AD7376AR10-REEL [ADI]

IC 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO16, MS-013AA, SOIC-16, Digital Potentiometer;
AD7376AR10-REEL
型号: AD7376AR10-REEL
厂家: ADI    ADI
描述:

IC 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO16, MS-013AA, SOIC-16, Digital Potentiometer

光电二极管 转换器 电阻器
文件: 总20页 (文件大小:350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
+30 V/± ±1 V ꢀOperatio  
±28-Pistatio Dtgtarl Piapoatimpape  
AD7376  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
128 positions  
10 kΩ, 50 kΩ, 100 kΩ  
5 V to 30 V single-supply operation  
5 V to 15 V dual-supply operation  
3-wire SPI®-compatible serial interface  
THD 0.006% typical  
Programmable preset  
Power shutdown: less than 1 μA  
iCMOS™ process technology  
V
AD7376  
DD  
SDO  
SDI  
Q
A
7-BIT  
7
7
7-BIT  
SERIAL  
LATCH  
REGISTER  
W
B
D
CK  
SHDN  
R
CLK  
CS  
V
SS  
APPLICATIONS  
High voltage DAC  
GND  
RS  
SHDN  
Programmable power supply  
Programmable gain and offset adjustment  
Programmable filters, delays  
Actuator control  
Figure 1.  
Audio volume control  
Mechanical potentiometer replacement  
GENERAL DESCRIPTION  
The AD73761 is one of the few high voltage, high performance  
digital potentiometers2 in the market at present. This device can  
be used as a programmable resistor or resistor divider. The  
AD7376 performs the same electronic adjustment function as  
mechanical potentiometers, variable resistors, and trimmers  
with enhanced resolution, solid-state reliability, and  
programmability. With digital rather than manual control,  
AD7376 provides layout flexibility and allows close-loop  
dynamic controllability.  
The AD7376 features sleep-mode programmability in shutdown  
that can be used to program the preset before device activation,  
thus providing an alternative to costly EEPROM solutions.  
The AD7376 is available in 14-lead TSSOP and 16-lead wide  
body SOIC packages in 10 kΩ, 50 kΩ, and 100 kΩ options. All  
parts are guaranteed to operate over the −40°C to +85°C  
extended industrial temperature range.  
1 Patent number: 54952455.  
2 The terms digital potentiometer and RDAC are used interchangeably.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
 
AD7376  
TABLE ꢀF CꢀNTENTS  
Features .............................................................................................. 1  
Programming the Variable Resistor......................................... 12  
Programming the Potentiometer Divider............................... 13  
3-Wire Serial Bus Digital Interface.......................................... 13  
Daisy-Chain Operation ............................................................. 14  
ESD Protection ........................................................................... 14  
Terminal Voltage Operating Range ......................................... 14  
Power-Up and Power-Down Sequences.................................. 14  
Layout and Power Supply Biasing............................................ 15  
Applications..................................................................................... 16  
High Voltage DAC...................................................................... 16  
Programmable Power Supply ................................................... 16  
Audio Volume Control .............................................................. 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—10 kΩ Version................................ 3  
Electrical Characteristics—50 kΩ, 100 kΩ Versions ............... 4  
Timing Specifications .................................................................. 5  
3-Wire Digital Interface................................................................... 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 12  
REVISION HISTORY  
11/05—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Deleted DIP Package..........................................................Universal  
Changes to Features.......................................................................... 1  
Separated Electrical Characteristics into Table 1 and Table 2 .... 3  
Separated Interface Timing into Table 3 ....................................... 5  
Changes to Table 1 Through Table 3.............................................. 3  
Added Table 4.................................................................................... 6  
Added Figure 2.................................................................................. 6  
Changes to Absolute Maximum Ratings Section......................... 7  
Deleted Parametric Test Circuits Section...................................... 7  
Changes to Typical Performance Characteristics......................... 9  
Added Daisy-Chain Operation Section....................................... 14  
Added ESD Protection Section..................................................... 14  
Added Terminal Voltage Operating Range Section................... 14  
Added Power-Up and Power-Down Sequences Section ........... 14  
Added Layout and Power Supply Biasing Section...................... 15  
Added Applications Section.......................................................... 16  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 19  
10/97—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
AD7376  
SPECIFICATIꢀNS  
ELECTRICAL CHARACTERISTICS—10 kΩ VERSION  
VDD/VSS  
= 15 V 10ꢀ, VA = VDD, VB = VSS/0 V, 40°C < TA < +85°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—  
RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3 (∆RAB/RAB)/∆T × 106 VAB = VDD, wiper = no connect  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
RWB, VA = NC, VDD/VSS  
RWB, VA = NC, VDD/VSS  
TA = 25°C  
=
=
15 V  
15 V  
−1  
−1  
−30  
0.5  
0.5  
+1  
+1  
+30  
LSB  
LSB  
%
ppm/°C  
Ω
−300  
120  
260  
RW  
VDD/VSS  
VDD/VSS  
=
=
15 V  
5 V  
200  
Ω
DC CHARACTERISTICS—  
POTENTIOMETER DIVIDER MODE  
Integral Nonlinearity4  
INL  
DNL  
VDD/VSS  
VDD/VSS  
Code = 0x40  
=
=
15 V  
15 V  
−1  
−1  
0.5  
0.5  
5
+1  
+1  
LSB  
LSB  
ppm/°C  
Differential Nonlinearity4  
Voltage Divider Temperature  
Coefficient  
(∆VW/VW)/∆T × 106  
Full-Scale Error  
Zero-Scale Error  
VWFSE  
VWZSE  
Code = 0x7F, VDD/VSS  
Code = 0x00, VDD/VSS  
=
=
15 V  
15 V  
−3  
0
−1.5  
1.5  
0
3
LSB  
LSB  
RESISTOR TERMINALS  
Voltage Range5  
VA, B, W  
CA, B  
VSS  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to GND,  
code = 0x40  
f = 1 MHz, measured to GND,  
code = 0x40  
45  
60  
Capacitance6  
CW  
pF  
Shutdown Supply Current7  
Shutdown Wiper Resistance  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Output Logic High  
Output Logic Low  
IA_SD  
RW_SD  
ICM  
VA = VDD, VB = 0 V, SHDN = 0  
VA = VDD, VB = 0 V, SHDN = 0, VDD = 15 V  
VA = VB = VW  
0.02  
170  
1
1
μA  
Ω
400  
nA  
VIH  
VIL  
VOH  
VOL  
IIL  
VDD = 5 V or 15 V  
VDD = 5 V or 15 V  
RPull-up = 2.2 kΩ to 5 V  
IOL = 1.6 mA, VLOGIC = 5 V, VDD = 15 V  
VIN = 0 V or 5 V  
2.4  
4.9  
V
V
V
V
μA  
pF  
0.8  
0.4  
1
Input Current  
Input Capacitance6  
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Power Supply Range  
Positive Supply Current  
VDD/VSS  
VDD  
IDD  
Dual-supply range  
Single-supply range, VSS = 0  
4.5  
4.5  
16.5  
33  
V
V
VIH = 5 V or VIL = 0 V, VDD/VSS  
VIH = 5 V or VIL = 0 V, VDD/VSS  
VIH = 5 V or VIL = 0 V, VDD/VSS  
VIH = 5 V or VIL = 0 V, VDD/VSS  
VIH = 5 V or VIL = 0 V, VDD/VSS  
=
=
=
=
=
15 V  
5 V  
15 V  
5 V  
2
mA  
μA  
mA  
mA  
mW  
%/%  
12  
25  
Negative Supply Current  
ISS  
−0.1  
−0.1  
31.5  
Power Dissipation8  
Power Supply Rejection Ratio  
PDISS  
PSRR  
15 V  
ΔVDD/ΔVSS  
=
15 V 10%  
−0.2  
0.05 +0.2  
Rev. A | Page 3 of 20  
 
AD7376  
Parameter  
DYNAMIC CHARACTERISTICS6, 9,10  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
Bandwidth −3 dB  
Total Harmonic Distortion  
VW Settling Time  
BW  
THDW  
tS  
Code = 0x40  
470  
0.006  
4
kHz  
%
μs  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 10 V, VB = 0 V, 1 LSB error band  
RWB = 5 kΩ, f = 1 kHz  
Resistor Noise Voltage  
eN_WB  
0.9  
nV√Hz  
1 Typical values represent average readings at 25°C, VDD = 15 V, and VSS = −15 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum and minimum resistance wiper positions. R-DNL  
measures the relative step change from an ideal value measured between successive tap positions. Parts are guaranteed monotonic.  
3 Pb-free parts have a 35 ppm/°C temperature coefficient.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider, similar to a voltage output digital-to-analog converter. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminals A, B, and W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
7 Measured at the A terminal. A terminal is open circuit in shutdown mode.  
8 PDISS is calculated from (IDD × VDD) + abs(ISS × VSS). CMOS logic level inputs result in minimum power dissipation.  
9 Bandwidth, noise, and settling times are dependent on the terminal resistance value chosen. The lowest R value results in the fastest settling time and highest  
bandwidth. The highest R value results in the minimum overall power consumption.  
10 All dynamic characteristics use VDD = 15 V and VSS = −15 V.  
ELECTRICAL CHARACTERISTICS—50 kΩ, 100 kΩ VERSIONS  
VDD/VSS  
= 15 V 10ꢀ or 5 V 10ꢀ, VA = VDD, VB = VSS/0 V, 40°C < TA < +85°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ1 Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Nonlinearity2  
R-DNL  
R-INL  
RWB, VA = NC  
−1  
−1.5  
−1  
0.5  
0.5  
0.5  
+1  
+1.5  
+1  
LSB  
LSB  
LSB  
%
RWB, VA = NC, RAB = 50 kΩ  
RWB, VA = NC, RAB = 100 kΩ  
TA = 25°C  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
∆RAB  
(∆RAB/RAB)/∆T ×  
106  
−30  
+30  
VAB = VDD, wiper = no connect  
−300  
ppm/°C  
Wiper Resistance  
RW  
VDD/VSS  
VDD/VSS  
=
=
15 V  
5 V  
120  
260  
200  
Ω
Ω
DC CHARACTERISTICS—  
POTENTIOMETER DIVIDER MODE  
Integral Nonlinearity4  
INL  
DNL  
−1  
−1  
0.5  
0.5  
5
+1  
+1  
LSB  
LSB  
ppm/°C  
Differential Nonlinearity4  
Voltage Divider Temperature  
Coefficient  
(∆VW/VW)/∆T × 106  
Code = 0x40  
Full-Scale Error  
Zero-Scale Error  
VWFSE  
VWZSE  
Code = 0x7F  
Code = 0x00  
−2  
0
−0.5  
0.5  
0
1
LSB  
LSB  
RESISTOR TERMINALS  
Voltage Range5  
VA, B, W  
CA, B  
VSS  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to GND,  
code = 0x40  
f = 1 MHz, measured to GND,  
code = 0x40  
45  
60  
Capacitance6  
CW  
pF  
Shutdown Supply Current7  
Shutdown Wiper Resistance  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Output Logic High  
Output Logic Low  
IA_SD  
RW_SD  
ICM  
VA = VDD, VB = 0 V, SHDN = 0  
VA = VDD, VB = 0 V, SHDN = 0, VDD = 15 V  
VA = VB = VW  
0.02  
170  
1
1
μA  
Ω
400  
nA  
VIH  
VIL  
VOH  
VOL  
VDD = 5 V or 15 V  
VDD = 5 V or 15 V  
RPull-up = 2.2 kΩ to 5 V  
IOL = 1.6 mA, VLOGIC = 5 V, VDD = 15 V  
2.4  
4.9  
V
V
V
V
0.8  
0.4  
Rev. A | Page 4 of 20  
 
 
AD7376  
Parameter  
Symbol  
Conditions  
Min  
Typ1 Max  
Unit  
μA  
Input Current  
IIL  
VIN = 0 V or 5 V  
1
Input Capacitance6  
POWER SUPPLIES  
Power Supply Range  
Power Supply Range  
Positive Supply Current  
CIL  
5
pF  
VDD/VSS  
VDD  
IDD  
Dual-supply range  
Single-supply range, VSS = 0  
4.5  
4.5  
16.5  
33  
V
V
VIH = 5 V or VIL = 0 V, VDD/VSS  
VIH = 5 V or VIL = 0 V, VDD/VSS  
VIH = 5 V or VIL = 0 V, VDD/VSS  
VIH = 5 V or VIL = 0 V, VDD/VSS  
VIH = 5 V or VIL = 0 V, VDD/VSS  
=
15 V  
5 V  
15 V  
5 V  
2
mA  
μA  
mA  
mA  
mW  
=
=
=
=
12  
25  
Negative Supply Current  
ISS  
−0.1  
−0.1  
31.5  
Power Dissipation8  
PDISS  
15 V  
Power Supply Rejection Ratio  
DYNAMIC CHARACTERISTICS6, 9, 10  
Bandwidth −3 dB  
PSRR  
−0.25  
0.1  
+0.25 %/%  
BW  
RAB = 50 kΩ, code = 0x40  
RAB = 100 kΩ, code = 0x40  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 10 V, VB = 0 V, 1 LSB error band  
RWB = 25 kΩ, f = 1 kHz  
90  
50  
0.002  
4
kHz  
kHz  
%
μs  
nV√Hz  
Total Harmonic Distortion  
VW Settling Time  
Resistor Noise Voltage  
THDW  
tS  
eN_WB  
2
1 Typical values represent average readings at 25°C, VDD = 15 V, and VSS = −15 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum and minimum resistance wiper positions. R-DNL  
measures the relative step change from an ideal value measured between successive tap positions. Parts are guaranteed monotonic.  
3 Pb-free parts have a 35 ppm/°C temperature coefficient.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider, similar to a voltage output digital-to-analog converter. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminals A, B, and W have no limitations on polarity with respect to each other.  
6 Guaranteed by design; not subject to production test.  
7 Measured at the A terminal. A terminal is open circuit in shutdown mode.  
8 PDISS is calculated from (IDD × VDD) + abs(ISS × VSS). CMOS logic level inputs result in minimum power dissipation.  
9 Bandwidth, noise, and settling times are dependent on the terminal resistance value chosen. The lowest R value results in the fastest settling time and highest  
bandwidth. The highest R value results in the minimum overall power consumption.  
10 All dynamic characteristics use VDD = 15 V and VSS = −15 V.  
TIMING SPECIFICATIONS  
Table 3.  
Parameter  
INTERFACE TIMING CHARACTERISTICS1, 2  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Clock Frequency  
Input Clock Pulse Width  
Data Set-up Time  
Data Hold Time  
CLK to SDO Propagation Delay3  
fCLK  
tCH, tCL  
tDS  
tDH  
tPD  
tCSS  
tCSW  
tRS  
tCSH0  
tCSH  
tCS1  
4
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock level high or low  
RPull-up = 2.2 kΩ, CL < 20 pF  
120  
30  
20  
10  
100  
CS Set-up Time  
120  
150  
120  
10  
CS High Pulse Width  
Reset Pulse Width  
CLK Fall to CS Fall Hold Time  
CLK Rise to CS Rise Hold Time  
CS Rise to Clock Rise Setup  
120  
120  
1 Guaranteed by design and not subject to production test.  
2 See Figure 3 for the location of the measured values. All input control voltages are specified with tR = tF = 1 ns (10% to 90% of VDD) and timed from a voltage level of 1.6 V.  
Switching characteristics are measured using VDD = 15 V and VSS = −15 V.  
3 Propagation delay depends on value of VDD, RPull-up, and CL.  
Rev. A | Page 5 of 20  
 
 
 
AD7376  
3-WIRE DIGITAL INTERFACE  
Table 4.AD7376 Serial Data-Word Format1  
MSB  
LSB  
D0  
20  
D6  
D5  
D4  
D3  
D2  
D1  
26  
1 Data is loaded MSB first.  
1
SDI  
D6 D5 D4 D3 D2 D1  
D0  
0
1
0
1
0
1
0
CLK  
CS  
RDAC REGISTER LOAD  
V
OUT  
Figure 2. AD7376 3-Wire Digital Interface Timing Diagram  
(VA = VDD, VB = 0 V, VW = VOUT  
)
1
0
SDI  
(DATA IN)  
D
D
X
X
tDS  
tDH  
1
0
SDO  
(DATA OUT)  
D'  
D'  
X
X
tPD_MAX  
tCH  
1
0
tCS1  
CLK  
tCSH0  
tCL  
tCSH  
tCSS  
1
tCSW  
tS  
CS  
0
V
DD  
V
OUT  
±1 LSB ERROR BAND  
0V  
±1 LSB  
Figure 3. Detail Timing Diagram  
Rev. A | Page 6 of 20  
 
 
 
AD7376  
ABSꢀLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VDD to VSS  
VA, VB, VW to GND  
Maximum Current  
IWB, IWA Pulsed  
−0.3 V to +35 V  
+0.3 V to −16.5 V  
−0.3 V to +35 V  
VSS to VDD  
20 mA  
5 mA  
IWB Continuous (RWB ≤ 6 kΩ, A open,  
V
DD/VSS = 30 V/0 V)1  
IWA Continuous (RWA ≤ 6 kΩ, B open,  
VDD/VSS = 30 V/0 V)1  
5 mA  
Digital Input and Output Voltages to GND  
0 V to 7 V  
Operating Temperature Range  
Maximum Junction Temperature (TJMAX  
Storage Temperature  
Lead Temperature (Soldering, 10 sec)  
Package Power Dissipation  
Thermal Resistance θJA  
−40°C to +85°C  
150°C  
−65°C to +150°C  
300°C  
2
)
(TJMAX − TA)/θJA  
16-Lead SOIC_W  
14-Lead TSSOP  
120°C/W  
240°C/W  
1 Maximum terminal current is bound by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX – TA)/θJA  
.
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 7 of 20  
 
 
AD7376  
PIN CꢀNFIGURATIꢀNS AND FUNCTIꢀN DESCRIPTIꢀNS  
A
B
1
2
3
4
5
6
7
8
16  
15 NC  
14  
W
A
B
1
2
3
4
5
6
7
14  
13 NC  
12  
W
V
V
SS  
DD  
AD7376  
AD7376  
TOP VIEW  
(Not to Scale)  
GND  
CS  
13 SDO  
12 SHDN  
11 SDI  
TOP VIEW  
V
V
SS  
DD  
(Not to Scale)  
GND  
CS  
11 SDO  
RS  
10 SHDN  
CLK  
NC  
10 NC  
RS  
9
8
SDI  
NC  
9
NC  
CLK  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 4. 14-Lead TSSOP Pin Configuration  
Figure 5. 16-Lead SOIC_W Pin Configuration  
Table 6.Pin Function Descriptions  
Pin No.  
16-Lead  
14-Lead  
TSSOP  
SOL  
Mnemonic Description  
1
1
A
A Terminal. VSS ≤ VA ≤ VDD.  
2
3
4
5
2
3
4
5
B
VSS  
GND  
CS  
B Terminal. VSS ≤ VB ≤ VDD  
Negative Power Supply.  
Digital Ground.  
Chip Select Input, Active Low. When CS returns high, data is loaded into the wiper register.  
Reset to Midscale.  
.
6
6
RS  
7
8
9
10  
7
CLK  
NC  
SDI  
SHDN  
Serial Clock Input. Positive-edge triggered.  
No Connect. Let it float or ground.  
Serial Data Input (data loads MSB first).  
Shutdown. A terminal open ended; W and B terminals shorted. Can be used as programmable  
preset.1  
8, 9, 10  
11  
12  
11  
12  
13  
14  
13  
14  
15  
16  
SDO  
VDD  
NC  
W
Serial Data Output.  
Positive Power Supply.  
No Connect. Let it float or ground.  
Wiper Terminal. VSS ≤ VW ≤ VDD  
.
1 Assert shutdown and program the device during power-up. Then deassert the shutdown to achieve the desirable preset level.  
Rev. A | Page 8 of 20  
 
 
AD7376  
TYPICAL PERFꢀRMANCE CHARACTERISTICS  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= +15V  
= –15V  
V
V
= +15V  
= –15V  
DD  
DD  
V
SS  
SS  
0.4  
0.3  
+85°C  
+25°C  
0.2  
+85°C  
0.1  
+25°C  
0
–40°C  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–40°C  
0
16  
32  
48  
64  
80  
96  
112  
128  
0
16  
32  
48  
64  
80  
96  
112  
128  
CODE (Decimal)  
CODE (Decimal)  
Figure 9. Potentiometer Divider Differential Nonlinearity Error vs. Code  
Figure 6. Resistance Step Position Nonlinearity Error vs. Code  
20  
0.5  
V
V
= +15V  
= –15V  
DD  
SS  
0.4  
0.3  
I
@ V /V = 30V/0V  
DD SS  
DD  
16  
12  
8
+85°C  
I
@ V /V = ±15V  
DD SS  
DD  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–40°C  
+25°C  
4
I
@ V /V = 30V/0V  
DD SS  
SS  
0
I
@ V /V = ±15V  
DD SS  
SS  
–4  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
16  
32  
48  
64  
80  
96  
112  
128  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 10. Supply Current (IDD, ISS) vs. Temperature  
Figure 7. Relative Resistance Step Change from Ideal vs. Code  
0.5  
0.5  
0.4  
V
V
= +15V  
= –15V  
DD  
SS  
0.4  
0.3  
0.3  
+85°C  
+25°C  
0.2  
0.2  
0.1  
0.1  
0
0
–40°C  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
16  
32  
48  
64  
80  
96  
112  
128  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 8. Potentiometer Divider Nonlinearity Error vs. Code  
Figure 11. Shutdown Current vs. Temperature  
Rev. A | Page 9 of 20  
 
AD7376  
120  
100  
80  
V
/V = ±15V  
DD SS  
120  
100  
80  
V
/V = ±15V  
DD SS  
100kΩ  
100k  
10k  
60  
40  
60  
50kΩ  
20  
40  
0
50k  
20  
10kΩ  
–20  
–40  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
16  
32  
48  
64  
80  
96  
112  
128  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 12. Total Resistance vs. Temperature  
Figure 15. (ΔVWB/VWB)/ΔT Potentiometer Mode Tempco  
350  
300  
250  
200  
150  
100  
50  
0
0x40  
0x20  
–6  
R
@ V /V = ±5V  
DD SS  
W
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x08  
0x04  
0x02  
0x01  
R
@ V /V = ±15V  
DD SS  
W
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
1k  
10k  
100k  
1M  
TEMPERATURE (°C)  
(Hz)  
Figure 16. 10 kΩ Gain vs. Frequency vs. Code  
Figure 13. Wiper Contact Resistance vs. Temperature  
0
–6  
120  
100  
80  
V
/V = ±15V  
0x40  
DD SS  
0x20  
0x10  
0x08  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
60  
10k  
50k  
0x04  
0x02  
0x01  
40  
20  
0
100k  
–20  
–40  
1k  
10k  
100k  
1M  
0
16  
32  
48  
64  
80  
96  
112  
128  
(Hz)  
CODE (Decimal)  
Figure 17. 50 kΩ Gain vs. Frequency vs. Code  
Figure 14. (ΔRWB/RWB)/ΔT Rheostat Mode Tempco  
Rev. A | Page 10 of 20  
 
AD7376  
1
0
–6  
V
/V = ±15V  
DD SS  
0x40  
0x20  
CODE = MIDSCALE  
= 1V  
V
IN  
RMS  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x08  
10kΩ  
0.01  
0x04  
0x02  
100kΩ  
50kΩ  
0x01  
0.001  
0.0001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
1k  
10k  
100k  
1M  
(Hz)  
Figure 21. Total Harmonic Distortion Plus Noise vs. Frequency  
Figure 18. 100 kΩ Gain vs. Frequency vs. Code  
1
V
/V = ±15V  
DD SS  
CODE = MIDSCALE  
= 1kHz  
f
IN  
0.1  
0.01  
2
10kΩ  
50kΩ  
100kΩ  
1
0.001  
CH1 5V  
CH2 5V  
M2μs  
T 50%  
A CH1  
4.20V  
0.001  
0.01  
0.1  
1
10  
AMPLITUDE (V)  
Figure 22. Total Harmonic Distortion Plus Noise vs. Amplitude  
Figure 19. Midscale to Midscale-1 Transition Glitch  
80  
60  
40  
20  
0
6
CODE = 40 , V = V , V = V  
DD  
H
A
B
SS  
V
V
V
/V = 30V/0V  
DD SS  
= V  
A
B
DD  
= 0V  
R
= 10kΩ  
–PSRR @ Vdd/Vss = ±15V  
DC ± 10% p-p AC  
AB  
5
4
3
2
1
0
+PSRR @ V /V  
DD SS  
DC ± 10% p-p AC  
= ±15V  
R
= 50kΩ  
AB  
–PSRR @ V /V = ±5V  
DD SS  
DC ± 10% p-p AC  
+PSRR @ V /V = ±5V  
DC ± 10% p-p AC  
DD SS  
R
= 100kΩ  
AB  
100  
1k  
10k  
100k  
1M  
0
16  
32  
48  
64  
80  
96  
112  
128  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 20. Power Supply Rejection vs. Frequency  
Figure 23. Theoretical Maximum Current vs. Code  
Rev. A | Page 11 of 20  
AD7376  
THEꢀRY ꢀF ꢀPERATIꢀN  
The AD7376 wiper switches are designed with the transmission  
gate CMOS topology, and the gate voltage is derived from the  
VDD. Each switch’s on resistance, RW, is a function of VDD and  
temperature (see Figure 13). Contrary to the temperature  
coefficient of RAB, the temperature coefficient of the wiper  
resistance is significantly higher because the wiper resistance  
doubles with every 100° increases. As a result, the user must take  
into consideration the contribution of RW on the desirable  
resistance. On the other hand, each switch’s on resistance is  
insensitive to the tap point potential and remains relatively flat  
at 120 Ω typical at a VDD of 15 V and a temperature of 25°C.  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
The part operates in rheostat mode when only two terminals  
are used as a variable resistor. The unused terminal can be  
floating or tied to the W terminal as shown in Figure 24.  
A
A
A
W
W
W
B
B
B
Figure 24. Rheostat Mode Configuration  
Assuming that a 10 kΩ part is used, the wiper’s first connection  
starts at the B terminal for programming code of 0x00, where  
SWB is closed. The minimum resistance between Terminals W  
and B is therefore 120 Ω in general. The second connection is  
the first tap point, which corresponds to 198 Ω (RWB = 1/128 ×  
RAB + RW = 78 Ω + 120 Ω) for programming code of 0x01 and so  
on. Each LSB data value increase moves the wiper up the  
resistor ladder until the last tap point is reached at 10,042 Ω  
(RAB – 1 LSB + RW). Regardless of which settings the part is  
operating with, care should be taken to limit the current  
conducted between any A and B, W and A, or W and B  
terminals to a maximum dc current of 5 mA and a maximum  
pulse current of 20 mA. Otherwise, degradation or possible  
destruction of the internal switch contact can occur.  
The nominal resistance between Terminals A and B, RAB, is  
available in 10 kΩ, 50 kΩ, and 100 kΩ with 30ꢀ tolerance and  
has 128 tap points accessed by the wiper terminal. The 7-bit  
data in the RDAC latch is decoded to select one of the 128  
possible settings. Figure 25 shows a simplified RDAC structure.  
A
SW  
A
SHDN  
SWA  
R
S
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x7F  
R
R
S
S
W
Similar to the mechanical potentiometer, the resistance of the  
RDAC between the W and A terminals also produces a digitally  
controlled complementary resistance, RWA. When these  
terminals are used, the B terminal can be opened. Setting the  
resistance value for RWA starts at a maximum value of resistance  
and decreases as the data loaded into the latch increases in  
value. The general equation for this operation is  
RDAC  
LATCH  
AND  
DECODER  
0x01  
0x00  
SW  
B
R
SWB  
S
B
R
= R  
/128  
NOMINAL  
S
128 D  
128  
Figure 25. AD7376 Equivalent RDAC Circuit  
RWA (D) =  
× RAB + RW  
(2)  
The general equation determining the digitally programmed  
output resistance between the W and the B terminals is  
D
128  
RWB (D) =  
×RAB + RW  
(1)  
where:  
D is the decimal equivalent of the binary code loaded in the  
7-bit RDAC register from 0 to 127.  
RAB is the end-to-end resistance.  
RW is the wiper resistance contributed by the on resistance of  
the internal switch.  
Rev. A | Page 12 of 20  
 
 
 
AD7376  
PROGRAMMING THE POTENTIOMETER DIVIDER  
3-WIRE SERIAL BUS DIGITAL INTERFACE  
Voltage Output Operation  
The AD7376 contains a 3-wire digital interface ( , CLK, and  
CS  
SDI). The 7-bit serial word must be loaded MSB first. The  
format of the word is shown in Figure 2. The positive-edge  
sensitive CLK input requires clean transitions to avoid clocking  
incorrect data into the serial input register. Standard logic  
The digital potentiometer easily generates a voltage divider at  
Wiper W to Terminal B and Wiper W to Terminal A that is  
proportional to the input voltage at Terminal A to Terminal B.  
Unlike the polarity of VDD to GND, which must be positive,  
voltage across Terminal A to Terminal B, Wiper W to Terminal A,  
and Wiper W to Terminal B can be at either polarity.  
families work well. When  
is high, the clock loads data into  
CS  
the serial register upon each positive clock edge.  
V
I
The data set-up and hold times in the specifications table  
determine the valid timing requirements. The AD7376 uses a  
7-bit serial input data register word that is transferred to the  
A
W
V
O
internal RDAC register when the  
line returns to logic high.  
CS  
B
Extra MSB bits are ignored.  
Figure 26. Potentiometer Mode Configuration  
The AD7376 powers up at a random setting. However, the  
midscale preset or any desirable preset can be achieved by  
If ignoring the effect of the wiper resistance for the purpose of  
approximation, connecting the Terminal A to 30 V and the  
Terminal B to ground produces an output voltage at the Wiper  
W to Terminal B ranging from 0 V to 1 LSB less than 30 V. Each  
LSB of voltage is equal to the voltage applied across Terminals A  
and B divided by the 128 positions of the potentiometer divider.  
The general equation defining the output voltage at VW with  
respect to ground for any valid input voltage applied to  
Terminals A and B is  
manipulating  
or with an extra I/O.  
RS SHDN  
When the reset ( ) pin is asserted, the wiper resets to the  
RS  
midscale value. Midscale reset can be achieved dynamically or  
during power-up if an extra I/O is used.  
When the  
pin is asserted, the AD7376 opens SWA to let  
SHDN  
the Terminal A float and to short Wiper W to Terminal B. The  
AD7376 consumes negligible power during the shutdown mode  
D
128  
and resumes the previous setting once the  
pin is released.  
SHDN  
VW (D) =  
VA  
(3)  
On the other hand, the AD7376 can be programmed with any  
settings during shutdown. With an extra programmable I/O  
asserting shutdown during power up, this unique feature allows  
the AD7376 with programmable preset at any desirable level.  
A more accurate calculation that includes the effect of wiper  
resistance, VW, is  
RWB (D)  
RAB  
RWA (D)  
RAB  
VW (D) =  
VA +  
VB  
(4)  
Table 7 shows the logic truth table of all operation.  
Table 7. Input Logic Control Truth Table1  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
when in rheostat mode, the output voltage in divider mode is  
primarily dependent on the ratio, not the absolute values, of the  
internal resistors RWA and RWB. Therefore, the temperature drift  
reduces to 5 ppm/°C.  
CS RS SHDN  
CLK  
L
P
Register Activity  
L
L
H
H
H
H
Enables SR, enables SDO pin.  
Shifts one bit in from the SDI pin.  
The seventh previously entered bit is  
shifted out of the SDO pin.  
Loads SR data into 7-bit RDAC latch.  
No operation.  
Sets 7-bit RDAC latch to midscale,  
wiper centered, and SDO latch  
cleared.  
X
X
X
P
H
X
H
H
L
H
H
H
X
X
H
H
P
H
H
L
Latches 7-bit RDAC latch to 0x40.  
Opens circuits resistor of Terminal A,  
connects Wiper W to Terminal B,  
turns off SDO output transistor.  
1 P = positive edge, X = don’t care, and SR = shift register.  
Rev. A | Page 13 of 20  
 
 
AD7376  
DAISY-CHAIN OPERATION  
ESD PROTECTION  
SHDN  
All digital inputs are protected with a series input resistor and a  
Zener ESD structure shown in Figure 29. These structures apply  
CS  
SDO  
to digital input pins , CLK, SDI, SDO, , and  
CS RS  
SHDN  
SERIAL  
REGISTER  
SDI  
D
Q
CK RS  
340Ω  
LOGIC  
CLK  
RS  
GND  
Figure 27. Detail SDO Output Schematic of the AD7376  
Figure 29. Equivalent ESD Protection Circuit  
Figure 27 shows the details of the serial data output pin (SDO).  
SDO shifts out the SDI content in the previous frame; therefore,  
it can be used for daisy-chaining multiple devices. The SDO pin  
contains an open-drain N-Channel MOSFET and requires a  
pull-up resistor if the SDO function is used. Users need to tie  
the SDO pin of one package to the SDI pin of the next package.  
For example, in Figure 28 if two AD7376s are daisy-chained, a  
total of 14 bits of data are required for each operation. The first  
set of seven bits goes to U2; the second set of seven bits goes to  
All analog terminals are also protected by Zener ESD protection  
diodes, as shown in Figure 30.  
V
DD  
A
W
B
U1.  
should be kept low until all 14 bits are clocked into their  
CS  
V
SS  
respective serial registers. Then  
is pulled high to complete  
CS  
the operation. When daisy-chaining multiple devices, users may  
need to increase the clock period because the pull-up resistor  
and the capacitive loading at the SDO-SDI interface may induce  
a time delay to subsequent devices.  
Figure 30. Equivalent ESD Protection Analog Pins  
TERMINAL VOLTAGE OPERATING RANGE  
The AD7376 VDD and VSS power supplies define the boundary  
conditions for proper 3-terminal digital potentiometer oper-  
ation. Applied signals present on Terminals A, B, and W that  
are more positive than VDD or more negative than VSS will be  
clamped by the internal forward-biased diodes (see Figure 30).  
V
DD  
U1  
U2  
R
PU  
2.2kΩ  
AD7376  
AD7376  
μC  
MOSI  
SDO  
SDI  
SDO  
SDI  
SCLK SS  
POWER-UP AND POWER-DOWN SEQUENCES  
CS  
CLK  
CS  
CLK  
Because of the ESD protection diodes that limit the voltage  
compliance at Terminals A, B, and W (see Figure 30), it is  
important to power VDD/VSS before applying voltage to  
Terminals A, B, and W. Otherwise, the diodes are forward  
biased such that VDD/VSS are powered unintentionally and affect  
the system. Similarly, VDD/VSS should be powered down last.  
The ideal power-up sequence is in the following order: GND,  
VDD, VSS, digital inputs, and VA/VB/VW. The order of powering  
VA, VB, VW, and the digital inputs is not important, as long as  
they are powered after VDD/VSS.  
Figure 28. Daisy-Chain Configuration  
Rev. A | Page 14 of 20  
 
 
 
 
AD7376  
The ground pin of the AD7376 is a digital ground reference. To  
minimize the digital ground bounce, the AD7376 digital  
ground terminal should be joined remotely to the analog  
ground (see Figure 31).  
LAYOUT AND POWER SUPPLY BIASING  
It is a good practice to employ a compact, minimum lead-length  
layout design. The leads to the input should be as direct as  
possible, with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
V
DD  
V
DD  
+
C1  
C3  
C4  
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors. Low ESR (equivalent series resistance)  
1 μF to 10 μF tantalum or electrolytic capacitors should be  
applied at the supplies to minimize transient disturbances and  
filter low frequency ripple. Figure 31 illustrates the basic supply  
bypassing configuration for the AD7376.  
10μF  
0.1μF  
0.1μF  
AD7376  
+
C2  
10μF  
V
SS  
V
SS  
GND  
Figure 31. Power Supply Bypassing  
Rev. A | Page 15 of 20  
 
 
AD7376  
APPLICATIꢀNS  
HIGH VOLTAGE DAC  
PROGRAMMABLE POWER SUPPLY  
AD7376 can be configured as a high voltage DAC as high as  
30 V. The circuit is shown in Figure 32. The output is  
With a boost regulator such as ADP1611, AD7376 can be used  
as the variable resistor at the regulators FB pin to provide the  
programmable power supply (see Figure 33). The output is  
R
[1.2 V×(1+ 2 )]  
R1  
D
128  
VO (D) =  
(5)  
D
(
128)RAB  
VO =1.23 V×(1+  
]
(6)  
R2  
Where D is the decimal code from 0 to 127.  
Note that the AD7376s VDD is derived from the output. Initially  
L1 acts as a short, and VDD is one diode voltage drop below +5 V.  
The output slowly establishes to the final value.  
V
DD  
V
DD  
R
BIAS  
U2  
U1A  
The AD7376 shutdown sleep-mode programming can be used  
to program a desirable preset level at power-up.  
V+  
AD7376  
D1  
AD8512  
V–  
U1B  
100kΩ  
ADR512  
U1  
V
5V  
OUT  
B
AD7376  
AD8512  
V
C
IN  
ADP1611  
DD  
IN  
U2  
A
C1  
0.1μF  
L1  
4.7μF  
10μF  
R2  
W
R1  
100kΩ  
SD  
R1  
V
OUT  
SW  
RT  
B
D1  
1.23V  
C
C
OUT  
10μF  
FB  
SS  
COMP  
Figure 32. High Voltage DAC  
R2  
8.5kΩ  
R
C
SS  
GND  
220kΩ  
22nF  
C
C
150pF  
Figure 33. Programmable Power Supply  
Rev. A | Page 16 of 20  
 
 
AD7376  
V
C1  
IN  
AUDIO VOLUME CONTROL  
1μF  
+5V  
U1  
+15V  
R1  
+5V  
Because of its good THD performance and high voltage  
capability, AD7376 can be used as a digital volume control. If  
AD7376 is used directly as an audio attenuator or gain  
amplifier, a large step change in the volume level at any  
arbitrary time can lead to an abrupt discontinuity of the audio  
signal, causing an audible zipper noise. To prevent this, a zero-  
V
DD  
100kΩ  
C3  
0.1μF  
A
AD7376  
U2  
V+  
C2  
0.1μF  
ADCM371  
V–  
R2  
200Ω  
+15V  
U5  
R4  
V
SS  
W
90kΩ  
–15V  
U4A  
U4B  
V+  
V
OUT  
4
5
100kΩ  
6
1
2
+5V  
7408  
7408  
CS  
R5  
10kΩ  
V–  
U3  
V+  
ADCM371  
V–  
+5V  
CLK  
SDI  
CLK  
SDI  
B
–15V  
crossing window detector can be inserted to the  
line to delay  
CS  
U6  
V+  
AD8541  
V–  
CS  
GND  
R3  
100Ω  
the device update until the audio signal crosses the window.  
Since the input signal can operate on top of any dc levels rather  
than absolute zero volt level, zero-crossing in this case means  
the signal is ac-coupled and the dc offset level is the signal zero  
reference point. The configuration to reduce zipper noise and  
the result of using this configuration are shown in Figure 34 and  
Figure 35, respectively. The input is ac-coupled by C1 and  
attenuated down before feeding into the window comparator  
formed by U2, U3, and U4B. U6 is used to establish the signal zero  
reference. The upper limit of the comparator is set above its  
offset and, therefore, the output pulses high whenever the input  
falls between 2.502 V and 2.497 V (or 0.005 V window) in this  
example. This output is ANDed with the chip select signal such  
that the AD7376 updates whenever the signal crosses the  
window. To avoid constant update of the device, the chip select  
signal should be programmed as two pulses, rather than the one  
shown in Figure 2.  
Figure 34. Audio Volume Control with Zipper Noise Reduction  
1
2
CHANNEL 1  
FREQ = 20.25kHz  
1.03V p-p  
NOTES  
In Figure 35, the lower trace shows that the volume level  
changes from a quarter scale to full scale when a signal change  
occurs near the zero-crossing window.  
1. THE LOWER TRACE SHOWS THAT THE VOLUME LEVEL  
CHANGES FROM QUARTER SCALE TO FULL SCALE, WITH THE  
CHANGE OCCURRING NEAR THE ZERO-CROSSING WINDOW.  
Figure 35. Input (Trace 1) and Output (Trace 2) of the Circuit in Figure 34  
The AD7376 shutdown sleep-mode programming feature can  
be used to mute the device at power up by holding  
low  
SHDN  
and programming zero scale.  
Rev. A | Page 17 of 20  
 
 
 
AD7376  
ꢀUTLINE DIMENSIꢀNS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 36. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
1.27 (0.0500)  
0.75 (0.0295)  
0.25 (0.0098)  
2.65 (0.1043)  
2.35 (0.0925)  
BSC  
× 45°  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 37. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
Rev. A | Page 18 of 20  
 
AD7376  
ORDERING GUIDE  
Model  
AD7376AR10  
AD7376AR10-REEL  
AD7376ARU10  
AD7376ARU10-REEL7  
AD7376ARUZ103  
AD7376ARUZ10-R73  
AD7376ARWZ103  
AD7376ARWZ10-RL3  
AD7376AR50  
kΩ  
10  
10  
10  
10  
10  
10  
10  
10  
50  
50  
50  
50  
50  
50  
100  
100  
100  
10  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description1, 2 Package Options  
Quantity  
16-Lead SOIC_W  
16-Lead SOIC_W  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
16-Lead SOIC_W  
14-Lead TSSOP  
14-Lead TSSOP  
16-Lead SOIC_W  
RW-16  
RW-16  
RU-14  
RU-14  
RU-14  
RU-14  
RW-16  
RW-16  
RW-16  
RW-16  
RU-14  
RU-14  
RU-14  
RW-16  
RU-14  
RU-14  
RW-16  
47  
1,000  
96  
1,000  
96  
1,000  
47  
1,000  
47  
1,000  
96  
1,000  
96  
47  
AD7376AR50-REEL  
AD7376ARU50  
AD7376ARU50-REEL7  
AD7376ARUZ503  
AD7376ARWZ503  
AD7376ARUZ1003  
AD7376ARUZ100-R73  
AD7376ARWZ1003  
AD7376EVAL  
96  
1,000  
47  
1
1 In SOICWB-16 package top marking, line 1 shows AD7376; line 2 shows the branding information, such that A10 = 10 kΩ, A50 = 50 kΩ, and A100 = 100 kΩ; line 3 shows  
the date code in YYWW; line 4 shows the lot number.  
2 In TSSOP-14 package top marking, line 1 shows 7376; line 2 shows the branding information, such that A10 = 10 kΩ, A50 = 50 kΩ, and A100 = 100 kΩ; line 3 shows the  
date code in YWW; back side shows the lot number.  
3 Z = Pb-free part with a “#” top marking on line 2 of the package.  
Rev. A | Page 19 of 20  
 
 
AD7376  
NꢀTES  
Pepltmtorey Tpchotcrl Drar  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C01119–0–11/05(A)  
Rev. A | Page 20 of 20  

相关型号:

AD7376AR10-REEL7

IC 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO16, MS-013AA, SOIC-16, Digital Potentiometer
ADI

AD7376AR100

+-15 V Operation Digital Potentiometer
ADI

AD7376AR1M

+-15 V Operation Digital Potentiometer
ADI

AD7376AR1M-REEL

IC 1000K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO16, SOIC-16, Digital Potentiometer
ADI

AD7376AR50

+-15 V Operation Digital Potentiometer
ADI

AD7376ARU10

+-15 V Operation Digital Potentiometer
ADI

AD7376ARU10-REEL

IC 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD7376ARU100

+-15 V Operation Digital Potentiometer
ADI

AD7376ARU100-REEL7

IC 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO14, TSSOP-14, Digital Potentiometer
ADI

AD7376ARU1M

+-15 V Operation Digital Potentiometer
ADI

AD7376ARU50

+-15 V Operation Digital Potentiometer
ADI

AD7376ARU50-REEL7

IC 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI