AD743JRZ-16 [ADI]

Ultralow Noise BiFET Op Amp; 超低噪声BiFET运算放大器
AD743JRZ-16
型号: AD743JRZ-16
厂家: ADI    ADI
描述:

Ultralow Noise BiFET Op Amp
超低噪声BiFET运算放大器

运算放大器 放大器电路 光电二极管 PC
文件: 总12页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise  
BiFET Op Amp  
AD743  
FEATURES  
Ultralow Noise Performance  
CONNECTION DIAGRAMS  
8-Lead PDIP (N)  
16-Lead SOIC (R)  
2.9 nV/  
0.38 V p-p, 0.1 Hz to 10 Hz  
6.9 fA/ Hz Current Noise at 1 kHz  
Hz at 10 kHz  
1
2
3
4
NULL  
–IN  
NC  
16  
1
2
3
4
8
NC  
NC  
NC  
+V  
AD743  
OFFSET  
NULL  
AD743  
15  
14  
7
6
5
S
Excellent DC Performance  
–IN  
NC  
+IN  
+IN  
0.5 mV Max Offset Voltage  
250 pA Max Input Bias Current  
1000 V/mV Min Open-Loop Gain  
NC  
+V  
OUT  
–V  
S
13  
12  
S
NULL  
TOP VIEW  
OUTPUT  
5
6
NC = NO CONNECT  
AC Performance  
2.8 V/s Slew Rate  
4.5 MHz Unity-Gain Bandwidth  
THD = 0.0003% @ 1 kHz  
Available in Tape and Reel in Accordance with  
EIA-481A Standard  
OFFSET  
NULL  
–V  
S
11  
10  
9
NC  
NC  
7
8
NC  
NC  
NC = NO CONNECT  
APPLICATIONS  
Sonar Preamplifiers  
High Dynamic Range Filters (>140 dB)  
Photodiode and IR Detector Amplifiers  
Accelerometers  
2. The combination of low voltage and low current noise make  
the AD743 ideal for charge sensitive applications such as  
accelerometers and hydrophones.  
3. The low input offset voltage and low noise level of the AD743  
provide >140 dB dynamic range.  
4. The typical 10 kHz noise level of 2.9 nV/Hz permits a three  
op amp instrumentation amplifier, using three AD743s, to be  
built which exhibits less than 4.2 nV/Hz noise at 10 kHz  
and which has low input bias currents.  
GENERAL DESCRIPTION  
The AD743 is an ultralow noise, precision, FET input, monolithic  
operational amplifier. It offers a combination of the ultralow volt-  
age noise generally associated with bipolar input op amps and  
the very low input current of a FET input device. Furthermore,  
the AD743 does not exhibit an output phase reversal when the  
negative common-mode voltage limit is exceeded.  
1000  
R
OP27 AND  
RESISTOR  
( — )  
SOURCE  
The AD743’s guaranteed, maximum input voltage noise of  
4.0 nV/Hz at 10 kHz is unsurpassed for a FET input mono-  
lithic op amp, as is the maximum 1.0 µV p-p, 0.1 Hz to 10 Hz  
noise. The AD743 also has excellent dc performance with 250 pA  
maximum input bias current and 0.5 mV maximum offset voltage.  
E
O
R
SOURCE  
100  
AD743 AND RESISTOR  
OR  
OP27 AND RESISTOR  
The AD743 is specifically designed for use as a preamp in capaci-  
tive sensors, such as ceramic hydrophones. The AD743J is rated  
over the commercial temperature range of 0°C to 70°C.  
AD743 AND  
RESISTOR  
(
)
10  
The AD743 is available in a 16-lead SOIC and 8-lead PDIP.  
PRODUCT HIGHLIGHTS  
RESISTOR NOISE ONLY  
(– – –)  
1. The low offset voltage and low input offset voltage drift of the  
AD743 coupled with its ultralow noise performance mean  
that the AD743 can be used for upgrading many applications  
now using bipolar amplifiers.  
1
100  
1k  
10k  
100k  
1M  
10M  
SOURCE RESISTANCE ()  
Figure 1. Input Voltage Noise vs. Source Resistance  
REV. E  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD743–SPECIFICATIONS  
(@ 25؇C and ؎15 V dc, unless otherwise noted.)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT OFFSET VOLTAGE1  
Initial Offset  
Initial Offset  
vs. Temperature  
vs. Supply (PSRR)  
vs. Supply (PSRR)  
0.25  
1.0  
1.5  
mV  
mV  
µV/°C  
dB  
TMIN to TMAX  
TMIN to TMAX  
12 V to 18 V2  
TMIN to TMAX  
2
96  
90  
88  
dB  
INPUT BIAS CURRENT3  
Either Input  
Either Input @ TMAX  
Either Input  
VCM = 0 V  
VCM = 0 V  
VCM = 10 V  
VCM = 0 V  
150  
400  
8.8  
600  
200  
pA  
nA  
pA  
pA  
250  
30  
Either Input, VS = 5 V  
INPUT OFFSET CURRENT  
Offset Current @ TMAX  
V
CM = 0 V  
40  
150  
2.2  
pA  
nA  
VCM = 0 V  
FREQUENCY RESPONSE  
Gain BW, Small Signal  
Full Power Response  
Slew Rate, Unity Gain  
Settling Time to 0.01%  
Total Harmonic Distortion4  
(TPC 16)  
G = –1  
VO = 20 V p-p  
G = –1  
4.5  
25  
2.8  
6
MHz  
kHz  
V/µs  
µs  
f = 1 kHz  
G = –1  
0.0003  
%
INPUT IMPEDANCE  
Differential  
Common Mode  
1 1010ʈ20  
3 1011ʈ18  
ʈpF  
ʈpF  
INPUT VOLTAGE RANGE  
Differential5  
20  
V
Common-Mode Voltage  
Over Maximum Operating Range6  
Common-Mode Rejection Ratio  
+13.3, –10.7  
V
V
dB  
dB  
–10  
80  
78  
+12  
VCM  
TMIN to TMAX  
=
10 V  
95  
INPUT VOLTAGE NOISE  
0.1 Hz to 10 Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
0.38  
5.5  
3.6  
3.2  
2.9  
µV p-p  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
5.0  
4.0  
f = 10 kHz  
INPUT CURRENT NOISE  
OPEN-LOOP GAIN  
f = 1 kHz  
6.9  
fA/Hz  
VO  
= 10 V,  
RLOAD 2 kΩ  
TMIN to TMAX  
RLOAD = 600 Ω  
1000  
800  
1200  
4000  
V/mV  
V/mV  
V/mV  
OUTPUT CHARACTERISTICS  
Voltage  
RLOAD 600 Ω  
RLOAD 600 Ω  
TMIN to TMAX  
RLOAD 2 kΩ  
Short Circuit  
+13, –12  
V
V
V
V
+13.6, –12.6  
+12, –10  
12  
20  
+13.8, –13.1  
40  
Current  
mA  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
15  
V
V
mA  
4.8  
18  
10.0  
8.1  
50  
TRANSISTOR COUNT  
NOTES  
No. of Transistors  
1Input offset voltage specifications are guaranteed after five minutes of operation at TA = 25°C.  
2Test conditions: +VS = 15 V, –VS = 12 V to 18 V; and +VS = 12 V to 18 V, –VS = 15 V.  
3Bias current specifications are guaranteed maximum at either input after 5 minutes of operation at TA = 25°C. For higher temperature, the current doubles every 10°C.  
4Gain = –1, RL = 2 k, CL = 10 pF.  
5Defined as voltage between inputs, such that neither exceeds 10 V from common.  
6The AD743 does not exhibit an output phase reversal when the negative common-mode limit is exceeded.  
All min and max specifications are guaranteed.  
Specifications subject to change without notice.  
–2–  
REV. E  
AD743  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Internal Power Dissipation2  
Temperature  
Range  
Package  
Option*  
Model  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VS  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Differential Input Voltage . . . . . . . . . . . . . . . . . . +VS and –VS  
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C  
Operating Temperature Range  
AD743J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . . 300°C  
AD743JN  
AD743JR-16  
AD743JR-16-REEL  
AD743JR-16-REEL7  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
N-8  
R-16  
Tape and Reel  
Tape and Reel  
*N = PDIP; R = SOIC.  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; and functional operation  
of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2 8-lead PDIP: JA = 100°C/W, JC = 30°C/W.  
16-lead SOIC: JA = 100°C/W, JC = 30°C/W.  
ESD SUSCEPTIBILITY  
An ESD classification per method 3015.6 of MIL-STD-883C has  
been performed on the AD743. The AD743 is a Class 1 device,  
passing at 1000 V and failing at 1500 V on null Pins 1 and 5,  
when tested, using an IMCS 5000 automated ESD tester. Pins  
other than null pins fail at greater than 2500 V.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD743 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. E  
–3–  
AD743–Typical Performance Characteristics  
(@ 25؇C, VS = 15 V)  
20  
15  
10  
5
20  
15  
10  
50  
0
35  
30  
25  
20  
15  
10  
5
R
= 10k  
LOAD  
R
LOAD  
= 10k  
POSITIVE  
SUPPLY  
+V  
IN  
NEGATIVE  
SUPPLY  
–V  
IN  
0
0
10  
0
5
10  
15  
20  
0
5
10  
15  
20  
100  
1k  
10k  
SUPPLY VOLTAGE (؎V)  
SUPPLY VOLTAGE (؎V)  
LOAD RESISTANCE ()  
TPC 1. Input Voltage Swing vs.  
Supply Voltage  
TPC 2. Output Voltage Swing  
vs. Supply Voltage  
TPC 3. Output Voltage Swing  
vs. Load Resistance  
12  
9
200  
–6  
10  
100  
–7  
10  
10  
–8  
10  
6
–9  
10  
1
–10  
10  
3
0.1  
0.01  
–11  
–12  
10  
10  
0
0
5
10  
15  
20  
10k  
100k  
1M  
10M  
100M  
–60 –40 –20  
0
20 40 60 80 100 120 140  
SUPPLY VOLTAGE (؎V)  
FREQUENCY (Hz)  
TEMPERATURE (؇C)  
TPC 4. Quiescent Current vs.  
Supply Voltage  
TPC 5. Input Bias Current vs.  
Temperature  
TPC 6. Output Impedance vs.  
Frequency (Closed-Loop Gain = –1)  
300  
200  
100  
0
80  
70  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
60  
50  
40  
30  
20  
10  
0
+ OUTPUT  
CURRENT  
– OUTPUT  
CURRENT  
–12 –9 –6 –3  
0
3
6
9
12  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (؇C)  
TEMPERATURE (؇C)  
TPC 7. Input Bias Current vs.  
Common-Mode Voltage  
TPC 8. Short Circuit Current  
Limit vs. Temperature  
TPC 9. Gain Bandwidth Product  
vs. Temperature  
–4–  
REV. E  
AD743  
150  
140  
130  
120  
100  
80  
100  
80  
60  
40  
20  
3.5  
3.0  
2.5  
2.0  
100  
80  
60  
40  
20  
0
PHASE  
GAIN  
0
–20  
100  
–20  
10M 100M  
0
5
10  
15  
20  
1k  
10k  
100k  
1M  
–60 –40 –20  
0
20 40 60 80 100 120 140  
SUPPLY VOLTAGE (؎V)  
TEMPERATURE (؇C)  
FREQUENCY (Hz)  
TPC 10. Open-Loop Gain and  
Phase vs. Frequency  
TPC 11. Slew Rate vs. Temperature  
(Gain = –1)  
TPC 12. Open-Loop Gain vs.  
Supply Voltage, RLOAD = 2 k  
120  
100  
120  
100  
80  
35  
30  
25  
20  
15  
10  
5
V
= ؎10V  
CM  
80  
R
= 2k⍀  
L
+ SUPPLY  
60  
60  
40  
40  
– SUPPLY  
20  
20  
0
0
0
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
10M 100M  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 13. Common-Mode  
Rejection vs. Frequency  
TPC 14. Power Supply Rejection  
vs. Frequency  
TPC 15. Large Signal Frequency  
Response  
–70  
–80  
1k  
100  
10  
100  
CLOSED-LOOP GAIN = ؉1  
–90  
10  
–100  
–110  
–120  
GAIN = +10  
1
CLOSED-LOOP GAIN = ؉10  
GAIN = –1  
–130  
–140  
1
0.1  
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k 100k 1M 10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 16. Total Harmonic Distortion  
vs. Frequency  
TPC 18. Input Current Noise  
Spectral Density  
TPC 17. Input Voltage Noise  
Spectral Density  
REV. E  
–5–  
AD743  
69  
63  
57  
51  
45  
39  
33  
27  
21  
15  
9
3
3.3  
INPUT VOLTAGE NOISE (nV/ Hz)  
3.8  
2.5  
2.7  
2.9  
3.1  
3.5  
TPC 23. Unity-Gain Follower Small  
Signal Pulse Response  
TPC 19. Typical Noise Distribution @ 10 kHz (602 Units)  
100pF  
2k  
+V  
S
0.1F  
1F  
+V  
S
2
3
7
0.1F  
1F  
7
AD743  
4
6
2k⍀  
2
3
AD743  
V
5
IN  
1
2M⍀  
1M⍀  
6
4
V
OUT  
V
ADJUST  
OS  
C
L
100pF  
–V  
S
0.1F  
1F  
–V  
S
0.1F  
1F  
SQUARE WAVE  
INPUT  
TPC 20. Offset Null Configuration  
TPC 24. Unity-Gain Inverter  
+V  
S
0.1F  
1F  
7
AD743  
4
2
6
V
OUT  
300⍀  
C
10pF  
R
2k⍀  
V
L
L
IN  
3
*
–V  
S
0.1F  
1F  
SQUARE WAVE  
INPUT  
*OPTIONAL, NOT REQUIRED  
TPC 25. Unity-Gain Inverter Large Signal Pulse Response  
TPC 21. Unity-Gain Follower  
TPC 26. Unity-Gain Inverter Small Signal Pulse Response  
REV. E  
TPC 22. Unity-Gain Follower Large Signal Pulse Response  
–6–  
AD743  
OP AMP PERFORMANCE: JFET VS. BIPOLAR  
low frequency noise performance. Random air currents can gen-  
erate varying thermocouple voltages that appear as low frequency  
noise; therefore, sensitive circuitry should be well shielded from  
air flow. Keeping absolute chip temperature low also reduces low  
frequency noise in two ways. First, the low frequency noise is  
strongly dependent on the ambient temperature and increases  
above +25°C. Second, since the gradient of temperature from the  
IC package to ambient is greater, the noise generated by random  
air currents, as previously mentioned, will be larger in magnitude.  
Chip temperature can be reduced both by operation at reduced  
supply voltages and by the use of a suitable clip-on heat sink,  
if possible.  
The AD743 is the first monolithic JFET op amp to offer the low  
input voltage noise of an industry-standard bipolar op amp without  
its inherent input current errors. This is demonstrated in Figure 2,  
which compares input voltage noise versus input source resis-  
tance of the OP27 and AD743 op amps. From this figure, it is  
clear that at high source impedance the low current noise of the  
AD743 also provides lower total noise. It is also important to  
note that with the AD743 this noise reduction extends all the  
way down to low source impedances. The lower dc current errors  
of the AD743 also reduce errors due to offset and drift at high  
source impedances (Figure 3).  
Low frequency current noise can be computed from the magni-  
tude of the dc bias current  
1000  
R
OP27 AND  
RESISTOR  
( — )  
SOURCE  
˜
In = 2qIBf  
E
O
and increases below approximately 100 Hz with a 1/f power spectral  
density. For the AD743, the typical value of current noise is  
6.9 fA/Hz at 1 kHz. Using the formula  
R
SOURCE  
100  
AD743 AND RESISTOR  
OR  
OP27 AND RESISTOR  
AD743 AND  
RESISTOR  
˜
In = 4kT / Rf  
(
)
to compute the Johnson noise of a resistor, expressed as a current,  
one can see that the current noise of the AD743 is equivalent to  
that of a 3.45 108 source resistance.  
10  
RESISTOR NOISE ONLY  
(– – –)  
At high frequencies, the current noise of a FET increases pro-  
portionately to frequency. This noise is due to the “real” part of  
the gate input impedance, which decreases with frequency. This  
noise component usually is not important, since the voltage noise  
of the amplifier impressed upon its input capacitance is an appar-  
ent current noise of approximately the same magnitude.  
1
100  
1k  
10k  
100k  
1M  
10M  
SOURCE RESISTANCE ()  
Figure 2. Total Input Noise Spectral Density @ 1 kHz  
vs. Source Resistance  
In any FET input amplifier, the current noise of the internal  
bias circuitry can be coupled externally via the gate-to-source  
capacitances and appears as input current noise. This noise is  
totally correlated at the inputs, so source impedance match-  
ing will tend to cancel out its effect. Both input resistance and  
input capacitance should be balanced whenever dealing with  
source capacitances of less than 300 pF in value.  
100  
OP27  
10  
LOW NOISE CHARGE AMPLIFIERS  
As stated, the AD743 provides both low voltage and low current  
noise. This combination makes this device particularly suitable  
in applications requiring very high charge sensitivity, such as  
capacitive accelerometers and hydrophones. When dealing with  
a high source capacitance, it is useful to consider the total input  
charge uncertainty as a measure of system noise.  
1
AD743  
0.1  
100  
1M  
10M  
1k  
10k  
100k  
SOURCE RESISTANCE ()  
Charge (Q) is related to voltage and current by the simply stated  
fundamental relationships  
Figure 3. Input Offset Voltage vs. Source Resistance  
dQ  
Q = CV and I =  
dt  
DESIGNING CIRCUITS FOR LOW NOISE  
An op amp’s input voltage noise performance is typically divided  
into two regions: flatband and low frequency noise. The AD743  
offers excellent performance with respect to both. The figure of  
2.9 nV/Hz @ 10 kHz is excellent for a JFET input amplifier. The  
0.1 Hz to 10 Hz noise is typically 0.38 µV p-p. The user should  
pay careful attention to several design details in order to optimize  
As shown, voltage, current, and charge noise can all be directly  
related. The change in open circuit voltage (V) on a capacitor  
will equal the combination of the change in charge (Q/C) and  
the change in capacitance with a built in charge (Q/C).  
REV. E  
–7–  
AD743  
–100  
–110  
Figures 4 and 5 show two ways to buffer and amplify the output of  
a charge output transducer. Both require using an amplifier that  
has a very high input impedance, such as the AD743. Figure 4  
shows a model of a charge amplifier circuit. Here, amplifica-  
tion depends on the principle of conservation of charge at the  
input of amplifier A1, which requires that the charge on capaci-  
tor CS be transferred to capacitor CF, thus yielding an output  
voltage of Q/CF. The amplifier’s input voltage noise will appear at  
the output amplified by the noise gain (1 + (CS/CF)) of the circuit.  
–120  
–130  
–140  
TOTAL  
OUTPUT  
NOISE  
–150  
–160  
–170  
–180  
–190  
NOISE  
DUE TO  
R
ALONE  
B
C
F
NOISE  
–200  
DUE TO  
ALONE  
R
*
R1  
R2  
I
B
B
–210  
–220  
0.01  
1k  
1
10  
100  
10k  
100k  
0.1  
FREQUENCY (Hz)  
C
A1  
S
Figure 6. Noise at the Outputs of the Circuits of  
Figures 4 and 5. Gain = +10, CS = 3000 pF, RB = 22 MΩ  
C
C
R1  
R2  
S
C
*
R
*
=
B
B
F
However, this does not change the noise contribution of RB which,  
in this example, dominates at low frequencies. The graph of  
Figure 7 shows how to select an RB large enough to minimize  
this resistor’s contribution to overall circuit noise. When the  
equivalent current noise of RB ((4kT)/R equals the noise of IB  
(2qIB), there is diminishing return in making RB larger.  
*OPTIONAL, SEE TEXT  
Figure 4. Charge Amplifier Circuit  
R1  
C
*
B
10  
5.2 
؋
 10  
R
*
B
A2  
R2  
C
R
S
B
9
5.2 
؋
 10  
*OPTIONAL, SEE TEXT  
Figure 5. Model for a High Z Follower with Gain  
8
5.2 
؋
 10  
The circuit in Figure 5 is simply a high impedance follower with  
gain. Here the noise gain (1 + (R1/R2)) is the same as the gain  
from the transducer to the output. In both circuits, resistor RB is  
required as a dc bias current return.  
7
5.2 
؋
 10  
There are three important sources of noise in these circuits.  
Amplifiers A1 and A2 contribute both voltage and current noise,  
while resistor RB contributes a current noise of  
6
5.2 
؋
 10  
1pA  
10pA  
100pA  
1nA  
10nA  
INPUT BIAS CURRENT  
T
RB  
Figure 7. Graph of Resistance vs. Input Bias Current  
Where the Equivalent Noise 4kT/R, Equals the Noise  
of the Bias Current 2qIB  
˜
N = 4k  
f  
where  
To maximize dc performance over temperature, the source  
resistances should be balanced on each input of the amplifier.  
This is represented by the optional resistor RB in Figures 4 and 5.  
As previously mentioned, for best noise performance, care should  
be taken to also balance the source capacitance designated by CB.  
The value for CB in Figure 4 would be equal to CS in Figure 5.  
At values of CB over 300 pF, there is a diminishing impact on  
noise; capacitor CB can then be simply a large bypass of 0.01 µF  
or greater.  
k = Boltzman’s Constant = 1.381 × 10–23 joules/kelvin  
T = Absolute Temperature, kelvin (0°C = 273.2 kelvin)  
f = Bandwidth—in Hz (assuming an ideal “brick wall” filter)  
This must be root-sum-squared with the amplifier’s own  
current noise.  
Figure 6 shows that these circuits in Figures 4 and 5 have an  
identical frequency response and noise performance (provided  
that CS/CF = R1/ R2). One feature of the first circuit is that a “T”  
network is used to increase the effective resistance of RB and to  
improve the low frequency cutoff point by the same factor.  
–8–  
REV. E  
AD743  
300  
200  
100  
0
HOW CHIP PACKAGE TYPE AND POWER DISSIPATION  
AFFECT INPUT BIAS CURRENT  
As with all JFET input amplifiers, the input bias current of  
the AD743 is a direct function of device junction temperature,  
IB approximately doubling every 10°C. Figure 8 shows the rela-  
tionship between the bias current and the junction temperature  
for the AD743. This graph shows that lowering the junction  
temperature will dramatically improve IB.  
T
= +25 C  
A
= 165 C/W  
JA  
= 115 C/W  
= 0 C/W  
JA  
JA  
–6  
10  
–7  
10  
–8  
5
10  
SUPPLY VOLTAGE ( V)  
15  
10  
T
V
= 25؇C  
= 15V  
A
S
–9  
10  
Figure 10. Input Bias Current vs. Supply Voltage  
for Various Values of JA  
–10  
–11  
–12  
10  
10  
10  
T
J
A
(J TO  
DIE MOUNT)  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
B
(DIE MOUNT  
TO CASE)  
JUNCTION TEMPERATURE (؇C)  
T
A
Figure 8. Input Bias Current vs. Junction Temperature  
The dc thermal properties of an IC can be closely approximated  
by using the simple model of Figure 9, where current represents  
power dissipation, voltage represents temperature, and resistors  
represent thermal resistance (in °C/W).  
+ = ␪  
B JC  
CASE  
A
Figure 11. Breakdown of Various Package Thermal  
Resistances  
T
CA  
J
JC  
REDUCED POWER SUPPLY OPERATION FOR LOWER IB  
Reduced power supply operation lowers IB in two ways: first, by  
lowering both the total power dissipation and second, by reduc-  
ing the basic gate-to-junction leakage (Figure 10). Figure 12  
shows a 40 dB gain piezoelectric transducer amplifier, which  
operates without an ac-coupling capacitor over the –40°C to  
+85°C temperature range. If the optional coupling capacitor is  
used, this circuit will operate over the entire –55°C to +125°C  
military temperature range.  
JA  
P
P
IN  
T
A
= DEVICE DISSIPATION  
= AMBIENT TEMPERATURE  
= JUNCTION TEMPERATURE  
= THERMAL RESISTANCE—JUNCTION TO CASE  
IN  
A
T
T
J
JC  
= THERMAL RESISTANCE—CASE TO AMBIENT  
CA  
Figure 9. Device Thermal Model  
10k  
100⍀  
From this model, TJ = TA + JA PIN. Therefore, IB can be deter-  
mined in a particular application by using Figure 8 together with  
the published data for JA and power dissipation. The user can  
modify JA by using of an appropriate clip-on heat sink, such as  
the Aavid No. 5801. JA is also a variable when using the AD743  
in chip form. Figure 10 shows the bias current versus the supply  
voltage with JA as the third variable. This graph can be used to  
predict bias current after JA has been computed. Again, bias cur-  
rent will double for every 10°C. The designer using the AD743  
in chip form (Figure 11) must also be concerned with both  
JC and CA, since JC can be affected by the type of die mount  
technology used.  
C1*  
8
10 **  
CT**  
+5V  
AD743  
TRANSDUCER  
C
T
8
10 ⍀  
–5V  
*OPTIONAL DC BLOCKING CAPACITOR  
**OPTIONAL, SEE TEXT  
Figure 12. Piezoelectric Transducer  
Typically, JC will be in the 3°C/W to 5°C/W range; therefore,  
for normal packages, this small power dissipation level may be  
ignored. But, with a large hybrid substrate, JC will dominate  
proportionately more of the total JA.  
REV. E  
–9–  
AD743  
C1  
1250pF  
AN INPUT IMPEDANCE COMPENSATED, SALLEN-KEY  
FILTER  
The simple high-pass filter of Figure 13 has an important source  
of error which is often overlooked. Even 5 pF of input capacitance  
in amplifier A will contribute an additional 1% of pass-band ampli-  
tude error, as well as distortion, proportional to the C/V characteristics  
of the input junction capacitance. The addition of the network  
designated Z will balance the source impedance—as seen by  
A—and thus eliminate these errors.  
R1  
110M  
(5 
؋
 22M)  
R2  
9k⍀  
R3  
C2  
2.2F  
1k⍀  
R4  
18M⍀  
AD711  
+V  
R5  
18M⍀  
Z
S
500k⍀  
C3  
2.2F  
A
1000pF 1000pF  
500k⍀  
–V  
S
OUTPUT  
0.8mV/pC  
1000pF  
1000pF  
AD743  
500k⍀  
B AND K MODEL  
4370 OR  
EQUIVALENT  
Z
500k⍀  
Figure 14b. Accelerometer Circuit Using a DC  
Servo Amplifier  
Figure 13. Input Impedance Compensated  
Sallen-Key Filter  
A dc servo loop (Figure 14b) can be used to assure a dc output  
which is <10 mV, without the need for a large compensating  
resistor when dealing with bias currents as large as 100 nA. For  
optimal low frequency performance, the time constant of the  
servo loop (R4C2 = R5C3) should be  
TWO HIGH PERFORMANCE ACCELEROMETER  
AMPLIFIERS  
Two of the most popular charge-out transducers are hydrophones  
and accelerometers. Precision accelerometers are typically cali-  
brated for a charge output (pC/g).* Figures 14a and 14b show  
two ways in which to configure the AD743 as a low noise charge  
amplifier for use with a wide variety of piezoelectric accelerom-  
eters. The input sensitivity of these circuits will be determined  
by the value of capacitor C1 and is equal to  
R2  
R3  
Time Constant 10 R1 1+  
C1  
LOW NOISE HYDROPHONE AMPLIFIER  
Hydrophones are usually calibrated in the voltage out mode.  
The circuits of Figures 15a and 15b can be used to amplify the  
output of a typical hydrophone. Figure 15a shows a typical  
dc-coupled circuit. The optional resistor and capacitor serve  
to counteract the dc offset caused by bias currents flowing through  
resistor R1. Figure 15b, a variation of the original circuit, has a  
low frequency cutoff determined by an RC time constant equal to  
QOUT  
C1  
VOUT  
=
The ratio of capacitor C1 to the internal capacitance (CT) of the  
transducer determines the noise gain of this circuit (1 + CT/C1).  
The amplifier’s voltage noise will appear at its output amplified  
by this amount. The low frequency bandwidth of these circuits  
will be dependent on the value of resistor R1. If a T network is  
used, the effective value is R1(1 + R2/R3).  
1
Time Constant =  
2 π ×CC ×100 Ω  
C1  
1250pF  
R3  
R2  
100⍀  
1900⍀  
R1  
110M  
(5 
؋
 22M)  
R2  
9k⍀  
C1*  
R4*  
R3  
1k⍀  
8
10 ⍀  
AD743  
OUTPUT  
B AND K TYPE 8100  
HYDROPHONE  
OUTPUT  
0.8mV/pC*  
AD743  
R1  
10 ⍀  
C
T
B AND K MODEL  
4370 OR  
8
EQUIVALENT  
INPUT SENSITIVITY = –179 dB re. 1V/Pa**  
*pC = PICOCOULOMBS  
g = EARTH’S GRAVITATIONAL CONSTANT  
*OPTIONAL, SEE TEXT  
**1V PER MICROPASCAL  
Figure 14a. Basic Accelerometer Circuit  
Figure 15a. Basic Hydrophone Amplifier  
–10–  
REV. E  
AD743  
R2  
1900⍀  
where the dc gain is 1 and the gain above the low frequency cutoff  
(1/(2πCC(100 ))) is the same as the circuit of Figure 15a. The  
circuit of Figure 15c uses a dc servo loop to keep the dc output  
at 0 V and to maintain full dynamic range for IB up to 100 nA.  
The time constant of R7 and C2 should be larger than that of  
R1 and CT for a smooth low frequency response.  
R3  
100⍀  
C1*  
R4*  
C
C
AD743  
OUTPUT  
B AND K TYPE 8100  
HYDROPHONE  
The transducer shown has a source capacitance of 7500 pF. For  
smaller transducer capacitances (300 pF), the lowest noise can  
be achieved by adding a parallel RC network (R4 = R1, C1 = CT)  
in series with the inverting input of the AD743.  
R1  
10 ⍀  
C
T
8
INPUT SENSITIVITY = –179 dB re. 1V/Pa**  
*OPTIONAL, SEE TEXT  
**1V PER MICROPASCAL  
BALANCING SOURCE IMPEDANCES  
As mentioned previously, it is good practice to balance the  
source impedances (both resistive and reactive) as seen by the  
inputs of the AD743. Balancing the resistive components will  
optimize dc performance over temperature because balancing  
will mitigate the effects of any bias current errors. Balancing  
input capacitance will minimize ac response errors due to the  
amplifier’s input capacitance and, as shown in Figure 16, noise  
performance will be optimized. Figure 17 shows the required  
external components for noninverting (A) and inverting (B)  
configurations.  
Figure 15b. AC-Coupled, Low Noise  
Hydrophone Amplifier  
R2  
1900⍀  
R3  
100⍀  
R4*  
10 ⍀  
C1*  
8
OUTPUT  
R7  
16M⍀  
AD743  
40  
C2  
0.27F  
B AND K  
TYPE 8100  
HYDROPHONE  
R5  
100k⍀  
R1  
10 ⍀  
30  
8
AD711K  
C
T
R6  
1M⍀  
16M⍀  
20  
DC OUTPUT 1mV FOR I (AD743) 100nA  
UNBALANCED  
B
*OPTIONAL, SEETEXT  
BALANCED  
2.9nV/Hz  
10  
Figure 15c. Hydrophone Amplifier Incorporating a  
DC Servo Loop  
10  
100  
1000  
INPUT CAPACITORS (pF)  
Figure 16. RTI Voltage Noise vs. Input Capacitance  
R1  
C
F
C
B
R1  
B
A
R
B
OUTPUT  
OUTPUT  
R2  
R
C
S
S
C
R
B
C
R
S
B
S
INVERTING  
CONNECTION  
NONINVERTING  
CONNECTION  
A
= C  
= R  
FOR  
B
C
R
C
R
= C ʈ C  
B
S
S
B
F S  
= R1 ʈ R  
B
B
S
R
>> R1 OR R2  
S
Figure 17. Optional External Components for Balancing Source Impedances  
REV. E  
–11–  
AD743  
OUTLINE DIMENSIONS  
8-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Standard Small Outline Package [SOIC]  
(N-8)  
Wide Body  
(R-16)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in millimeters and (inches)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
10.50 (0.4134)  
10.10 (0.3976)  
8
1
5
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
10.65 (0.4193)  
10.00 (0.3937)  
0.100 (2.54)  
BSC  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
1.27 (0.0500)  
0.75 (0.0295)  
0.25 (0.0098)  
2.65 (0.1043)  
2.35 (0.0925)  
BSC  
؋
 45؇  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.30 (0.0118)  
0.10 (0.0039)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
8؇  
0؇  
0.51 (0.0201)  
0.33 (0.0130)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.32 (0.0126)  
0.23 (0.0091)  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-013AA  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Revision History  
Location  
Page  
7/03—Data Sheet changed from REV. D to REV. E.  
Deleted K Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2/02—Data Sheet changed from REV. C to REV. D.  
Edits to PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to CONNECTION DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Deleted AD7435 column from SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Deleted METALLIZATION PHOTOGRAPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to REDUCE POWER SUPPLY OPERATION FOR LOWER IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Deleted 8-Pin CERDIP (Q) package drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
–12–  
REV. E  

相关型号:

AD743JRZ-16-REEL

Ultralow Noise BiFET Op Amp
ADI

AD743JRZ-16-REEL7

Ultralow Noise BiFET Op Amp
ADI

AD743KN

Ultralow Noise BiFET Op Amp
ADI

AD743KQ

Voltage-Feedback Operational Amplifier
ETC

AD743KR

IC OP-AMP, 500 uV OFFSET-MAX, 4.5 MHz BAND WIDTH, PDSO16, SOIC-16, Operational Amplifier
ADI

AD743KR-16

Ultralow Noise BiFET Op Amp
ADI

AD743KR-16-REEL

Ultralow Noise BiFET Op Amp
ADI

AD743SQ

Ultralow Noise BiFET Op Amp
ADI

AD743SQ/883B

Ultralow Noise BiFET Op Amp
ADI

AD743_03

Ultralow Noise BiFET Op Amp
ADI

AD744

Precision, 500 ns Settling BiFET Op Amp
ADI

AD7440

Differential Input, 1 MSPS 10-Bit and 12-Bit ADCs in an 8-Lead SOT-23
ADI