Convert on Channel 5  
0: Disable Channel 5  
1: Enable Channel 5  
Convert on Channel 4  
0: Disable Channel 4  
1: Enable Channel 4  
Convert on Channel 3  
0: Disable Channel 3  
1: Enable Channel 3  
Convert on Channel 2  
0: Disable Channel 2  
1: Enable Channel 2  
Convert on Channel 1  
0: Disable Channel 1  
1: Enable Channel 1  
Convert on Channel 0  
0: Disable Channel 0  
1: Enable Channel 0  
R/W  
6
5
4
3
2
1
0
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Rev. C | Page 25 of 42  
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
CONFIGURATION REGISTER  
The configuration register is a 16-bit, read/write register that is used to set the operating modes of the AD7091R-2/AD7091R-4/AD7091R-8.  
Figure 49. Configuration Register  
Table 15. Configuration Register Map  
MSB  
LSB  
B1 B0  
GPO1 P_DOWN  
B15  
B14 B13 B12 B11 B10 B9  
B8  
B7  
ALERT_ ALERT_  
STICKY DRIVE_TYPE  
B6  
B5  
B4  
B3  
B2  
BUSY ALERT_EN_  
OR_GPO0  
ALERT_POL_  
OR_GPO0  
Reserved SRST Reserved  
Table 16. Bit Descriptions for the Configuration Register  
Bit(s)  
[15:10]  
9
Name  
Reserved  
SRST  
Description  
Reset  
Access  
R
Reserved  
0x00  
0x0  
Software reset bit. Setting this bit resets the internal digital control logic and  
the result and alert registers, but it does not reset the other memory map  
registers. This bit automatically clears in the next clock cycle. Note that it  
loads random access memory (RAM) from fuses.  
RWAC  
0: Soft reset not active.  
1: Activate soft reset.  
8
7
Reserved  
Reserved  
0x0  
0x1  
R
ALERT_STICKY  
ALERT bit is sticky. It is not cleared on a valid hysteresis condition.  
0: Clear ALERT1 if the result falls beyond hysteresis.  
1: Clear ALERT1 only on a read or soft reset.  
Drive type of ALERT1 pin.  
0: ALERT1 pin is of open-drain drive type.  
1: ALERT1 pin is of CMOS drive type.  
ALERT1 pin indicates if the part is busy converting.  
0: ALERT1 pin is not used for BUSY status.  
R/W  
6
5
ALERT_DRIVE_TYPE  
BUSY  
0x1  
0x0  
R/W  
R/W  
1: ALERT1 pin is used for BUSY status, provided ALERT_EN_OR_GPO0) is 1.  
Else, this bit is always read back as 0.  
Rev. C | Page 26 of 42  
 
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
Bit(s)  
Name  
Description  
Reset  
Access  
1
4
ALERT_EN_OR_GPO0  
Enable ALERT pin or GPO0 .  
0: ALERT1 pin used as GPO0 .  
1: ALERT1 pin is used for ALERT1/BUSY1 status.  
0x0  
R/W  
1
ALERT_POL_OR_GPO0 Polarity of ALERT1 pin (if ALERT_EN_OR_GPO0 is 1) or value at GPO0 .  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
1
3
0: Active low ALERT1 polarity (if ALERT_EN_OR_GPO0 = 1) or GPO01 = 0.  
1: Active high ALERT1 polarity (if ALERT_EN_OR_GPO0 = 1) or GPO01 = 1.  
1
2
GPO1  
Value at GPO1 .  
0: Drive 0 on GPO11 pin.  
1: Drive 1 on GPO11 pin.  
Power-down mode.  
[1:0]  
P_DOWN  
Setting Mode  
Sleep Mode/Bias Generator Internal Reference  
00  
01  
10  
11  
Mode 0 Off  
Off  
On  
Off  
On  
Mode 1 Off  
Mode 2 On  
Mode 3 On  
1 When referring to a single function of a multifunction pin in the parameters, only the portion of the pin name that is relevant to the specification is listed. For full pin  
names of multifunction pins, refer to the Pin Configurations and Function Descriptions section.  
Rev. C | Page 27 of 42  
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
If a second alert event occurs on another channel between  
receiving the first alert and interrogating the alert register, the  
corresponding bit for that alert event is also set.  
ALERT INDICATION REGISTER  
The 16-bit, alert indication register is a read only register that  
provides information on an alert event. If a conversion result  
activates the ALERT function of the ALERT/BUSY/GPO0 pin,  
as described in the Channel x Low Limit Register section and  
the Channel x High Limit Register section, the alert register can  
be read to determine the source of the alert. The register contains  
two status bits per channel, one corresponding to the high limit,  
and the other to the low limit. The bit with a status equal to 1  
shows where the violation occurred, that is, on which channel,  
and whether the violation occurred on the upper or lower limit.  
The contents of the alert indication register are reset by reading  
it. The alert indication register is reset on the second SCLK  
cycle of the SPI frame where the ALERT data is read out. If a  
conversion happens in the meantime, the conversion result is  
sent instead of the alert indication register contents. The alert  
indication register is not reset in this case.  
The alert bits for any unimplemented channels on the 2-channel  
and 4-channel devices always return zeros.  
Figure 50. Alert Indication Register (Figure Shows Default Register Value of 0, Indicating No Alert Has Occurred)  
Table 17. Alert Indication Register Map  
MSB  
LSB  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
LO_7  
HI_7  
LO_6  
HI_6  
LO_5  
HI_5  
LO_4  
HI_4  
LO_3  
HI_3  
LO_2  
HI_2  
LO_1  
HI_1  
LO_0  
HI_0  
Table 18. Bit Descriptions for the Alert Indication Register  
Bit(s)  
Bit Name  
Description  
Reset  
Access  
15  
LO_7  
Channel 7 low alert status  
0: No alert on Channel 7  
0x0  
R
1: Low alert occurred on Channel 7  
Channel 7 high alert status  
14  
HI_7  
0x0  
R
0: No alert on Channel 7  
1: High alert occurred on Channel 7  
Rev. C | Page 28 of 42  
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
Bit(s)  
Bit Name  
Description  
Reset  
Access  
13  
LO_6  
Channel 6 low alert status  
0: No alert on Channel 6  
0x0  
R
1: Low alert occurred on Channel 6  
Channel 6 high alert status  
0: No alert on Channel 6  
1: High alert occurred on Channel 6  
Channel 5 low alert status  
0: No alert on Channel 5  
1: Low alert occurred on Channel 5  
Channel 5 high alert status  
0: No alert on Channel 5  
1: High alert occurred on Channel 5  
Channel 4 low alert status  
0: No alert on Channel 4  
1: Low alert occurred on Channel 4  
Channel 4 high alert status  
0: No alert on Channel 4  
1: High alert occurred on Channel 4  
Channel 3 low alert status  
0: No alert on Channel 3  
1: Low alert occurred on Channel 3  
Channel 3 high alert status  
0: No alert on Channel 3  
1: High alert occurred on Channel 3  
Channel 2 low alert status  
0: No alert on Channel 2  
1: Low alert occurred on Channel 2  
Channel 2 high alert status  
0: No alert on Channel 2  
1: High alert occurred on Channel 2  
Channel 1 low alert status  
0: No alert on Channel 1  
1: Low alert occurred on Channel 1  
Channel 1 high alert status  
0: No alert on Channel 1  
1: High alert occurred on Channel 1  
Channel 0 low alert status  
0: No alert on Channel 0  
12  
11  
10  
9
HI_6  
LO_5  
HI_5  
LO_4  
HI_4  
LO_3  
HI_3  
LO_2  
HI_2  
LO_1  
HI_1  
LO_0  
HI_0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
R
R
R
R
R
R
R
8
7
6
5
4
3
2
1
1: Low alert occurred on Channel 0  
Channel 0 high alert status  
0: No alert on Channel 0  
0
1: High alert occurred on Channel 0  
Rev. C | Page 29 of 42  
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
Of the 16 bits, B15 to B9 are not used. Only the nine LSBs, B8 to  
B0, are used. These 9 bits, which are programmed by the user,  
are used as the MSBs of the internal 12-bit register. The 3 LSBs  
in the internal 12-bit registers are set to 111.  
CHANNEL x LOW LIMIT REGISTER  
Each analog input channel of the AD7091R-2/AD7091R-4/  
AD7091R-8 has its own low limit register. The low limit  
registers are 16-bit read/write registers. See Table 10 for the  
register addresses. The low limit registers store the lower limit  
of the conversion value that activates the ALERT output.  
CHANNEL x HYSTERESIS REGISTER  
Each analog input channel of the AD7091R-2/AD7091R-4/  
AD7091R-8 has its own hysteresis register, which are 16-bit  
read/write registers. See Table 10 for the register addresses. The  
hysteresis register stores the hysteresis value (N) when using the  
limit registers. The hysteresis value determines the reset point  
for the ALERT/BUSY/GPO0 pin if a violation of the limits has  
occurred.  
Of the 16 bits, B15 to B9 are not used. Only the nine LSBs, B8 to  
B0, are used. These 9 bits, which are programmed by the user,  
are used as the MSBs of the internal 12-bit register. The 3 LSBs  
in the internal 12-bit registers are set to 000.  
CHANNEL x HIGH LIMIT REGISTER  
Each analog input channel of the AD7091R-2/AD7091R-4/  
AD7091R-8 has its own high limit register. The high limit  
registers are 16-bit read/write registers. See Table 10 for the  
register addresses. The high limit registers store the upper limit  
of the conversion value that activates the ALERT output.  
Of the 16 bits, B15 to B9 are not used. Only the nine LSBs, B8 to  
B0, are used. These 9 bits, which are programmed by the user,  
are used as the MSBs of the internal 12-bit register. The 3 LSBs  
in the internal 12-bit registers are set to 000.  
Table 19. Channel x Low Limit Register Map  
MSB  
LSB  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B7  
B7  
B6  
B6  
B6  
B5  
B5  
B5  
B4  
B3  
B2  
B1  
B1  
B1  
B0  
Reserved  
CHx LOW LIMIT  
Table 20. Bit Descriptions for the Channel x Low Limit Register  
Bit(s)  
[15:9]  
[8:0]  
Bit Name  
Description  
Reset  
0x00  
Access  
R
Reserved  
Reserved  
CHx LOW LIMIT  
Low limit value for Channel x  
0x000  
R/W  
Table 21. Channel x High Limit Register Map  
MSB  
LSB  
B0  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B4  
B3  
B2  
Reserved  
CHx HIGH LIMIT  
Table 22. Bit Descriptions for the Channel x High Limit Register  
Bits  
Bit Name  
Description  
Reset  
0x00  
Access  
R
[15:9]  
[8:0]  
Reserved  
Reserved  
CHx HIGH LIMIT  
High limit value for Channel x  
0x1FF  
R/W  
Table 23. Channel x Hysteresis Register Map  
MSB  
LSB  
B0  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B4  
B3  
B2  
Reserved  
CHx HYSTERESIS  
Table 24. Bit Descriptions for the Channel x Hysteresis Register  
Bit(s)  
[15:9]  
[8:0]  
Bit Name  
Description  
Reset  
0x00  
Access  
R
Reserved  
Reserved  
CHx HYSTERESIS  
Hysteresis value for Channel x  
0x1FF  
R/W  
Rev. C | Page 30 of 42  
 
 
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
SERIAL PORT INTERFACE  
The SPI is a 4-wire interface (three inputs and one output) for  
on the 16th rising edge and the 16th falling edge, having  
CS  
clocked out on the previous (15th) falling edge. After the 16th  
serial data communication. It has a chip select ( ) line, a serial  
CS  
falling edge, take  
impedance state. If another conversion is required, take the  
CONVST  
pin low again (after at least 1 μs), and repeat the read  
high again to return the SDO to a high  
clock (SCLK), a serial data input (SDI), and a serial data output  
(SDO). Data transfers on SDI and SDO take place with respect  
CS  
to SCLK.  
is used to frame the data and is active low. When  
CS  
CS  
edge on  
cycle. The timing diagram for this operation is shown in Figure 52.  
is high, SDO is kept in high impedance. The falling edge of  
takes the SDO line out of the high impedance state. A rising  
WRITING DATA TO THE REGISTERS  
CS  
returns the SDO to a high impedance state.  
All the read/write registers in the device can be written over the  
SPI. A register write command is performed by a single 16-bit SPI  
access. The format for a write command is shown in Table 25.  
Bits[B15:B11] contain the register address. See Table 10 for the  
complete list of register addresses. Setting Bit B10 to 1 selects a  
write command. The subsequent 10 bits (Bits[B9:B0]) contain  
the data to be written to the selected register.  
The SPI implemented on the AD7091R-2/AD7091R-4/AD7091R-8  
can support both of the following: CPHA and CPOL = 0, and  
CPHA and CPOL = 1. This support ensures that the device can  
interface to microcontrollers and DSPs that keep either SCLK  
CS  
high or SCLK low when  
CS  
is not asserted. The device ignores  
is not asserted.  
SCLK toggling when  
READING DATA FROM THE REGISTERS  
READING CONVERSION RESULT  
All the registers in the device can be read over the SPI. A register  
read is performed by issuing a register read command followed  
by an additional SPI command that can be either a valid command  
or NOP. The format for a read command is shown in Table 26.  
Bits[B15:B11] contain the register address. See Table 10 for the  
complete list of register addresses. Setting Bit B10 to 0 selects  
a read command. The device ignores the subsequent bits  
(Bits[B9:B0]).  
CONVST  
A high-to-low transition on the  
and-hold into hold mode and samples the analog input at this  
point. A conversion is initiated and requires 600 ns to complete.  
The  
signal is used to initiate the conversion process.  
CONVST  
signal puts the track-  
CONVST  
Before the end of the conversion, take the  
again. When the conversion process is finished, the track-and-  
CS  
signal high  
hold mode goes back into track mode. Then, take the  
pin  
low, and the conversion result clocks out on the SDO pin. The  
data is shifted out of the device as a 16-bit word under the  
control of the serial clock (SCLK) input. The data is shifted out  
on the falling edge of SCLK, and the data bits are valid on both  
the rising edge and the falling edge. The MSB is shifted out on  
Any conversion event is treated as a special case and overrides  
a previous read command. The AD7091R-2/AD7091R-4/  
AD7091R-8 always drive out the conversion result register  
on SDO after a conversion even though a register read was  
initiated in the previous SPI frame.  
CS  
the falling edge of . The final bit in the data transfer is valid  
Table 25. Write Command Message Configuration  
MSB  
LSB  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register Address[4:0]  
1
Data[9:0]  
CONVST  
CS  
WRITE REG 1  
CONV RESULT  
WRITE REG 2  
INVALID DATA  
WRITE REG 3  
INVALID DATA  
SDI  
SDO  
Figure 51. Serial Interface Register Write  
Rev. C | Page 31 of 42  
 
 
 
 
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
Table 26. Read Command Message Configuration  
MSB  
LSB  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register Address[4:0]  
0
Don’t Care  
CONVST  
CS  
READ REG 1  
CONV RES  
READ REG 2  
READ REG 3  
REG 2 DATA  
SDI  
REG 1 DATA  
SDO  
Figure 52. Serial Interface Register Read  
Rev. C | Page 32 of 42  
 
 
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
POWER-ON DEVICE INITIALIZATION  
RESET  
4. At this point, all internal registers will be in an unknown  
state. Write the desired device configuration as described  
in the Writing Data to the Registers section. To place all  
write enabled internal registers in a known state, writing to  
all device registers is required.  
5. Reset the read-only registers by activating the software  
reset bit of the Configuration Register when performing  
the write actions described in Step 4. See details in the  
Configuration Register section.  
In lieu of applying a pulse to the  
pin from the digital  
host at initial power up, it is possible to replicate the behavior  
of the hardware reset function through the application of an  
CONVST  
alternative stimulus to the  
regulator voltage has been established by VDD reaching a voltage  
CONVST  
pin. Once the internal  
of 2.1 V, a series of  
pulses must be sent to the ADC.  
Following the subsequent procedure will reset the device,  
allowing for proper and expected operation.  
To issue a software initialization,  
If using the on-chip internal reference, to meet specified  
performance, the user should wait until the reference capacitor  
is fully charged. The reference buffer requires 50 ms to power  
up and charge the 2.2 μF decoupling capacitor during the  
power-up time.  
1. Establish the VDD and VDRIVE supplies for the AD7091R-2/  
AD7091R-4/ AD7091R-8. The power-on time will depend  
upon the supply pin decoupling load and drive strength of  
the supply resource.  
CONVST  
2. Provide 66 pulses on the  
pin that are spaced a  
CONVST  
RESET  
In digital pin limited applications, the  
AD7091R-2/AD7091R-4/AD7091R-8 should be tied to the  
DRIVE supply either directly or via a pull-up resistor.  
Figure 53 shows the timing diagram for this operation.  
pin of the  
minimum of 2 μs apart. The pulse width on the  
pin must adhere to the tCNVPW timing specification.  
3. At the end of the 66th pulse, the ADC is initialized and in a  
ready state. The device can now be configured by the user.  
V
tRESET_DELAY  
V
DD  
V
DRIVE  
tCYC_RESET  
1
2
66  
CONVST  
CS  
SDI  
WRITE REG 1  
WRITE REG 2  
Figure 53. Power On Software Reset Timing  
Rev. C | Page 33 of 42  
 
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
MODES OF OPERATION  
To enter power-down mode, write to the power-down  
NORMAL MODE  
configuration bits in the configuration register, as seen in Table 15.  
To enter full power-down mode, set the sleep mode/bias  
generator bit to 1, and set the internal reference bit to 0, which  
ensures that all analog circuitry and the internal reference  
power down. When the internal reference is enabled, it  
consumes power anytime Bit 0 of the configuration register  
is set to 1.  
The user controls whether the device remains in normal mode  
or enters power-down mode. These modes of operation provide  
flexible power management options, allowing optimization of  
the power dissipation and throughput rate ratio for different  
application requirements.  
To achieve the fastest throughput rate performance, use normal  
mode. Power-up times are not an issue for the AD7091R-2/  
AD7091R-4/AD7091R-8 because they remain fully powered at  
all times. Figure 54 shows the general diagram of the AD7091R-2/  
AD7091R-4/AD7091R-8 in normal mode. The conversion  
The serial interface of the AD7091R-2/AD7091R-4/AD7091R-8  
is functional in power-down; therefore, the user can read back  
the results of the conversion after the device enters power-down  
mode.  
CONVST  
initiates on the falling edge of  
Serial Port Interface section. To ensure that the device remains  
CONVST  
, as described in the  
To exit this mode of operation and to power up the AD7091R-2/  
AD7091R-4/AD7091R-8 again, write to the power-down  
configuration bits in the configuration register (see Table 15).  
fully powered up at all times, return  
CONVERT and keep it high until the conversion has finished. The  
end of conversion (EOC) point shown in Figure 54 indicates the  
high before  
t
CONVST  
On the rising edge of  
, the device begins to power up.  
The power-up time of the AD7091R-2/AD7091R-4/AD7091R-8  
is typically 1 μs. After power-up is complete, the ADC is fully  
powered up, and the input signal is properly acquired. To start  
the next conversion, operate the interface as described in the  
Normal Mode section. When using the internal reference, and  
the device is in full power-down mode, the user must wait to  
perform conversions until the internal reference has had time  
to power up and settle. The reference buffer requires 50 ms to  
power up and charge the 2.2 μF decoupling capacitor during the  
power-up time.  
CONVST  
end of EOC and the moment when the logic level of  
is tested.  
To read back data stored in the conversion result register, wait  
CS  
until the conversion is completed. Then, take  
low, and the  
conversion data clocks out on the SDO pin. The output shift  
register is 16 bits wide. Data is shifted out of the device as a  
16-bit word under the control of the serial clock (SCLK) input.  
The full timing diagram for this operation is shown in Figure 4.  
CONVST  
When the conversion read is completed, pull  
again to start another conversion.  
low  
By using the power-down mode on the AD7091R-2/AD7091R-4/  
AD7091R-8 when this device is not converting, the average  
power consumption of the ADC decreases at lower throughput  
rates. Use power-down mode with lower throughput rates.  
When there is not a significant time interval between bursts of  
conversions, use normal mode (see the Normal Mode section).  
POWER-DOWN MODE  
When slower throughput rates and lower power consumption  
are required, use power-down mode by either powering down  
the ADC between each conversion or by performing a series of  
conversions at a high throughput rate and then powering down  
the ADC for a relatively long duration between these burst  
conversions. When the AD7091R-2/AD7091R-4/AD7091R-8  
are in power-down mode, all analog circuitry power down;  
however, the serial interface is active.  
EOC  
tCNVPW  
CONVST  
tCONVERT  
tEOCCSL  
CS  
tDIS  
tEN  
CONVERSION DATA  
SDO  
Figure 54. Serial Interface Read Timing in Normal Mode  
Rev. C | Page 34 of 42  
 
 
 
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
The ALERT/BUSY/GPO0 pin has an open-drain configuration  
that allows the alert outputs of several AD7091R-4/AD7091R-8  
devices to be wired together when the ALERT function of the  
ALERT/BUSY/GPO0 pin is active low. The ALERT_DRIVE_TYPE  
bit (Bit 6) of the configuration register controls the ALERT/  
BUSY/GPO0 pin configuration.  
ALERT (AD7091R-4 AND AD7091R-8 ONLY)  
The alert functionality is used as an out-of-range indicator. An  
alert event is triggered when the value in the conversion result  
register exceeds the CHx HIGH LIMIT value in the channel high  
limit register or falls below the CHx LOW LIMIT value in the  
channel low limit register for a selected channel.  
Use the ALERT_POL_OR_GPO0 bit (Bit 3) of the configuration  
register to set the active polarity of the alert output. The power-up  
default is active low.  
Detailed alert information is accessible in the alert register. The  
register contains two status bits per channel, one corresponding  
to the high limit, and the other to the low limit. A logical OR of  
alert signals for all channels creates a common alert value. This  
value can be accessed by the alert bit in the conversion result  
register and configured to drive out on the ALERT function of  
the ALERT/BUSY/GPO0 pin. The ALERT/BUSY/GPO0 pin is  
configured as ALERT by configuring the following bits in the  
configuration register:  
When using the ALERT function of the ALERT/BUSY/GPO0  
pin and the open-drain configuration, an external pull-up  
resistor is required. Connect the external pull-up resistor to  
V
DRIVE. The resistor value is application dependent; however, it  
must be large enough to avoid excessive sink currents when the  
ALERT function of the ALERT/BUSY/GPO0 pin is triggered.  
BUSY (AD7091R-4 AND AD7091R-8 ONLY)  
Set the ALERT_EN_OR_GPO0 bit, Bit 4, to 1.  
Set the BUSY bit, Bit 5, to 0.  
Set the ALERT_POL_OR_GPO0 bit, Bit 3, to 0 for the  
ALERT function of the ALERT/BUSY/GPO0 pin to be  
active low, and set it to 1 for the ALERT function of the  
ALERT/BUSY/GPO0 pin to be active high.  
When configuring the ALERT/BUSY/GPO0 pin as a BUSY output,  
use the pin to indicate when a conversion is taking place. To  
configure the ALERT/BUSY/GPO0 pin as BUSY, use the  
following bits in the configuration register:  
Set the ALERT_EN_OR_GPO0 bit, Bit 4, to 1.  
Set the BUSY bit, Bit 5, to 1.  
Set the ALERT_POL_OR_GPO0 bit, Bit 3, to 0 for the  
BUSY pin to be active low, and set it to 1 for the BUSY pin  
to be active high.  
The alert register, alert bit, and the ALERT function of the  
ALERT/BUSY/GPO0 pin are cleared by reading the alert register  
contents. Additionally, if the conversion result goes beyond the  
hysteresis value for a selected channel, the alert bit corresponding  
to that channel is reset automatically. The automatic clearing of  
the alert status can be disabled by setting the ALERT_STICKY  
bit in the configuration register to 1. If the ALERT_STICKY bit  
is set when an alert occurs, it can only be reset by a read of the  
alert register. Issuing a software reset also clears the alert status.  
When using the BUSY function of the ALERT/BUSY/GPO0 pin,  
an external pull-up resistor is required because the output is an  
open-drain configuration. Connect the external pull-up resistor  
to VDRIVE. The resistor value is application dependent; however,  
it must be large enough to avoid excessive sink currents when the  
BUSY function of the ALERT/BUSY/GPO0 pin is triggered.  
Rev. C | Page 35 of 42  
 
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
the channel register. The sequence cycles through all the  
enabled channels in ascending order. After all the channels  
in the sequence are converted, the sequence starts again.  
CHANNEL SEQUENCER  
The AD7091R-2/AD7091R-4/AD7091R-8 include a channel  
sequencer that is useful for scanning channels in a repeated  
fashion. Channels included in the sequence are configured in  
the channel register. If all the bits in the channel register are 0,  
Channel 0 is selected by default, and all conversions happen on  
this channel. If the channel register is nonzero, the conversion  
sequence starts from the lowest numbered channel enabled in  
There is a latency of one conversion before the channel conversion  
sequence is updated. If the channel register is programmed with  
a new value, the conversion sequence is reset to the lowest  
numbered channel in the new value.  
CONVST  
CS  
WRITE 0x00F0  
NOP  
NOP  
NOP  
SDI  
CHANNEL REG  
RESULT  
CHANNEL 0  
RESULT  
CHANNEL 0  
RESULT  
CHANNEL 4  
RESULT  
CHANNEL 5  
SDO  
Figure 55. Channel Sequencer  
CONVST  
CS  
WRITE 0x001  
CHANNEL REG  
WRITE 0x002  
CHANNEL REG  
WRITE 0x004  
CHANNEL REG  
WRITE 0x008  
CHANNEL REG  
WRITE 0x0010  
CHANNEL REG  
SDI  
RESULT  
CHANNEL 0  
RESULT  
CHANNEL 0  
RESULT  
CHANNEL 0  
RESULT  
CHANNEL 1  
RESULT  
CHANNEL 2  
SDO  
Figure 56. Channel Sequencer Multiple Channel Write  
Rev. C | Page 36 of 42  
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
Each AD7091R-2/AD7091R-4/AD7091R-8 slave in the chain  
requires a 16-bit SPI command. If there are N slaves, each SPI  
frame must have N × 16 bits of data. In the AD7091R-2/  
AD7091R-4/AD7091R-8, when the bit counter crosses 16 bits,  
all of the received bits are sent out over the SDO. The output  
from the first slave is the input of the second slave. Effectively,  
each slave ignores all the incoming 16-bit SPI commands except  
DAISY CHAIN  
Daisy-chain mode is intended for applications where multiple  
AD7091R-2/AD7091R-4/AD7091R-8 devices are used. This  
feature is useful for reducing component count and wiring  
connections, for example, in isolated multiconverter applica-  
tions or for systems with a limited interfacing capacity.  
CS CONVST  
, and  
All ADC slaves are addressed by the same  
,
CS  
the last one. The SPI command received just before the  
SCLK signals. The SDI of the first AD7091R-2/AD7091R-4/  
AD7091R-8 slave in the chain is driven directly by the master  
output, slave input (MOSI) pin of the SPI master. The SDO of  
the first slave is connected to the SDI of the second slave. All the  
subsequent slaves are connected in this fashion, and the SDO of  
the last slave drives the master input, slave output (MISO) pin  
of the master. A connection diagram example using two  
AD7091R-2/AD7091R-4/AD7091R-8 devices is shown in  
Figure 57.  
rising edge is the only valid SPI command for a given device in  
the daisy chain. The output on the next SPI frame is determined  
by the valid SPI command or any conversion event.  
The methods for reading a conversion result to configuring the  
slave registers are outlined in Figure 58 to Figure 62 for a two-  
slave example. Additional slave devices can be added to the  
chain by following the same principles defined for the two-  
device configuration.  
MOSI  
SS  
DIGITAL HOST  
SPI MASTER  
CS  
CS  
AD7091R-x  
AD7091R-x  
MISO  
SDI  
SDO  
SDI  
SDO  
SLAVE A  
SLAVE B  
CONVST SCLK  
CONVST SCLK  
SCLK  
CONVERT  
Figure 57. Daisy-Chain Configuration  
CONVST  
CS  
1
16 17  
32  
1
16 17  
32  
SCLK  
SDI A  
NOP  
NOP  
NOP  
NOP  
NOP  
SDO A/  
SDI B  
NOP  
CONV_RESULT A  
CONV_RESULT B  
CONV_RESULT A  
CONV_RESULT B  
SDO B  
CONV_RESULT A  
CONV_RESULT A  
Figure 58. Conversion in a Two-Slave Daisy-Chain Mode Configuration  
Rev. C | Page 37 of 42  
 
 
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
CONVST  
CS  
1
16 17  
32  
SCLK  
SDI A  
WRITE REG1 B  
WRITE REG2 A  
SDO A/  
SDI B  
INVALID DATA  
INVALID DATA  
WRITE REG1 B  
INVALID DATA  
SDO B  
Figure 59. Single Register Write in a Two-Slave Daisy-Chain Mode Configuration  
CONVST  
CS  
1
16 17  
32  
1
16 17  
32  
SCLK  
SDI A  
READ REG1 B  
READ REG2 A  
NOP  
NOP  
NOP  
SDO A/  
SDI B  
READ REG1 B  
CONV_RESULT A  
CONV_RESULT B  
DATA REG2 A  
DATA REG1 B  
SDO B  
CONV_RESULT A  
DATA REG2 A  
Figure 60. Single Register Read in a Two-Slave Daisy-Chain Mode Configuration  
CONVST  
CS  
1
16 17  
32  
1
1
16 17  
32  
16 17  
32  
SCLK  
SDI A  
READ REG1 B  
READ REG2 A  
READ REG1 B  
READ REG3 B  
READ REG4 A  
NOP  
NOP  
SDO A/  
SDI B  
READ REG3 B  
DATA REG2 A  
NOP  
CONV_RESULT A  
CONV_RESULT B  
DATA REG2 A  
DATA REG1 B  
DATA REG4 A  
DATA REG3 B  
SDO B  
CONV_RESULT A  
DATA REG4 A  
Figure 61. Multiple Register Read in a Two-Slave Daisy-Chain Mode Configuration  
CONVST  
CS  
1
16 17  
32  
1
1
16 17  
32  
16 17  
32  
SCLK  
SDI A  
WRITE REG1 B  
WRITE REG2 A  
WRITE REG1 B  
WRITE REG3 B  
WRITE REG4 A  
NOP  
NOP  
SDO A/  
SDI B  
WRITE REG3 B  
INVALID DATA  
NOP  
CONV_RESULT A  
CONV_RESULT B  
INVALID DATA  
INVALID DATA  
INVALID DATA  
INVALID DATA  
SDO B  
CONV_RESULT A  
INVALID DATA  
Figure 62. Multiple Register Write in a Two-Slave Daisy-Chain Mode Configuration  
Rev. C | Page 38 of 42  
 
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.65  
BSC  
12  
1
EXPOSED  
PAD  
2.70  
2.60 SQ  
2.50  
4
9
8
5
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 63. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-16-17)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 64. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Rev. C | Page 39 of 42  
 
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.65  
2.50 SQ  
2.35  
5
11  
6
10  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 65. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-20-10)  
Dimensions shown in millimeters  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
Figure 66. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
Rev. C | Page 40 of 42  
Data Sheet  
AD7091R-2/AD7091R-4/AD7091R-8  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
24  
19  
0.50  
BSC  
18  
1
EXPOSED  
PAD  
2.65  
2.50 SQ  
2.45  
13  
6
12  
7
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 67. 24-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-24-7)  
Dimensions shown in millimeters  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20  
MAX  
0.15  
0.05  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-AD  
Figure 68. 24-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-24)  
Dimensions shown in millimeters  
Rev. C | Page 41 of 42  
AD7091R-2/AD7091R-4/AD7091R-8  
Data Sheet  
ORDERING GUIDE  
Model1  
Channels Temperature Range  
Package Description  
Package Option  
CP-16-17  
CP-16-17  
RU-16  
AD7091R-2BCPZ  
2
2
2
2
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
Evaluation Board  
AD7091R-2BCPZ-RL7  
AD7091R-2BRUZ  
AD7091R-2BRUZ-RL7  
EVAL-AD7091R-2SDZ  
AD7091R-4BCPZ  
AD7091R-4BCPZ-RL7  
AD7091R-4BRUZ  
AD7091R-4BRUZ-RL7  
EVAL-AD7091R-4SDZ  
AD7091R-8BCPZ  
AD7091R-8BCPZ-RL7  
AD7091R-8BRUZ  
AD7091R-8BRUZ-RL7  
EVAL-AD7091R-8SDZ  
EVAL-SDP-CB1Z  
RU-16  
4
4
4
4
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
Evaluation Board  
CP-20-10  
CP-20-10  
RU-20  
RU-20  
8
8
8
8
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
24-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
24-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
Evaluation Board  
CP-24-7  
CP-24-7  
RU-24  
RU-24  
Evaluation Controller Board  
1 Z = RoHS Compliant Part.  
©2013–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10891-0-12/15(C)  
Rev. C | Page 42 of 42  
 

相关型号:

AD7091R-2BRUZ

2-/4-/8-Channel, 1 MSPS, Ultralow Power, 12-Bit SAR ADC
ADI

AD7091R-2BRUZ-RL7

2-/4-/8-Channel, 1 MSPS, Ultralow Power, 12-Bit SAR ADC
ADI

AD7091R-4

4通道、1 MSPS、超低功耗、12位ADC,采用20引脚TSSOP封装
ADI

AD7091R-4BCPZ

2-/4-/8-Channel, 1 MSPS, Ultralow Power, 12-Bit SAR ADC
ADI

AD7091R-4BCPZ-RL7

2-/4-/8-Channel, 1 MSPS, Ultralow Power, 12-Bit SAR ADC
ADI

AD7091R-4BRUZ

2-/4-/8-Channel, 1 MSPS, Ultralow Power, 12-Bit SAR ADC
ADI

AD7091R-4BRUZ-RL7

2-/4-/8-Channel, 1 MSPS, Ultralow Power, 12-Bit SAR ADC
ADI

AD7091R-5

4-Channel, I 2 C, Ultralow Power 12-Bit ADC in 20-Lead LFCSP/TSSOP
ADI

AD7091R-5BCPZ

4-Channel, I 2 C, Ultralow Power 12-Bit ADC in 20-Lead LFCSP/TSSOP
ADI

AD7091R-5BCPZ-RL7

4-Channel, I 2 C, Ultralow Power 12-Bit ADC in 20-Lead LFCSP/TSSOP
ADI

AD7091R-5BRUZ

4-Channel, I 2 C, Ultralow Power 12-Bit ADC in 20-Lead LFCSP/TSSOP
ADI

AD7091R-5BRUZ-RL7

4-Channel, I 2 C, Ultralow Power 12-Bit ADC in 20-Lead LFCSP/TSSOP
ADI