AD712CN [ADI]

Dual Precision, Low Cost, High Speed, BiFET Op Amp; 双路精密,低成本,高速, BiFET运算放大器
AD712CN
型号: AD712CN
厂家: ADI    ADI
描述:

Dual Precision, Low Cost, High Speed, BiFET Op Amp
双路精密,低成本,高速, BiFET运算放大器

运算放大器
文件: 总15页 (文件大小:638K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Precision, Low Cost,  
High Speed, BiFET Op Amp  
a
AD712  
FEATURES  
CONNECTION DIAGRAMS  
Enhanced Replacements for LF412 and TL082  
TO-99  
(H) Package  
AC PERFORMANCE  
Settles to ؎0.01% in 1.0 ms  
16 V/s min Slew Rate (AD712J)  
3 MHz min Unity Gain Bandwidth (AD712J)  
+V  
AMPLIFIER NO. 1  
OUTPUT  
AMPLIFIER NO. 2  
OUTPUT  
S
INVERTING  
OUTPUT  
INVERTING  
INPUT  
DC PERFORMANCE  
0.30 mV max Offset Voltage: (AD712C)  
5 V/؇C max Drift: (AD712C)  
AD712  
NONINVERTING  
INPUT  
NONINVERTING  
OUTPUT  
200 V/mV min Open-Loop Gain (AD712K)  
4 V p-p max Noise, 0.1 Hz to 10 Hz (AD712C)  
Surface Mount Available in Tape and Reel in Accor-  
dance with EIA-481A Standard  
–V  
S
Plastic Mini-DIP (N) Package  
SOIC (R) Package and Cerdip (Q) Package  
AMPLIFIER NO. 1  
AMPLIFIER NO. 2  
MIL-STD-883B Parts Available  
Single Version Available: AD711  
Quad Version: AD713  
Available in Plastic Mini-DIP, Plastic SOIC, Hermetic  
Cerdip, Hermetic Metal Can Packages and Chip Form  
1
8
V+  
OUTPUT  
INVERTING  
OUTPUT  
2
3
4
OUTPUT  
7
6
5
NONINVERTING  
OUTPUT  
INVERTING  
INPUT  
NONINVERTING  
INPUT  
V–  
AD712  
PRODUCT DESCRIPTION  
screening includes 168-hour burn-in, as well as other environ-  
mental and physical tests.  
The AD712 is a high speed, precision monolithic operational  
amplifier offering high performance at very modest prices. Its  
very low offset voltage and offset voltage drift are the results of  
advanced laser wafer trimming technology. These performance  
benefits allow the user to easily upgrade existing designs that use  
older precision BiFETs and, in many cases, bipolar op amps.  
The AD712 is available in an 8-lead plastic mini-DIP, SOIC,  
cerdip, TO-99 metal can, or in chip form.  
PRODUCT HIGHLIGHTS  
1. The AD712 offers excellent overall performance at very  
competitive prices.  
The superior ac and dc performance of this op amp makes it  
suitable for active filter applications. With a slew rate of 16 V/µs  
and a settling time of 1 µs to ±0.01%, the AD712 is ideal as a  
buffer for 12-bit D/A and A/D Converters and as a high-speed  
integrator. The settling time is unmatched by any similar IC  
amplifier.  
2. Analog Devices’ advanced processing technology and with  
100% testing guarantees a low input offset voltage (0.3 mV  
max, C grade, 3 mV max, J grade). Input offset voltage is  
specified in the warmed-up condition. Analog Devices’ laser  
wafer drift trimming process reduces input offset voltage  
drifts to 5 µV/°C max on the AD712C.  
The combination of excellent noise performance and low input  
current also make the AD712 useful for photo diode preamps.  
Common-mode rejection of 88 dB and open loop gain of  
400 V/mV ensure 12-bit performance even in high-speed unity  
gain buffer circuits.  
3. Along with precision dc performance, the AD712 offers  
excellent dynamic response. It settles to ±0.01% in 1 µs and  
has a minimum slew rate of 16 V/µs. Thus this device is ideal  
for applications such as DAC and ADC buffers which re-  
quire a combination of superior ac and dc performance.  
The AD712 is pinned out in a standard op amp configuration  
and is available in seven performance grades. The AD712J and  
AD712K are rated over the commercial temperature range of  
0°C to +70°C. The AD712A, AD712B and AD712C are rated  
over the industrial temperature range of –40°C to +85°C. The  
AD712S and AD712T are rated over the military temperature  
range of –55°C to +125°C and are available processed to MIL-  
STD-883-B, Rev. C.  
4. The AD712 has a guaranteed and tested maximum voltage  
noise of 4 µV p-p, 0.1 Hz to 10 Hz (AD712C).  
5. Analog Devices’ well-matched, ion-implanted JFETs ensure  
a guaranteed input bias current (at either input) of 50 pA  
max (AD712C) and an input offset current of 10 pA max  
(AD712C). Both input bias current and input offset current  
are guaranteed in the warmed-up condition.  
Extended reliability PLUS screening is available, specified over  
the commercial and industrial temperature ranges. PLUS  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
(V = ؎15 V @ T = +25؇C unless otherwise noted)  
AD712–SPECIFICATIONS  
S
A
AD712J/A/S  
AD712K/B/T  
Typ  
AD712C  
Typ  
Parameter  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Units  
INPUT OFFSET VOLTAGE1  
Initial Offset  
0.3  
3/1/1  
4/2/2  
20/20/20  
0.2  
1.0/0.7/0.7  
2.0/1.5/1.5  
10  
0.1  
0.3  
0.6  
5
mV  
mV  
µV/°C  
dB  
dB  
T
MIN to TMAX  
vs. Temp  
vs. Supply  
7
95  
7
100  
3
110  
76  
76/76/76  
80  
80  
86  
86  
T
MIN to TMAX  
Long-Term Offset Stability  
15  
15  
15  
µV/Month  
INPUT BIAS CURRENT2  
VCM = 0 V  
25  
75  
20  
75  
20  
1.3  
50  
3.2  
75  
pA  
nA  
pA  
V
CM = 0 V @ TMAX  
0.6/1.6/26  
1.7/4.8/77  
100  
0.5/1.3/20  
1.7/4.8/77  
100  
VCM = ±10 V  
INPUT OFFSET CURRENT  
V
CM = 0 V  
10  
25  
5
25  
5
0.3  
10  
0.7  
pA  
nA  
VCM = 0 V @ TMAX  
0.3/0.7/11  
0.6/1.6/26  
0.1/0.3/5  
0.6/1.6/26  
MATCHING CHARACTERISTICS  
Input Offset Voltage  
3/1/1  
4/2/2  
20/20/20  
25  
1.0/0.7/0.7  
2.0/1.5/1.5  
10  
0.3  
0.6  
5
mV  
mV  
µV/°C  
pA  
dB  
dB  
T
MIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
Crosstalk @ f = 1 kHz  
@ f = 100 kHz  
25  
10  
120  
90  
120  
90  
120  
90  
FREQUENCY RESPONSE  
Small Signal Bandwidth  
Full Power Response  
Slew Rate  
Settling Time to 0.01%  
Total Harmonic Distortion  
3.0  
4.0  
200  
20  
1.0  
0.0003  
3.4  
4.0  
200  
20  
1.0  
0.0003  
3.4  
4.0  
200  
20  
1.0  
0.0003  
MHz  
kHz  
V/µs  
µs  
16  
18  
18  
1.2  
1.2  
1.2  
%
INPUT IMPEDANCE  
Differential  
Common Mode  
3 × 1012ʈ5.5  
3 × 1012ʈ5.5  
3 × 1012ʈ5.5  
3 × 1012ʈ5.5  
3 × 1012ʈ5.5  
ʈpF  
ʈpF  
3 × 1012ʈ5.5  
INPUT VOLTAGE RANGE  
Differential3  
±20  
+14.5, –11.5  
±20  
+14.5, –11.5  
±20  
+14.5, –11.5  
V
Common-Mode Voltage4  
TMIN to TMAX  
–VS + 4  
+VS – 2  
–VS + 4  
+VS – 2  
–VS + 4  
+VS – 2 V  
Common-Mode  
Rejection Ratio  
V
V
CM = ±10 V  
MIN to TMAX  
CM = ±11 V  
76  
76/76/76  
70  
88  
84  
84  
80  
80  
80  
76  
74  
88  
84  
84  
80  
86  
86  
76  
74  
94  
90  
90  
84  
dB  
T
dB  
dB  
dB  
TMIN to TMAX  
70/70/70  
INPUT VOLTAGE NOISE  
2
2
2
µV p-p  
45  
22  
18  
16  
45  
22  
18  
16  
45  
22  
18  
16  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
INPUT CURRENT NOISE  
OPEN-LOOP GAIN  
0.01  
400  
0.01  
400  
0.01  
400  
pA/Hz  
150  
100/100/100  
200  
100  
200  
100  
V/mV  
V/mV  
OUTPUT CHARACTERISTICS  
Voltage  
+13, –12.5  
+13.9, –13.3  
±12/±12/؎12 +13.8, –13.1  
25  
+13, –12.5 +13.9, –13.3  
+13, –12.5 +13.9, –13.3  
V
V
mA  
؎12  
+13.8, –13.1  
25  
؎12  
+13.8, –13.1  
25  
Current  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
±15  
±15  
±15  
V
V
mA  
؎4.5  
؎18  
6.8  
؎4.5  
؎18  
6.0  
؎4.5  
؎18  
5.6  
5.0  
5.0  
5.0  
NOTES  
1Input Offset Voltage specifications are guaranteed after 5 minutes of operation at TA = +25°C.  
2Bias Current specifications are guaranteed maximum at either input after 5 minutes of operation at TA = +25°C. For higher temperatures, the current doubles every 10°C.  
3Defined as voltage between inputs, such that neither exceeds ±10 V from ground.  
4Typically exceeding –14.1 V negative common-mode voltage on either input results in an output phase reversal.  
Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max  
specifications are guaranteed, although only those shown in boldface are tested on all production units.  
Specifications subject to change without notice.  
–2–  
REV. B  
AD712  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation2  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
Input Voltage3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Differential Input Voltage . . . . . . . . . . . . . . . . . . +VS and –VS  
Storage Temperature Range (Q, H) . . . . . . . –65°C to +150°C  
Storage Temperature Range (N, R) . . . . . . . . –65°C to +125°C  
Operating Temperature Range  
AD712ACHIPS  
AD712AH  
AD712AQ  
AD712BH  
AD712BQ  
AD712CH  
AD712CN  
AD712JN  
AD712JR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
Bare Die  
8-Lead Metal Can  
H-08A  
8-Lead Ceramic DIP Q-8  
8-Lead Metal Can  
H-08A  
8-Lead Ceramic DIP Q-8  
8-Lead Metal Can  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic DIP  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
H-08A  
AD712J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
AD712A/B/C . . . . . . . . . . . . . . . . . . . . . . . .40°C to +85°C  
AD712S/T . . . . . . . . . . . . . . . . . . . . . . . . .55°C to +125°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . +300°C  
N-8  
N-8  
R-8  
R-8  
R-8  
N-8  
R-8  
R-8  
R-8  
AD712JR-REEL  
AD712JR-REEL7  
AD712KN  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
AD712KR  
AD712KR-REEL  
AD712KR-REEL7  
AD712SCHIPS  
AD712SQ  
AD712SQ/883B  
AD712TQ  
–55°C to +125°C Bare Die  
2Thermal Characteristics:  
–55°C to +125°C 8-Lead Ceramic DIP Q-8  
–55°C to +125°C 8-Lead Ceramic DIP Q-8  
–55°C to +125°C 8-Lead Ceramic DIP Q-8  
–55°C to +125°C 8-Lead Ceramic DIP Q-8  
8-Lead Plastic Package:  
8-Lead Cerdip Package:  
θJA = 165°C/Watt  
θJC = 22°C/Watt; θJA = 110°C/Watt  
8-Lead Metal Can Package: θJC = 65°C/Watt; θJA = 150°C/Watt  
AD712TQ/883B  
8-Lead SOIC Package:  
θJA = 100°C  
3For supply voltages less than ±18 V, the absolute maximum input voltage is equal  
to the supply voltage.  
METALIZATION PHOTOGRAPH  
Dimensions shown in inches and (mm).  
Contact factory for latest dimensions.  
–3–  
REV. B  
AD712  
–Typical Performance Characteristics  
20  
20  
30  
25  
20  
15  
10  
5
15  
10  
5
15  
+V  
OUT  
–V  
؎15V SUPPLIES  
10  
5
OUT  
R
= 2k⍀  
L
R
= 2k⍀  
L
25؇C  
25؇C  
0
0
0
0
5
10  
15  
20  
5
10  
15  
20  
0
10  
100  
1k  
10k  
SUPPLY VOLTAGE ؎ Volts  
SUPPLY VOLTAGE ؎ Volts  
LOAD RESISTANCE – ⍀  
Figure 1. Input Voltage Swing vs.  
Supply Voltage  
Figure 2. Output Voltage Swing vs.  
Supply Voltage  
Figure 3. Output Voltage Swing  
vs. Load Resistance  
6
6
5
4
3
2
10  
100  
10  
7
10  
8
10  
9
10  
1.0  
10  
10  
0.1  
11  
10  
12  
10  
0.01  
–60 –40 –40  
20 40 60 80 100 120 140  
0
TEMPERATURE – ؇C  
5
10  
15  
20  
0
1k  
10k  
100k  
1M  
10M  
SUPPLY VOLTAGE ؎ Volts  
FREQUENCY – Hz  
Figure 5. Input Bias Current vs.  
Temperature  
Figure 4. Quiescent Current vs.  
Supply Voltage  
Figure 6. Output Impedance vs.  
Frequency  
26  
5.0  
4.5  
4.0  
100  
24  
+ OUTPUT CURRENT  
MAX J GRADE LIMIT  
75  
50  
22  
20  
V
= +15V  
S
25؇C  
18  
– OUTPUT CURRENT  
16  
14  
25  
0
3.5  
3.0  
12  
10  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–10  
–5  
0
5
10  
AMBIENT TEMPERATURE – ؇C  
COMMON MODE VOLTAGE – Volts  
TEMPERATURE – ؇C  
Figure 8. Short Circuit Current  
Limit vs. Temperature  
Figure 7. Input Bias Current vs.  
Common Mode Voltage  
Figure 9. Unity Gain Bandwidth vs.  
Temperature  
–4–  
REV. B  
AD712  
125  
120  
115  
110  
100  
100  
80  
100  
80  
+ SUPPLY  
80  
60  
40  
20  
0
60  
40  
20  
60  
40  
20  
R
= 2k⍀  
L
25؇C  
110  
105  
GAIN  
PHASE  
2k⍀  
100pF  
LOAD  
– SUPPLY  
V
= ؎15V SUPPLIES  
S
WITH 1V p-p SINE  
WAVE 25؇C  
100  
95  
0
0
–20  
10  
–20  
10M  
5
10  
15  
20  
0
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
SUPPLY VOLTAGE ؎ Volts  
SUPPLY MODULATION FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 12. Power Supply Rejection  
vs. Frequency  
Figure 11. Open-Loop Gain vs.  
Supply Voltage  
Figure 10. Open-Loop Gain and  
Phase Margin vs. Frequency  
30  
25  
20  
10  
8
100  
80  
6
4
V
V
= ؎15V  
S
R
= 2k⍀  
= 1Vp-p  
L
CM  
2
60  
40  
20  
0
25؇C  
V = ؎15V  
S
1% 0.1%  
0.01%  
0.01%  
25؇C  
15  
0
–2  
–4  
–6  
ERROR 1% 0.1%  
10  
5
–8  
0
100k  
–10  
0.5  
1M  
INPUT FREQUENCY – Hz  
10M  
0.7  
0.6  
0.8  
0.9  
1.0  
10  
100  
1k  
10k  
100k  
1M  
SETTLING TIME – s  
FREQUENCY – Hz  
Figure 15. Output Swing and Error  
vs. Settling Time  
Figure 14. Large Signal Frequency  
Response  
Figure 13. Common Mode Rejec-  
tion vs. Frequency  
1k  
25  
20  
15  
10  
5
–70  
–80  
3V RMS  
R
= 2k⍀  
L
L
100  
10  
1
–90  
C
= 100pF  
–100  
–110  
–120  
–130  
0
1
10  
100  
1k  
10k  
100k  
0
100 200 300 400 500 600 700 800 900  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
INPUT ERROR SIGNAL – mV  
(AT SUMMING JUNCTION)  
FREQUENCY – Hz  
Figure 17. Input Noise Voltage  
Spectral Density  
Figure 18. Slew Rate vs. Input  
Error Signal  
Figure 16. Total Harmonic Distor-  
tion vs. Frequency  
–5–  
REV. B  
AD712  
+V  
S
25  
0.1F  
1/2  
AD712  
OUTPUT  
INPUT  
100pF  
2k⍀  
0.1F  
20  
–V  
S
Figure 20. T.H.D. Test Circuit  
V
OUT  
15  
–60 –40 –20  
20k⍀  
2.2k⍀  
+V  
0
20  
40  
60  
80  
100 120  
140  
S
TEMPERATURE – ؇C  
2
3
6
5
8
1/2  
AD712  
1/2  
AD712  
1
Figure 19. Slew Rate vs. Temperature  
7
5k⍀  
20V p-p  
5k⍀  
4
V
IN  
V
OUT  
–V  
S
CROSSTALK = 20 LOG  
10V  
IN  
Figure 21. Crosstalk Test Circuit  
100  
90  
100  
90  
+V  
S
0.1F  
V
OUT  
1/2  
AD712  
10  
10  
R
C
0%  
0%  
L
L
V
IN  
100pF  
2k⍀  
100ns  
50mV  
1s  
0.1F  
5V  
SQUARE  
WAVE  
INPUT  
–V  
S
Figure 22c. Unity Gain Follower  
Pulse Response (Small Signal)  
Figure 22a. Unity Gain Follower  
Figure 22b. Unity Gain Follower  
Pulse Response (Large Signal)  
100  
90  
100  
90  
5k⍀  
+V  
S
0.1F  
5k⍀  
V
IN  
V
OUT  
1/2  
AD712  
10  
10  
0%  
R
C
L
0%  
L
SQUARE  
WAVE  
INPUT  
100pF  
2k⍀  
200ns  
50mV  
1s  
0.1F  
5V  
–V  
S
Figure 23c. Unity Gain Inverter  
Pulse Response (Small Signal)  
Figure 23a. Unity Gain Inverter  
Figure 23b. Unity Gain Inverter Pulse  
Response (Large Signal)  
–6–  
REV. B  
AD712  
OPTIMIZING SETTLING TIME  
In addition to a significant improvement in settling time, the  
low offset voltage, low offset voltage drift, and high open-loop  
gain of the AD711/AD712 family assures 12-bit accuracy over  
the full operating temperature range.  
Most bipolar high-speed D/A converters have current outputs;  
therefore, for most applications, an external op amp is required  
for current-to-voltage conversion. The settling time of the con-  
verter/op amp combination depends on the settling time of the  
DAC and output amplifier. A good approximation is:  
The excellent high-speed performance of the AD712 is shown in  
the oscilloscope photos of Figure 25. Measurements were taken  
using a low input capacitance amplifier connected directly to the  
summing junction of the AD712 – both photos show the worst  
case situation: a full-scale input transition. The DAC’s 4 kΩ  
[10 k||8 k= 4.4 k] output impedance together with a  
10 kfeedback resistor produce an op amp noise gain of 3.25.  
The current output from the DAC produces a 10 V step at the  
op amp output (0 to –10 V Figure 25a, –10 V to 0 V Figure  
25b.)  
tS Total = (tS DAC )2 +(tS AMP )2  
The settling time of an op amp DAC buffer will vary with the  
noise gain of the circuit, the DAC output capacitance, and with  
the amount of external compensation capacitance across the  
DAC output scaling resistor.  
Settling time for a bipolar DAC is typically 100 ns to 500 ns.  
Previously, conventional op amps have required much longer  
settling times than have typical state-of-the-art DACs; therefore,  
the amplifier settling time has been the major limitation to a  
high-speed voltage-output D-to-A function. The introduction of  
the AD711/AD712 family of op amps with their 1 µs (to ±0.01%  
of final value) settling time now permits the full high-speed  
capabilities of most modern DACs to be realized.  
Therefore, with an ideal op amp, settling to ±1/2 LSB (±0.01%)  
requires that 375 µV or less appears at the summing junction.  
This means that the error between the input and output (that  
voltage which appears at the AD712 summing junction) must be  
less than 375 µV. As shown in Figure 25, the total settling time  
for the AD712/AD565 combination is 1.2 microseconds.  
0.1F  
BIPOLAR  
OFFSET ADJUST  
R1  
100⍀  
REF  
OUT  
BIPOLAR  
OFF  
V
CC  
R2  
100⍀  
20V  
SPAN  
GAIN  
ADJUST  
+
10V  
5k⍀  
AD565A  
10pF  
9.95k⍀  
+15V  
10V  
SPAN  
REF  
IN  
0.1F  
19.95k⍀  
0.5mA  
5k⍀  
8k⍀  
DAC  
OUT  
I
REF  
DAC  
REF  
GND  
1/2  
AD712  
I
OUTPUT  
–10V TO +10V  
O
I
I
= 4 
؋
 
20k⍀  
OUT  
؋
 CODE  
REF  
0.1F  
POWER  
GND  
–V  
EE  
MSB  
LSB  
–15V  
0.1F  
Figure 24. ±10 V Voltage Output Bipolar DAC  
1mV  
5V  
1mV  
5V  
100  
90  
100  
90  
SUMMING  
JUNCTION  
SUMMING  
JUNCTION  
0V  
0V  
OUTPUT  
10  
OUTPUT  
10  
0%  
0%  
–10V  
–10V  
500ns  
500ns  
b. (Full-Scale Positive Transition)  
a. (Full-Scale Negative Transition)  
Figure 25. Settling Characteristics for AD712 with AD565A  
–7–  
REV. B  
AD712  
OP AMP SETTLING TIME -  
A MATHEMATICAL MODEL  
When RO and IO are replaced with their Thevenin VIN and RIN  
equivalents, the general purpose inverting amplifier of Figure  
26b is created. Note that when using this general model, capaci-  
tance CX is EITHER the input capacitance of the op amp if a  
simple inverting op amp is being simulated OR it is the com-  
bined capacitance of the DAC output and the op amp input if  
the DAC buffer is being modeled.  
The design of the AD712 gives careful attention to optimizing  
individual circuit components; in addition, a careful trade-off  
was made: the gain bandwidth product (4 MHz) and slew rate  
(20 V/µs) were chosen to be high enough to provide very fast  
settling time but not too high to cause a significant reduction in  
phase margin (and therefore stability). Thus designed, the  
AD712 settles to ±0.01%, with a 10 V output step, in under  
1 µs, while retaining the ability to drive a 250 pF load capaci-  
tance when operating as a unity gain follower.  
1/2  
AD712  
V
OUT  
R
C
L
If an op amp is modeled as an ideal integrator with a unity gain  
crossover frequency of ωο/2π, Equation 1 will accurately de-  
scribe the small signal behavior of the circuit of Figure 26a,  
consisting of an op amp connected as an I-to-V converter at the  
output of a bipolar or CMOS DAC. This equation would com-  
pletely describe the output of the system if not for the op amp’s  
finite slew rate and other nonlinear effects.  
L
C
F
R
R
IN  
V
C
IN  
X
Figure 26b. Simplified Model of the AD712  
Used as an Inverter  
Equation 1.  
VO  
IIN  
R  
GN  
In either case, the capacitance CX causes the system to go from  
a one-pole to a two-pole response; this additional pole increases  
settling time by introducing peaking or ringing in the op amp  
output. Since the value of CX can be estimated with reasonable  
accuracy, Equation 2 can be used to choose a small capacitor,  
CF, to cancel the input pole and optimize amplifier response.  
Figure 27 is a graphical solution of Equation 2 for the AD712  
with R = 4 k.  
=
R(Cf = CX  
)
s2 +  
+ RCf s +1  
ωο  
ωο  
ω
2π  
where ο =op amp’s unity gain frequency  
R
1+  
GN = “noise” gain of circuit  
RO  
This equation may then be solved for Cf:  
Equation 2.  
60  
50  
2 RCX ωο +(1 GN )  
Rωο  
2 GN  
Rωο  
Cf  
=
+
G
= 4.0  
40  
30  
20  
N
In these equations, capacitor CX is the total capacitor appearing  
the inverting terminal of the op amp. When modeling a DAC  
buffer application, the Norton equivalent circuit of Figure 26a  
can be used directly; capacitance CX is the total capacitance of  
the output of the DAC plus the input capacitance of the op amp  
(since the two are in parallel).  
G
N
= 3.0  
G
= 2.0  
= 1.5  
N
G
N
G
= 1.0  
10  
0
N
0
10  
20  
30  
C
40  
50  
60  
1/2  
AD712  
F
V
OUT  
R
C
L
L
Figure 27. Value of Capacitor CF vs. Value of CX  
C
F
R
I
R
C
X
O
O
Figure 26a. Simplified Model of the AD712 Used as a  
Current-Out DAC Buffer  
–8–  
REV. B  
AD712  
The photos of Figures 28a and 28b show the dynamic response  
of the AD712 in the settling test circuit of Figure 29.  
The input of the settling time fixture is driven by a flat-top pulse  
generator. The error signal output from the false summing node  
of A1 is clamped, amplified by A2 and then clamped again. The  
error signal is thus clamped twice: once to prevent overloading  
amplifier A2 and then a second time to avoid overloading the  
oscilloscope preamp. The Tektronix oscilloscope preamp type  
7A26 was carefully chosen because it does not overload with  
these input levels. Amplifier A2 needs to be a very high speed  
FET-input op amp; it provides a gain of 10, amplifying the error  
signal output of A1.  
5V  
100  
90  
10  
0%  
GUARDING  
5mV  
The low input bias current (15 pA) and low noise characteristics  
of the AD712 BiFET op amp make it suitable for electrometer  
applications such as photo diode preamplifiers and picoampere  
current-to-voltage converters. The use of a guarding technique  
such as that shown in Figure 30, in printed circuit board layout  
and construction is critical to minimize leakage currents. The  
guard ring is connected to a low impedance potential at the  
same level as the inputs. High impedance signal lines should not  
be extended for any unnecessary length on the printed circuit  
board.  
500ns  
Figure 28a. Settling Characteristics 0 V to +10 V Step  
Upper Trace: Output of AD712 Under Test (5 V/Div)  
Lower Trace: Amplified Error Voltage (0.01%/Div)  
5V  
100  
90  
TO-99 (H) PACKAGE  
PLASTIC MINI-DIP (N) PACKAGE  
CERDIP (Q) PACKAGE  
AND SOIC (R) PACKAGE  
4
4
5
10  
5
6
7
8
0%  
3
5mV  
2
500ns  
3
2
6
Figure 28b. Settling Characteristics 0 V to –10 V Step  
Upper Trace: Output of AD712 Under Test (5 V/Div)  
Lower Trace: Amplified Error Voltage (0.01%/Div)  
1
7
1
8
Figure 30. Board Layout for Guarding Inputs  
5pF  
TEKTRONIX 7A26  
OSCILLOSCOPE  
PREAMP  
INPUT SECTION  
V
؋
 5  
ERROR  
1/2  
205⍀  
AD712  
HP2835  
20pF  
1M⍀  
HP2835  
0.47F  
0.47F  
4.99k⍀  
4.99k⍀  
–15V +15V  
10k⍀  
200⍀  
DATA  
DYNAMICS  
5109  
5-18pF  
10k⍀  
1.1k⍀  
V
IN  
0.2-0.6pF  
10k⍀  
1/2  
AD712  
V
OUT  
10pF  
5k⍀  
(OR EQUIVALENT  
FLAT TOP  
PULSE  
GENERATION)  
0.1F  
0.1F  
+15V  
–15V  
Figure 29. Settling Time Test Circuit  
–9–  
REV. B  
AD712  
V
V
D/A CONVERTER APPLICATIONS  
R2A*  
DD  
The AD712 is an excellent output amplifier for CMOS DACs.  
It can be used to perform both 2 quadrant and 4 quadrant op-  
eration. The output impedance of a DAC using an inverted  
R-2R ladder approaches R for codes containing many 1s, 3R for  
codes containing a single 1, and for codes containing all zero,  
the output impedance is infinite.  
+15V  
C1A  
33pF  
0.1F  
GAIN  
ADJUST  
R
FB  
DD  
OUT1  
1/2  
AD712  
V
IN  
AD7545  
V
V
OUTA  
REF  
R1A*  
AGND  
DGND  
*REFER TO  
TABLE I  
ANALOG  
COMMON  
For example, the output resistance of the AD7545 will modu-  
late between 11 kand 33 k. Therefore, with the DAC’s  
internal feedback resistance of 11 k, the noise gain will vary  
from 2 to 4/3. This changing noise gain modulates the effect of  
the input offset voltage of the amplifier, resulting in nonlinear  
DAC amplifier performance.  
DB11–DB0  
R2B*  
V
DD  
DD  
C1B  
33pF  
GAIN  
ADJUST  
The AD712K with guaranteed 700 µV offset voltage minimizes  
this effect to achieve 12-bit performance.  
R
V
FB  
OUT1  
1/2  
AD712  
V
IN  
AD7545  
V
V
OUTB  
REF  
Figures 31 and 32 show the AD712 and AD7545 (12-bit  
CMOS DAC) configured for unipolar binary (2-quadrant multi-  
plication) or bipolar (4-quadrant multiplication) operation.  
Capacitor C1 provides phase compensation to reduce overshoot  
and ringing.  
R1B*  
AGND  
DGND  
0.1F  
*REFER TO  
TABLE I  
ANALOG  
COMMON  
–15V  
DB11–DB0  
Figure 31. Unipolar Binary Operation  
R1 and R2 calibrate the zero offset and gain error of the DAC.  
Specific values for these resistors depend upon the grade of  
AD7545 and are shown below.  
Table I. Recommended Trim Resistor Values vs. Grades  
of the AD7545 for VDD = +5 V  
Trim  
Resistor  
JN/AQ/SD KN/BQ/TD  
LN/UD  
GLN/GUD  
R1  
R2  
500  
150 Ω  
200 Ω  
68 Ω  
100 Ω  
33 Ω  
20 Ω  
6.8 Ω  
R2*  
V
V
R4  
20k1%  
DD  
+15V  
C1  
33pF  
0.1F  
R5  
20k1%  
GAIN  
ADJUST  
R
FB  
DD  
OUT1  
1/2  
AD712  
AD7545  
V
V
REF  
IN  
1/2  
R3  
10k1%  
R1*  
AGND  
V
OUT  
AD712  
DGND  
DB11–DB0  
12  
0.1F  
DATA INPUT  
*FOR VALUES OF  
R1 AND R2 SEE TABLE I  
–15V  
ANALOG  
COMMON  
Figure 32. Bipolar Operation  
–10–  
REV. B  
AD712  
Figures 33a and 33b show the settling time characteristics of the  
AD712 when used as a DAC output buffer for the AD7545.  
DRIVING THE ANALOG INPUT OF AN A/D CONVERTER  
An op amp driving the analog input of an A/D converter, such  
as that shown in Figure 34, must be capable of maintaining a  
constant output voltage under dynamically changing load condi-  
tions. In successive-approximation converters, the input current  
is compared to a series of switched trial currents. The compari-  
son point is diode clamped but may deviate several hundred  
millivolts resulting in high frequency modulation of A/D input  
current. The output impedance of a feedback amplifier is made  
artificially low by the loop gain. At high frequencies, where the  
loop gain is low, the amplifier output impedance can approach  
its open loop value. Most IC amplifiers exhibit a minimum open  
loop output impedance of 25 due to current limiting resistors.  
100  
90  
10  
0%  
500ns  
a. Full-Scale Positive Transition  
12/8  
STS  
CS  
HIGH  
BITS  
A
O
GAIN  
ADJUST  
AD574  
R/C  
100  
90  
CE  
MIDDLE  
BITS  
REF IN  
R2  
100⍀  
LOW  
BITS  
REF OUT  
BIP OFF  
R1  
100⍀  
+15V  
0.1F  
+5V  
+15V  
–15V  
10  
10V  
IN  
OFFSET  
ADJUST  
0%  
1/2  
20V  
IN  
500ns  
AD712  
؎10V  
ANALOG  
INPUT  
ANA  
COM  
DIG  
COM  
0.1F  
b. Full-Scale Negative Transition  
ANALOG COM  
Figure 33. Settling Characteristics for AD712 with AD7545  
–15V  
Figure 34. AD712 as ADC Unity Gain Buffer  
NOISE CHARACTERISTICS  
A few hundred microamps reflected from the change in converter  
loading can introduce errors in instantaneous input voltage. If  
the A/D conversion speed is not excessive and the bandwidth of  
the amplifier is sufficient, the amplifier’s output will return to  
the nominal value before the converter makes its comparison.  
However, many amplifiers have relatively narrow bandwidth  
yielding slow recovery from output transients. The AD712 is  
ideally suited to drive high speed A/D converters since it offers  
both wide bandwidth and high open-loop gain.  
The random nature of noise, particularly in the 1/f region,  
makes it difficult to specify in practical terms. At the same time,  
designers of precision instrumentation require certain guaran-  
teed maximum noise levels to realize the full accuracy of their  
equipment.  
The AD712C grade is specified at a maximum level of 4.0 µV  
p-p, in a 0.1 Hz to 10 Hz bandwidth. Each AD712C receives a  
100% noise test for two 10-second intervals; devices with any  
excursion in excess of 4.0 µV are rejected. The screened lot is  
then submitted to Quality Control for verification on an AQL  
basis.  
All other grades of the AD712 are sample-tested on an AQL  
basis to a limit of 6 µV p-p, 0.1 Hz to 10 Hz.  
–11–  
REV. B  
AD712  
PD711 BUFF  
1s  
5V  
100  
90  
100  
90  
10  
10  
0%  
0%  
500mV  
200ns  
–10V ADC IN  
a. Source Current = 2 mA  
Figure 37. Transient Response RL = 2 k, CL = 500 pF  
ACTIVE FILTER APPLICATIONS  
PD711 BUFF  
In active filter applications using op amps, the dc accuracy of  
the amplifier is critical to optimal filter performance. The  
amplifier’s offset voltage and bias current contribute to output  
error. Offset voltage will be passed by the filter and may be  
amplified to produce excessive output offset. For low frequency  
applications requiring large value input resistors, bias currents  
flowing through these resistors will also generate an offset voltage.  
100  
90  
10  
0%  
In addition, at higher frequencies, an op amp’s dynamics must  
be carefully considered. Here, slew rate, bandwidth, and  
open-loop gain play a major role in op amp selection. The slew  
rate must be fast as well as symmetrical to minimize distortion.  
The amplifier’s bandwidth in conjunction with the filter’s gain  
will dictate the frequency response of the filter.  
500mV  
200ns  
–5V ADC IN  
b. Sink Current = 1 mA  
Figure 35. ADC Input Unity Gain Buffer Recovery Times  
DRIVING A LARGE CAPACITIVE LOAD  
The use of a high performance amplifier such as the AD712 will  
minimize both dc and ac errors in all active filter applications.  
The circuit in Figure 36 employs a 100 isolation resistor  
which enables the amplifier to drive capacitive loads exceeding  
1500 pF; the resistor effectively isolates the high frequency  
feedback from the load and stabilizes the circuit. Low frequency  
feedback is returned to the amplifier summing junction via the  
low pass filter formed by the 100 series resistor and the load  
capacitance, CL. Figure 37 shows a typical transient response  
for this connection.  
4.99k⍀  
30pF  
+V  
IN  
0.1F  
+
4.99k⍀  
100⍀  
1/2  
INPUT  
OUTPUT  
AD712  
C
1
R
1
TYPICAL CAPACITANCE  
LIMIT FOR VARIOUS  
LOAD RESISTORS  
0.1F  
+
R
C UP TO  
1
1
–V  
2k⍀  
10k⍀  
20⍀  
1500pF  
1500pF  
1000pF  
IN  
Figure 36. Circuit for Driving a Large Capacitive Load  
–12–  
REV. B  
AD712  
SECOND ORDER LOW PASS FILTER  
REF 20.0 dBm  
10 dB/DIV  
OFFSET .0 Hz  
RANGE 15.0 dBm 0 dB  
Figure 38 depicts the AD712 configured as a second order  
Butterworth low pass filter. With the values as shown, the corner  
frequency will be 20 kHz; however, the wide bandwidth of the  
AD712 permits a corner frequency as high as several hundred  
kilohertz. Equations for component selection are shown below.  
TYPICAL BIFET  
R1 = R2 = user selected (typical values: 10 k– 100 k)  
1.414  
(2π)( f cutoff )( R1)  
0.707  
(2π)( f cutoff )( R1)  
C1 (in farads) =  
C2 =  
AD712  
C1  
560pF  
+15V  
0.1F  
R1  
20k⍀  
R2  
20k⍀  
SPAN 10 000 000.0 Hz  
ST .8 SEC  
CENTER 5 000 000.0 Hz  
RBW 30 kHz  
VBW 30 kHz  
1/2  
AD712  
C2  
280pF  
V
OUT  
Figure 39.  
V
IN  
0.1F  
–15V  
Figure 38. Second Order Low Pass Filter  
An important property of filters is their out-of-band rejection.  
The simple 20 kHz low pass filter shown in Figure 38, might be  
used to condition a signal contaminated with clock pulses or  
sampling glitches which have considerable energy content at  
high frequencies.  
The low output impedance and high bandwidth of the AD712  
minimize high frequency feedthrough as shown in Figure 39.  
The upper trace is that of another low-cost BiFET op amp  
showing 17 dB more feedthrough at 5 MHz.  
–13–  
REV. B  
AD712  
+15V  
0.1F  
+15V  
0.1F  
V
IN  
0.001F  
2800⍀  
6190⍀  
6490⍀  
6190⍀  
2800⍀  
A1  
AD711  
A2  
AD711  
V
–15  
–15  
–15  
–15  
OUT  
4.9395E  
5.9276E  
5.9276E  
4.9395E  
0.1F  
A
B
C
D
0.1F  
4.99k⍀  
4.99k⍀  
–15V  
*
*
*
*
–15V  
100k⍀  
0.001F  
124k⍀  
SEE TEXT  
*
Figure 40. 9-Pole Chebychev Filter  
9-POLE CHEBYCHEV FILTER  
REF 5.0 dBm  
10 dB/DIV  
MARKER 96 800.0 Hz  
RANGE –5.0 dBm –90 dBm  
Figure 40 shows the AD712 and its dual counterpart, the  
AD711, as a 9-pole Chebychev filter using active frequency  
dependent negative resistors (FDNR). With a cutoff frequency  
of 50 kHz and better than 90 dB rejection, it may be used as an  
antialiasing filter for a 12-bit Data Acquisition System with  
100 kHz throughput.  
As shown in Figure 40, the filter is comprised of four FDNRs  
(A, B, C, D) having values of 4.9395 ϫ 10–15 and 5.9276 ϫ  
10–15 farad-seconds. Each FDNR active network provides a  
two-pole response; for a total of 8 poles. The 9th pole consists  
of a 0.001 µF capacitor and a 124 kresistor at Pin 3 of ampli-  
fier A2. Figure 41 depicts the circuits for each FDNR with the  
proper selection of R. To achieve optimal performance, the  
0.001 µF capacitors must be selected for 1% or better matching  
and all resistors should have 1% or better tolerance.  
STOP 200 000.0 Hz  
ST 69.6 SEC  
START.0 Hz  
RBW 300 Hz  
VBW 30 Hz  
Figure 42. High Frequency Response for 9-Pole  
Chebychev Filter  
+15V  
0.1F  
0.001F  
1/2  
AD712  
R
0.1F  
1/2  
AD712  
0.001F  
–15V  
1.0k⍀  
4.99k⍀  
–15  
R: 24.9kFOR 4.9395E  
–15  
29.4kFOR 5.9276E  
Figure 41. FDNR for 9-Pole Chebychev Filter  
–14–  
REV. B  
AD712  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Cerdip  
(Q-8)  
Mini-DIP  
(N-8)  
0.390 (9.91)  
0.005 (0.13)  
0.055 (1.35)  
MIN  
MAX  
8
5
4
0.250 0.310  
(6.35) (7.87)  
8
5
0.25R  
(0.64)  
0.310 (7.87)  
1
0.300 (7.62)  
REF  
0.220 (5.59)  
1
PIN 1  
4
0.035 ؎0.01  
(0.890 ؎0.25)  
0.195 (4.95)  
0.115 (2.93)  
0.165 ؎0.01  
4.19 ؎0.25  
PIN 1  
0.220 (5.59)  
0.310 (7.87)  
0.405 (10.29)  
MAX  
0.18 ؎0.01  
(4.57 ؎0.76)  
0.015 (0.38)  
0.060 (1.52)  
0.125 (3.18)  
MIN  
0.200 (5.08)  
MAX  
0.011 ؎0.003  
(0.204 ؎0.081)  
SEATING  
PLANE  
0.033 (0.84)  
NOM  
0.150  
(3.81)  
MIN  
0.018 ؎0.003  
(0.460 ؎0.081)  
0.100  
(2.54)  
TYP  
0.125 (3.18)  
0.200 (5.08)  
15؇  
0؇  
0.008 (0.20)  
0.015 (0.38)  
SEATING  
PLANE  
0.014 (0.36) 0.100  
0.030 (0.76)  
15؇  
0؇  
(2.54)  
BSC  
0.023 (0.58)  
0.070 (1.78)  
TO-99  
SOIC  
(H-08A)  
(R-8)  
REFERENCE PLANE  
0.1968 (5.00)  
0.1890 (4.80)  
0.500 (12.70)  
MIN  
0.185 (4.70)  
0.165 (4.19)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
5
1
4
3
6
0.045 (1.1)  
0.020 (0.51)  
0.0688 (1.75)  
0.0532 (1.35)  
0.200  
(5.1)  
TYP  
0.0196 (0.50)  
0.0099 (0.25)  
PIN 1  
x 45؇  
7
2
8
0.0098 (0.25)  
0.0040 (0.10)  
BOTTOM VIEW  
8؇  
0؇  
0.100  
(2.54)  
BSC  
0.019 (0.48)  
0.016 (0.41)  
0.0500 0.020 (0.51)  
0.050 (1.27)  
0.016 (0.40)  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
PLANE  
(1.27)  
BSC  
0.013 (0.33)  
0.034 (0.86)  
0.028 (0.71)  
0.040 (1.01) MAX  
0.021 (0.53)  
0.016 (0.41)  
INSULATION  
0.05 (1.27) MAX  
45؇ BSC  
BASE & SEATING PLANE  
EQUALLY SPACED  
–15–  
REV. B  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY