AD711TH [ADI]

IC OP-AMP, 500 uV OFFSET-MAX, 4 MHz BAND WIDTH, MBCY8, HERMETIC SEALED, METAL CAN, TO-99, 8 PIN, Operational Amplifier;
AD711TH
型号: AD711TH
厂家: ADI    ADI
描述:

IC OP-AMP, 500 uV OFFSET-MAX, 4 MHz BAND WIDTH, MBCY8, HERMETIC SEALED, METAL CAN, TO-99, 8 PIN, Operational Amplifier

放大器
文件: 总16页 (文件大小:583K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Low Cost,  
High Speed, BiFET Op Amp  
a
AD711  
FEATURES  
CONNECTION DIAGRAMS  
Enhanced Replacement for LF411 and TL081  
AC PERFORMANCE  
Settles to ؎0.01% in 1.0 s  
NC  
OFFSET  
NULL  
+V  
S
16 V/s min Slew Rate (AD711J)  
3 MHz min Unity Gain Bandwidth (AD711J)  
DC PERFORMANCE  
0.25 mV max Offset Voltage: (AD711C)  
3 V/؇C max Drift: (AD711C)  
INVERTING  
INPUT  
OUTPUT  
AD711  
NON  
OFFSET  
NULL  
INVERTING  
INPUT  
10k  
–V  
S
NC = NO CONNECT  
200 V/mV min Open-Loop Gain (AD711K)  
4 V p-p max Noise, 0.1 Hz to 10 Hz (AD711C)  
Available in Plastic Mini-DIP, Plastic SOIC, Hermetic  
Cerdip, and Hermetic Metal Can Packages  
MIL-STD-883B Parts Available  
Available in Tape and Reel in Accordance with  
EIA-481A Standard  
–15V  
NOTE  
V
TRIM  
NC  
PIN 4 CONNECTEDTO CASE  
OS  
OFFSET  
1
8
7
6
5
NULL  
INVERTING  
2
+V  
S
INPUT  
NONINVERTING  
3
OUTPUT  
INPUT  
OFFSET  
–V  
4
S
AD711  
NULL  
Surface Mount (SOIC)  
Dual Version: AD712  
NC = NO CONNECT  
Extended reliability PLUS screening is available, specified over  
the commercial and industrial temperature ranges. PLUS  
screening includes 168 hour burn-in, as well as other environ-  
mental and physical tests.  
PRODUCT DESCRIPTION  
The AD711 is a high speed, precision monolithic operational  
amplifier offering high performance at very modest prices. Its  
very low offset voltage and offset voltage drift are the results of  
advanced laser wafer trimming technology. These performance  
benefits allow the user to easily upgrade existing designs that use  
older precision BiFETs and, in many cases, bipolar op amps.  
The AD711 is available in an 8-pin plastic mini-DIP, small  
outline, cerdip, TO-99 metal can, or in chip form.  
PRODUCT HIGHLIGHTS  
1. The AD711 offers excellent overall performance at very  
competitive prices.  
The superior ac and dc performance of this op amp makes it  
suitable for active filter applications. With a slew rate of 16 V/ms  
and a settling time of 1 ms to ±0.01%, the AD711 is ideal as a  
buffer for 12-bit D/A and A/D Converters and as a high-speed  
integrator. The settling time is unmatched by any similar IC  
amplifier.  
2. Analog Devices’ advanced processing technology and 100%  
testing guarantee a low input offset voltage (0.25 mV max,  
C grade, 2 mV max, J grade). Input offset voltage is specified  
in the warmed-up condition. Analog Devices’ laser wafer  
drift trimming process reduces input offset voltage drifts to  
3 mV/C max on the AD711C.  
The combination of excellent noise performance and low input  
current also make the AD711 useful for photo diode preamps.  
Common-mode rejection of 88 dB and open loop gain of  
400 V/mV ensure 12-bit performance even in high-speed unity  
gain buffer circuits.  
3. Along with precision dc performance, the AD711 offers  
excellent dynamic response. It settles to ±0.01% in 1 ms and  
has a 100% tested minimum slew rate of 16 V/ms. Thus this  
device is ideal for applications such as DAC and ADC  
buffers which require a combination of superior ac and dc  
performance.  
The AD711 is pinned out in a standard op amp configuration  
and is available in seven performance grades. The AD711J and  
AD711K are rated over the commercial temperature range of  
0C to 70C. The AD711A, AD711B and AD711C are rated  
over the industrial temperature range of –40C to +85C. The  
AD711S and AD711T are rated over the military temperature  
range of –40C to +125C and are available processed to MIL-  
STD-883B, REV. E.  
4. The AD711 has a guaranteed and tested maximum voltage  
noise of 4 mV p-p, 0.1 to 10 Hz (AD711C).  
5. Analog Devices’ well-matched, ion-implanted JFETs ensure  
a guaranteed input bias current (at either input) of 25 pA  
max (AD711C) and an input offset current of 10 pA max  
(AD711C). Both input bias current and input offset current  
are guaranteed in the warmed-up condition.  
REV. E  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
AD711–SPECIFICATIONS (V = 15 V @ T = 25C, unless otherwise noted.)  
S
A
J/A/S  
Typ  
K/B/T  
Typ  
C
Typ  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
INPUT OFFSET VOLTAGE1  
Initial Offset  
0.3  
2/1/1  
3/2/2  
20/20/20  
0.2  
0.5  
1.0  
10  
0.10  
0.25  
0.45  
5
mV  
mV  
mV/C  
dB  
dB  
T
MIN to TMAX  
vs. Temp  
vs. Supply  
7
95  
5
100  
2
110  
76  
76/76/76  
80  
80  
86  
86  
T
MIN to TMAX  
Long-Term Stability  
15  
15  
15  
mV/Month  
INPUT BIAS CURRENT2  
VCM = 0 V  
15  
20  
50  
15  
20  
50  
15  
20  
25  
1.6  
50  
pA  
nA  
pA  
V
CM = 0 V @ TMAX  
1.1/3.2/51  
100  
1.1/3.2/51  
100  
VCM = ±10 V  
INPUT OFFSET CURRENT  
V
CM = 0 V  
10  
25  
5
25  
5
10  
0.65  
pA  
nA  
VCM = 0 V @ TMAX  
0.6/1.6/26  
0.6/1.6/26  
FREQUENCY RESPONSE  
Small Signal Bandwidth  
Full Power Response  
Slew Rate  
Settling Time to 0.01%  
Total Harmonic Distortion  
3.0  
16  
4.0  
200  
20  
1.0  
0.0003  
3.4  
18  
4.0  
200  
20  
1.0  
0.0003  
3.4  
18  
4.0  
200  
20  
1.0  
0.0003  
MHz  
kHz  
V/ms  
ms  
1.2  
1.2  
1.2  
%
INPUT IMPEDANCE  
Differential  
Common Mode  
3 ¥ 1012ʈ5.5  
3 ¥ 1012ʈ5.5  
3 ¥ 1012ʈ5.5  
3 ¥ 1012ʈ5.5  
3 ¥ 1012ʈ5.5  
3 ¥ 1012ʈ5.5  
WʈpF  
WʈpF  
INPUT VOLTAGE RANGE  
Differential3  
±20  
+14.5, –11.5  
±20  
+14.5, –11.5  
±20  
+14.5, –11.5  
V
V
Common-Mode Voltage4  
T
MIN to TMAX  
–VS + 4  
+VS – 2  
–VS + 4  
+VS – 2  
–VS + 4  
+V – 2  
Common-Mode  
Rejection Ratio  
V
CM = ±10 V  
MIN to TMAX  
CM = ±11 V  
76  
76/76/76  
70  
88  
84  
84  
80  
80  
80  
76  
74  
88  
84  
84  
80  
86  
86  
76  
74  
94  
90  
90  
84  
dB  
dB  
dB  
dB  
T
V
TMIN to TMAX  
70/70/70  
INPUT VOLTAGE NOISE  
2
2
2
4
mV p-p  
45  
22  
18  
16  
45  
22  
18  
16  
45  
22  
18  
16  
nV/÷Hz  
nV/÷Hz  
nV/÷Hz  
nV/÷Hz  
INPUT CURRENT NOISE  
OPEN-LOOP GAIN  
0.01  
400  
0.01  
400  
0.01  
400  
pA/÷Hz  
150  
100/100/100  
200  
100  
200  
100  
V/mV  
V/mV  
OUTPUT  
CHARACTERISTICS  
Voltage  
+13, –12.5  
+13.9, –13.3  
+13, –12.5 +13.9, –13.3  
+13, –12.5 +13.9, –13.3  
V
±12/±12/±12 +13.8, –13.1  
±12  
+13.8, –13.1  
25  
±12  
+13.8, –13.1  
25  
V
mA  
Current  
25  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
±15  
±15  
±15  
V
V
mA  
±4.5  
±18  
3.4  
±4.5  
±18  
3.0  
±4.5  
±18  
2.8  
2.5  
2.5  
2.5  
NOTES  
1Input Offset Voltage specifications are guaranteed after 5 minutes of operation at TA = 25C.  
2Bias Current specifications are guaranteed maximum at either input after 5 minutes of operation at TA = 25C. For higher temperatures, the current doubles every 10C.  
3Defined as voltage between inputs, such that neither exceeds ±10 V from ground.  
4Typically exceeding –14.1 V negative common-mode voltage on either input results in an output phase reversal.  
Specifications subject to change without notice.  
–2–  
REV. E  
AD711  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . . . . 500 mW  
Input Voltage3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Differential Input Voltage . . . . . . . . . . . . . . . . . . +VS and –VS  
Storage Temperature Range (Q, H) . . . . . . . –65C to +150C  
Storage Temperature Range (N) . . . . . . . . . . –65C to +125C  
Operating Temperature Range  
AD711J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . 0C to +70C  
AD711A/B/C . . . . . . . . . . . . . . . . . . . . . . . .40C to +85C  
AD711S/T . . . . . . . . . . . . . . . . . . . . . . . . .55C to +125C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . . 300C  
Temperature  
Range  
Package  
Description  
Package  
Option*  
Model  
*AD711AH  
AD711AQ  
*AD711BQ  
*AD711CH  
AD711JN  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
0C to 70C  
0C to 70C  
0C to 70C  
0C to 70C  
0C to 70C  
8-Pin Metal Can  
H-08A  
Q-8  
Q-8  
H-08A  
N-8  
RN-8  
RN-8  
RN-8  
N-8  
RN-8  
RN-8  
RN-8  
Q-8  
8-Pin Ceramic DIP  
8-Pin Ceramic DIP  
8-Pin Metal Can  
8-Pin Plastic DIP  
8-Pin Plastic SOIC  
8-Pin Plastic SOIC  
8-Pin Plastic SOIC  
8-Pin Plastic DIP  
8-Pin Plastic SOIC  
8-Pin Plastic SOIC  
8-Pin Plastic SOIC  
8-Pin Ceramic DIP  
8-Pin Ceramic DIP  
AD711JR  
AD711JR-REEL  
AD711JR-REEL7  
AD711KN  
AD711KR  
AD711KR-REEL  
0C to 70C  
0C to 70C  
NOTES  
AD711KR-REEL7 0C to 70C  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2Thermal Characteristics:  
*AD711SQ/883B  
*AD711TQ/883B  
–55C to +125C  
–55C to +125C  
Q-8  
*Not for new design, obsolete April 2002  
8-Pin Plastic Package:  
8-Pin Cerdip Package:  
8-Pin Metal Can Package:  
8-Pin SOIC Package:  
q
q
q
q
JC = 33C/Watt; qJA = 100C/Watt  
JC = 22C/Watt; qJA = 110C/Watt  
JC = 65C/Watt; qJA = 150C/Watt  
JC = 43C/Watt; qJA = 160C/Watt  
3For supply voltages less than ±18 V, the absolute maximum input voltage is equal  
to the supply voltage.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD711 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. E  
–3–  
AD711–Typical Performance Characteristics  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
+V  
20  
15  
OUT  
15V SUPPLIES  
R
= 2kꢂ  
L
25C  
R = 2kꢂ  
L
25C  
10  
5
–V  
OUT  
0
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
10  
100  
1k  
10k  
SUPPLYVOLTAGE – Volts  
SUPPLYVOLTAGE – Volts  
LOAD RESISTANCE ꢂ  
TPC 1. Input Voltage Swing vs.  
Supply Voltage  
TPC 2. Output Voltage Swing vs.  
Supply Voltage  
TPC 3. Output Voltage Swing vs.  
Load Resistance  
–6  
100  
2.75  
2.50  
2.25  
2.00  
1.75  
10  
A
= 1  
VCL  
–7  
10  
10  
1
–8  
10  
–9  
10  
–10  
10  
0.01  
–11  
10  
–12  
10  
0.01  
0
5
10  
15  
20  
1k  
10k 100k  
FREQUENCY – Hz  
1M  
10M  
–60 –40 –20  
0
20 40 60 80 100 120 140  
SUPPLYVOLTAGE – Volts  
TEMPERATURE –  
C
TPC 4. Quiescent Current vs. Sup-  
ply Voltage  
TPC 5. Input Bias Current vs. Tem-  
perature  
TPC 6. Output Impedance vs. Fre-  
quency  
26  
100  
5.0  
4.5  
4.0  
V
= 15V  
24  
S
25C  
+OUTPUT CURRENT  
22  
20  
75  
50  
25  
0
18  
–OUTPUT CURRENT  
MAX J GRADE LIMIT  
16  
14  
3.5  
3.0  
12  
10  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–10  
–5  
0
5
10  
–60 –40 –20  
0
20 40 60 80 100 120 140  
AMBIENTTEMPERATURE –  
C
COMMON MODEVOLTAGE – Volts  
TEMPERATURE –  
C
TPC 7. Input Bias Current vs. Com-  
mon Mode Voltage  
TPC 8. Short Circuit Current Limit  
vs. Temperature  
TPC 9. Unity Gain Bandwidth vs.  
Temperature  
–4–  
REV. E  
AD711  
125  
120  
115  
110  
100  
80  
100  
80  
110  
100  
R
= 2kꢂ  
L
25C  
PHASE  
+SUPPLY  
80  
60  
60  
–SUPPLY  
GAIN  
60  
40  
40  
40  
105  
100  
95  
20  
0
20  
0
V
= 15 SUPPLIES  
S
R
= 2kꢂ  
L
20  
0
WITH 1V p-p SINE  
C = 100pF  
WAVE 25 C  
–20  
–20  
0
5
10  
15  
20  
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
1
10  
100  
1k  
10k  
10k  
SUPPLYVOLTAGE – Volts  
SUPPLY MODULATION FREQUENCY – Hz  
TPC 11. Open-Loop Gain vs.  
Supply Voltage  
TPC 10. Open-Loop Gain and  
Phase Margin vs. Frequency  
TPC 12. Power Supply Rejection  
vs. Frequency  
30  
25  
20  
15  
10  
5
100  
2
8
6
4
R
= 2kꢂ  
V
CM  
25 C  
= 15V  
L
S
V
= 1V p-p  
25 C  
80  
60  
40  
20  
0
V
= 15V  
S
2
1% 0.1% 0.01%  
0
ERROR 1% 0.1% 0.01%  
–2  
–4  
–6  
–8  
0
–10  
100k  
1M  
INPUT FREQUENCY – Hz  
10M  
0.5  
10  
100  
1k  
10k  
100k  
1M  
0.6  
0.7  
SETTLINGTIME – s  
0.8  
0.9  
1.0  
FREQUENCY – Hz  
TPC 14. Large Signal Frequency  
Response  
TPC 15. Output Swing and Error  
vs. Settling Time  
TPC 13. Common Mode Rejection  
vs. Frequency  
1k  
100  
10  
25  
–70  
3V RMS  
R
C
= 2kꢂ  
–80  
–90  
L
L
20  
15  
10  
= 100pF  
–100  
–110  
–120  
–130  
5
0
1
100  
1k  
10k  
100k  
1
10  
100  
FREQUENCY – Hz  
1k  
10k  
100k  
0
100 200 300 400 500 600 700 800 900  
INPUT ERROR SIGNAL – mV  
FREQUENCY – Hz  
(AT SUMMING JUNCTION)  
TPC 16. Total Harmonic Distor-  
tion vs. Frequency  
TPC 17. Input Noise Voltage  
Spectral Density  
TPC 18. Slew Rate vs. Input  
Error Signal  
–5–  
REV. E  
AD711  
25  
24  
23  
22  
21  
+V  
+V  
S
S
+V  
S
0.1F  
0.1F  
1.3Mkꢂ  
0.1F  
0.1F  
10kꢂ  
20  
19  
18  
17  
16  
15  
AD711  
AD711  
OUTPUT  
100pF  
INPUT  
AD711  
2kꢂ  
0.1F  
0.1F  
10kꢂ  
–V  
S
–V  
–V  
S
S
–60 –40 –20  
0
20 40 60 80 100 120 140  
TEMPERATURE –  
C
TPC 19. Slew Rate vs. Temperature  
TPC 21. Offset Null Configurations  
TPC 20. T.H.D. Test Circuit  
+V  
S
0.1F  
0.1F  
V
AD711  
OUT  
V
R
C
IN  
L
L
2kꢂ  
100pF  
–V  
S
SQUAREWAVE  
INPUT  
TPC 22c. Unity Gain Follower  
Pulse Response (Small Signal)  
TPC 22b. Unity Gain Follower  
Pulse Response (Large Signal)  
TPC 22a. Unity Gain Follower  
5kꢂ  
+V  
S
0.1F  
5kꢂ  
V
IN  
V
AD711  
OUT  
R
C
L
L
0.1F  
2kꢂ  
100pF  
–V  
S
SQUAREWAVE  
INPUT  
TPC 23b. Unity Gain Inverter  
Pulse Response (Large Signal)  
TPC 23c. Unity Gain Inverter Pulse  
Response (Small Signal)  
TPC 23a. Unity Gain Inverter  
–6–  
REV. E  
AD711  
OPTIMIZING SETTLING TIME  
In addition to a significant improvement in settling time, the  
low offset voltage, low offset voltage drift, and high open-loop  
gain of the AD711 family assures 12-bit accuracy over the full  
operating temperature range.  
Most bipolar high-speed D/A converters have current outputs;  
therefore, for most applications, an external op amp is required  
for current-to-voltage conversion. The settling time of the  
converter/op amp combination depends on the settling time of  
the DAC and output amplifier. A good approximation is:  
The excellent high-speed performance of the AD711 is shown  
in the oscilloscope photos of Figure 2. Measurements were taken  
using a low input capacitance amplifier connected directly to the  
summing junction of the AD711 – both photos show the worst  
case situation: a full-scale input transition. The DAC’s 4 kW  
[10 kWʈ8 kW = 4.4 kW] output impedance together with a 10 kW  
feedback resistor produce an op amp noise gain of 3.25. The  
current output from the DAC produces a 10 V step at the op  
amp output (0 to –10 V Figure 2a, –10 V to 0 V Figure 2b.)  
tS Total = (tS DAC )2 +(tS AMP )2  
(1)  
The settling time of an op amp DAC buffer will vary with the  
noise gain of the circuit, the DAC output capacitance, and with  
the amount of external compensation capacitance across the  
DAC output scaling resistor.  
Therefore, with an ideal op amp, settling to ±1/2 LSB (±0.01%)  
requires that 375 mV or less appears at the summing junction.  
This means that the error between the input and output (that  
voltage which appears at the AD711 summing junction) must  
be less than 375 mV. As shown in Figure 2, the total settling time  
for the AD711/AD565 combination is 1.2 microseconds.  
Settling time for a bipolar DAC is typically 100 ns to 500 ns.  
Previously, conventional op amps have required much longer  
settling times than have typical state-of-the-art DACs; therefore,  
the amplifier settling time has been the major limitation to a  
high-speed voltage-output D-to-A function. The introduction  
of the AD711/712 family of op amps with their 1 ms (to ±0.01%  
of final value) settling time now permits the full high-speed  
capabilities of most modern DACs to be realized.  
0.1F  
BIPOLAR  
OFFSET ADJUST  
R1  
REF  
OUT  
BIPOLAR  
100ꢂ  
V
CC  
OFF  
20V  
R2  
SPAN  
100ꢂ  
GAIN  
10pF  
+15V  
10V  
ADJUST  
5kꢂ  
AD565A  
9.95kꢂ  
10V  
SPAN  
0.1F  
19.95kꢂ  
0.5mA  
5kꢂ  
5kꢂ  
DAC  
OUT  
REF  
IN  
I
REF  
DAC  
OUT  
REF  
REF  
I
= 4 ꢅ  
AD711K  
–15V  
OUTPUT  
I
20kꢂ  
O
GND  
I
CODE  
–10VTO +10V  
0.1F  
–V  
EE  
POWER  
GND  
MSB  
LSB  
0.1F  
Figure 1. ±10 V Voltage Output Bipolar DAC  
a. (Full-Scale Negative Transition)  
Figure 2. Settling Characteristics for AD711 with AD565A  
b. (Full-Scale Positive Transition)  
REV. E  
–7–  
AD711  
OP AMP SETTLING TIME—A MATHEMATICAL MODEL  
The design of the AD711 gives careful attention to optimizing  
individual circuit components; in addition, a careful tradeoff was  
made: the gain bandwidth product (4 MHz) and slew rate  
(20 V/ms) were chosen to be high enough to provide very fast  
settling time but not too high to cause a significant reduction in  
phase margin (and therefore stability). Thus designed, the AD711  
settles to ±0.01%, with a 10 V output step, in under 1 ms, while  
retaining the ability to drive a 100 pF load capacitance when  
operating as a unity gain follower.  
op amp is being simulated or it is the combined capacitance of  
the DAC output and the op amp input if the DAC buffer is  
being modeled.  
AD711  
V
OUT  
C
C
R
L
F
L
R
IN  
R
If an op amp is modeled as an ideal integrator with a unity gain  
crossover frequency of wo/2p, Equation 1 will accurately describe  
the small signal behavior of the circuit of Figure 3a, consisting of  
an op amp connected as an I-to-V converter at the output of a  
bipolar or CMOS DAC. This equation would completely describe  
the output of the system if not for the op amp’s finite slew rate  
and other nonlinear effects.  
V
C
IN  
X
Figure 3b. Simplified Model of the AD711  
Used as an Inverter  
In either case, the capacitance CX causes the system to go from  
a one-pole to a two-pole response; this additional pole increases  
settling time by introducing peaking or ringing in the op amp  
output. Since the value of CX can be estimated with reasonable  
accuracy, Equation 2 can be used to choose a small capacitor,  
CF, to cancel the input pole and optimize amplifier response.  
Figure 4 is a graphical solution of Equation 2 for the AD711  
with R = 4 kW.  
VO  
IIN  
R  
=
R(Cf = CX )  
Ê
ˆ
¯
GN  
s2 +  
+ RCf s +1  
(3)  
Á
Ë
˜
wo  
w
o
where:  
w
2p  
o =op amp’s unity gain frequency  
60  
Ê
ˆ
R
RO  
G
= 4.0  
1+  
N
Á
Ë
˜
¯
GN = “noise” gain of circuit  
50  
40  
30  
20  
G
= 3.0  
N
This equation may then be solved for Cf:  
G
= 2.0  
N
2 RCXwo +(1- GN )  
Rwo  
2 - GN  
Rwo  
Cf  
=
+
(3)  
G
= 1.5  
N
In these equations, capacitor CX is the total capacitor appearing  
the inverting terminal of the op amp. When modeling a DAC  
buffer application, the Norton equivalent circuit of Figure 3a  
can be used directly; capacitance CX is the total capacitance of  
the output of the DAC plus the input capacitance of the op amp  
(since the two are in parallel).  
G
= 1.0  
40  
N
10  
0
0
10  
20  
30  
50  
60  
C
F
Figure 4. Value of Capacitor CF vs. Value of CX  
AD711  
V
OUT  
The photos of Figures 5a and 5b show the dynamic response of  
the AD711 in the settling test circuit of Figure 6.  
C
C
R
L
F
L
The input of the settling time fixture is driven by a flat-top pulse  
generator. The error signal output from the false summing node  
of A1 is clamped, amplified by A2 and then clamped again. The  
error signal is thus clamped twice: once to prevent overloading  
amplifier A2 and then a second time to avoid overloading the  
oscilloscope preamp. The Tektronix oscilloscope preamp type  
7A26 was carefully chosen because it does not overload with  
these input levels. Amplifier A2 needs to be a very high speed  
FET-input op amp; it provides a gain of 10, amplifying the error  
signal output of A1.  
R
I
O
C
R
X
O
Figure 3a. Simplified Model of the AD711 Used as a  
Current-Out DAC Buffer  
When RO and IO are replaced with their Thevenin VIN and RIN  
equivalents, the general purpose inverting amplifier of Figure 26b  
is created. Note that when using this general model, capacitance  
CX is either the input capacitance of the op amp if a simple inverting  
–8–  
REV. E  
AD711  
current-to-voltage converters. The use of a guarding technique  
such as that shown in Figure 7, in printed circuit board layout  
and construction is critical to minimize leakage currents. The  
guard ring is connected to a low impedance potential at the  
same level as the inputs. High impedance signal lines should  
not be extended for any unnecessary length on the printed  
circuit board.  
4
4
5
5
6
3
2
3
2
6
7
8
Figure 5a. Settling Characteristics 0 to +10 V Step  
Upper Trace: Output of AD711 Under Test (5 V/Div)  
Lower Trace: Amplified Error Voltage (0.01%/Div)  
1
1
7
8
Figure 7. Board Layout for Guarding Inputs  
D/A CONVERTER APPLICATIONS  
The AD711 is an excellent output amplifier for CMOS DACs.  
It can be used to perform both 2-quadrant and 4-quadrant  
operation. The output impedance of a DAC using an inverted  
R-2R ladder approaches R for codes containing many 1s, 3R  
for codes containing a single 1, and for codes containing all  
zero, the output impedance is infinite.  
For example, the output resistance of the AD7545 will modu-  
late between 11 kW and 33 kW. Therefore, with the DAC’s  
internal feedback resistance of 11 kW, the noise gain will vary  
from 2 to 4/3. This changing noise gain modulates the effect of  
the input offset voltage of the amplifier, resulting in nonlinear  
DAC amplifier performance.  
Figure 5b. Settling Characteristics 0 to –10 V Step  
Upper Trace: Output of AD711 Under Test (5 V/Div)  
Lower Trace: Amplified Error Voltage (0.01%/Div)  
The AD711K with guaranteed 500 mV offset voltage minimizes  
this effect to achieve 12-bit performance.  
GUARDING  
The low input bias current (15 pA) and low noise characteristics  
of the AD711 BiFET op amp make it suitable for electrometer  
applications such as photo diode preamplifiers and picoampere  
5pF  
TEXTRONIX 7A26  
OSCILLOSCOPE  
PREAMP  
V
5  
ERROR  
INPUT SELECTION  
205ꢂ  
AD3554  
HP2835  
1Mꢂ  
20pF  
HP2835  
0.47F  
0.47F  
4.99kꢂ  
4.99kꢂ  
200kꢂ  
+15V  
–15V  
DATA  
DYNAMICS  
5109  
5-18pF  
10kꢂ  
1.1kꢂ  
V
IN  
10kꢂ  
AD711  
(OR  
EQUIVALENT  
FLATTOP  
0.2-0.0pF  
10kꢂ  
V
OUT  
PULSE  
GENERATOR)  
10pF  
5kꢂ  
0.1F  
0.1F  
–15V  
+15V  
Figure 6. Settling Time Test Circuit  
REV. E  
–9–  
AD711  
compared to a series of switched trial currents. The comparison  
point is diode clamped but may deviate several hundred millivolts  
resulting in high frequency modulation of A/D input current.  
Figures 8 and 9 show the AD711 and AD7545 (12-bit CMOS  
DAC) configured for unipolar binary (2-quadrant multiplication)  
or bipolar (4-quadrant multiplication) operation. Capacitor C1  
provides phase compensation to reduce overshoot and ringing.  
Figures 10a and 10b show the settling time characteristics of the  
AD711 when used as a DAC output buffer for the AD7545.  
*
R2  
+15  
V
DD  
C1  
0.1F  
33pF  
GAIN  
ADJUST  
V
R
FB  
OUT1  
DD  
V
V
AD711K  
0.1F  
V
OUT  
IN  
AD7545  
DGND AGND  
REF  
*
R1  
C
F
ANALOG  
COMMON  
DB11-DB0  
*
–15  
FORVALUES R1 AND R2,  
REFERTOTABLE 1  
a. Full-Scale Positive  
Transition  
b. Full-Scale Negative  
Transition  
Figure 8. Unipolar Binary Operation  
R1 and R2 calibrate the zero offset and gain error of the DAC.  
Specific values for these resistors depend upon the grade of  
AD7545 and are shown below.  
Figure 10. Settling Characteristics for AD711 with AD7545  
compared to a series of switched trial currents. The comparison  
point is diode clamped but may deviate several hundred milli-  
volts resulting in high frequency modulation of A/D input  
current. The output impedance of a feedback amplifier is made  
artificially low by the loop gain. At high frequencies, where the  
loop gain is low, the amplifier output impedance can approach  
its open loop value. Most IC amplifiers exhibit a minimum open  
loop output impedance of 25 W due to current limiting resistors.  
A few hundred microamps reflected from the change in con-  
verter loading can introduce errors in instantaneous input  
Table I. Recommended Trim Resistor Values vs. Grades  
of the AD7545 for VDD = 5 V  
TRIM  
RESISTOR JN/AQ/SD KN/BQ/TD LN/CQ/UD GLN/GCQ/GUD  
R1  
R2  
500 W  
150 W  
200 W  
68 W  
100 W  
33 W  
20 W  
6.8 W  
NOISE CHARACTERISTICS  
12/8  
STS  
The random nature of noise, particularly in the 1/f region, makes  
it difficult to specify in practical terms. At the same time,  
designers of precision instrumentation require certain guaranteed  
maximum noise levels to realize the full accuracy of their equipment.  
CS  
HIGH  
BITS  
A
O
AD574  
R/C  
GAIN  
MIDDLE  
ADJUST  
BITS  
CE  
The AD711C grade is specified at a maximum level of 4.0 mV p-p,  
in a 0.1 Hz to 10 Hz bandwidth. Each AD711C receives a 100%  
noise test for two 10-second intervals; devices with any excursion  
in excess of 4.0 mV are rejected. The screened lot is then submitted  
to Quality Control for verification on an AQL basis.  
REF IN  
R2  
LOW  
BITS  
100ꢂ  
REF OUT  
BIP OFF  
R1  
+15V  
AD711  
–15V  
100ꢂ  
+5V  
+15V  
0.1F  
0.1F  
10V  
20V  
IN  
OFFSET  
ADJUST  
All other grades of the AD711 are sample-tested on an AQL  
basis to a limit of 6 mV p-p, 0.1 to 10 Hz.  
–15V  
10V  
ANALOG  
INPUT  
IN  
ANA COM  
DIG COM  
DRIVING THE ANALOG INPUT OF AN A/D CONVERTER  
An op amp driving the analog input of an A/D converter, such  
as that shown in Figure 11, must be capable of maintaining a  
constant output voltage under dynamically changing load conditions.  
In successive-approximation converters, the input current is  
ANALOG COM  
Figure 11. AD711 as ADC Unity Gain Buffer  
R5  
20kꢂ  
1%  
R4  
20kꢂ  
1%  
*
R2  
V
DD  
+15V  
C1  
0.1F  
+15V  
33pF  
GAIN  
R3  
10kꢂ  
1%  
0.1F  
ADJUST  
V
R
FB  
DD  
OUT1  
V
AD711K  
V
AD7545  
IN  
REF  
*
R1  
AD711K  
–15V  
V
OUT  
AGND  
0.1F  
DGND  
DB11-DB0  
0.1F  
12  
–15V  
ANALOG  
COMMON  
DATA INPUT  
*
FORVALUES R1 AND R2,  
REFERTOTABLE 1  
Figure 9. Bipolar Operation  
–10–  
REV. E  
AD711  
voltage. If the A/D conversion speed is not excessive and the  
bandwidth of the amplifier is sufficient, the amplifier’s output  
will return to the nominal value before the converter makes its  
comparison. However, many amplifiers have relatively narrow  
bandwidth yielding slow recovery from output transients. The  
AD711 is ideally suited to drive high speed A/D converters since  
it offers both wide bandwidth and high open-loop gain.  
large value input resistors, bias currents flowing through these  
resistors will also generate an offset voltage.  
In addition, at higher frequencies, an op amp’s dynamics must  
be carefully considered. Here, slew rate, bandwidth, and open-loop  
gain play a major role in op amp selection. The slew rate must  
be fast as well as symmetrical to minimize distortion. The amplifier’s  
bandwidth in conjunction with the filter’s gain will dictate the  
frequency response of the filter.  
The use of a high performance amplifier such a s the AD711  
will minimize both dc and ac errors in all active filter applica-  
tions.  
SECOND ORDER LOW PASS FILTER  
Figure 15 depicts the AD711 configured as a second order  
Butterworth low pass filter. With the values as shown, the corner  
frequency will be 20 kHz; however, the wide bandwidth of the  
AD711 permits a corner frequency as high as several hundred  
kilohertz. Equations for component selection are shown below.  
a. Source Current = 2 mA  
b. Sink Current = 1 mA  
Figure 12. ADC Input Unity Gain Buffer Recovery Times  
R1 = R2 = user selected (typical values: 10 kW – 100 kW)  
(4)  
DRIVING A LARGE CAPACITIVE LOAD  
1. 414  
(2 p)( fcutoff )(R1)  
0.707  
(2 p)( fcutoff )(R1)  
C1=  
, C2 =  
(5)  
The circuit in Figure 13 employs a 100 W isolation resistor which  
enables the amplifier to drive capacitive loads exceeding 1500 pF;  
the resistor effectively isolates the high frequency feedback from  
the load and stabilizes the circuit. Low frequency feedback is  
returned to the amplifier summing junction via the low pass  
filter formed by the 100 W series resistor and the load capaci-  
tance, CL. Figure 14 shows a typical transient response for  
this connection.  
Where:  
C1 and C2 are in farads.  
C1  
560pF  
+15V  
0.1F  
R1  
R2  
4.99kꢂ  
20k20kꢂ  
30pF  
C2  
V
AD711  
OUT  
V
IN  
280pF  
+V  
S
0.1F  
0.1F  
INPUT  
100ꢂ  
4.99kꢂ  
AD711  
0.1F  
OUTPUT  
–15V  
C
L
TYPICAL CAPACITANCE  
LIMIT FORVARIOUS  
LOAD RESISTORS  
R
L
Figure 15. Second Order Low Pass Filter  
–V  
S
R
C UPTO  
1500pF  
1500pF  
1000pF  
L
L
An important property of filters is their out-of-band rejection.  
The simple 20 kHz low pass filter shown in Figure 15, might be  
used to condition a signal contaminated with clock pulses or  
sampling glitches which have considerable energy content at  
high frequencies.  
2kꢂ  
10kꢂ  
20kꢂ  
Figure 13. Circuit for Driving a Large Capacitive Load  
The low output impedance and high bandwidth of the AD711  
minimize high frequency feedthrough as shown in Figure 16.  
The upper trace is that of another low-cost BiFET op amp  
showing 17 dB more feedthrough at 5 MHz.  
Figure 14. Transient Response RL = 2 kW, CL = 500 pF  
ACTIVE FILTER APPLICATIONS  
In active filter applications using op amps, the dc accuracy of the  
amplifier is critical to optimal filter performance. The amplifier’s  
offset voltage and bias current contribute to output error. Offset  
voltage will be passed by the filter and may be amplified to produce  
excessive output offset. For low frequency applications requiring  
Figure 16.  
REV. E  
–11–  
AD711  
2-pole response; for a total of 8 poles. The 9th pole consists of a  
0.001 mF capacitor and a 124 kW resistor at Pin 3 of amplifier A2.  
Figure 18 depicts the circuits for each FDNR with the proper  
selection of R. To achieve optimal performance, the 0.001 mF  
capacitors must be selected for 1% or better matching and all  
resistors should have 1% or better tolerance.  
9-POLE CHEBYCHEV FILTER  
Figure 17 shows the AD711 and its dual counterpart, the AD712,  
as a 9-pole Chebychev filter using active frequency dependent  
negative resistors (FDNR). With a cutoff frequency of 50 kHz  
and better than 90 dB rejection, it may be used as an anti-aliasing  
filter for a 12-bit data acquisition system with 100 kHz throughput.  
As shown in Figure 17, the filter is comprised of four FDNRs (A,  
B, C, D) having values of 4.9395 ϫ 10–15 and 5.9276 ϫ  
10–15 farad-seconds. Each FDNR active network provides a  
+15V  
0.1F  
+15V  
0.1F  
V
IN  
0.001F  
100kꢂ  
2800ꢂ  
6190ꢂ  
6490ꢂ  
6190ꢂ  
2800ꢂ  
A1  
AD711  
A2  
AD711  
–15  
–15  
–15  
–15  
4.9395E  
5.9276E  
5.9276E  
4.9395E  
V
OUT  
0.1F  
A
B
C
D
0.1F  
4.99kꢂ  
4.99kꢂ  
*
*
*
*
–15V  
0.001  
124kꢂ  
–15V  
F  
*
SEETEXT  
Figure 17. 9-Pole Chebychev Filter  
+15V  
0.1F  
0.001F  
1/2  
AD712  
R
0.1F  
1/2  
AD712  
0.001F  
–15V  
1kꢂ  
–15  
–15  
4.99kꢂ  
R: 24.9kFOR 4.9395E  
29.4kFOR 5.9276E  
Figure 18. FDNR for 9-Pole Chebychev Filter  
Figure 19. High Frequency Response for 9-Pole  
Chebychev Filter  
–12–  
REV. E  
AD711  
OUTLINE DIMENSIONS  
8-Lead Ceramic Dip – Glass Hermetic Seal [CERDIP]  
(Q-8)  
8-Lead Plastic Dual-in-Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
0.005 (0.13) 0.055 (1.40)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
MIN  
MAX  
8
5
8
1
5
0.310 (7.87)  
0.220 (5.59)  
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
PIN 1  
1
4
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.100 (2.54)  
BSC  
0.320 (8.13)  
0.290 (7.37)  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.060 (1.52)  
0.015 (0.38)  
0.015  
(0.38)  
MIN  
0.200 (5.08)  
MAX  
0.180  
(4.57)  
MAX  
0.150 (3.81)  
0.200 (5.08)  
0.125 (3.18)  
0.023 (0.58)  
0.014 (0.36)  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15  
0
0.070 (1.78)  
0.030 (0.76)  
CONTROLLING DIMENSIONS ARE IN INCH; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES)  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
8-Lead Metal Can [TO-99]  
(H-8)  
Dimensions shown in inches and (millimeters)  
(RN-8)  
Dimensions shown in millimeters and (inches)  
REFERENCE PLANE  
0.5000 (12.70)  
5.00 (0.1968)  
4.80 (0.1890)  
MIN  
0.1850 (4.70)  
0.1650 (4.19)  
0.2500 (6.35) MIN  
0.0500 (1.27) MAX  
0.1000 (2.54) BSC  
5
0.1600 (4.06)  
0.1400 (3.56)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
6
4
0.0450 (1.14)  
0.0270 (0.69)  
0.2000  
(5.08)  
BSC  
3
7
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
1.75 (0.0688)  
1.35 (0.0532)  
2
8
0.25 (0.0098)  
0.10 (0.0040)  
1
0.1000  
0.0190 (0.48)  
0.0160 (0.41)  
(2.54)  
BSC  
8؇  
0.51 (0.0201)  
0.33 (0.0130)  
0.0340 (0.86)  
0.0280 (0.71)  
0.0400 (1.02) MAX  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.19 (0.0075)  
0.0210 (0.53)  
0.0160 (0.41)  
SEATING  
PLANE  
0.41 (0.0160)  
0.0400 (1.02)  
0.0100 (0.25)  
45 BSC  
BASE & SEATING PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-002AK  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. E  
–13–  
AD711  
Revision History  
Location  
Page  
10/02—Data Sheet changed from REV. D to REV. E.  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
10/02—Data Sheet changed from REV. C to REV. D.  
Edits to CONNECTION DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5/02—Data Sheet changed from REV. B to REV. C.  
Change from Small Outline Package (R-8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Deleted METALLIZATION PHOTOGRAPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
–14–  
REV. E  
–15–  
–16–  

相关型号:

AD711TH/883B

IC IC,OP-AMP,SINGLE,BIPOLAR/JFET,CAN,8PIN,METAL, Operational Amplifier
ADI

AD711TQ

IC OP-AMP, 500 uV OFFSET-MAX, 4 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

AD711TQ-883B

Precision, Low Cost, High Speed, BiFET Op Amp
ADI

AD711TQ/883B

Precision, Low Cost, High Speed, BiFET Op Amp
ADI

AD711TQ883B

Precision, Low Cost, High Speed, BiFET Op Amp
ADI

AD711_02

Precision, Low Cost, High Speed, BiFET Op Amp
ADI

AD712

Dual Precision, Low Cost, High Speed, BiFET Op Amp
ADI

AD7121KN30

IC TRIPLE, PARALLEL, WORD INPUT LOADING, 10-BIT DAC, PDIP40, 0.600 INCH, PLASTIC, DIP-40, Digital to Analog Converter
ADI

AD7121KN50

IC TRIPLE, PARALLEL, WORD INPUT LOADING, 10-BIT DAC, PDIP40, 0.600 INCH, PLASTIC, DIP-40, Digital to Analog Converter
ADI

AD7121KN80

IC TRIPLE, PARALLEL, WORD INPUT LOADING, 10-BIT DAC, PDIP40, 0.600 INCH, PLASTIC, DIP-40, Digital to Analog Converter
ADI

AD7122KP30

IC TRIPLE, PARALLEL, WORD INPUT LOADING, 10-BIT DAC, PQCC44, PLASTIC, LCC-44, Digital to Analog Converter
ADI

AD7122KP50

IC TRIPLE, PARALLEL, WORD INPUT LOADING, 10-BIT DAC, PQCC44, PLASTIC, LCC-44, Digital to Analog Converter
ADI