AD7143 [ADI]

Programmable Controller for Capacitance Touch Sensors; 对于电容式触摸传感器的可编程控制器
AD7143
型号: AD7143
厂家: ADI    ADI
描述:

Programmable Controller for Capacitance Touch Sensors
对于电容式触摸传感器的可编程控制器

传感器 控制器
文件: 总56页 (文件大小:697K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Programmable Controller for  
Capacitance Touch Sensors  
AD7143  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Programmable capacitance-to-digital converter  
25 ms update rate (@ maximum sequence length)  
Better than 1 fF resolution  
8 capacitance sensor input channels  
No external RC tuning components required  
Automatic conversion sequencer  
On-chip automatic calibration logic  
Automatic compensation for environmental changes  
Automatic adaptive threshold and sensitivity levels  
On-chip RAM to store calibration data  
I2C®-compatible serial interface  
Separate VDRIVE level for serial interface  
Interrupt output for host controller  
16-lead, 4 mm x 4 mm LFCSP-VQ  
POWER-ON  
RESET  
AD7143  
15  
16  
1
CIN0  
CIN1  
CIN2  
CIN3  
CIN4  
CIN5  
CIN6  
CIN7  
LOGIC  
CALIBRA-  
TION  
ENGINE  
16-BIT  
Σ-Δ  
CDC  
2
3
4
5
CALIBRA-  
TION  
9
VCC  
GND  
6
CONTROL  
AND  
RAM  
10  
DATA  
REGISTERS  
250kHz  
7
8
CSHIELD  
SRC  
EXCITATION  
SOURCE  
INTERRUPT  
LOGIC  
2
I C SERIAL INTERFACE  
AND CONTROL LOGIC  
2.6 V to 3.6 V supply voltage  
Low operating current  
11  
12  
13  
14  
Full power mode: less than 1 mA  
VDRIVE SDA SCLK  
INT  
Low power mode: 50 μA  
Figure 1.  
APPLICATIONS  
Personal music and multimedia players  
Cell phones  
Digital still cameras  
Smart hand-held devices  
Television, A/V, and remote controls  
Gaming consoles  
The AD7143 has on-chip calibration logic to account for  
changes in the ambient environment. The calibration sequence is  
performed automatically and at continuous intervals, while the  
sensors are not touched. This ensures that there are no false or  
nonregistering touches on the external sensors due to a  
changing environment.  
GENERAL DESCRIPTION  
The AD7143 is an integrated capacitance-to-digital converter  
(CDC) with on-chip environmental calibration for use in  
systems requiring a novel user input method. The AD7143  
interfaces to external capacitance sensors implementing  
functions, such as capacitive buttons, scroll bars, and  
scroll wheels.  
The AD7143 has an I2C-compatible serial interface and a  
separate VDRIVE pin for I2C serial interface operating voltages  
between 1.65 V and 3.6 V.  
The CDC has eight inputs channeled through a switch matrix to  
a 16-bit, 250 kHz sigma-delta (∑-Δ) capacitance-to-digital  
converter. The CDC is capable of sensing changes in the  
capacitance of the external sensors and uses this information to  
register a sensor activation. The external sensors can be  
arranged as a series of buttons, as a scroll bar or wheel, or as a  
combination of sensor types. By programming the registers, the  
user has full control over the CDC setup. High resolution  
sensors require software to run on the host processor.  
The AD7143 is available in a 16-lead, 4 mm × 4 mm LFCSP-VQ  
and operates from a 2.6 V to 3.6 V supply. The operating  
current consumption is less than 1 mA, falling to 50 μA in low  
power mode (conversion interval of 400 ms).  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD7143  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Proximity Sensitivity.................................................................. 17  
Slow FIFO.................................................................................... 19  
SLOW_FILTER_UPDATE_LVL.............................................. 19  
Environmental Calibration ........................................................... 22  
Capacitance Sensor Behavior without Calibration................ 22  
Capacitance Sensor Behavior with Calibration...................... 23  
Adaptive Threshold and Sensitivity ............................................. 25  
Interrupt Output............................................................................. 26  
CDC Conversion Complete Interrupt..................................... 26  
Sensor Touch Interrupt.............................................................. 26  
Serial Interface ................................................................................ 28  
I2C Compatible Interface........................................................... 28  
PCB Design Guidelines ................................................................. 31  
Capacitive Sensor Board Mechanical Specifications............. 31  
Chip Scale Packages ................................................................... 31  
Power-Up Sequence ....................................................................... 32  
Typical Application Circuits ......................................................... 33  
Register Map ................................................................................... 34  
Detailed Register Descriptions ..................................................... 35  
Bank 1 Registers ......................................................................... 35  
Bank 2 Registers ......................................................................... 43  
Bank 3 Registers ......................................................................... 47  
Outline Dimensions....................................................................... 55  
Ordering Guide .......................................................................... 55  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
I2C Timing Specifications............................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 11  
Capacitance Sensing Theory..................................................... 11  
Operating Modes........................................................................ 12  
Capacitance Sensor Input Configuration.................................... 13  
CIN Input Multiplexer Setup.................................................... 13  
Capacitiance-to-Digital Converter............................................... 14  
Oversampling the CDC Output ............................................... 14  
Capacitance Sensor Offset Control.......................................... 14  
Conversion Sequencer ............................................................... 14  
CDC Conversion Sequence Time ............................................ 15  
CDC Conversion Results........................................................... 16  
Noncontact Proximity Detection ................................................. 17  
Recalibration ............................................................................... 17  
REVISION HISTORY  
1/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 56  
 
AD7143  
SPECIFICATIONS  
VCC = 2.6 V to 3.6 V, TA = −40oC to +85°C, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
CAPACITANCE-TO-DIGITAL CONVERTER  
Update Rate  
Resolution  
CIN Input Range1  
23  
25  
16  
2
26  
ms  
Bit  
pF  
Bit  
Eight conversion stages in sequencer, decimation = 256  
Guaranteed by design, but not production tested  
No Missing Codes  
16  
CIN Input Leakage  
Total Unadjusted Error  
Output Noise (Peak-to-Peak)  
25  
nA  
%
20  
7
3
0.8  
0.5  
Codes  
Codes  
Codes  
Codes  
pF  
Decimation rate = 128  
Decimation rate = 256  
Decimation rate = 128  
Decimation rate = 256  
Parasitic capacitance to ground, per CIN input guaranteed  
by characterization  
Output Noise (RMS)  
Parasitic Capacitance  
40  
5
CBULK Offset Range1  
CBULK Offset Resolution  
Low Power Mode Delay Accuracy  
EXCITATION SOURCE  
Frequency  
20  
156.25  
pF  
fF  
%
% of 200 ms, 400 ms, 600 ms, or 800 ms  
Capacitance load on source to ground  
237.5  
240  
262.5 kHz  
Output Voltage  
VCC  
V
Short-Circuit Source Current  
Short-Circuit Sink Current  
Maximum Output Load  
CSHIELD Output Drive  
CSHIELD Bias Level  
20  
50  
250  
10  
VCC/2  
mA  
mA  
pF  
μA  
V
LOGIC INPUTS (SCLK, SDA)  
VIH Input High Voltage  
VIL Input Low Voltage  
IIH Input High Voltage  
IIL Input Low Voltage  
Hysteresis  
0.7 × VDRIVE  
−1  
V
V
μA  
μA  
mV  
0.4  
1
VIN = GND  
150  
OPEN-DRAIN OUTPUTS (SCLK, SDA, INT)  
VOL Output Low Voltage  
IOH Output High Leakage Current  
POWER  
VCC  
VDRIVE  
0.4  
1
V
μA  
ISINK = −1 mA  
+0.1  
3.3  
2.6  
1.65  
3.6  
3.6  
1
20  
30  
4.5  
15  
V
V
ICC  
0.9  
mA  
μA  
μA  
μA  
μA  
In full power mode  
Low power mode, converter idle, TA = 25°C  
Low power mode, converter idle  
Full shutdown, TA = 25°C  
Full shutdown  
16  
2.25  
1 CIN and CBULK are defined as follows:  
C
IN  
PLASTIC OVERLAY  
SENSOR BOARD  
C
BULK  
CAPACITIVE SENSOR  
Rev. 0 | Page 3 of 56  
 
AD7143  
Table 2. Typical Average Current in Low Power Mode, VCC = 3.6 V, T = 25°C, Load of 50 pF on SRC Pin  
Number of Conversion Stages, Current Values Expressed in ꢀA  
Low Power Mode Delay  
Decimation Rate  
1
2
3
4
5
6
7
8
200 ms  
128  
256  
128  
256  
128  
256  
128  
256  
26.4  
35.6  
21.3  
26  
19.6  
22.7  
18.7  
21.1  
33.3  
49.1  
24.8  
32.9  
21.9  
27.4  
20.5  
24.6  
40.1  
62.2  
28.3  
39.7  
24.3  
32  
46.9  
74.9  
31.7  
46.5  
26.6  
25.6  
24  
53.5  
87.3  
35.2  
53.1  
28.9  
41.1  
25.7  
35  
60  
66.5  
111  
42  
66.1  
33.5  
50  
72.8  
122.3  
45.4  
72.4  
35.8  
54.4  
31  
99.3  
38.6  
59.6  
31.2  
45.6  
27.5  
38.4  
400 ms  
600 ms  
800 ms  
22.2  
28.1  
29.2  
41.8  
31.5  
45.2  
Table 3. Maximum Average Current in Low Power Mode, VCC = 3.6 V, Load of 50 pF on SRC Pin  
Number of Conversion Stages, Current Values Expressed in ꢀA  
Low Power Mode Delay  
Decimation Rate  
1
2
3
4
5
6
7
8
200 ms  
128  
256  
128  
256  
128  
256  
128  
256  
42.2  
53.2  
36.1  
41.8  
34.1  
37.9  
33.1  
35.9  
50.5  
69.3  
40.4  
50.1  
37.0  
43.5  
35.2  
40.1  
58.7  
84.9  
44.5  
58.2  
39.7  
49.0  
37.3  
44.3  
66.7  
100.0  
48.7  
66.2  
42.5  
54.5  
39.4  
48.4  
74.6  
114.6  
52.8  
74.1  
45.3  
60.0  
41.5  
52.6  
82.3  
128.7  
56.9  
82.0  
48.1  
65.2  
43.6  
56.6  
90.0  
142.5  
60.9  
89.5  
50.8  
70.5  
45.7  
60.7  
97.5  
155.8  
64.5  
97.1  
53.4  
75.7  
47.7  
64.7  
400 ms  
600 ms  
800 ms  
Rev. 0 | Page 4 of 56  
AD7143  
I2C TIMING SPECIFICATIONS  
TA = −40°C to +85°C, VCC = 2.6 V to 3.6 V, unless otherwise noted. Sample tested at 25°C to ensure compliance. All input signals timed  
from a voltage level of 1.6 V.  
Table 4. I2C Timing Specifications1  
Parameter  
Limit  
400  
0.6  
1.3  
0.6  
100  
300  
0.6  
0.6  
1.3  
Unit  
Description  
fSCLK  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
kHz max  
μs min  
μs min  
μs min  
ns min  
ns min  
μs min  
μs min  
μs min  
ns max  
ns max  
Start condition hold time, tHD; STA  
Clock low period, tLOW  
Clock high period, tHIGH  
Data setup time, tSU; DAT  
Data hold time, tHD; DAT  
Stop condition setup time, tSU; STO  
Start condition setup time, tSU; STA  
Bus free time between stop and start conditions, tBUF  
Clock/data rise time  
tR  
tF  
300  
300  
Clock/data fall time  
1 Guaranteed by design, not production tested.  
200µA  
I
OL  
TO OUTPUT  
PIN  
1.6V  
C
L
50pF  
200µA  
I
OH  
Figure 2. Load Circuit for Digital Output Timing Specifications  
Rev. 0 | Page 5 of 56  
 
AD7143  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
VCC to GND  
−0.3 V to +3.6 V  
−0.3 V to VCC + 0.3 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3V to VDRIVE + 0.3 V  
10 mA  
Analog Input Voltage to GND  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Input Current to Any Pin Except  
Supplies1  
ESD Rating (Human Body Model)  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
LFCSP_VQ  
2.5 kV  
−40°C to +150°C  
−65°C to +150°C  
150°C  
ESD CAUTION  
Power Dissipation  
450 mW  
θJA Thermal Impedance  
IR Reflow Peak Temperature  
135.7°C/W  
260°C ( 0.5°C)  
Lead Temperature (Soldering 10 sec) 300°C  
1 Transient currents of up to 100 mA do not cause SCR latch-up.  
Rev. 0 | Page 6 of 56  
 
 
AD7143  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
12 SDA  
CIN2  
CIN3  
CIN4  
CIN5  
1
2
3
4
11 VDRIVE  
10 GND  
AD7143  
TOP VIEW  
(Not to Scale)  
9
VCC  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
CIN2  
CIN3  
CIN4  
CIN5  
CIN6  
CIN7  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
Capacitance Sensor Input.  
7
8
CSHIELD  
SRC  
CDC Shield Potential Output. Requires 10 nF capacitor to ground.  
CDC Excitation Source Output.  
9
VCC  
CDC Supply Voltage.  
10  
11  
12  
13  
14  
15  
16  
GND  
VDRIVE  
SDA  
SCLK  
INT  
Ground Reference Point for All CDC Circuitry. Tie to ground plane.  
I2C Serial Interface Operating Voltage  
I2C Serial Data Input/Output. SDA requires pull-up resistor.  
Clock Input for Serial Interface. SCLK requires pull-up resistor.  
General-Purpose Open-Drain Interrupt Output. Programmable polarity; requires pull-up resistor.  
Capacitance Sensor Input.  
CIN0  
CIN1  
Capacitance Sensor Input.  
Rev. 0 | Page 7 of 56  
 
AD7143  
TYPICAL PERFORMANCE CHARACTERISTICS  
1000  
2.45  
2.30  
2.15  
2.00  
1.85  
1.70  
1.55  
1.40  
980  
DEVICE 1  
DEVICE 2  
960  
DEVICE 3  
940  
920  
DEVICE 2  
DEVICE 1  
DEVICE 3  
900  
880  
860  
840  
820  
2.7  
2.8  
2.9  
3.0  
3.1  
V
3.2  
(V)  
3.3  
3.4  
3.5  
3.6  
2.7  
2.8  
2.9  
3.0  
3.1  
V
3.2  
(V)  
3.3  
3.4  
3.5  
3.6  
CC  
CC  
Figure 4. Supply Current vs. Supply Voltage  
Figure 7. Shutdown Supply Current vs. Supply Voltage  
1.10  
180  
DEVICE 1  
LP_CONV_DELAY = 200ms  
160  
140  
120  
100  
80  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
LP_CONV_DELAY = 400ms  
DEVICE 3  
DEVICE 2  
LP_CONV_DELAY = 600ms  
LP_CONV_DELAY = 800ms  
60  
40  
2.7  
2.8  
2.9  
3.0  
3.1  
V
3.2  
(V)  
3.3  
3.4  
3.5  
3.6  
0
50  
100 150 200 250 300 350 400 450 500  
CAPACITANCE LOAD ON SOURCE (pF)  
CC  
Figure 8. Supply Current vs. Capacitive Load on SRC  
Figure 5. Low Power Supply Current vs. Supply Voltage,  
Decimation Rate = 256  
120  
16015  
16010  
16005  
16000  
15995  
15990  
15985  
15980  
DEVICE 1  
100  
80  
LP_CONV_DELAY = 200ms  
DEVICE 2  
LP_CONV_DELAY = 400ms  
LP_CONV_DELAY = 600ms  
60  
DEVICE 3  
40  
LP_CONV_DELAY = 800ms  
20  
0
50  
100 150 200 250 300 350 400 450 500  
CAPACITANCE LOAD ON SOURCE (pF)  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
(V)  
3.3  
3.4  
3.5  
3.6  
V
CC  
Figure 9. Output Code vs. Capacitive Load on SRC  
Figure 6. Low Power Supply Current vs. Supply Voltage  
Decimation Rate = 128  
Rev. 0 | Page 8 of 56  
 
AD7143  
0.020  
0.015  
0.010  
0.005  
0
960  
940  
920  
900  
880  
860  
840  
820  
800  
780  
3.6V  
3.3V  
CDC OUTPUT CODE  
–0.005  
–0.010  
2.7V  
0
10k  
20k  
30k  
40k  
50k  
60k  
70k  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
CDC OUTPUT CODE  
Figure 13. 3.3 V Linearity Error  
Figure 10. Supply Current vs. Temperature  
12  
10  
8
2.5  
2.0  
1.5  
1.0  
0.5  
0
100mV  
200mV  
300mV  
400mV  
500mV  
6
3.6V  
3.3V  
4
2
2.7V  
100  
0
–40  
–20  
0
20  
40  
60  
80  
120  
10  
1k  
100k  
FREQUENCY (Hz)  
10M  
TEMPERATURE (°C)  
Figure 11. Shutdown Supply Current vs. Temperature  
Figure 14. Power Supply Sine Wave Rejection  
180  
160  
140  
120  
100  
80  
4.8  
4.3  
3.8  
3.3  
2.8  
2.3  
1.8  
1.3  
CDC OUTPUT CODE  
300mV  
200mV  
60  
40  
100mV  
50mV  
25mV  
20  
0
100  
1k  
10k  
100k  
1M  
10M  
0
10k  
20k  
30k  
40k  
50k  
60k  
SQUARE WAVE FREQUENCY (Hz)  
CDC OUTPUT CODE  
Figure 15. Power Supply Square Wave Rejection  
Figure 12. 3.3 V Linearity  
Rev. 0 | Page 9 of 56  
AD7143  
32900  
32800  
32700  
32600  
32500  
32400  
32300  
32200  
32100  
32000  
PARASITIC  
CAPACITANCE  
31900  
0
10  
20  
30  
40  
50  
60  
PCB PARASITIC CAPACITANCE (pF)  
Figure 16. CDC Output Codes vs. Parasitic Capacitance  
Rev. 0 | Page 10 of 56  
AD7143  
THEORY OF OPERATION  
The AD7143 is a capacitance-to-digital converter (CDC) with  
on-chip environmental compensation, intended for use in  
portable systems requiring high resolution user input. The  
internal circuitry consists of a 16-bit, ∑-Δ converter that  
converts a capacitive input signal into a digital value. There are  
eight input pins, CIN0 to CIN7, on the AD7143. A switch  
matrix routes the input signals to the CDC. The result of each  
capacitance-to-digital conversion is stored in on-chip registers.  
The host subsequently reads the results over the serial interface.  
The AD7143 has an I2C interface, ensuring that the parts are  
compatible with a wide range of host processors.  
The AD7143 operates from a 2.6 V to 3.6 V supply, and is  
available in a 16-lead, 4 mm × 4 mm LFCSP_VQ.  
CAPACITANCE SENSING THEORY  
The AD7143 uses a method of sensing capacitance known as  
the shunt method. Using this method, an excitation source is  
connected to a transmitter generating an electric field to a  
receiver. The field lines measured at the receiver are translated  
into the digital domain by a ∑-Δ converter. When a finger, or  
other grounded object, interferes with the electric field, some of  
the field lines are shunted to ground and do not reach the  
receiver (see Figure 17). Therefore, the total capacitance  
measured at the receiver decreases when an object comes close  
to the induced field.  
The AD7143 interfaces with up to eight external capacitance  
sensors. These sensors can be arranged as buttons, scroll bars,  
wheels, or as a combination of sensor types. The external  
sensors consist of electrodes on a single or multiple layer PCB  
that interface directly to the AD7143.  
The AD7143 can be set up to implement any set of input  
sensors by programming the on-chip registers. The registers can  
also be programmed to control features such as averaging,  
offsets, and gains for each of the external sensors. There is a  
sequencer on-chip to control how each of the capacitance  
inputs is polled.  
PLASTIC COVER  
Rx  
PCB LAYER  
Tx  
16-BIT  
DATA  
The AD7143 has on-chip digital logic and 528 words of RAM  
used for environmental compensation. The effects of humidity,  
temperature, and other environmental factors can effect the  
operation of capacitance sensors. Transparent to the user, the  
AD7143 performs continuous calibration to compensate for  
these effects, allowing the AD7143 to give error-free results at  
all times.  
EXCITATION  
SIGNAL  
250kHz  
Σ-Δ  
ADC  
AD7143  
Figure 17. Single Layer Sensing Capacitance Method  
In practice, the excitation source and ∑-Δ ADC are implemented  
on the AD7143, while the transmitter and receiver are constructed  
on a PCB that comprises the external sensor.  
The AD7143 requires some minor companion software that  
runs on the host or other microcontroller to implement high  
resolution sensor functions, such as a scroll bar or wheel.  
However, no host software is required to implement buttons,  
including 8-way button functionality. Button sensors are  
implemented completely in digital logic on-chip with the status  
of each button reported in interrupt status registers.  
Registering a Sensor Activation  
When a sensor is approached, the total capacitance associated  
with that sensor, measured by the AD7143, changes. When the  
capacitance changes to such an extent that a set threshold is  
exceeded, the AD7143 registers this as a sensor touch and then  
automatically updates the internal interrupt status registers.  
The AD7143 can be programmed to operate in either full power  
mode, or in low power automatic wake-up mode. The  
automatic wake-up mode is particularly suited for portable  
devices that require low power operation giving the user  
significant power savings coupled with full functionality.  
Preprogrammed threshold levels are used to determine if a  
change in capacitance is due to a button being activated. If the  
capacitance exceeds one of the threshold limits, the AD7143  
registers this as a true button activation. The same threshold  
principle is used to determine if other types of sensors, such as  
sliders or scroll wheels, are activated.  
INT  
The AD7143 has an interrupt output,  
, to indicate when  
INT  
new data has been placed into the registers.  
interrupt the host on sensor activation.  
is used to  
Rev. 0 | Page 11 of 56  
 
 
AD7143  
Full Power Mode  
Complete Solution for Capacitance Sensing  
In full power mode, all sections of the AD7143 remain fully  
powered at all times. While a sensor is being touched, the  
AD7143 processes the sensor data. If no sensor is touched, the  
AD7143 measures the ambient capacitance level and uses this  
data for the on-chip compensation routines. In full power  
mode, the AD7143 converts at a constant rate. See the CDC  
Conversion Sequence Time section for more information.  
Analog Devices, Inc. provides a complete solution for  
capacitance sensing. The two main elements to the solution are  
the sensor PCB and the AD7143.  
If the application requires high resolution sensors, such as scroll  
bars or wheels, software is required that runs on the host  
processor. (No software is required for button sensors.) The  
memory requirements for the host depend upon the sensor, and  
are typically 9 kB of code and 600 bytes of data memory.  
Low Power Mode  
When in low power mode, the AD7143 POWER_MODE bits  
are set to 10 upon device initialization. If the external sensors  
are not touched, the AD7143 reduces its conversion frequency,  
thereby greatly reducing its power consumption. The part  
remains in a reduced power state when the sensors are not  
touched. Every LP_CONV_DELAY ms (200 ms, 400 ms, 600  
ms or 800 ms), the AD7143 performs a conversion and uses this  
data to update the compensation logic. When an external  
sensor is touched, the AD7143 begins a conversion sequence  
every 25 ms to read back data from the sensors.  
SENSOR PCB  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
HOST PROCESSOR  
1 MIPS  
2
I C  
8
AD7143  
9kB ROM  
600 BYTES RAM  
SRC  
In low power mode, the total current consumption of the  
AD7143 is an average of the current used during a conversion,  
and the current used while the AD7143 is waiting for the next  
conversion to begin. For example, when LP_CONV_DELAY is  
400 ms, the AD7143 typically uses 0.9 mA current for 25 ms  
and 15 ꢀA for 400 ms of the conversion interval. Note that these  
conversion timings can be altered through the register settings.  
See the CDC Conversion Sequence Time section for more  
information.  
Figure 18. Three Part Capacitance Sensing Solution  
Analog Devices supplies the sensor PCB footprint design  
libraries to the customer based on the customers specifications,  
and supplies any necessary software on an open-source basis.  
OPERATING MODES  
The AD7143 has three operating modes. Full power mode,  
where the device is always fully powered, is suited for applications  
where power is not a concern. One example is game consoles  
that have an ac power supply. Low power mode, where the part  
automatically powers down, is tailored to give significant power  
savings over full power mode, and is suited for mobile applications  
where power must be conserved. In shutdown mode, the part  
shuts down completely.  
AD7143 SETUP  
AND INITIALIZATION  
POWER_MODE = 10  
ANY  
NO  
YES  
SENSOR  
TOUCHED?  
CONVERSION SEQUENCE  
EVERY LP_CONV_DELAY ms  
UPDATE COMPENSATION  
LOGIC DATA PATH  
CONVERSION SEQUENCE  
EVERY 25ms FOR  
SENSOR READBACK  
The POWER_MODE bits (Bit 0 and Bit 1) of the control  
register set the operating mode on the AD7143. The control  
register is at Address 0x000. Table 6 shows the POWER_MODE  
settings for each operating mode. To put the AD7143 into  
shutdown mode, set the POWER_MODE bits to either 01 or 11.  
YES  
ANY SENSOR  
TOUCHED?  
NO  
Table 6. POWER_MODE Settings  
TIMEOUT  
PROXIMITY TIMER  
COUNT DOWN  
POWER_MODE Bits  
Operating Mode  
Figure 19. Low Power Mode Operation  
00  
01  
10  
11  
Full power mode  
Full shutdown mode  
Low power mode  
Full shutdown mode  
The time taken for the AD7143 to go from a full power state to  
a reduced power state, once the user stops touching the external  
sensors, is configurable. Once the sensors are not touched, the  
PWR_DWN_TIMEOUT bits, in the Ambient Compensation  
Ctrl 0 Register at Address 0x002, control the amount of time  
necessary for the device to return to a reduced power state.  
The power-on default setting of the POWER_MODE bits is 00,  
full power mode.  
Rev. 0 | Page 12 of 56  
 
 
AD7143  
CAPACITANCE SENSOR INPUT CONFIGURATION  
Each input connection from the external capacitance sensors to  
the AD7143 converter can be uniquely configured by using the  
registers in Table 38 and Table 39. These registers are used to  
configure input pin connection setups, sensor offsets, sensor  
sensitivities, and sensor limits for each stage. Each sensor can be  
individually optimized. For example, a button sensor connected  
to STAGE0 can have a different sensitivity and offset values  
than a button with a different function that is connected to a  
different stage.  
The AD7143 has an on-chip multiplexer to route the input  
signals from each pin to the input of the converter. Each input  
pin can be tied to either the negative or the positive input of the  
CDC or can be left floating. Each input can also be internally  
connected to the CSHIELD signal to help prevent cross coupling. If  
an input is not used, always connect it to CSHIELD  
.
Connecting a CINx input pin to the positive CDC input results  
in a decrease in CDC output code when the corresponding  
sensor is activated. Connecting a CINx input pin to the negative  
CDC input results in an increase in CDC output code when the  
corresponding sensor is activated.  
CIN INPUT MULTIPLEXER SETUP  
The CIN_CONNECTION_SETUP registers in Table 38 list the  
available options for connecting the sensor input pin to the CDC.  
Two bits in each sequencer stage register control the mux  
setting for the input pin.  
CIN CONNECTION SETUP BITS  
CIN SETTING  
CIN0  
CIN1  
CIN2  
CIN3  
CIN4  
CIN5  
CIN6  
CIN7  
00  
01  
10  
11  
CINx FLOATING  
CINx CONNECTED TO  
NEGATIVE CDC INPUT  
+
CDC  
CINx CONNECTED TO  
POSITIVE CDC INPUT  
CINx CONNECTED TO  
INTERNAL BIAS  
Figure 20. Input Mux Configuration Options  
Rev. 0 | Page 13 of 56  
 
AD7143  
CAPACITIANCE-TO-DIGITAL CONVERTER  
The capacitance-to-digital converter on the AD7143 has a Σ-ꢁ  
architecture with 16-bit resolution. Eight possible inputs to the  
CDC are connected to the input of the converter through a  
switch matrix. The sampling frequency of the CDC is 250 kHz.  
A simplified block diagram in Figure 22 shows how to apply the  
STAGE_OFFSET registers to null the offsets. The 7-bit  
POS_AFE_OFFSET and NEG_AFE_OFFSET registers program  
the offset DAC to provide 0.16 pF resolution offset adjustment  
over a range of 20 pF. Apply the positive and negative offsets  
to either the positive or the negative CDC input using the  
NEG_AFE_OFFSET register and POS_AFE_OFFSET register.  
This process is only required once during the initial capacitance  
sensor characterization.  
OVERSAMPLING THE CDC OUTPUT  
The decimation rate, or oversampling ratio, is determined by  
Bits[9:8] of the PWR_CONTROL register located at Address 0x000  
and listed in Table 7.  
7
+DAC  
(20pF RANGE)  
Table 7. CDC Decimation Rate  
POS_AFE_OFFSET  
Decimation Bit  
Value  
Decimation  
Rate  
CDC Output Rate  
Per Stage  
00  
01  
101  
111  
256  
128  
3.072 ms  
1.525 ms  
POS_AFE_OFFSET_SWAP BIT  
CIN  
+
_
16  
16-BIT  
CDC  
1 Do not use this setting.  
NEG_AFE_OFFSET_SWAP BIT  
The decimation process on the AD7143 is an averaging process  
where a number of samples are taken and the averaged result is  
output. Due to the architecture of the digital filter employed, the  
amount of samples taken (per stage) is equal to 3× the  
decimation rate. Therefore, 3 × 256 or 3 × 128 samples are  
averaged to obtain each stage result.  
SRC  
7
–DAC  
(20pF RANGE)  
NEG_AFE_OFFSET  
CIN_CONNECTION_SETUP  
REGISTER  
The decimation process reduces the amount of noise present in  
the final CDC result. However, the higher the decimation rate,  
the lower the output rate per stage thus, a trade-off is possible  
between a noise free signal and speed of sampling.  
Figure 22. Analog Front-End Offset Control  
CONVERSION SEQUENCER  
The AD7143 has an on-chip sequencer to implement  
conversion control for the input channels. Up to eight  
conversion stages can be performed in sequence. Each of the  
eight conversion stages can measure an input from a different  
sensor. By using the Bank 2 registers, each stage can be uniquely  
configured to support multiple capacitance sensor interface  
requirements. For example, a sensor S1 can be assigned to  
STAGE1 and sensor S2 assigned to STAGE2.  
CAPACITANCE SENSOR OFFSET CONTROL  
There are two programmable DACs on board the AD7143 to  
null any capacitance sensor offsets. These offsets are associated  
with printed circuit board capacitance or capacitance due to any  
other source, such as connectors. In Figure 21, CIN is the  
capacitance of the input sensors, while CBULK is the capacitance  
between layers of the sensor PCB. CBULK can be offset using the  
on-board DACs.  
The AD7143 on-chip sequence controller provides conversion  
control beginning with STAGE0. Figure 23 shows a block diagram of  
the CDC conversion stages and CIN inputs. A conversion sequence is  
a sequence of CDC conversions starting at STAGE0 and ending at  
the stage determined by the value programmed in the  
C
IN  
PLASTIC OVERLAY  
SENSOR BOARD  
C
BULK  
CAPACITIVE SENSOR  
SEQUENCE_STAGE_NUM register. Depending on the number and  
type of capacitance sensors used, not all conversion stages are  
required. Use the SEQUENCE_STAGE_NUM register to set the  
number of conversions in one sequence, depending on the sensor  
interface requirements. For example, this register is set to 5 if the CIN  
inputs are mapped to only six stages. In addition, set the  
STAGE_CAL_EN registers according to the number of stages that  
are used.  
Figure 21. Capacitances Around the Sensor PCB  
Rev. 0 | Page 14 of 56  
 
 
 
 
 
AD7143  
STAGE7  
STAGE6  
In this case, only one button from the pair is activated at a time;  
pressing both buttons together activates neither button. This  
example is shown in Figure 24 for sensor buttons S2 and S3.  
STAGE5  
STAGE4  
STAGE3  
A scroll bar or slider requires eight stages. The result from each  
stage is used by the host software to determine the users  
position on the scroll bar. The algorithm that performs this  
process is available from Analog Devices free of charge, upon  
signing a software license. Scroll wheels also require eight stages.  
STAGE2  
STAGE1  
STAGE0  
CIN0  
CIN1  
CIN2  
CIN3  
CIN4  
CIN5  
CIN6  
CIN7  
CDC CONVERSION SEQUENCE TIME  
The time required for one complete measurement for all eight  
stages by the CDC is defined as the CDC conversion sequence  
time. The SEQUENCE_STAGE_NUM register and  
DECIMATION register determine the conversion time as listed  
in Table 8.  
Σ-Δ  
16-BIT  
ADC  
CE  
N
E
U
Q
E
S
N
O
I
RS  
E
NV  
Table 8. CDC Conversion Times for Full Power Mode  
CO  
Conversion Time (ms)  
Figure 23. CDC Conversion Stages  
SEQUENCE_STAGE_NUM  
Decimation = 128  
1.525  
Decimation = 256  
3.072  
0
1
2
3
4
5
6
7
The number of required conversion stages depends completely  
on the number of sensors attached to the AD7143. Figure 24  
shows how many conversion stages are required for each sensor,  
and how many inputs each sensor requires to the AD7143.  
3.072  
4.608  
6.144  
7.68  
9.216  
10.752  
12.288  
6.144  
9.216  
12.288  
15.25  
18.432  
21.504  
24.576  
AD7143  
SEQUENCER  
STAGE0  
+
8-ELEMENT  
SLIDER  
CDC  
For example, while operating with a decimation rate of 128,  
if the SEQUENCE_STAGE_NUM register is set to 5 for the  
conversion of six stages in a sequence, the conversion sequence  
time is 9.216 ms.  
STAGE1  
+
CDC  
AD7143  
STAGE2  
SEQUENCER  
+
BUTTONS  
S1  
CDC  
STAGE0  
+
Full Power Mode CDC Conversion Sequence Time  
CDC  
STAGE3  
+
CDC  
The full power mode CDC conversion sequence time for all  
eight stages is set by configuring the SEQUENCE_STAGE_NUM  
register and the DECIMATION register as outlined in Table 8.  
STAGE1  
S2  
S3  
+
STAGE4  
CDC  
+
CDC  
STAGE5  
SRC  
+
Figure 25 shows a simplified timing diagram of the full power  
CDC conversion time. The full power mode CDC conversion  
time tCONV_FP is set using Table 8.  
CDC  
STAGE6  
+
CDC  
STAGE7  
SRC  
tCONV_FP  
+
CDC  
CONVERSION  
CONVERSION  
CONVERSION  
CDC  
CONVERSION  
SEQUENCE N SEQUENCE N + 1 SEQUENCE N + 2  
Figure 24. Sequencer Setup for Sensors  
Figure 25. Full Power Mode CDC Conversion Sequence Time  
A button sensor generally requires one sequencer stage.  
However, it is possible to configure two button sensors to  
operate differentially for special applications where the user  
should not press both buttons simultaneously, such as a with  
rocker zoom switch on a digital camera.  
Rev. 0 | Page 15 of 56  
 
 
 
 
 
 
AD7143  
Low Power Mode CDC Conversion Sequence Time  
with Delay  
Figure 26 shows a simplified timing example of the low power  
CDC conversion time. As shown, the low power CDC  
conversion time is set by tCONV_FP and the LP_CONV_DELAY  
register.  
The frequency of each CDC conversion while operating in the  
low power automatic wake-up mode is controlled by using the  
LP_CONV_DELAY register located at Address 0x000[3:2], in  
addition to the registers listed in Table 8.  
tCONV_LP  
tCONV_FP  
This feature provides some flexibility for optimizing the  
conversion time to meet system requirements vs. AD7143  
power consumption. For example, maximum power savings is  
achieved when the LP_CONV_DELAY register is set to 3. With  
a setting of 3, the AD7143 automatically wakes up, performing a  
conversion every 800 ms.  
CDC  
CONVERSION  
SEQUENCE N  
CONVERSION  
SEQUENCE N + 1  
LP_CONV_DELAY  
CONVERSION  
Figure 26. Low Power Mode CDC Conversion Sequence Time  
CDC CONVERSION RESULTS  
Certain high-resolution sensors require the host to read back  
the CDC conversion results for processing. The registers  
required for host processing are located in the Bank 3 registers.  
The host processes the data readback from these registers using  
a software algorithm to determine position information. In  
addition to the results registers in the Bank 3 registers, the  
AD7143 provides the 16-bit CDC output data directly starting  
at Address 0x00B of Bank 1. Reading back the CDC 16-bit  
conversion data register allows for customer-specific application  
data processing.  
Table 9. LP_CONV_DELAY Settings  
LP_CONV_DELAY Bits  
Delay Between Conversions  
00  
01  
10  
11  
200 ms  
400 ms  
600 ms  
800 ms  
Rev. 0 | Page 16 of 56  
 
 
 
AD7143  
NONCONTACT PROXIMITY DETECTION  
The AD7143 internal signal processing continuously monitors  
all capacitance sensors for noncontact proximity detection. This  
feature provides the ability to detect when a user is approaching  
a sensor, immediately disabling all internal calibration while the  
AD7143 is automatically configured to detect a valid contact.  
timeout is controlled by FP_PROXIMITY_RECAL and in low  
power mode, it is controlled by LP_PROXMTY_RECAL.  
Recalibration timeout in full power mode =  
FP_PROXIMITY_RECAL × Time for one conversion  
sequence in full power mode  
The proximity control register bits are described in Table 10.  
FP_PROXIMITY_CNT register bits and LP_PROXIMITY  
_CNT register bits control the length of the calibration disable  
period after proximity is detected in full power and low power  
modes. The calibration is disabled during this time and enabled  
again at the end of this period if the user is no longer  
approaching, or in contact with, the sensor. Figure 27 and Figure  
28 show examples of how these registers are used to set the full  
and low power mode calibration disable periods.  
Recalibration timeout in low power mode =  
LP_PROXIMITY_RECAL × Time taken for one conversion  
sequence in low power mode  
Figure 29 and Figure 30 show examples of using the  
FP_PROXIMITY_RECAL and LP_PROXIMITY_RECAL  
register bits to force a recalibration while operating in the full  
and low power modes. These figures show the result of a user  
approaching a sensor then leaving the sensor while the  
proximity detection remains active after the user discontinues  
contact with the sensor. This situation could occur if the user  
interaction created some moisture on the sensor causing the  
new sensor value to be different from the expected value. In this  
case, the internal recalibration is applied to automatically  
recalibrate the sensor. The forced recalibration event takes two  
interrupt cycles; therefore, it should not be set again during this  
interval.  
Calibration disable period in full power mode =  
(FP_PROXIMITY_CNT × 16 × Time for one conversion  
sequence in full power mode)  
Calibration disable period in low power mode =  
(LP_PROXIMITY_CNT × 4 × Time for one conversion  
sequence in low power mode)  
RECALIBRATION  
PROXIMITY SENSITIVITY  
In certain situations, the proximity flag can be set for a long  
period, such as when a user hovers over a sensor for a long  
time. The environmental calibration on the AD7143 is  
suspended while the proximity is detected, but changes may  
occur to the ambient capacitance level during the proximity  
event. Even when the user has left the sensor untouched, the  
proximity flag may still be set. This could occur if the user  
interaction creates some moisture on the sensor causing the  
new sensor value to be different from the expected value. In this  
case, the AD7143 automatically forces an internal recalibration.  
This ensures that the ambient values are recalibrated, regardless  
of how long the user hovers over a sensor.  
The fast filter in Figure 31 is used to detect when some one is in  
close proximity to the sensor. Two conditions set the internal  
proximity detection signal using Comparator 1 and Comparator 2.  
Comparator 1 detects when a user is approaching a sensor.  
The PROXIMITY_DETECTION_RATE register controls the  
sensitivity of Comparator 1. Consider, for example, if the  
PROXIMITY_DETECTION_RATE is set to 4, the Proximity 1  
signal is set when the absolute difference between WORD1 and  
WORD3 exceeds four LSB codes.  
Comparator 2 detects when a user hovers over a sensor or  
approaches a sensor very slowly. The PROXIMITY_RECAL_LVL  
register (Address 0x003) controls the sensitivity of Comparator 2.  
For example, if PROXIMITY_RECAL_LVL is set to 75, the  
Proximity 2 signal is set when the absolute difference between  
the fast filter average value and the ambient value exceeds 75  
LSB codes.  
The AD7143 recalibrates automatically when the measured CDC value  
exceeds the stored ambient value by an amount determined by  
PROXIMITY_RECAL_LVL, for a set period know as the  
recalibration timeout. In full power mode, the recalibration  
Table 10. Proximity Control Registers (See Figure 31)  
Register  
Length  
4 bits  
4 bits  
8 bits  
6 bits  
8 bits  
6 bits  
Register Address  
Description  
FP_PROXIMITY_CNT  
LP_PROXIMITY_CNT  
FP_PROXIMITY_RECAL  
LP_PROXIMITY_RECAL  
PROXIMITY_RECAL_LVL  
PROXIMITY_DETECTION_RATE  
0x002 [7:4]  
0x002 [11:8]  
0x004 [9:0]  
0x004 [15:10]  
0x003 [13:8]  
0x003 [7:0]  
Calibration disable time in full power mode  
Calibration disable time in low power mode  
Full power mode proximity recalibration control  
Low power mode proximity recalibration control  
Proximity recalibration level  
Proximity detection rate  
Rev. 0 | Page 17 of 56  
 
 
AD7143  
USER APPROACHES USER LEAVES SENSOR  
SENSOR HERE AREA HERE  
tCONV_FP  
CDC CONVERSION  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
tCALDIS  
SEQUENCE  
(INTERNAL)  
PROXIMITY  
DETECTION  
(INTERNAL)  
CALIBRATION  
(INTERNAL)  
CALIBRATION DISABLED  
CALIBRATION ENABLED  
Figure 27. Full Power Mode Proximity Detection Example with FP_PROXIMITY_CNT = 1  
USER APPROACHES USER LEAVES SENSOR  
SENSOR HERE  
AREA HERE  
tCONV_LP  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
CDC CONVERSION  
SEQUENCE  
(INTERNAL)  
tCALDIS  
PROXIMITY  
DETECTION  
(INTERNAL)  
CALIBRATION  
(INTERNAL)  
CALIBRATION DISABLED  
CALIBRATION ENABLED  
NOTES  
1. SEQUENCE CONVERSION TIME tCONV_LP = tCONV_FP + LP_CONV_DELAY.  
2. PROXIMITY IS SET WHEN USER APPROACHES THE SENSOR AT WHICH TIME THE INTERNAL CALIBRATION IS DISABLED.  
3. tCALDIS = (tCONV_LP × LP_PROXIMITY_CNT × 4).  
Figure 28. Low Power Mode Proximity Detection with LP_PROXIMITY_CNT = 4 and LP_CONV_DELAY = 0  
USER APPROACHES  
SENSOR HERE  
tRECAL  
MEASURED CDC VALUE > STORED AMBIENT  
BY PROXIMITY_RECAL _LVL  
USER LEAVES SENSOR  
AREA HERE  
tCONV_FP  
16  
30  
70  
CDC CONVERSION  
SEQUENCE  
(INTERNAL)  
tCALDIS  
PROXIMITY  
DETECTION  
(INTERNAL)  
CALIBRATION  
(INTERNAL)  
CALIBRATION DISABLED  
RECALIBRATION TIMEOUT  
tRECAL_TIMEOUT  
CALIBRATION ENABLED  
RECALIBRATION  
COUNTER  
(INTERNAL)  
NOTES  
1. tCALDIS  
=
tCONV_FP × FP_PROXIMITY_CNT × 16.  
2. tRECAL_TIMEOUT  
= tCONV_FP × FP_PROXIMITY_RECAL.  
3. tRECAL = 2 × tCONV_FP  
.
Figure 29. Full Power Mode Proximity Detection with Forced Recalibration Example with FP_PROXIMIT_CNT = 1 and FP_PROXIMITY_RECAL = 40  
Note that in Figure 29, the sequence conversion time, tCONV_FP, is determined from Table 8.  
Rev. 0 | Page 18 of 56  
 
 
 
 
AD7143  
USER APPROACHES  
SENSOR HERE  
tRECAL  
MEASURED CDC VALUE > STORED AMBIENT  
BY PROXIMITY_RECAL _LVL  
USER LEAVES SENSOR  
AREA HERE  
tCONV_FP  
16  
30  
70  
CDC CONVERSION  
SEQUENCE  
(INTERNAL)  
PROXIMITY  
DETECTION  
(INTERNAL)  
tCALDIS  
CALIBRATION  
(INTERNAL)  
CALIBRATION DISABLED  
RECALIBRATION TIMEOUT  
tRECAL_TIMEOUT  
CALIBRATION ENABLED  
RECALIBRATION  
(INTERNAL)  
NOTES  
1. SEQUENCE CONVERSION TIME tCONV_LP  
2. tCALDIS tCONV_LP × LP_PROXIMITY_CNT × 4.  
3. tRECAL_TIMEOUT tCONV_FP × LP_PROXIMITY_RECAL.  
4. tRECAL = 2 × tCONV_LP  
=
tCONV_FP + LP_CONV_DELAY.  
=
=
.
Figure 30. Low Power Mode Proximity Detection with Forced Recalibration Example with LP_PROXIMIT_CNT = 4 and LP_PROXIMITY_RECAL = 10  
FF_SKIP_CNT  
capacitance value tracks the measured capacitance value read by  
the converter.  
The proximity detection fast FIFO is used by the on-chip logic  
to determine if proximity is detected. The fast FIFO expects to  
receive samples from the converter at a set rate. Using  
FF_SKIP_CNT normalizes the frequency of the samples going  
into the FIFO, regardless of how many conversion stages are in a  
sequence. In Register 0x02, Bits[3:0] are the fast filter skip control,  
FF_SKIP_CNT. This value determines which CDC samples are not  
used (skipped) in the proximity detection fast FIFO.  
Slow FIFO update rate in full power mode is equal to  
AVG_FP_SKIP × [(3 × Decimation Rate) ×  
(SEQUENCE_STAGE_NUM +1) × (FF_SKIP_CNT +1) × 4 × 10-7]  
Slow FIFO update rate in low power mode is equal to  
(AVG_LP_SKIP +1) × [(3 × Decimation Rate) ×  
SEQUENCE_STAGE_NUM +1) × (FF_SKIP_CNT +1) × 4 × 10-7] /  
[(FF_SKIP_CNT +1)+ LP_CONV_DELAY]  
Determining the FF_SKIP_CNT value is required only once  
during the initial setup of the capacitance sensor interface.  
The slow FIFO is used by the on-chip logic to track the ambient  
capacitance value. The slow FIFO expects to receive samples  
from the converter at a rate of 33 ms to 40 ms. AVG_FP_SKIP  
and AVG_LP_SKIP are used to normalize the frequency of the  
samples going into the FIFO, regardless of how many  
conversion stages are in a sequence.  
Table 11 shows how FF_SKIP_CNT controls the update rate to  
the fast FIFO. The recommended value for FF_SKIP_CNT  
when using all 12 conversion stages on the AD7143 is  
FF_SKIP_CNT = 0000 = no samples skipped  
Determining the AVG_FP_SKIP and AVG_LP_SKIP value is  
only required once during the initial setup of the capacitance  
sensor interface. Recommended values for these settings when  
using all 12 conversion stages on the AD7143 are  
SLOW FIFO  
As shown in Figure 31, a number of FIFOs are implemented on  
the AD7143. These FIFOs are located in Bank 3 of the on-chip  
memory. The slow FIFOs are used by the on-chip logic to  
monitor the ambient capacitance level from each sensor.  
AVG_FP_SKIP = 00 = skip 3 samples  
AVG_LP_SKIP = 00 = no samples skipped  
AVG_FP_SKIP and AVG_LP_SKIP  
SLOW_FILTER_UPDATE_LVL  
In Register 0x001, Bits[13:12] are the slow FIFO skip control for  
full power mode, AVG_FP_SKIP. Bits[15:14] in the same  
register are the slow FIFO skip control for low power mode,  
AVG_LP_SKIP. These values determine which CDC samples  
are not used (skipped) in the slow FIFO. Changing theses values  
slows down or speeds up the rate at which the ambient  
The SLOW_FILTER_UPDATE_LVL controls whether or not  
the most recent CDC measurement goes into the slow FIFO  
(slow filter). The slow filter is updated when the difference  
between the current CDC value and last value pushed into the  
slow FIFO is greater than SLOW_FILTER_UPDATE_LVL. This  
variable is in Ambient Control Register 1, at Address 0x003.  
Rev. 0 | Page 19 of 56  
 
 
AD7143  
Table 11. FF_SKIP_CNT Settings  
FAST FIFO Update Rate  
Decimation = 256  
FF_SKIP_CNT  
Decimation = 128  
0
1
2
3
4
5
6
7
1.525 × (SEQUENCE_STAGE_NUM + 1) ms  
3.072 × (SEQUENCE_STAGE_NUM + 1) ms  
4.608 × (SEQUENCE_STAGE_NUM + 1) ms  
6.144 × (SEQUENCE_STAGE_NUM + 1) ms  
7.68 × (SEQUENCE_STAGE_NUM + 1) ms  
9.216 × (SEQUENCE_STAGE_NUM + 1) ms  
10.752 × (SEQUENCE_STAGE_NUM + 1) ms  
12.288 × (SEQUENCE_STAGE_NUM + 1) ms  
13.824 × (SEQUENCE_STAGE_NUM + 1) ms  
15.25 × (SEQUENCE_STAGE_NUM + 1) ms  
16.896 × (SEQUENCE_STAGE_NUM + 1) ms  
18.432 × (SEQUENCE_STAGE_NUM + 1) ms  
19.968 × (SEQUENCE_STAGE_NUM + 1) ms  
21.504 × (SEQUENCE_STAGE_NUM + 1) ms  
23.04 × (SEQUENCE_STAGE_NUM + 1) ms  
24.576 × (SEQUENCE_STAGE_NUM + 1) ms  
3.072 × (SEQUENCE_STAGE_NUM + 1) ms  
6.144 × (SEQUENCE_STAGE_NUM + 1) ms  
9.216 × (SEQUENCE_STAGE_NUM + 1) ms  
12.288 × (SEQUENCE_STAGE_NUM + 1) ms  
15.25 × (SEQUENCE_STAGE_NUM + 1) ms  
18.432 × (SEQUENCE_STAGE_NUM + 1) ms  
21.504 × (SEQUENCE_STAGE_NUM + 1) ms  
24.576 × (SEQUENCE_STAGE_NUM + 1) ms  
27.648 × (SEQUENCE_STAGE_NUM + 1) ms  
30.72 × (SEQUENCE_STAGE_NUM + 1) ms  
33.792 × (SEQUENCE_STAGE_NUM + 1) ms  
25.864 × (SEQUENCE_STAGE_NUM + 1) ms  
39.925 × (SEQUENCE_STAGE_NUM + 1) ms  
43.008 × (SEQUENCE_STAGE_NUM + 1) ms  
46.08 × (SEQUENCE_STAGE_NUM + 1) ms  
49.152 × (SEQUENCE_STAGE_NUM + 1) ms  
8
9
10  
11  
12  
13  
14  
15  
Rev. 0 | Page 20 of 56  
AD7143  
FP_PROXIMITY_CNT  
REGISTER 0x002  
LP_PROXIMITY_CNT  
REGISTER 0x002  
16  
CDC  
STAGE_FF_WORD0  
STAGE_FF_WORD1  
STAGE_FF_WORD2  
STAGE_FF_WORD3  
STAGE_FF_WORD4  
STAGE_FF_WORD5  
STAGE_FF_WORD6  
STAGE_FF_WORD7  
PROXIMITY 1  
PROXIMITY  
COMPARATOR 1  
PROXIMITY TIMING  
CONTROL LOGIC  
|WORD0 TO WORD3|  
PROXIMITY_DETECTION_RATE  
REGISTER 0x003  
FP_PROXIMITY_RECAL  
REGISTER 0x004  
LP_PROXIMITY_RECAL  
REGISTER 0x004  
BANK 3 REGISTERS  
7
WORD(N)  
STAGE_FF_AVG  
BANK 3 REGISTERS  
Σ
N = 0  
8
COMPARATOR 2  
|AVERAGE–AMBIENT|  
STAGE_FF_WORDx  
PROXIMITY  
SW1  
SLOW_FILTER_EN  
PROXIMITY_RECAL_LVL  
REGISTER 0x003  
STAGE_SF_WORD0  
STAGE_SF_WORD1  
STAGE_SF_WORD2  
STAGE_SF_WORD3  
STAGE_SF_WORD4  
STAGE_SF_WORD5  
STAGE_SF_WORD6  
STAGE_SF_WORD7  
COMPARATOR 3  
WORD0 TO WORD1  
AMBIENT  
VALUE  
STAGE_SF_AMBIENT  
BANK 3 REGISTERS  
STAGE_SF_WORDx  
SLOW_FILTER_UPDATE_LVL  
REGISTER 0x003  
SENSOR  
CONTACT  
TIME  
NOTES  
|STAGE_SF_  
|
1. SLOW FILTER EN IS SET AND SW1 IS CLOSED WHEN  
WORD 0 TO STAGE_SF_WORD 1 EXCEEDS THE VALUE PROGRAMMED IN THE  
SLOW_FILTER_UPDATE_LVL REGISTER PROVIDINGPROXIMITY IS NOT SET.  
|STAGE_FF_  
|
2. PROXIMITY 1 IS SET WHEN  
WORD 0 TO STAGE_FF_WORD 3 EXCEEDS THE VALUE PROGRAMMED IN THE  
PROXIMITY_DETECTION_RATE REGISTER.  
|
|
3. PROXIMITY 2 IS SET WHEN AVERAGE–AMBIENT EXCEEDS THE VALUE PROGRAMMED IN THE PROXIMITY_RECAL_LVL REGISTER.  
4. DESCRIPTION OF COMPARATOR FUNCTIONS:  
COMPARATOR 1: USED TO DETECT WHEN A USER IS APPROACHING OR LEAVING A SENSOR.  
COMPARATOR 2: USED TO DETECT WHEN A USER IS HOVERING OVER A SENSOR, OR APPROACHING A SENSOR VERY SLOWLY.  
ALSO USED TO DETECT IF THE SENSOR AMBIENT LEVEL HAS CHANGED AS A RESULT OF THE USER INTERACTION.  
FOR EXAMPLE, HUMIDITY OR DIRT LEFT BEHIND ON SENSOR.  
COMPARATOR 3: USED TO ENABLE THE SLOW FILTER UPDATE RATE. THE SLOW FILTER IS UPDATED WHEN SLOW FILTER EN IS SET AND  
PROXIMITY IS NOT SET.  
Figure 31. AD7143 Proximity Detection and Environmental Calibration  
STAGE_MAX_WORD0  
STAGE_MAX_WORD1  
BANK 3 REGISTERS  
STAGE_MAX_WORD2  
STAGE_MAX_WORD3  
STAGE_MAX_AVG  
BANK 3 REGISTERS  
MAX LEVEL  
DETECTION  
LOGIC  
Σ-Δ  
16-BIT  
CDC  
16  
STAGE_MAX_TEMP  
BANK 3 REGISTERS  
STAGE_HIGH_THRESHOLD  
BANK 3 REGISTERS  
STAGE_MIN_WORD0  
STAGE_MIN_WORD1  
STAGE_MIN_WORD2  
STAGE_MIN_WORD3  
BANK 3 REGISTERS  
STAGE_MIN_AVG  
BANK 3 REGISTERS  
MIN LEVEL  
DETECTION  
LOGIC  
STAGE_MIN_AVG  
BANK 3 REGISTERS  
STAGE_LOW_THRESHOLD  
BANK 3 REGISTERS  
Figure 32. AD7143 Maximum and Minimum Level Detection Logic  
Rev. 0 | Page 21 of 56  
 
 
AD7143  
ENVIRONMENTAL CALIBRATION  
SENSOR 1 INT  
ASSERTED  
The AD7143 provides on-chip capacitance sensor calibration to  
automatically adjust for environmental conditions that have an  
effect on the capacitance sensor ambient levels. Capacitance  
sensor output levels are sensitive to temperature, humidity, and  
in some cases, dirt. The AD7143 achieves optimal and reliable  
sensor performance by continuously monitoring the CDC  
ambient levels and correcting for any changes by adjusting the  
STAGE_HIGH_THRESHOLD and STAGE_LOW_THRESHOLD  
register values as described in Equation 1 and Equation 2. The  
CDC ambient level is defined as the capacitance sensor output  
level during periods when the user is not approaching or in  
contact with the sensor.  
STAGE_HIGH_THRESHOLD  
CDC AMBIENT VALUE  
STAGE_LOW_THRESHOLD  
SENSOR 2 INT  
ASSERTED  
t
CHANGING ENVIRONMENTAL CONDITIONS  
Figure 33. Ideal Sensor Behavior with a Constant Ambient Level  
The compensation logic runs automatically on every conversion  
after configuration when the AD7143 is not being touched. This  
allows the AD7143 to account for rapidly changing  
environmental conditions.  
CAPACITANCE SENSOR BEHAVIOR WITHOUT  
CALIBRATION  
Figure 34 shows the typical behavior of a capacitance sensor  
with no applied calibration. This figure shows ambient levels  
drifting over time as environmental conditions change. The  
ambient level drift has resulted in the detection of a missed user  
contact on Sensor 2.  
The ambient compensation control registers located at  
Address 0x002, Address 0x003 and Address 0x004 give the host  
access to general setup and controls for the compensation  
algorithm. The RAM stores the compensation data for each  
conversion stage, as well as setup information specific to each stage.  
This is a result of the initial STAGE_LOW_THRESHOLD  
remaining constant while the ambient levels drifted upward  
beyond the detection range. The Capacitance Sensor Behavior  
with Calibration section describes how the AD7143 adaptive  
calibration algorithm prevents errors such as this from  
occurring.  
Figure 33 shows an example of an ideal capacitance sensor  
behavior where the CDC ambient level remains constant  
regardless of the environmental conditions. The CDC output  
shown is for a pair of differential button sensors, where one  
sensor caused an increase, and the other a decrease in measured  
capacitance when activated.  
SENSOR 1 INT  
ASSERTED  
STAGE_HIGH_THRESHOLD  
The positive and negative sensor threshold levels are calculated  
as a percentage of the STAGE_OFFSET_HIGH and  
STAGE_OFFSET_LOW values based on the threshold  
sensitivity settings and the ambient value. These values for this  
example are sufficient to detect a sensor contact, resulting with  
CCDC AMBIENT  
VALUE DRIFTING  
INT  
the AD7143 asserting the  
are exceeded.  
output when the threshold levels  
STAGE_LOW_THRESHOLD  
SENSOR 2 INT  
NOT ASSERTED  
t
CHANGING ENVIRONMENTAL CONDITIONS  
Figure 34. Typical Sensor Behavior without Calibration Applied  
Rev. 0 | Page 22 of 56  
 
 
AD7143  
SENSOR 1 INT  
ASSERTED  
CAPACITANCE SENSOR BEHAVIOR WITH  
CALIBRATION  
3
STAGE_HIGH_THRESHOLD  
(POST CALIBRATED  
REGISTER VALUE)  
2
1
The AD7143 on-chip adaptive calibration algorithm prevents  
sensor detection errors, such as the one shown in Figure 34.  
This is achieved by monitoring the CDC ambient levels and  
readjusting the initial STAGE_OFFSET_HIGH and  
STAGE_OFFSET_LOW values according to the amount of  
ambient drift measured on each sensor.  
CDC AMBIENT  
VALUE DRIFTING  
6
5
STAGE_LOW_THRESHOLD  
(POST CALIBRATED  
REGISTER VALUE)  
4
The internal STAGE_HIGH_THRESHOLD and  
SENSOR 2 INT  
ASSERTED  
STAGE_LOW_THRESHOLD values, shown in Equation 1 and  
Equation 2, are automatically updated based on the new  
STAGE_OFFSET_HIGH and STAGE_OFFSET_LOW values.  
This closed-loop routine ensures the reliability and repeatable  
operation of every sensor connected to the AD7143 under  
dynamic environmental conditions. Figure 35 shows a  
simplified example of how the AD7143 applies the adaptive  
calibration process resulting in no interrupt errors under  
changing CDC ambient levels due to environmental conditions.  
t
CHANGING ENVIRONMENTAL CONDITIONS  
1
2
3
4
5
6
INITIAL STAGE_OFFSET_HIGH REGISTER VALUE.  
POST CALIBRATED REGISTER STAGE_HIGH_THRESHOLD.  
POST CALIBRATED REGISTER STAGE_HIGH_THRESHOLD.  
INITIAL STAGE_LOW_THRESHOLD.  
POST CALIBRATED REGISTER STAGE_LOW_THRESHOLD.  
POST CALIBRATED REGISTER STAGE_LOW_THRESHOLD.  
Figure 35. Typical Sensor Behavior with Calibration Applied on the Data Path  
On-Chip Logic Stage High Threshold Calculation  
STAGE _ OFFSET _ HIGH  
STAGE _ HIGH _ THRESHOLD = STAGE _ SF _ AMBIENT +  
+
4
STAGE _ OFFSET _ HIGH  
(1)  
(2)  
STAGE _ OFFSET _ HIGH −  
4
× POS _ THRESHOLD _ SENSITIVITY  
16  
On-Chip Logic Stage Low Threshold Calculation  
STAGE _ OFFSET _ LOW  
STAGE _ LOW _ THRESHOLD = STAGE _ SF _ AMBIENT +  
+
4
STAGE _ OFFSET _ LOW  
STAGE _ OFFSET _ LOW −  
4
× NEG _ THRESHOLD _ SENSITIVITY  
16  
Rev. 0 | Page 23 of 56  
 
AD7143  
Table 12. Additional Information about Environmental Calibration and Adaptive Threshold Registers  
Register  
Location Description  
NEG_THRESHOLD_SENSITIVITY  
NEG_PEAK_DETECT  
Bank 2  
Bank 2  
Used in Equation 2. This value is programmed once at start up.  
Used by Internal Adaptive Threshold Logic Only. The NEG_PEAK_DETECT is set to a  
percentage of the difference between the ambient CDC value and the minimum  
average CDC value. If the output of the CDC gets within the NEG_PEAK_DETECT  
percentage of the minimum average, only then is the minimum average value updated.  
POS_THRESHOLD_SENSITIVITY  
POS_PEAK_DETECT  
Bank 2  
Bank 2  
Used in Equation 1. This value is programmed once at startup.  
Used by Internal Adaptive Threshold Logic Only. The POS_PEAK_DETECT is set to a  
percentage of the difference between the ambient CDC value, and the maximum  
average CDC value. If the output of the CDC gets within the POS_PEAK_DETECT  
percentage of the minimum average, only then is the maximum average value updated.  
STAGE_OFFSET_LOW  
Bank 2  
Bank 2  
Bank 2  
Used in Equation 2. An initial value (based on sensor characterization) is programmed  
into this register at startup. The AD7143 on-chip calibration algorithm automatically  
updates this register based on the amount of sensor drift due to changing ambient  
conditions. Set to 80% of the STAGE_OFFSET_LOW_CLAMP value.  
Used in Equation 1. An initial value (based on sensor characterization) is programmed  
into this register at startup. The AD7143 on-chip calibration algorithm automatically  
updates this register based on the amount of sensor drift due to changing ambient  
conditions. Set to 80% of the STAGE_OFFSET_HIGH_CLAMP value.  
STAGE_OFFSET_HIGH  
STAGE_OFFSET_HIGH_CLAMP  
Used by Internal Environmental Calibration and Adaptive Threshold Algorithms Only.  
An initial value (based on sensor characterization) is programmed into this register at  
startup. The value in this register prevents a user from causing a sensor output value to  
exceed the expected nominal value. Set to the maximum expected sensor response,  
maximum change in CDC output code.  
STAGE_OFFSET_LOW_CLAMP  
STAGE_SF_AMBIENT  
Bank 2  
Bank 3  
Used by Internal Environmental Calibration and Adaptive Threshold Algorithms Only.  
An initial value (based on sensor characterization) is programmed into this register at  
startup. The value in this register prevents a user from causing a sensor output value to  
exceed the expected nominal value. Set to the minimum expected sensor response,  
minimum change in CDC output code .  
Used in Equation 1 and Equation 2. This is the ambient sensor output, when the sensor  
is not touched, as calculated using the slow FIFO.  
STAGE_HIGH_THRESHOLD  
STAGE_LOW_THRESHOLD  
Bank 3  
Bank 3  
Equation 1 Value.  
Equation 2 Value.  
Rev. 0 | Page 24 of 56  
AD7143  
ADAPTIVE THRESHOLD AND SENSITIVITY  
The AD7143 provides an on-chip self-learning adaptive  
threshold and sensitivity algorithm. This algorithm continu-  
ously monitors the output levels of each sensor and automatically  
rescales the threshold levels proportionally to the sensor area  
covered by the user. As a result, the AD7143 maintains optimal  
threshold and sensitivity levels for all types of users regardless  
of their finger sizes.  
On configuration, initial estimates are supplied for both  
STAGE_OFFSET_HIGH and STAGE_OFFSET_LOW after  
which the calibration engine automatically adjusts the  
STAGE_HIGH_THRESHOLD and STAGE_LOW_THRESHOLD  
values for sensor response.  
Reference A in Figure 36 shows an under sensitive threshold  
level for a small finger user, demonstrating the disadvantages of  
a fixed threshold level. By enabling the adaptive threshold and  
sensitivity algorithm, the positive and negative threshold levels  
are determined by the POS_THRESHOLD_SENSITIVITY and  
NEG_THRESHOLD_SENSITIVITY register values and the  
most recent average maximum sensor output value. These  
registers can be used to select 16 different positive and negative  
sensitivity levels ranging between 25% and 95.32% of the most  
recent average maximum output level referenced from the  
ambient value. The smaller the sensitivity percentage setting,  
the easier it is to trigger a sensor activation. Reference B shows  
that the positive adaptive threshold level is set at almost mid-  
sensitivity with a 62.51% threshold level by setting  
The threshold level is always referenced from the ambient level  
and is defined as the CDC converter output level that must be  
exceeded for a valid sensor contact. The sensitivity level is  
defined as how sensitive the sensor is before a valid contact is  
registered.  
Figure 36 provides an example of how the adaptive threshold and  
sensitivity algorithm works. The positive and negative sensor  
threshold levels are calculated as a percentage of the  
STAGE_OFFSET_HIGH and STAGE_OFFSET_LOW values  
based on the threshold sensitivity settings and the ambient value.  
POS_THRESHOLD_SENSITIVITY = 1000. Figure 36 also  
provides a similar example for the negative threshold level with  
NEG_THRESHOLD_SENSITIVITY = 0001.  
AVERAGE MAX VALUE  
95.32%  
STAGE_OFFSET_HIGH  
IS UPDATED  
AVERAGE MAX VALUE  
62.51% = POS ADAPTIVE  
THRESHOLD LEVEL  
A
STAGE_OFFSET_HIGH  
95.32%  
STAGE_OFFSET_HIGH  
IS UPDATED HERE  
62.51% = POS  
ADAPTIVE  
THRESHOLD LEVEL  
25%  
B
25%  
AMBIENT LEVEL  
25%  
NEG ADAPTIVE THRESHOLD LEVEL = 39.08%  
STAGE_OFFSET_LOW  
IS UPDATED HERE  
25%  
STAGE_OFFSET_LOW  
NEG ADAPTIVE THRESHOLD LEVEL = 39.08%  
95.32%  
STAGE_OFFSET_LOW  
IS UPDATED HERE  
95.32%  
SENSOR CONTACTED  
BY LARGE FINGER  
SENSOR CONTACTED  
BY SMALL FINGER  
Figure 36. Threshold Sensitivity Example with POS_THRESHOLD_SENSITIVITY = 1000 and NEG_THRESHOLD_SENSITIVITY = 0011  
Rev. 0 | Page 25 of 56  
 
AD7143  
INTERRUPT OUTPUT  
The AD7143 has an interrupt output that triggers an interrupt  
Configuring the AD7143 into this mode results in the interrupt  
being asserted when the user makes contact with the sensor and  
again when the user lifts off the sensor. The second interrupt is  
required to alert the host processor that the user is no longer  
contacting the sensor.  
INT  
service routine on the host processor. The  
signal is on  
Pin 14, and is an open-drain output. There are two types of  
interrupt events on the AD7143: a CDC conversion complete  
interrupt and a sensor touch interrupt. Each interrupt has  
enable and status registers described in Table 13. The  
conversion complete and sensor threshold interrupts can be  
enabled on a per conversion stage basis. The status registers  
The registers located at Address 0x005 and Address 0x006 are  
used to enable the interrupt output for each stage. The registers  
located at Address 0x008 and Address 0x009 are used to read  
back the interrupt status for each stage.  
INT  
indicate what type of interrupt triggered the  
pin. Status  
INT  
registers are cleared, and the  
signal is reset high, during a  
read operation of the interrupt status registers. The signal  
returns high as soon as the read address has been set up.  
Figure 37 shows the interrupt output timing during contact with  
one of the sensors connected to STAGE0 while operating in the  
sensor touch interrupt mode. For a low limit configuration, the  
interrupt output is asserted as soon as the sensor is contacted and  
again after the user has stopped contacting the sensor.  
CDC CONVERSION COMPLETE INTERRUPT  
The AD7143 interrupt signal asserts low to indicate the  
completion of a conversion stage, and new conversion result  
data is available in the registers.  
Note that the interrupt output remains low until the host  
processor reads back the interrupt status registers located at  
Address 0x008 and Address 0x009.  
The interrupt can be independently enabled for each conversion  
stage. Each conversion stage complete interrupt can be enabled  
via the STAGE_COMPLETE_EN register (Address 0x007). This  
register has a bit that corresponds to each conversion stage.  
Setting this bit to 1 enables the interrupt for that stage. Clearing  
this bit to 0 disables the conversion complete interrupt for that  
stage. Figure 38 shows an end of conversion interrupt timing  
with the STAGE0 interrupt enabled.  
The interrupt output is asserted when there is a change in the  
threshold status bits. This could indicate that a user is now  
touching the sensor(s) for the first time, the number of sensors  
being touched has changed, or the user is no longer touching  
the sensor(s). Reading the status bits in the interrupt status  
register shows the current sensor activations.  
FINGER ON SENSOR  
In normal operation, the AD7143s interrupt is enabled only for  
the last stage in a conversion sequence as shown in Figure 38.  
1
3
FINGER OFF SENSOR  
Register 0x00A is the conversion complete interrupt status  
register. Each bit in this register corresponds to a conversion  
stage. If a bit is set, it means that the conversion complete  
interrupt for the corresponding stage was triggered. This  
register is cleared on a read, provided the underlying condition  
that triggered the interrupt has gone away.  
CONVERSION  
STAGE  
STAGE0  
STAGE1  
2
4
SERIAL  
READ BACK  
INT OUTPUT  
SENSOR TOUCH INTERRUPT  
1
2
3
4
The sensor touch interrupt mode is implemented when the host  
processor requires an interrupt only when a sensor is contacted.  
USER TOUCHING DOWN ON SENSOR.  
ADDRESS 0x008 READ BACK TO CLEAR INTERRUPT.  
USER LIFTING OFF OF SENSOR.  
ADDRESS 0x008 READ BACK TO CLEAR INTERRUPT.  
Figure 37. Example of Sensor Touch Interrupt  
Rev. 0 | Page 26 of 56  
 
AD7143  
Table 13. Interrupt Mode Registers  
Interrupt Enable  
Interrupt Status  
Register Address  
Interrupt Mode  
Register Address  
Notes  
Sensor Touch  
Interrupt asserted when the user contacts a sensor.  
See Figure 37.  
Low  
0x005  
0x006  
0x007  
0x008  
0x009  
0x00A  
Enable for the CIN inputs connected to the CDC  
positive stage.  
Enable for the CIN inputs connected to the CDC  
negative stage.  
Continuous interrupt at the end of each STAGEx that  
is enabled.  
High  
CDC Conversion Complete  
STAGE0 STAGE1 STAGE2 STAGE3 STAGE4 STAGE5 STAGE6 STAGE7 STAGE8 STAGE9 STAGE10 STAGE11 STAGE0 STAGE1  
CONVERSIONS  
INT  
1
2
SERIAL  
READS  
NOTES  
1. THIS IS AN EXAMPLE OF A CDC CONVERSION COMPLETE INTERRUPT.  
2. THIS TIMING EXAMPLE SHOWS THAT THE INTERRUPT OUTPUT HAS BEEN ENABLED TO BE ASSERTED  
AT THE END OF A CONVERSION CYCLE FOR STAGE0 ONLY.  
3. STAGEx CONFIGURATION PROGRAMMING NOTES FOR STAGE0, STAGE5, AND STAGE9 (x = 0, 5, 9)  
STAGEx_LOW_INT_EN (ADDRESS 0x005) = 0  
STAGEx_HIGH_INT_EN (ADDRESS 0x006) = 0  
STAGEx_COMPLETE_EN (ADDRESS 0x007) = 1  
Figure 38. Example of Configuring the Registers for End of Conversion Interrupt Setup  
Rev. 0 | Page 27 of 56  
 
AD7143  
SERIAL INTERFACE  
The AD7143 is available with a fixed address I2C-compatible  
interface.  
All slave peripherals connected to the serial bus respond to the  
start condition and shift in the next eight bits, consisting of a  
W
7-bit address (MSB first) plus an R/ bit that determines the  
I2C COMPATIBLE INTERFACE  
direction of the data transfer. The peripheral whose address  
corresponds to the transmitted address responds by pulling the  
data line low during the ninth clock pulse. This is known as the  
acknowledge bit. All other devices on the bus now remain idle  
while the selected device waits for data to be read from, or  
The AD7143 supports the industry standard 2-wire I2C serial  
interface protocol. The two wires associated with the I2C timing are  
the SCLK and the SDA inputs. The SDA is an I/O pin that allows  
both register write and register readback operations. The AD7143 is  
always a slave device on the I2C serial interface bus.  
W
written to it. If the R/ bit is a 0, the master writes to the slave  
W
device. If the R/ bit is a 1, the master reads from the slave device.  
The AD7143 has a single fixed 7-bit device address,  
Address 0101 110. The AD7143 responds when the master  
device sends its device address over the bus. The AD7143  
cannot initiate data transfers on the bus.  
Data is sent over the serial bus in a sequence of nine clock  
pulses, eight bits of data followed by an acknowledge bit from  
the slave device. Transitions on the data line must occur during  
the low period of the clock signal and remain stable during the  
high period, since a low-to-high transition when the clock is  
high can be interpreted as a stop signal. The number of data  
bytes transmitted over the serial bus in a single read or write  
operation is limited only by what the master and slave devices  
can handle.  
Table 14. AD7143 I2C Fixed Device Address  
DEV  
A6  
DEV  
A5  
DEV  
A4  
DEV  
A3  
DEV  
A2  
DEV  
A1  
DEV  
A0  
0
1
0
1
1
1
0
Data Transfer  
Data is transferred over the I2C serial interface in 8-bit bytes.  
The master initiates a data transfer by establishing a start con-  
dition, defined as a high-to-low transition on the serial data  
line, SDA, while the serial clock line, SCLK, remains high. This  
indicates that an address/data stream follows.  
When all data bytes are read or written, a stop condition is  
established. A stop condition is defined by a low-to-high  
transition on SDA while SCLK remains high. If the AD7143  
encounters a stop condition, it returns to its idle condition, and  
the address pointer register resets to Address 0x00.  
START  
AD7143 DEVICE ADDRESS  
REGISTER ADDRESS [A15:A8]  
REGISTER ADDRESS [A7:A0]  
SDA  
DEV DEV DEV DEV DEV DEV DEV  
A6 A5 A4 A3 A2 A1 A0  
R/W ACK A15 A14  
A9  
A8 ACK A7  
A6  
A1  
A0  
t1  
t3  
SCLK  
1
2
3
4
11  
5
6
7
8
9
10  
16  
17  
18  
19  
20  
25  
26  
t2  
STOP  
START  
REGISTER DATA [D15:D8]  
ACK D15 D14  
REGISTER DATA [D7:D0]  
D6 D1  
t5  
38  
AD7143 DEVICE ADDRESS  
DEV DEV DEV  
t8  
ACK  
ACK  
45  
D9  
D8  
t4  
D7  
D0  
A6  
A5  
A4  
t6  
t7  
1
2
3
27  
28  
29  
34  
35  
36  
37  
43  
44  
46  
NOTES  
1. A START CONDITION AT THE BEGINNING IS DEFINED AS A HIGH-TO-LOW TRANSITION ON SDA WHILE SCLK REMAINS HIGH.  
2. A STOP CONDITION AT THE END IS DEFINED AS A LOW-TO-HIGH TRANSITION ON SDA WHILE SCLK REMAINS HIGH.  
3. 7-BIT DEVICE ADDRESS [DEV A6:DEV A0] = [0 1 0 1 1 1 0].  
4. 16-BIT REGISTER ADDRESS [A15:A0] = [X, X, X, X, X, X, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0], WHERE X ARE DON’T CARE BITS.  
5. REGISTER ADDRESS [A15:A8] AND REGISTER ADDRESS [A7:A0] ARE ALWAYS SEPARATED BY A LOW ACK BIT.  
6. REGISTER DATA [D15:D8] AND REGISTER DATA [D7:D0] ARE ALWAYS SEPARATED BY A LOW ACK BIT.  
Figure 39. Example of I2C Timing for Single Register Write Operation  
Rev. 0 | Page 28 of 56  
 
AD7143  
Writing Data over the I2C Bus  
The process for writing to the AD7143 over the I2C bus is  
shown in Figure 39 and Figure 41. The device address is sent  
Any data written to the AD7143 after the address pointer has  
reached its maximum value is discarded.  
All registers on the AD7143 are 16-bit. Two consecutive 8-bit  
data bytes are combined and written to the 16-bit registers. To  
avoid errors, all writes to the device must contain an even  
number of data bytes.  
W
over the bus followed by the R/ bit set to 0. This is followed  
by two bytes of data that contain the 10-bit address of the  
internal data register to be written. The following bit map shows  
the upper register address bytes. Note that Bit 7 to Bit 2 in the  
upper address byte are don’t care bits. The address is contained  
in the 10 LSBs of the register address bytes.  
To finish the transaction, the master generates a stop condition  
on SDA, or generates a repeat start condition if the master is to  
maintain control of the bus.  
MSB  
7
LSB  
6
5
4
3
2
1
0
Reading Data over the I2C Bus  
X
X
X
X
X
X
Register Register  
Address Address  
To read from the AD7143, the address pointer register must first  
be set to the address of the required internal register. The master  
performs a write transaction, and writes to the AD7143 to set the  
address pointer. The master then outputs a repeat start condition  
to keep control of the bus, or, if this is not possible, ends the write  
transaction with a stop condition. A read transaction is initiated,  
Bit 9  
Bit 8  
The following bit map shows the lower register address bytes.  
MSB  
7
LSB  
6
5
4
3
2
1
0
Reg.  
Reg.  
Reg.  
Reg.  
Reg.  
Reg.  
Reg.  
Reg.  
W
with the R/ bit set to 1.  
Addr. Addr. Addr. Addr. Addr. Addr. Addr. Addr.  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
The AD7143 supplies the upper eight bits of data from the  
addressed register in the first readback byte, followed by the  
lower eight bits in the next byte. This is shown in Figure 40 and  
Figure 41.  
The third data byte contains the 8 MSBs of the data to be  
written to the internal register. The fourth data byte contains  
the 8 LSBs of data to be written to the internal register.  
Because the address pointer automatically increases after each  
read, the AD7143 continues to output readback data until the  
master puts a no acknowledge and stop condition on the bus. If  
the address pointer reaches its maximum value, and the master  
continues to read from the part, the AD7143 repeatedly sends  
data from the last register addressed.  
The AD7143 address pointer register automatically increments  
after each write. This allows the master to sequentially write to all  
registers on the AD7143 in the same write transaction. However,  
the address pointer register does not wrap around after the last  
address.  
Rev. 0 | Page 29 of 56  
AD7143  
START  
AD7143 DEVICE ADDRESS  
REGISTER ADDRESS [A15:A8]  
REGISTER ADDRESS [A7:A0]  
SDA  
DEV DEV DEV DEV DEV DEV DEV  
R/W ACK A15 A14  
A9  
A8 ACK A7  
A6  
A1  
A0  
ACK  
27  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
t1  
t3  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
16  
17  
18  
19  
20  
25  
26  
t2  
P
AD7143 DEVICE ADDRESS  
REGISTER DATA [D7:D0]  
D6 D1  
t5  
39  
SR  
t8  
AD7143 DEVICE ADDRESS  
DEV DEV DEV  
DEV DEV  
A6 A5  
DEV DEV  
A1  
D7  
D0  
ACK  
ACK  
46  
R/W  
A6  
A5  
A4  
A0  
USING  
REPEATED START  
t4  
t6  
t7  
34  
35  
36  
37  
38  
44  
45  
1
2
3
28  
29  
30  
AD7143 DEVICE ADDRESS  
REGISTER DATA [D7:D0]  
D6 D1  
t5  
39  
P
P
S
DEV DEV  
A6 A5  
DEV DEV  
A1  
D7  
D0 ACK  
ACK  
R/W  
A0  
t4  
SEPARATE READ AND  
WRITE TRANSACTIONS  
34  
35  
36  
37  
38  
44  
45  
46  
28  
29  
30  
NOTES  
1. A START CONDITION AT THE BEGINNING IS DEFINED AS A HIGH-TO-LOW TRANSITION ON SDA WHILE SCLK REMAINS HIGH.  
2. A STOP CONDITION AT THE END IS DEFINED AS A LOW-TO-HIGH TRANSITION ON SDA WHILE SCLK REMAINS HIGH.  
3. THE MASTER GENERATES THE ACK AT THE END OF THE READBACK TO SIGNAL THAT IT DOES NOT WANT ADDITIONAL DATA.  
4. 7-BIT DEVICE ADDRESS [DEV A6:DEV A0] = [0 1 0 1 1 1 0].  
5. 16-BIT REGISTER ADDRESS[A15:A0] = [X, X, X, X, X, X, A9, A8, A7, A6, A5, A4, A3, A2, A1, A0], WHERE THE UPPER LSB Xs ARE DON’T CARE BITS.  
6. REGISTER ADDRESS [A15:A8] AND REGISTER ADDRESS [A7:A0] ARE ALWAYS SEPARATED BY LOW ACK BITS.  
7. REGISTER DATA [D15:D8] AND REGISTER DATA [D7:D0] ARE ALWAYS SEPARATED BY A LOW ACK BIT.  
8. THE R/W BIT IS SET TO A1 TO INDICATE A READBACK OPERATION.  
Figure 40. Example of I2C Timing for Single Register Readback Operation  
WRITE  
7-BIT DEVICE  
REGISTER ADDR  
[15:8]  
REGISTER ADDR  
[7:0]  
WRITE DATA  
HIGH BYTE [15:8]  
WRITE DATA  
LOW BYTE [7:0]  
WRITE DATA  
HIGH BYTE [15:8]  
WRITE DATA  
LOW BYTE [7:0]  
S
P
W
ADDRESS  
READ (USING REPEATED START)  
7-BIT DEVICE  
ADDRESS  
REGISTER ADDR  
HIGH BYTE  
REGISTER ADDR  
LOW BYTE  
6-BIT DEVICE  
ADDRESS  
READ DATA  
HIGH BYTE [15:8]  
READ DATA  
LOW BYTE [7:0]  
READ DATA  
HIGH BYTE [15:8]  
READ DATA  
LOW BYTE [7:0]  
P
ACK  
S
W
READ (WRITE TRANSACTION SETS UP REGISTER ADDRESS)  
7-BIT DEVICE  
ADDRESS  
REGISTER ADDR  
HIGH BYTE  
REGISTER ADDR  
LOW BYTE  
6-BIT DEVICE  
ADDRESS  
READ DATA  
HIGH BYTE [15:8]  
READ DATA  
LOW BYTE [7:0]  
READ DATA  
HIGH BYTE [15:8]  
READ DATA  
LOW BYTE [7:0]  
P
P
ACK  
S
S
W
OUTPUT FROM MASTER  
OUTPUT FROM AD7143  
S = START BIT  
P = STOP BIT  
SR = REPEATED START BIT  
ACK = ACKNOWLEDGE BIT  
ACK = NO ACKNOWLEDGE BIT  
Figure 41. Example of Sequential I2C Write and Readback Operation  
Rev. 0 | Page 30 of 56  
AD7143  
PCB DESIGN GUIDELINES  
CAPACITIVE SENSOR BOARD MECHANICAL SPECIFICATIONS  
Table 15.  
Parameter  
Symbol  
Min  
1.0  
0
Typ Max Unit  
Distance from Edge of Any Sensor to Edge of Metal Object  
Distance Between Sensor Edges1  
Distance Between Bottom of Sensor Board and Controller Board or Metal Casing2 (4-Layer,  
2-Layer, and Flex Circuit)  
D1  
mm  
mm  
D2 = D3 = D4  
D5  
1.0  
mm  
1 The distance is dependent on the application and the positioning of the switches relative to each other and with respect to the user’s finger positioning and handling.  
Adjacent sensors, with 0 minimum space between them, are implemented differentially.  
2 The 1.0 mm specification is meant to prevent direct sensor board contact with any conductive material. This specification does not guarantee no EMI coupling from  
the controller board to the sensors. Address potential EMI coupling issues by placing a grounded metal shield between the capacitive sensor board and the main  
controller board as shown in Figure 44.  
CAPACITIVE SENSOR BOARD  
D
5
METAL OBJECT  
CONTROLLER PRINTED CIRCUIT BOARD OR METAL CASING  
CAPACITIVE SENSOR  
PRINTED CIRCUIT  
Figure 44. Capacitive Sensor Board with Grounded Shield  
8-WAY  
SWITCH  
CHIP SCALE PACKAGES  
The lands on the chip scale package (CP-16-13) are rectangular.  
The printed circuit board pad for these should be 0.1 mm  
longer than the package land length, and 0.05 mm wider than  
the package land width. Center the land on the pad to maximize  
the solder joint size.  
D
4
SLIDER  
BUTTONS  
D
3
The bottom of the chip scale package has a central thermal pad.  
The thermal pad on the printed circuit board should be at least  
as large as this exposed pad. To avoid shorting, provide a  
clearance of at least 0.25 mm between the thermal pad and the  
inner edges of the land pattern on the printed circuit board.  
D
2
D
1
Thermal vias can be used on the printed circuit board thermal  
pad to improve thermal performance of the package. If vias are  
used, they should be incorporated in the thermal pad at a  
1.2 mm pitch grid. The via diameter should be between 0.3 mm  
and 0.33 mm, and the via barrel should be plated with 1 oz.  
copper to plug the via.  
Figure 42. Capacitive Sensor Board Mechanicals Top View  
CAPACITIVE SENSOR BOARD  
GROUNDED METAL SHIELD  
D
5
Connect the printed circuit board thermal pad to GND.  
CONTROLLER PRINTED CIRCUIT BOARD OR METAL CASING  
Figure 43. Capacitive Sensor Board Mechanicals Side View  
Rev. 0 | Page 31 of 56  
 
 
AD7143  
POWER-UP SEQUENCE  
When the AD7143 is powered up, the following sequence is  
recommended when initially developing the AD7143 and  
Host μC serial interface:  
Register values:  
Address 0x000 = 0x00B2  
Address 0x001 = 0x0000  
Address 0x002 = 0x0690  
Address 0x003 = 0x0664  
Address 0x004 = 0x290F  
Address 0x005 = 0x0000  
Address 0x006 = 0x0000  
1. Turn on the power supplies to the AD7143.  
2. Write to the Bank 2 registers at Address 0x080 through  
Address 0x0DF. These registers are contiguous, so a  
sequential register write sequence can be applied.  
Note: The Bank 2 register values are unique for each  
application. Register values are provided by Analog  
Devices after the sensor board has been developed.  
3. Write to the Bank 1 registers at Address 0x000 through  
Address 0x007 as outlined below. These registers are  
contiguous so a sequential register write sequence can be  
applied  
Address 0x007 = 0x0001 (The AD7143 interrupt is asserted  
approximately every 25 ms.)  
4. Write to the Bank 1 register, Address 0x001 = 0x0FFF.  
Caution: At this time, Address 0x001 must remain set to  
default value 0x0000 during this contiguous write  
operation.  
5. Read back the corresponding interrupt status register at  
Address 0x008, Address 0x009, or Address 0x00A. This is  
determined by the interrupt output configuration as  
explained in the Interrupt Output section.  
Note: The specific registers required to be readback depend  
on each application. Analog Devices provides this  
information after the sensor board has been developed.  
INT  
6. Repeat Step 5 each time  
is asserted.  
POWER  
HOST  
SERIAL  
INTERFACE  
CONVERSION  
1
2
3
4
5
6
7
8
9
10 11  
0
1
2
9
10 11  
0
1
2
9
10 11  
0
1
CONVERSION STAGES DISABLED  
0
STAGE  
AD7143 INT  
SECOND CONVERSION  
SEQUENCE  
THIRD CONVERSION  
SEQUENCE  
FIRST CONVERSION SEQUENCE  
Figure 45. Recommended Start-Up Sequence  
Rev. 0 | Page 32 of 56  
 
AD7143  
TYPICAL APPLICATION CIRCUITS  
VDRIVE  
2.2k  
2.2kΩ  
2.2kΩ  
INT  
SCLK  
HOST WITH  
2
I C  
INTERFACE  
V
HOST  
SDA 12  
VDRIVE 11  
GND 10  
1 CIN2  
2 CIN3  
3 CIN4  
4 CIN5  
SDA  
SCROLL  
WHEEL  
AD7143  
OPTIONAL  
2
I C INTERFACE  
VOLTAGE  
VCC  
2.7V TO 3.6V  
VCC  
9
(1.65V TO 3.6V)  
0.1µF  
1µF TO 10µF  
(OPTIONAL)  
SENSOR PCB  
10nF  
Figure 46. Typical Application Circuit with I2C Interface  
Rev. 0 | Page 33 of 56  
 
AD7143  
REGISTER MAP  
The AD7143 address space is divided into three different  
register banks, referred to as Bank 1, Bank 2, and Bank 3.  
Figure 47 illustrates the division of these three banks.  
Bank 3 registers contains the results of each conversion stage.  
These registers automatically update at the end of each conversion  
sequence. Although these registers are primarily used by the  
AD7143 internal data processing, they are accessible by the host  
processor for additional external data processing, if desired.  
Bank 1 registers contain control registers, CDC conversion  
control registers, interrupt enable registers, interrupt status  
registers, CDC 16-bit conversion data registers, device ID  
registers, and proximity status registers.  
Default values are undefined for Bank 2 registers and Bank 3  
registers until after power up and configuration of the Bank 2  
registers.  
Bank 2 registers contain the configuration registers used for  
uniquely configuring the CIN inputs for each conversion stage.  
Initialize the Bank 2 configuration registers immediately after  
power-up to obtain valid CDC conversion result data.  
REGISTER BANK 1  
REGISTER BANK 2  
REGISTER BANK 3  
ADDR 0x000  
ADDR 0x001  
ADDR 0x080  
ADDR 0x088  
ADDR 0x0E0  
ADDR 0x088  
STAGE0 CONFIGURATION  
(8 REGISTERS)  
STAGE0 RESULTS  
(36 REGISTERS)  
SET UP CONTROL  
(1 REGISTER)  
STAGE1 CONFIGURATION  
(8 REGISTERS)  
STAGE1 RESULTS  
(36 REGISTERS)  
CALIBRATION AND SET UP  
(4 REGISTERS)  
ADDR 0x090  
ADDR 0x098  
ADDR 0x0A0  
ADDR 0x0A8  
ADDR 0x090  
ADDR 0x098  
STAGE2 RESULTS  
(36 REGISTERS)  
STAGE2 CONFIGURATION  
(8 REGISTERS)  
ADDR 0x005  
STAGE3 CONFIGURATION  
(8 REGISTERS)  
STAGE3 RESULTS  
(36 REGISTERS)  
INTERRUPT ENABLE  
(3 REGISTERS)  
ADDR 0x0A0  
ADDR 0x0A8  
STAGE4 RESULTS  
(36 REGISTERS)  
STAGE4 CONFIGURATION  
(8 REGISTERS)  
ADDR 0x008  
ADDR 0x00B  
INTERRUPT STATUS  
(3 REGISTERS)  
STAGE5 RESULTS  
(36 REGISTERS)  
STAGE5 CONFIGURATION  
(8 REGISTERS)  
ADDR 0x0B0  
ADDR 0x0B8  
ADDR 0x0B0  
ADDR 0x0B8  
CDC 16-BIT CONVERSION DATA  
(8 REGISTERS)  
STAGE6 RESULTS  
(36 REGISTERS)  
STAGE6 CONFIGURATION  
(8 REGISTERS)  
ADDR 0x013  
ADDR 0x017  
ADDR 0x018  
ADDR 0x042  
ADDR 0x043  
STAGE7 RESULTS  
(36 REGISTERS)  
STAGE7 CONFIGURATION  
(8 REGISTERS)  
UNUSED (4 REGISTERS)  
DEVICE ID REGISTER  
INVALID DO NOT ACCESS  
PROXIMITY STATUS REGISTER  
INVALID DO NOT ACCESS  
ADDR 0x7F0  
Figure 47. Layout of Bank 1 Registers, Bank 2 Registers, and Bank 3 Registers  
Rev. 0 | Page 34 of 56  
 
AD7143  
DETAILED REGISTER DESCRIPTIONS  
BANK 1 REGISTERS  
All addresses and default values are expressed in hexadecimal format.  
Table 16. PWR_CONTROL Register  
Address Data Bit  
Default Type Name  
Description  
0x000  
[1:0]  
0
R/W  
POWER_MODE  
Operating modes  
00 = full power mode (normal operation, CDC conversions  
approximately every 25 ms)  
01 = full shutdown mode (no CDC conversions)  
10 = low power mode (automatic wake-up operation)  
11 = full shutdown mode (no CDC conversions)  
[3:2]  
[7:4]  
[9:8]  
0
0
0
LP_CONV_DELAY  
Low power mode conversion delay  
00 = 200 ms  
01 = 400 ms  
10 = 600 ms  
11 = 800 ms  
SEQUENCE_STAGE_NUM Number of stages in sequence (N + 1)  
0000 = 1 conversion stage in sequence  
0001 = 2 conversion stages in sequence  
……  
Maximum value = 1011 = 12 conversion stages per sequence  
DECIMATION  
ADC decimation factor  
00 = decimate by 256  
01 = decimate by 128  
10 = do not use this setting  
11 = do not use this setting  
[10]  
[11]  
0
0
SW_RESET  
INT_POL  
Software reset control (self-clearing)  
1 = resets all registers to default values  
Interrupt polarity control  
0 = active low  
1 = active high  
[12]  
0
EXCITATION_SOURCE  
Excitation source control for Pin 15  
0 = enable output  
1 = disable output  
[13]  
[15:14]  
0
0
Unused  
CDC_BIAS  
Set unused register bits = 0  
CDC bias current control  
00 = normal operation  
01 = normal operation + 20%  
10 = normal operation + 35%  
11 = normal operation + 50%  
Rev. 0 | Page 35 of 56  
 
AD7143  
Table 17. STAGE_CAL_EN Register  
Address  
Data Bit Default  
Type  
Name  
Description  
0x001  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
0
0
0
0
0
0
0
0
R/W  
STAGE0_CAL_EN  
STAGE0 calibration enable  
0 = disable  
1 = enable  
STAGE1_CAL_EN  
STAGE2_CAL_EN  
STAGE3_CAL_EN  
STAGE4_CAL_EN  
STAGE5_CAL_EN  
STAGE6_CAL_EN  
STAGE7_CAL_EN  
STAGE1 calibration enable  
0 = disable  
1 = enable  
STAGE2 calibration enable  
0 = disable  
1 = enable  
STAGE3 calibration enable  
0 = disable  
1 = enable  
STAGE4 calibration enable  
0 = disable  
1 = enable  
STAGE5 calibration enable  
0 = disable  
1 = enable  
STAGE6 calibration enable  
0 = disable  
1 = enable  
STAGE7 calibration enable  
0 = disable  
1 = enable  
[11:8]  
0
0
Unused  
Set unused register bits = 0  
[13:12]  
AVG_FP_SKIP  
Full power mode skip control  
00 = skip 3 samples  
01 = skip 7 samples  
10 = skip 15 samples  
11 = skip 31 samples  
[15:14]  
0
AVG_LP_SKIP  
Low power mode skip control  
00 = use all samples  
01 = skip 1 sample  
10 = skip 2 samples  
11 = skip 3 samples  
Rev. 0 | Page 36 of 56  
AD7143  
Table 18. AMB_COMP_CTRL0 Register  
Address  
Data Bit Default  
Type  
Name  
Description  
0x002  
[3:0]  
0
R/W  
FF_SKIP_CNT  
Fast filter skip control (N+1)  
0000 = no sequence of results are skipped  
0001 = one sequence of results is skipped for every one  
allowed into Fast FIFO  
0010 = two sequences of results are skipped for every  
one allowed into Fast FIFO  
1011 = maximum value = 12 sequences of results are  
skipped for every one allowed into Fast FIFO  
[7:4]  
[11:8]  
[13:12]  
F
F
0
FP_PROXIMITY_CNT  
LP_PROXIMITY_CNT  
PWR_DOWN_TIMEOUT  
Full power mode proximity period  
Low power mode proximity period  
Full power to low power mode time out control  
00 = 1.25 × (FP_PROXIMITY_CNT)  
01 = 1.50 × (FP_PROXIMITY_CNT)  
10 = 1.75 × (FP_PROXIMITY_CNT)  
11 = 2.00 × (FP_PROXIMITY_CNT)  
[14]  
[15]  
0
0
FORCED_CAL  
CONV_RESET  
Forced calibration control  
0 = normal operation  
1 = forces all conversion stages to recalibrate  
Conversion reset control (self-clearing)  
0 = normal operation  
1 = resets the conversion sequence back to STAGE0  
Table 19. AMB_COMP_CTRL1 Register  
Address  
Data Bit Default  
Type  
Name  
Description  
0x003  
[7:0]  
[13:8]  
[15:14]  
64  
1
0
R/W  
PROXIMITY_RECAL_LVL  
PROXIMITY_DETECTION_RATE  
SLOW_FILTER_UPDATE_LVL  
Proximity recalibration level  
Proximity detection rate  
Slow filter update level  
Table 20. AMB_COMP_CTRL2 Register  
Address  
Data Bit Default  
Type  
Name  
Description  
0x004  
[9:0]  
[15:10]  
3FF  
3F  
R/W  
FP_PROXIMITY_RECAL  
LP_PROXIMITY_RECAL  
Full power mode proximity recalibration time control  
Low power mode proximity recalibration time control  
Rev. 0 | Page 37 of 56  
AD7143  
Table 21. STAGE_LOW_INT_EN Register  
Address Data Bit  
Default  
Type  
Name  
Description  
0x005  
[0]  
0
R/W  
STAGE0_LOW_INT_EN  
STAGE0 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 low threshold is exceeded  
[1]  
0
0
0
0
0
STAGE1_LOW_INT_EN  
STAGE2_LOW_INT_EN  
STAGE3_LOW_INT_EN  
STAGE4_LOW_INT_EN  
STAGE5_LOW_INT_EN  
STAGE1 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 low threshold is exceeded  
[2]  
[3]  
[4]  
[5]  
STAGE2 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 low threshold is exceeded  
STAGE3 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 low threshold is exceeded  
STAGE4 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 low threshold is exceeded  
STAGE5 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 low threshold is exceeded  
[6]  
[7]  
0
0
STAGE6_LOW_INT_EN  
STAGE7_LOW_INT_EN  
STAGE6 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 low threshold is exceeded  
STAGE7 low interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 low threshold is exceeded  
[11:8]  
[15:12]  
0
0
Unused  
TESTMODE  
Set unused register bits = 0  
Set test mode register bits = 0 (at all times)  
Rev. 0 | Page 38 of 56  
AD7143  
Table 22. STAGE_HIGH_INT_EN Register  
Address Data Bit  
Default  
Type  
Name  
Description  
0x006  
[0]  
[1]  
[2]  
[3]  
0
R/W  
STAGE0_HIGH_INT_EN  
STAGE0 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 high threshold is exceeded  
0
0
0
STAGE1_HIGH_INT_EN  
STAGE2_HIGH_INT_EN  
STAGE3_HIGH_INT_EN  
STAGE1 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 high threshold is exceeded  
STAGE2 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 high threshold is exceeded  
STAGE3 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 high threshold is exceeded  
[4]  
0
0
0
0
STAGE4_HIGH_INT_EN  
STAGE5_HIGH_INT_EN  
STAGE6_HIGH_INT_EN  
STAGE7_HIGH_INT_EN  
Unused  
STAGE4 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 high threshold is exceeded  
[5]  
STAGE5 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 high threshold is exceeded  
[6]  
STAGE6 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 high threshold is exceeded  
[7]  
STAGE7 high interrupt enable  
0 = interrupt source disabled  
1 = INT asserted if STAGE0 high threshold is exceeded  
[15:8]  
Set unused register bits = 0  
Rev. 0 | Page 39 of 56  
AD7143  
Table 23. STAGE_COMPLETE_INT_EN Register  
Address Data Bit  
Default  
Type  
Name  
Description  
0x007  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
0
R/W  
STAGE0_COMPLETE_EN  
STAGE0 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE0 conversion  
STAGE1 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE1 conversion  
STAGE2 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE2 conversion  
STAGE3 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE3 conversion  
STAGE4 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE4 conversion  
STAGE5 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE5 conversion  
STAGE6 conversion interrupt control  
0 = interrupt source disabled  
1 = INT asserted at completion of STAGE6 conversion  
STAGE7 conversion interrupt control  
0 = interrupt source disabled  
0
0
0
0
0
0
0
STAGE1_COMPLETE_EN  
STAGE2_COMPLETE_EN  
STAGE3_COMPLETE_EN  
STAGE4_COMPLETE_EN  
STAGE5_COMPLETE_EN  
STAGE6_COMPLETE_EN  
STAGE7_COMPLETE_EN  
1 = INT asserted at completion of STAGE7 conversion  
Set unused register bits = 0  
Set test mode register bits = 0 at all times  
Set unused register bits = 0  
[11:8]  
[12]  
[15:13]  
0
0
Unused  
TESTMODE  
Unused  
Table 24. STAGE_LOW_LIMIT_INT Register1  
Address Data Bit  
Default Type  
Name  
Description  
0x008  
[0]  
0
0
0
0
0
0
0
0
R
STAGE0_LOW_LIMIT_INT  
STAGE0 CDC conversion low limit interrupt result  
1 indicates STAGE0_LOW_THRESHOLD value exceeded  
STAGE1 CDC conversion low limit interrupt result  
1 indicates STAGE1_LOW_THRESHOLD value exceeded  
STAGE2 CDC conversion low limit interrupt result  
1 indicates STAGE2_LOW_THRESHOLD value exceeded  
STAGE3 CDC conversion low limit interrupt result  
1 indicates STAGE3_LOW_THRESHOLD value exceeded  
STAGE4 CDC conversion low limit interrupt result  
1 indicates STAGE4_LOW_THRESHOLD value exceeded  
STAGE5 CDC conversion low limit interrupt result  
1 indicates STAGE5_LOW_THRESHOLD value exceeded  
STAGE6 CDC conversion low limit interrupt result  
1 indicates STAGE6_LOW_THRESHOLD value exceeded  
STAGE7 CDC conversion low limit interrupt result  
1 indicates STAGE7_LOW_THRESHOLD value exceeded  
Set unused register bits = 0  
[1]  
STAGE1_LOW_LIMIT_INT  
STAGE2_LOW_LIMIT_INT  
STAGE3_LOW_LIMIT_INT  
STAGE4_LOW_LIMIT_INT  
STAGE5_LOW_LIMIT_INT  
STAGE6_LOW_LIMIT_INT  
STAGE7_LOW_LIMIT_INT  
Unused  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[15:8]  
1 Registers self-clear to 0 after readback, provided that the limits are not exceeded.  
Rev. 0 | Page 40 of 56  
 
AD7143  
Table 25. STAGE_HIGH_LIMIT_INT Register1  
Address Data Bit  
Default Type  
Name  
Description  
0x009  
[0]  
0
0
0
0
0
0
0
0
R
STAGE0_HIGH_LIMIT_INT  
STAGE0 CDC conversion high limit interrupt result  
1 indicates STAGE0_HIGH_THRESHOLD value exceeded  
STAGE1 CDC conversion high limit interrupt result  
1 indicates STAGE1_HIGH_THRESHOLD value exceeded  
Stage2 CDC conversion high limit interrupt result  
1 indicates STAGE2_HIGH_THRESHOLD value exceeded  
STAGE3 CDC conversion high limit interrupt result  
1 indicates STAGE3_HIGH_THRESHOLD value exceeded  
STAGE4 CDC conversion high limit interrupt result  
1 indicates STAGE4_HIGH_THRESHOLD value exceeded  
STAGE5 CDC conversion high limit interrupt result  
1 indicates STAGE5_HIGH_THRESHOLD value exceeded  
STAGE6 CDC conversion high limit interrupt result  
1 indicates STAGE6_HIGH_THRESHOLD value exceeded  
STAGE7 CDC conversion high limit interrupt result  
1 indicates STAGE7_HIGH_THRESHOLD value exceeded  
Set unused register bits = 0  
[1]  
STAGE1_HIGH_LIMIT_INT  
STAGE2_HIGH_LIMIT_INT  
STAGE3_HIGH_LIMIT_INT  
STAGE4_HIGH_LIMIT_INT  
STAGE5_HIGH_LIMIT_INT  
STAGE6_HIGH_LIMIT_INT  
STAGE7_HIGH_LIMIT_INT  
Unused  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[15:8]  
1 Registers self-clear to 0 after readback, provided that the limits are not exceeded.  
Table 26. STAGE_COMPLETE_LIMIT_INT Register1  
Address Data Bit  
Default Type  
Name  
Description  
0x00A  
[0]  
0
0
0
0
0
0
0
0
0
R
STAGE0_COMPLETE_STATUS_INT STAGE0 conversion complete register interrupt status  
1 indicates STAGE0 conversion completed  
STAGE1_COMPLETE_STATUS_INT STAGE1 conversion complete register interrupt status  
1 indicates STAGE0 conversion completed  
STAGE2_COMPLETE_STATUS_INT STAGE2 conversion complete register interrupt status  
1 indicates STAGE0 conversion completed  
STAGE3_COMPLETE_STATUS_INT STAGE3 conversion complete register interrupt status  
1 indicates STAGE0 conversion completed  
STAGE4_COMPLETE_STATUS_INT STAGE4 conversion complete register interrupt status  
1 indicates STAGE0 conversion completed  
STAGE5_COMPLETE_STATUS_INT STAGE5 conversion complete register interrupt status  
1 indicates STAGE0 conversion completed  
STAGE6_COMPLETE_STATUS_INT STAGE6 conversion complete register interrupt status  
1 indicates STAGE0 conversion completed  
STAGE7_COMPLETE_STATUS_INT STAGE7 conversion complete register interrupt status  
1 indicates STAGE0 conversion completed  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[15:8]  
Unused  
1 Registers self-clear to 0 after readback, provided that the limits are not exceeded.  
Rev. 0 | Page 41 of 56  
 
 
AD7143  
Table 27. CDC 16-Bit Conversion Data Registers  
Address Data Bit  
Default  
Type  
Name  
Description  
0x00B  
0x00C  
0x00D  
0x00E  
0x00F  
0x010  
0x011  
0x012  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
ADC_RESULT_S0  
ADC_RESULT_S1  
ADC_RESULT_S2  
ADC_RESULT_S3  
ADC_RESULT_S4  
ADC_RESULT_S5  
ADC_RESULT_S6  
ADC_RESULT_S7  
STAGE0 CDC 16-bit conversion data  
STAGE1 CDC 16-bit conversion data  
STAGE2 CDC 16-bit conversion data  
STAGE3 CDC 16-bit conversion data  
STAGE4 CDC 16-bit conversion data  
STAGE5 CDC 16-bit conversion data  
STAGE6 CDC 16-bit conversion data  
STAGE7 CDC 16-bit conversion data  
Table 28. Device ID Register  
Address Data Bit Default  
Type  
Name  
Description  
0x017  
[3:0]  
[15:4]  
0
E63  
R
REVISION_CODE  
DEVID  
AD7143 revision code  
AD7143 device ID = 0xE63  
Table 29. Proximity Status Register  
Address Data Bit  
Default  
Type  
Name  
Description  
0x042  
[0]  
0
R
STAGE0_PROXIMITY_STATUS  
STAGE0 proximity status register  
1 indicates proximity detected on STAGE0  
STAGE1 proximity status register  
1 indicates proximity detected on STAGE1  
STAGE2 proximity status register  
1 indicates proximity detected on STAGE2  
STAGE3 proximity status register  
1 indicates proximity detected on STAGE3  
STAGE4 proximity status register  
1 indicates proximity detected on STAGE4  
STAGE5 proximity status register  
1 indicates proximity detected on STAGE5  
STAGE6 proximity status register  
1 indicates proximity detected on STAGE6  
STAGE7 proximity status register  
1 indicates proximity detected on STAGE7  
Set unused register bits = 0  
[1]  
0
0
0
0
0
0
0
R
R
R
R
R
R
R
STAGE1_PROXIMITY_STATUS  
STAGE2_PROXIMITY_STATUS  
STAGE3_PROXIMITY_STATUS  
STAGE4_PROXIMITY_STATUS  
STAGE5_PROXIMITY_STATUS  
STAGE6_PROXIMITY_STATUS  
STAGE7_PROXIMITY_STATUS  
Unused  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[15:8]  
Rev. 0 | Page 42 of 56  
AD7143  
BANK 2 REGISTERS  
All address values are expressed in hexadecimal format.  
Table 30. STAGE0 Configuration Registers  
Address  
0x080  
0x081  
0x082  
0x083  
0x084  
0x085  
0x086  
0x087  
Data Bit  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
Default  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Description  
X
X
X
X
X
X
X
X
STAGE0_CONNECTION[6:0]  
STAGE0_CONNECTION 7  
STAGE0_AFE_OFFSET  
STAGE0_SENSITIVITY  
STAGE0_OFFSET_LOW  
STAGE0_OFFSET_HIGH  
STAGE0_OFFSET_HIGH_CLAMP  
STAGE0_OFFSET_LOW_CLAMP  
STAGE0 CIN(6:0) connection setup (see Table 38)  
STAGE0 CIN7 connection setup (see Table 39)  
STAGE0 AFE offset control (see Table 40)  
STAGE0 sensitivity control (see Table 41)  
STAGE0 initial offset low value  
STAGE0 initial offset high value  
STAGE0 offset high clamp value  
STAGE0 offset low clamp value  
Table 31. STAGE1 Configuration Registers  
Address  
0x088  
0x089  
0x08A  
0x08B  
0x08C  
0x08D  
0x08E  
0x08F  
Data Bit  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
Default  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Description  
X
X
X
X
X
X
X
X
STAGE1_CONNECTION[6:0]  
STAGE1_CONNECTION 7  
STAGE1_AFE_OFFSET  
STAGE1_SENSITIVITY  
STAGE1_OFFSET_LOW  
STAGE1_OFFSET_HIGH  
STAGE1_OFFSET_HIGH_CLAMP  
STAGE1_OFFSET_LOW_CLAMP  
STAGE1 CIN(6:0) connection setup (see Table 38)  
STAGE1 CIN7 connection setup (see Table 39)  
STAGE1 AFE offset control (see Table 40)  
STAGE1 sensitivity control (see Table 41)  
STAGE1 initial offset low value  
STAGE1 initial offset high value  
STAGE1 offset high clamp value  
STAGE1 offset low clamp value  
Table 32. STAGE2 Configuration Registers  
Address  
0x090  
0x091  
0x092  
0x093  
0x094  
0x095  
0x096  
0x097  
Data Bit  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
Default  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Description  
X
X
X
X
X
X
X
X
STAGE2_CONNECTION[6:0]  
STAGE2_CONNECTION 7  
STAGE2_AFE_OFFSET  
STAGE2_SENSITIVITY  
STAGE2_OFFSET_LOW  
STAGE2_OFFSET_HIGH  
STAGE2_OFFSET_HIGH_CLAMP  
STAGE2_OFFSET_LOW_CLAMP  
STAGE2 CIN(6:0) connection setup (see Table 38)  
STAGE2 CIN7 connection setup (see Table 39)  
STAGE2 AFE offset control (see Table 40)  
STAGE2 sensitivity control (see Table 41)  
STAGE2 initial offset low value  
STAGE2 initial offset high value  
STAGE2 offset high clamp value  
STAGE2 offset low clamp value  
Rev. 0 | Page 43 of 56  
 
AD7143  
Table 33. STAGE3 Configuration Registers  
Address Data Bit  
Default  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Description  
0x098  
0x099  
0x09A  
0x09B  
0x09C  
0x09D  
0x09E  
0x09F  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
STAGE3_CONNECTION[6:0]  
STAGE3_CONNECTION 7  
STAGE3_AFE_OFFSET  
STAGE3_SENSITIVITY  
STAGE3_OFFSET_LOW  
STAGE3_OFFSET_HIGH  
STAGE3_OFFSET_HIGH_CLAMP  
STAGE3_OFFSET_LOW_CLAMP  
STAGE3 CIN(6:0) connection setup (see Table 38)  
STAGE3 CIN7 connection setup (see Table 39)  
STAGE3 AFE offset control (see Table 40)  
STAGE3 sensitivity control (see Table 41)  
STAGE3 initial offset low value  
STAGE3 initial offset high value  
STAGE3 offset high clamp value  
STAGE3 offset low clamp value  
Table 34. STAGE4 Configuration Registers  
Address Data Bit  
Default  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Description  
0x0A0  
0x0A1  
0x0A2  
0x0A3  
0x0A4  
0x0A5  
0x0A6  
0x0A7  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
STAGE4_CONNECTION[6:0]  
STAGE4_CONNECTION 7  
STAGE4_AFE_OFFSET  
STAGE4_SENSITIVITY  
STAGE4_OFFSET_LOW  
STAGE4_OFFSET_HIGH  
STAGE4_OFFSET_HIGH_CLAMP  
STAGE4_OFFSET_LOW_CLAMP  
STAGE4 CIN(6:0) connection setup (see Table 38)  
STAGE4 CIN7 connection setup (see Table 39)  
STAGE4 AFE offset control (see Table 40)  
STAGE4 sensitivity control (see Table 41)  
STAGE4 initial offset low value  
STAGE4 initial offset high value  
STAGE4 offset high clamp value  
STAGE4 offset low clamp value  
Table 35. STAGE5 Configuration Registers  
Address Data Bit  
Default  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Description  
0x0A8  
0x0A9  
0x0AA  
0x0AB  
0x0AC  
0x0AD  
0x0AE  
0x0AF  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
STAGE5_CONNECTION[6:0]  
STAGE5_CONNECTION 7  
STAGE5_AFE_OFFSET  
STAGE5_SENSITIVITY  
STAGE5_OFFSET_LOW  
STAGE5_OFFSET_HIGH  
STAGE5_OFFSET_HIGH_CLAMP  
STAGE5_OFFSET_LOW_CLAMP  
STAGE5 CIN(6:0) connection setup (see Table 38)  
STAGE5 CIN7 connection setup (see Table 39)  
STAGE5 AFE offset control (see Table 40)  
STAGE5 sensitivity control (see Table 41)  
STAGE5 initial offset low value  
STAGE5 initial offset high value  
STAGE5 offset high clamp value  
STAGE5 offset low clamp value  
Table 36. STAGE6 Configuration Registers  
Address Data Bit  
Default  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Description  
0x0B0  
0x0B1  
0x0B2  
0x0B3  
0x0B4  
0x0B5  
0x0B6  
0x0B7  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
STAGE6_CONNECTION[6:0]  
STAGE6_CONNECTION 7  
STAGE6_AFE_OFFSET  
STAGE6_SENSITIVITY  
STAGE6_OFFSET_LOW  
STAGE6_OFFSET_HIGH  
STAGE6_OFFSET_HIGH_CLAMP  
STAGE6_OFFSET_LOW_CLAMP  
STAGE6 CIN(6:0) connection setup (see Table 38)  
STAGE6 CIN7 connection setup (see Table 39)  
STAGE6 AFE offset control (see Table 40)  
STAGE6 sensitivity control (see Table 41)  
STAGE6 initial offset low value  
STAGE6 initial offset high value  
STAGE6 offset high clamp value  
STAGE6 offset low clamp value  
Rev. 0 | Page 44 of 56  
AD7143  
Table 37. STAGE7 Configuration Registers  
Address Data Bit  
Default  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Name  
Description  
0x0B8  
0x0B9  
0x0BA  
0x0BB  
0x0BC  
0x0BD  
0x0BE  
0x0BF  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
STAGE7_CONNECTION[6:0]  
STAGE7_CONNECTION 7  
STAGE7_AFE_OFFSET  
STAGE7_SENSITIVITY  
STAGE7_OFFSET_LOW  
STAGE7_OFFSET_HIGH  
STAGE7_OFFSET_HIGH_CLAMP  
STAGE7_OFFSET_LOW_CLAMP  
STAGE7 CIN(6:0) connection setup (see Table 38)  
STAGE7 CIN7 connection setup (see Table 39)  
STAGE7 AFE offset control (see Table 40)  
STAGE7 sensitivity control (see Table 41)  
STAGE7 initial offset low value  
STAGE7 initial offset high value  
STAGE7 offset high clamp value  
STAGE7 offset low clamp value  
Table 38. STAGEX Detailed CIN (0:6) Connection Setup Description (X = 0 to 6)  
Data Bit  
Default  
Type  
Name  
Description  
[1:0]  
X
R/W  
CIN0_CONNECTION_SETUP  
CIN0 connection setup  
00 = CIN0 not connected to CDC inputs  
01 = CIN0 connected to CDC negative input  
10 = CIN0 connected to CDC positive input  
11 = CIN0 connected to BIAS (connect unused CIN inputs)  
CIN1 connection setup  
00 = CIN1 not connected to CDC inputs  
01 = CIN1 connected to CDC negative input  
10 = CIN1 connected to CDC positive input  
11 = CIN1 connected to BIAS (connect unused CIN inputs)  
CIN2 connection setup  
00 = CIN2 not connected to CDC inputs  
01 = CIN2 connected to CDC negative input  
10 = CIN2 connected to CDC positive input  
11 = CIN2 connected to BIAS (connect unused CIN inputs)  
CIN3 connection setup  
00 = CIN3 not connected to CDC inputs  
01 = CIN3 connected to CDC negative input  
10 = CIN3 connected to CDC positive input  
11 = CIN3 connected to BIAS (connect unused CIN inputs)  
CIN4 connection setup  
00 = CIN4 not connected to CDC inputs  
01 = CIN4 connected to CDC negative input  
10 = CIN4 connected to CDC positive input  
11 = CIN4 connected to BIAS (connect unused CIN inputs)  
CIN5 connection setup  
00 = CIN5 not connected to CDC inputs  
01 = CIN5 connected to CDC negative input  
10 = CIN5 connected to CDC positive input  
11 = CIN5 connected to BIAS (connect unused CIN inputs)  
CIN6 connection setup  
[3:2]  
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CIN1_CONNECTION_SETUP  
CIN2_CONNECTION_SETUP  
CIN3_CONNECTION_SETUP  
CIN4_CONNECTION_SETUP  
CIN5_CONNECTION_SETUP  
CIN6_CONNECTION_SETUP  
Unused  
[5:4]  
[7:6]  
[9:8]  
[11:10]  
[13:12]  
[15:14]  
00 = CIN6 not connected to CDC inputs  
01 = CIN6 connected to CDC negative input  
10 = CIN6 connected to CDC positive input  
11 = CIN6 connected to BIAS (connect unused CIN inputs)  
Rev. 0 | Page 45 of 56  
 
AD7143  
Table 39. STAGEX Detailed CIN7 Connection Setup Description  
Data Bit  
Default  
Type  
Name  
Description  
[1:0]  
X
R/W  
CIN7_CONNECTION_SETUP  
CIN7 connection setup  
00 = CIN7 not connected to CDC inputs  
01 = CIN7 connected to CDC negative input  
10 = CIN7 connected to CDC positive input  
11 = CIN7 connected to BIAS (connect unused CIN inputs)  
[13:2]  
[14]  
X
X
R/W  
R/W  
Unused  
NEG_AFE_OFFSET_DISABLE  
Negative AFE offset enable control  
0 = enable  
1 = disable  
[15]  
X
R/W  
POS_AFE_OFFSET_DISABLE  
Positive AFE offset enable control  
0 = enable  
1 = disable  
Table 40. STAGEX Detailed Offset Control Description (X = 0 to 7)  
Data Bit  
Default  
Type  
Name  
Description  
[6:0]  
X
R/W  
NEG_AFE_OFFSET  
Negative AFE offset setting (20 pF range)  
1 LSB value = 0.16 pF of offset  
[7]  
X
R/W  
NEG_AFE_OFFSET_SWAP  
Negative AFE offset swap control  
0 = NEG_AFE_OFFSET applied to CDC negative input  
1 = NEG_AFE_OFFSET applied to CDC positive input  
Positive AFE offset setting (20 pF range)  
1 LSB value = 0.16 pF of offset  
[14:8]  
[15]  
X
X
R/W  
R/W  
POS_AFE_OFFSET  
POS_AFE_OFFSET_SWAP  
Positive AFE offset swap control  
0 = POS_AFE_OFFSET applied to CDC positive input  
1 = POS_AFE_OFFSET applied to CDC negative input  
Table 41. STAGEX Detailed Sensitivity Control Description (X = 0 to 7)  
Data Bit  
Default  
Type  
Name  
Description  
[3:0]  
X
R/W  
NEG_THRESHOLD_SENSITIVITY  
Negative threshold sensitivity control  
0000 = 25%, 0001 = 29.73%, 0010 = 34.40%, 0011 = 39.08%  
0100 = 43.79%, 0101 = 48.47%, 0110 = 53.15%  
0111 = 57.83%, 1000 = 62.51%, 1001 = 67.22%  
1010 = 71.90%, 1011 = 76.58%, 1100 = 81.28%  
1101 = 85.96%, 1110 = 90.64%, 1111 = 95.32%  
Negative peak detect setting  
[6:4]  
X
R/W  
NEG_PEAK_DETECT  
000 = 40% level, 001 = 50% level, 010 = 60% level  
011 = 70% level, 100 = 80% level, 101 = 90% level  
[7]  
X
X
R/W  
R/W  
Unused  
[11:8]  
POS_THRESHOLD_SENSITIVITY  
Positive threshold sensitivity control  
0000 = 25%, 0001 = 29.73%, 0010 = 34.40%, 0011 = 39.08%  
0100 = 43.79%, 0101 = 48.47%, 0110 = 53.15%  
0111 = 57.83%, 1000 = 62.51%, 1001 = 67.22%  
1010 = 71.90%, 1011 = 76.58%, 1100 = 81.28%  
1101 = 85.96%, 1110 = 90.64%, 1111 = 95.32%  
Positive peak detect setting  
[14:12]  
[15]  
X
X
R/W  
R/W  
POS_PEAK_DETECT  
Unused  
000 = 40% level, 001 = 50% level, 010 = 60% level  
011 = 70% level, 100 = 80% level, 101 = 90% level  
Rev. 0 | Page 46 of 56  
 
AD7143  
BANK 3 REGISTERS  
All address values are expressed in hexadecimal format.  
Table 42. STAGE0 Results Registers  
Address Data Bit  
Default  
Type  
Name  
Description  
0x0E0  
[15:0]  
X
R/W  
STAGE0_CONV_DATA  
STAGE0 CDC 16-bit conversion data  
(copy of data in STAGE0_CONV_DATA register)  
0x0E1  
0x0E2  
0x0E3  
0x0E4  
0x0E5  
0x0E6  
0x0E7  
0x0E8  
0x0E9  
0x0EA  
0x0EB  
0x0EC  
0x0ED  
0x0EE  
0x0EF  
0x0F0  
0x0F1  
0x0F2  
0x0F3  
0x0F4  
0x0F5  
0x0F6  
0x0F7  
0x0F8  
0x0F9  
0x0FA  
0x0FB  
0x0FC  
0x0FD  
0x0FE  
0x0FF  
0x100  
0x101  
0x102  
0x103  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE0_FF_WORD0  
STAGE0_FF_WORD1  
STAGE0_FF_WORD2  
STAGE0_FF_WORD3  
STAGE0_FF_WORD4  
STAGE0_FF_WORD5  
STAGE0_FF_WORD6  
STAGE0_FF_WORD7  
STAGE0_SF_WORD0  
STAGE0_SF_WORD1  
STAGE0_SF_WORD2  
STAGE0_SF_WORD3  
STAGE0_SF_WORD4  
STAGE0_SF_WORD5  
STAGE0_SF_WORD6  
STAGE0_SF_WORD7  
STAGE0_SF_AMBIENT  
STAGE0_FF_AVG  
STAGE0_PEAK_DETECT_WORD0  
STAGE0_PEAK_DETECT_WORD1  
STAGE0_MAX_WORD0  
STAGE0_MAX_WORD1  
STAGE0_MAX_WORD2  
STAGE0_MAX_WORD3  
STAGE0_MAX_AVG  
STAGE0_HIGH_THRESHOLD  
STAGE0_MAX_TEMP  
STAGE0_MIN_WORD0  
STAGE0_MIN_WORD1  
STAGE0_MIN_WORD2  
STAGE0_MIN_WORD3  
STAGE0_MIN_AVG  
STAGE0 fast FIFO WORD0  
STAGE0 fast FIFO WORD1  
STAGE0 fast FIFO WORD2  
STAGE0 fast FIFO WORD3  
STAGE0 fast FIFO WORD4  
STAGE0 fast FIFO WORD5  
STAGE0 fast FIFO WORD6  
STAGE0 fast FIFO WORD7  
STAGE0 slow FIFO WORD0  
STAGE0 slow FIFO WORD1  
STAGE0 slow FIFO WORD2  
STAGE0 slow FIFO WORD3  
STAGE0 slow FIFO WORD4  
STAGE0 slow FIFO WORD5  
STAGE0 slow FIFO WORD6  
STAGE0 slow FIFO WORD7  
STAGE0 slow FIFO ambient value  
STAGE0 fast FIFO average value  
STAGE0 peak FIFO WORD0 value  
STAGE0 peak FIFO WORD1 value  
STAGE0 maximum value FIFO WORD0  
STAGE0 maximum value FIFO WORD1  
STAGE0 maximum value FIFO WORD2  
STAGE0 maximum value FIFO WORD3  
STAGE0 average maximum FIFO value  
STAGE0 high threshold value  
STAGE0 temporary maximum value  
STAGE0 minimum value FIFO WORD0  
STAGE0 minimum value FIFO WORD1  
STAGE0 minimum value FIFO WORD2  
STAGE0 minimum value FIFO WORD3  
STAGE0 average minimum FIFO value  
STAGE0 low threshold value  
STAGE0_LOW_THRESHOLD  
STAGE0_MIN_TEMP  
Unused  
STAGE0 temporary minimum value  
Rev. 0 | Page 47 of 56  
 
AD7143  
Table 43. STAGE1 Results Registers  
Address Data Bit  
Default  
Type  
Name  
Description  
0x104  
[15:0]  
X
R/W  
STAGE1_CONV_DATA  
STAGE1 CDC 16-bit conversion data  
(copy of data in STAGE1_CONV_DATA register)  
0x105  
0x106  
0x107  
0x108  
0x109  
0x10A  
0x10B  
0x10C  
0x10D  
0x10E  
0x10F  
0x110  
0x111  
0x112  
0x113  
0x114  
0x115  
0x116  
0x117  
0x118  
0x119  
0x11A  
0x11B  
0x11C  
0x11D  
0x11E  
0x11F  
0x120  
0x121  
0x122  
0x123  
0x124  
0x125  
0x126  
0x127  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE1_FF_WORD0  
STAGE1_FF_WORD1  
STAGE1_FF_WORD2  
STAGE1_FF_WORD3  
STAGE1_FF_WORD4  
STAGE1_FF_WORD5  
STAGE1_FF_WORD6  
STAGE1_FF_WORD7  
STAGE1_SF_WORD0  
STAGE1_SF_WORD1  
STAGE1_SF_WORD2  
STAGE1_SF_WORD3  
STAGE1_SF_WORD4  
STAGE1_SF_WORD5  
STAGE1_SF_WORD6  
STAGE1_SF_WORD7  
STAGE1_SF_AMBIENT  
STAGE1_FF_AVG  
STAGE1_CDC_WORD0  
STAGE1_CDC_WORD1  
STAGE1_MAX_WORD0  
STAGE1_MAX_WORD1  
STAGE1_MAX_WORD2  
STAGE1_MAX_WORD3  
STAGE1_MAX_AVG  
STAGE1_HIGH_THRESHOLD  
STAGE1_MAX_TEMP  
STAGE1_MIN_WORD0  
STAGE1_MIN_WORD1  
STAGE1_MIN_WORD2  
STAGE1_MIN_WORD3  
STAGE1_MIN_AVG  
STAGE1 fast FIFO WORD0  
STAGE1 fast FIFO WORD1  
STAGE1 fast FIFO WORD2  
STAGE1 fast FIFO WORD3  
STAGE1 fast FIFO WORD4  
STAGE1 fast FIFO WORD5  
STAGE1 fast FIFO WORD6  
STAGE1 fast FIFO WORD7  
STAGE1 slow FIFO WORD0  
STAGE1 slow FIFO WORD1  
STAGE1 slow FIFO WORD2  
STAGE1 slow FIFO WORD3  
STAGE1 slow FIFO WORD4  
STAGE1 slow FIFO WORD5  
STAGE1 slow FIFO WORD6  
STAGE1 slow FIFO WORD7  
STAGE1 slow FIFO ambient value  
STAGE1 fast FIFO average value  
STAGE1 CDC FIFO WORD0  
STAGE1 CDC FIFO WORD1  
STAGE1 maximum value FIFO WORD0  
STAGE1 maximum value FIFO WORD1  
STAGE1 maximum value FIFO WORD2  
STAGE1 maximum value FIFO WORD3  
STAGE1 average maximum FIFO value  
STAGE1 high threshold value  
STAGE1 temporary maximum value  
STAGE1 minimum value FIFO WORD0  
STAGE1 minimum value FIFO WORD1  
STAGE1 minimum value FIFO WORD2  
STAGE1 minimum value FIFO WORD3  
STAGE1 average minimum FIFO value  
STAGE1 low threshold value  
STAGE1 temporary minimum value  
STAGE1_LOW_THRESHOLD  
STAGE1_MIN_TEMP  
Unused  
Rev. 0 | Page 48 of 56  
AD7143  
Table 44. STAGE2 Results Registers  
Address Data Bit  
Default  
Type  
Name  
Description  
0x128  
[15:0]  
X
R/W  
STAGE2_CONV_DATA  
STAGE2 CDC 16-bit conversion data  
(copy of data in STAGE2_CONV_DATA register)  
0x129  
0x12A  
0x12B  
0x12C  
0x12D  
0x12E  
0x12F  
0x130  
0x131  
0x132  
0x133  
0x134  
0x135  
0x125  
0x137  
0x138  
0x139  
0x13A  
0x13B  
0x13C  
0x13D  
0x13E  
0x13F  
0x140  
0x141  
0x142  
0x143  
0x144  
0x145  
0x146  
0x147  
0x148  
0x149  
0x14A  
0x14B  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE2_FF_WORD0  
STAGE2_FF_WORD1  
STAGE2_FF_WORD2  
STAGE2_FF_WORD3  
STAGE2_FF_WORD4  
STAGE2_FF_WORD5  
STAGE2_FF_WORD6  
STAGE2_FF_WORD7  
STAGE2_SF_WORD0  
STAGE2_SF_WORD1  
STAGE2_SF_WORD2  
STAGE2_SF_WORD3  
STAGE2_SF_WORD4  
STAGE2_SF_WORD5  
STAGE2_SF_WORD6  
STAGE2_SF_WORD7  
STAGE2_SF_AMBIENT  
STAGE2_FF_AVG  
STAGE2_CDC_WORD0  
STAGE2_CDC_WORD1  
STAGE2_MAX_WORD0  
STAGE2_MAX_WORD1  
STAGE2_MAX_WORD2  
STAGE2_MAX_WORD3  
STAGE2_MAX_AVG  
STAGE2_HIGH_THRESHOLD  
STAGE2_MAX_TEMP  
STAGE2_MIN_WORD0  
STAGE2_MIN_WORD1  
STAGE2_MIN_WORD2  
STAGE2_MIN_WORD3  
STAGE2_MIN_AVG  
STAGE2 fast FIFO WORD0  
STAGE2 fast FIFO WORD1  
STAGE2 fast FIFO WORD2  
STAGE2 fast FIFO WORD3  
STAGE2 fast FIFO WORD4  
STAGE2 fast FIFO WORD5  
STAGE2 fast FIFO WORD6  
STAGE2 fast FIFO WORD7  
STAGE2 slow FIFO WORD0  
STAGE2 slow FIFO WORD1  
STAGE2 slow FIFO WORD2  
STAGE2 slow FIFO WORD3  
STAGE2 slow FIFO WORD4  
STAGE2 slow FIFO WORD5  
STAGE2 slow FIFO WORD6  
STAGE2 slow FIFO WORD7  
STAGE2 slow FIFO ambient value  
STAGE2 fast FIFO average value  
STAGE2 CDC FIFO WORD0  
STAGE2 CDC FIFO WORD1  
STAGE2 maximum value FIFO WORD0  
STAGE2 maximum value FIFO WORD1  
STAGE2 maximum value FIFO WORD2  
STAGE2 maximum value FIFO WORD3  
STAGE2 average maximum FIFO value  
STAGE2 high threshold value  
STAGE2 temporary maximum value  
STAGE2 minimum value FIFO WORD0  
STAGE2 minimum value FIFO WORD1  
STAGE2 minimum value FIFO WORD2  
STAGE2 minimum value FIFO WORD3  
STAGE2 average minimum FIFO value  
STAGE2 low threshold value  
STAGE2_LOW_THRESHOLD  
STAGE2_MIN_TEMP  
Unused  
STAGE2 temporary minimum value  
Rev. 0 | Page 49 of 56  
AD7143  
Table 45. STAGE3 Results Registers  
Address Data Bit  
Default  
Type  
Name  
Description  
0x14C  
[15:0]  
X
R/W  
STAGE3_CONV_DATA  
STAGE3 CDC 16-bit conversion data  
(copy of data in STAGE3_CONV_DATA register)  
0x14D  
0x14E  
0x14F  
0x150  
0x151  
0x152  
0x153  
0x154  
0x155  
0x156  
0x157  
0x158  
0x159  
0x15A  
0x15B  
0x15C  
0x15D  
0x15E  
0x15F  
0x160  
0x161  
0x162  
0x163  
0x164  
0x165  
0x166  
0x167  
0x168  
0x169  
0x16A  
0x16B  
0x16C  
0x16D  
0x16E  
0x16F  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE3_FF_WORD0  
STAGE3_FF_WORD1  
STAGE3_FF_WORD2  
STAGE3_FF_WORD3  
STAGE3_FF_WORD4  
STAGE3_FF_WORD5  
STAGE3_FF_WORD6  
STAGE3_FF_WORD7  
STAGE3_SF_WORD0  
STAGE3_SF_WORD1  
STAGE3_SF_WORD2  
STAGE3_SF_WORD3  
STAGE3_SF_WORD4  
STAGE3_SF_WORD5  
STAGE3_SF_WORD6  
STAGE3_SF_WORD7  
STAGE3_SF_AMBIENT  
STAGE3_FF_AVG  
STAGE3_CDC_WORD0  
STAGE3_CDC_WORD1  
STAGE3_MAX_WORD0  
STAGE3_MAX_WORD1  
STAGE3_MAX_WORD2  
STAGE3_MAX_WORD3  
STAGE3_MAX_AVG  
STAGE3_HIGH_THRESHOLD  
STAGE3_MAX_TEMP  
STAGE3_MIN_WORD0  
STAGE3_MIN_WORD1  
STAGE3_MIN_WORD2  
STAGE3_MIN_WORD3  
STAGE3_MIN_AVG  
STAGE3 fast FIFO WORD0  
STAGE3 fast FIFO WORD1  
STAGE3 fast FIFO WORD2  
STAGE3 fast FIFO WORD3  
STAGE3 fast FIFO WORD4  
STAGE3 fast FIFO WORD5  
STAGE3 fast FIFO WORD6  
STAGE3 fast FIFO WORD7  
STAGE3 slow FIFO WORD0  
STAGE3 slow FIFO WORD1  
STAGE3 slow FIFO WORD2  
STAGE3 slow FIFO WORD3  
STAGE3 slow FIFO WORD4  
STAGE3 slow FIFO WORD5  
STAGE3 slow FIFO WORD6  
STAGE3 slow FIFO WORD7  
STAGE3 slow FIFO ambient value  
STAGE3 fast FIFO average value  
STAGE3 CDC FIFO WORD0  
STAGE3 CDC FIFO WORD1  
STAGE3 maximum value FIFO WORD0  
STAGE3 maximum value FIFO WORD1  
STAGE3 maximum value FIFO WORD2  
STAGE3 maximum value FIFO WORD3  
STAGE3 average maximum FIFO value  
STAGE3 high threshold value  
STAGE3 temporary maximum value  
STAGE3 minimum value FIFO WORD0  
STAGE3 minimum value FIFO WORD1  
STAGE3 minimum value FIFO WORD2  
STAGE3 minimum value FIFO WORD3  
STAGE3 average minimum FIFO value  
STAGE3 low threshold value  
STAGE3 temporary minimum value  
STAGE3_LOW_THRESHOLD  
STAGE3_MIN_TEMP  
Unused  
Rev. 0 | Page 50 of 56  
AD7143  
Table 46. STAGE4 Results Registers  
Address Data Bit  
Default  
Type  
Name  
Description  
0x170  
[15:0]  
X
R/W  
STAGE4_CONV_DATA  
STAGE4 CDC 16-bit conversion data  
(copy of data in STAGE4_CONV_DATA register)  
0x171  
0x172  
0x173  
0x174  
0x175  
0x176  
0x177  
0x178  
0x179  
0x17A  
0x17B  
0x17C  
0x17D  
0x17E  
0x17F  
0x180  
0x181  
0x182  
0x183  
0x184  
0x185  
0x186  
0x187  
0x188  
0x189  
0x18A  
0x18B  
0x18C  
0x18D  
0x18E  
0x18F  
0x190  
0x191  
0x192  
0x193  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE4_FF_WORD0  
STAGE4_FF_WORD1  
STAGE4_FF_WORD2  
STAGE4_FF_WORD3  
STAGE4_FF_WORD4  
STAGE4_FF_WORD5  
STAGE4_FF_WORD6  
STAGE4_FF_WORD7  
STAGE4_SF_WORD0  
STAGE4_SF_WORD1  
STAGE4_SF_WORD2  
STAGE4_SF_WORD3  
STAGE4_SF_WORD4  
STAGE4_SF_WORD5  
STAGE4_SF_WORD6  
STAGE4_SF_WORD7  
STAGE4_SF_AMBIENT  
STAGE4_FF_AVG  
STAGE4_CDC_WORD0  
STAGE4_CDC_WORD1  
STAGE4_MAX_WORD0  
STAGE4_MAX_WORD1  
STAGE4_MAX_WORD2  
STAGE4_MAX_WORD3  
STAGE4_MAX_AVG  
STAGE4_HIGH_THRESHOLD  
STAGE4_MAX_TEMP  
STAGE4_MIN_WORD0  
STAGE4_MIN_WORD1  
STAGE4_MIN_WORD2  
STAGE4_MIN_WORD3  
STAGE4_MIN_AVG  
STAGE4 fast FIFO WORD0  
STAGE4 fast FIFO WORD1  
STAGE4 fast FIFO WORD2  
STAGE4 fast FIFO WORD3  
STAGE4 fast FIFO WORD4  
STAGE4 fast FIFO WORD5  
STAGE4 fast FIFO WORD6  
STAGE4 fast FIFO WORD7  
STAGE4 slow FIFO WORD0  
STAGE4 slow FIFO WORD1  
STAGE4 slow FIFO WORD2  
STAGE4 slow FIFO WORD3  
STAGE4 slow FIFO WORD4  
STAGE4 slow FIFO WORD5  
STAGE4 slow FIFO WORD6  
STAGE4 slow FIFO WORD7  
STAGE4 slow FIFO ambient value  
STAGE4 fast FIFO average value  
STAGE4 CDC FIFO WORD0  
STAGE4 CDC FIFO WORD1  
STAGE4 maximum value FIFO WORD0  
STAGE4 maximum value FIFO WORD1  
STAGE4 maximum value FIFO WORD2  
STAGE4 maximum value FIFO WORD3  
STAGE4 average maximum FIFO value  
STAGE4 high threshold value  
STAGE4 temporary maximum value  
STAGE4 minimum value FIFO WORD0  
STAGE4 minimum value FIFO WORD1  
STAGE4 minimum value FIFO WORD2  
STAGE4 minimum value FIFO WORD3  
STAGE4 average minimum FIFO value  
STAGE4 low threshold value  
STAGE4_LOW_THRESHOLD  
STAGE4_MIN_TEMP  
Unused  
STAGE4 temporary minimum value  
Rev. 0 | Page 51 of 56  
AD7143  
Table 47. STAGE5 Results Registers  
Address Data Bit  
Default  
Type  
Name  
Description  
0x194  
[15:0]  
X
R/W  
STAGE5_CONV_DATA  
STAGE5 CDC 16-bit conversion data  
(copy of data in STAGE5_CONV_DATA register)  
0x195  
0x196  
0x197  
0x198  
0x199  
0x19A  
0x19B  
0x19C  
0x19D  
0x19E  
0x19F  
0x1A0  
0x1A1  
0x1A2  
0x1A3  
0x1A4  
0x1A5  
0x1A6  
0x1A7  
0x1A8  
0x1A9  
0x1AA  
0x1AB  
0x1AC  
0x1AD  
0x1AE  
0x1AF  
0x1B0  
0x1B1  
0x1B2  
0x1B3  
0x1B4  
0x1B5  
0x1B6  
0x1B7  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE5_FF_WORD0  
STAGE5_FF_WORD1  
STAGE5_FF_WORD2  
STAGE5_FF_WORD3  
STAGE5_FF_WORD4  
STAGE5_FF_WORD5  
STAGE5_FF_WORD6  
STAGE5_FF_WORD7  
STAGE5_SF_WORD0  
STAGE5_SF_WORD1  
STAGE5_SF_WORD2  
STAGE5_SF_WORD3  
STAGE5_SF_WORD4  
STAGE5_SF_WORD5  
STAGE5_SF_WORD6  
STAGE5_SF_WORD7  
STAGE5_SF_AMBIENT  
STAGE5_FF_AVG  
STAGE5_CDC_WORD0  
STAGE5_CDC_WORD1  
STAGE5_MAX_WORD0  
STAGE5_MAX_WORD1  
STAGE5_MAX_WORD2  
STAGE5_MAX_WORD3  
STAGE5_MAX_AVG  
STAGE5_HIGH_THRESHOLD  
STAGE5_MAX_TEMP  
STAGE5_MIN_WORD0  
STAGE5_MIN_WORD1  
STAGE5_MIN_WORD2  
STAGE5_MIN_WORD3  
STAGE5_MIN_AVG  
STAGE5 fast FIFO WORD0  
STAGE5 fast FIFO WORD1  
STAGE5 fast FIFO WORD2  
STAGE5 fast FIFO WORD3  
STAGE5 fast FIFO WORD4  
STAGE5 fast FIFO WORD5  
STAGE5 fast FIFO WORD6  
STAGE5 fast FIFO WORD7  
STAGE5 slow FIFO WORD0  
STAGE5 slow FIFO WORD1  
STAGE5 slow FIFO WORD2  
STAGE5 slow FIFO WORD3  
STAGE5 slow FIFO WORD4  
STAGE5 slow FIFO WORD5  
STAGE5 slow FIFO WORD6  
STAGE5 slow FIFO WORD7  
STAGE5 slow FIFO ambient value  
STAGE5 fast FIFO average value  
STAGE5 CDC FIFO WORD0  
STAGE5 CDC FIFO WORD1  
STAGE5 maximum value FIFO WORD0  
STAGE5 maximum value FIFO WORD1  
STAGE5 maximum value FIFO WORD2  
STAGE5 maximum value FIFO WORD3  
STAGE5 average maximum FIFO value  
STAGE5 high threshold value  
STAGE5 temporary maximum value  
STAGE5 minimum value FIFO WORD0  
STAGE5 minimum value FIFO WORD1  
STAGE5 minimum value FIFO WORD2  
STAGE5 minimum value FIFO WORD3  
STAGE5 average minimum FIFO value  
STAGE5 low threshold value  
STAGE5 temporary minimum value  
STAGE5_LOW_THRESHOLD  
STAGE5_MIN_TEMP  
Unused  
Rev. 0 | Page 52 of 56  
AD7143  
Table 48. STAGE6 Results Registers  
Address Data Bit  
Default  
Type  
Name  
Description  
0x1B8  
[15:0]  
X
R/W  
STAGE6_CONV_DATA  
STAGE6 CDC 16-bit conversion data  
(copy of data in STAGE6_CONV_DATA register)  
0x1B9  
0x1BA  
0x1BB  
0x1BC  
0x1BD  
0x1BE  
0x1BF  
0x1C0  
0x1C1  
0x1C2  
0x1C3  
0x1C4  
0x1C5  
0x1C6  
0x1C7  
0x1C8  
0x1C9  
0x1CA  
0x1CB  
0x1CC  
0x1CD  
0x1CE  
0x1CF  
0x1D0  
0x1D1  
0x1D2  
0x1D3  
0x1D4  
0x1D5  
0x1D6  
0x1D7  
0x1D8  
0x1D9  
0x1DA  
0x1DB  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE6_FF_WORD0  
STAGE6_FF_WORD1  
STAGE6_FF_WORD2  
STAGE6_FF_WORD3  
STAGE6_FF_WORD4  
STAGE6_FF_WORD5  
STAGE6_FF_WORD6  
STAGE6_FF_WORD7  
STAGE6_SF_WORD0  
STAGE6_SF_WORD1  
STAGE6_SF_WORD2  
STAGE6_SF_WORD3  
STAGE6_SF_WORD4  
STAGE6_SF_WORD5  
STAGE6_SF_WORD6  
STAGE6_SF_WORD7  
STAGE6_SF_AMBIENT  
STAGE6_FF_AVG  
STAGE6_CDC_WORD0  
STAGE6_CDC_WORD1  
STAGE6_MAX_WORD0  
STAGE6_MAX_WORD1  
STAGE6_MAX_WORD2  
STAGE6_MAX_WORD3  
STAGE6_MAX_AVG  
STAGE6_HIGH_THRESHOLD  
STAGE6_MAX_TEMP  
STAGE6_MIN_WORD0  
STAGE6_MIN_WORD1  
STAGE6_MIN_WORD2  
STAGE6_MIN_WORD3  
STAGE6_MIN_AVG  
STAGE6 fast FIFO WORD0  
STAGE6 fast FIFO WORD1  
STAGE6 fast FIFO WORD2  
STAGE6 fast FIFO WORD3  
STAGE6 fast FIFO WORD4  
STAGE6 fast FIFO WORD5  
STAGE6 fast FIFO WORD6  
STAGE6 fast FIFO WORD7  
STAGE6 slow FIFO WORD0  
STAGE6 slow FIFO WORD1  
STAGE6 slow FIFO WORD2  
STAGE6 slow FIFO WORD3  
STAGE6 slow FIFO WORD4  
STAGE6 slow FIFO WORD5  
STAGE6 slow FIFO WORD6  
STAGE6 slow FIFO WORD7  
STAGE6 slow FIFO ambient value  
STAGE6 fast FIFO average value  
STAGE0 CDC FIFO WORD0  
STAGE6 CDC FIFO WORD1  
STAGE6 maximum value FIFO WORD0  
STAGE6 maximum value FIFO WORD1  
STAGE6 maximum value FIFO WORD2  
STAGE6 maximum value FIFO WORD3  
STAGE6 average maximum FIFO value  
STAGE6 high threshold value  
STAGE6 temporary maximum value  
STAGE6 minimum value FIFO WORD0  
STAGE6 minimum value FIFO WORD1  
STAGE6 minimum value FIFO WORD2  
STAGE6 minimum value FIFO WORD3  
STAGE6 average minimum FIFO value  
STAGE6 low threshold value  
STAGE6_LOW_THRESHOLD  
STAGE6_MIN_TEMP  
Unused  
STAGE6 temporary minimum value  
Rev. 0 | Page 53 of 56  
AD7143  
Table 49. STAGE7 Results Registers  
Address Data Bit  
Default  
Type  
Name  
Description  
0x1DC  
[15:0]  
X
R/W  
STAGE7_CONV_DATA  
STAGE7 CDC 16-bit conversion data  
(copy of data in STAGE7_CONV_DATA register)  
0x1DD  
0x1DE  
0x1DF  
0x1E0  
0x1E1  
0x1E2  
0x1E3  
0x1E4  
0x1E5  
0x1E6  
0x1E7  
0x1E8  
0x1E9  
0x1EA  
0x1EB  
0x1EC  
0x1ED  
0x1EE  
0x1EF  
0x1F0  
0x1F1  
0x1F2  
0x1F3  
0x1F4  
0x1F5  
0x1F6  
0x1F7  
0x1F8  
0x1F9  
0x1FA  
0x1FB  
0x1FC  
0x1FD  
0x1FE  
0x1FF  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
[15:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STAGE7_FF_WORD0  
STAGE7_FF_WORD1  
STAGE7_FF_WORD2  
STAGE7_FF_WORD3  
STAGE7_FF_WORD4  
STAGE7_FF_WORD5  
STAGE7_FF_WORD6  
STAGE7_FF_WORD7  
STAGE7_SF_WORD0  
STAGE7_SF_WORD1  
STAGE7_SF_WORD2  
STAGE7_SF_WORD3  
STAGE7_SF_WORD4  
STAGE7_SF_WORD5  
STAGE7_SF_WORD6  
STAGE7_SF_WORD7  
STAGE7_SF_AMBIENT  
STAGE7_FF_AVG  
STAGE7_CDC_WORD0  
STAGE7_CDC_WORD1  
STAGE7_MAX_WORD0  
STAGE7_MAX_WORD1  
STAGE7_MAX_WORD2  
STAGE7_MAX_WORD3  
STAGE7_MAX_AVG  
STAGE7_HIGH_THRESHOLD  
STAGE7_MAX_TEMP  
STAGE7_MIN_WORD0  
STAGE7_MIN_WORD1  
STAGE7_MIN_WORD2  
STAGE7_MIN_WORD3  
STAGE7_MIN_AVG  
STAGE7 fast FIFO WORD0  
STAGE7 fast FIFO WORD1  
STAGE7 fast FIFO WORD2  
STAGE7 fast FIFO WORD3  
STAGE7 fast FIFO WORD4  
STAGE7 fast FIFO WORD5  
STAGE7 fast FIFO WORD6  
STAGE7 fast FIFO WORD7  
STAGE7 slow FIFO WORD0  
STAGE7 slow FIFO WORD1  
STAGE7 slow FIFO WORD2  
STAGE7 slow FIFO WORD3  
STAGE7 slow FIFO WORD4  
STAGE7 slow FIFO WORD5  
STAGE7 slow FIFO WORD6  
STAGE7 slow FIFO WORD7  
STAGE7 slow FIFO ambient value  
STAGE7 fast FIFO average value  
STAGE7 CDC FIFO WORD0  
STAGE7 CDC FIFO WORD1  
STAGE7 maximum value FIFO WORD0  
STAGE7 maximum value FIFO WORD1  
STAGE7 maximum value FIFO WORD2  
STAGE7 maximum value FIFO WORD3  
STAGE7 average maximum FIFO value  
STAGE7 high threshold value  
STAGE7 temporary maximum value  
STAGE7 minimum value FIFO WORD0  
STAGE7 minimum value FIFO WORD1  
STAGE7 minimum value FIFO WORD2  
STAGE7 minimum value FIFO WORD3  
STAGE7 average minimum FIFO value  
STAGE7 low threshold value  
STAGE7 temporary minimum value  
STAGE7_LOW_THRESHOLD  
STAGE7_MIN_TEMP  
Unused  
Rev. 0 | Page 54 of 56  
AD7143  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATO  
R
1
12  
13  
16  
2.65  
2.50 SQ  
2.35  
PIN 1  
INDICATOR  
3.75  
BSC SQ  
EXPOSED  
PAD  
4
8
5
0.65  
BSC  
9
0.25 MIN  
TOP VIEW  
1.95 BCS  
BOTTOM VIEW  
12° MAX  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC.  
Figure 48. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Very Thin Quad  
(CP-16-13)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD7143ACPZ-1REEL1  
AD7143ACPZ-1500RL71  
EVAL-AD7143-1EBZ1  
Temperature Range  
Serial Interface Description  
I2C Interface  
Package Description  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
Evaluation Board  
Package Option  
CP-16-13  
CP-16-13  
−40°C to +85°C  
−40°C to +85°C  
I2C Interface  
I2C Interface  
1 Z = Pb-free part.  
Rev. 0 | Page 55 of 56  
 
 
AD7143  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06472-0-1/07(0)  
Rev. 0 | Page 56 of 56  
 
 

相关型号:

AD7143ACPZ-1500RL7

Programmable Controller for Capacitance Touch Sensors
ADI

AD7143ACPZ-1REEL

Programmable Controller for Capacitance Touch Sensors
ADI

AD7147

CapTouch⑩ Programmable Controller for Single-Electrode Capacitance Sensors
ADI

AD7147A

CapTouch Programmable Controller
ADI

AD7147A-1ACBZ-RL

CapTouch Programmable Controller
ADI

AD7147A-1ACBZ500R7

CapTouch® Programmable Controller for Single-Electrode Capacitance Sensors
ADI

AD7147A-1ACBZ500RL7

CapTouch Programmable Controller
ADI

AD7147AACBZ-500RL7

CapTouch® Programmable Controller for Single-Electrode Capacitance Sensors
ADI

AD7147AACBZ-RL

CapTouch Programmable Controller
ADI

AD7147AACBZ500RL7

CapTouch Programmable Controller
ADI

AD7147ACPZ-1500RL7

CapTouch⑩ Programmable Controller for Single-Electrode Capacitance Sensors
ADI

AD7147ACPZ-1REEL

CapTouch⑩ Programmable Controller for Single-Electrode Capacitance Sensors
ADI