AD746B [ADI]

Dual Precision, 500 ns Settling, BiFET Op Amp; 双路精密, 500 ns建立, BiFET运算放大器
AD746B
型号: AD746B
厂家: ADI    ADI
描述:

Dual Precision, 500 ns Settling, BiFET Op Amp
双路精密, 500 ns建立, BiFET运算放大器

运算放大器
文件: 总8页 (文件大小:430K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Precision, 500 ns  
Settling, BiFET Op Amp  
a
AD746  
CONNECTION DIAGRAM  
FEATURES  
AC PERFORMANCE  
500 ns Settling to 0.01% for 10 V Step  
75 V/s Slew Rate  
0.0001% Total Harmonic Distortion (THD)  
13 MHz Gain Bandwidth  
Plastic Mini-DIP (N)  
Cerdip (Q) and  
Plastic SOIC (R) Packages  
Internal Compensation for Gains of +2 or Greater  
DC PERFORMANCE  
0.5 mV max Offset Voltage (AD746B)  
10  
175 V/mV min Open Loop Gain (AD746B)  
V p-p Noise, 0.1 Hz to 10 Hz  
V/؇C max Drift (AD746B)  
2
Available in Plastic Mini-DIP, Cerdip and Surface  
Mount Packages  
Available in Tape and Reel in Accordance with  
EIA-481A Standard  
MIL-STD-883B Processing also Available  
Single Version: AD744  
APPLICATIONS  
Dual Output Buffers for 12- and 14-Bit DACs  
Input Buffers for Precision ADCs, Wideband  
Preamplifiers and Low Distortion Audio Circuitry  
The AD746 is available in three 8-pin packages: plastic mini  
DIP, hermetic cerdip and surface mount (SOIC).  
PRODUCT HIGHLIGHTS  
1. The AD746 offers exceptional dynamic response for high  
speed data acquisition systems. It settles to 0.01% in 500 ns  
and has a 100% tested minimum slew rate of 50 V/µs  
(AD746B).  
PRODUCT DESCRIPTION  
The AD746 is a dual operational amplifier, consisting of two  
AD744 BiFET op amps on a single chip. These precision  
monolithic op amps offer excellent dc characteristics plus rapid  
settling times, high slew rates and ample bandwidths. In  
addition, the AD746 provides the close matching ac and dc  
characteristics inherent to amplifiers sharing the same  
monolithic die.  
2. Outstanding dc precision is provided by a combination of  
Analog Devices’ advanced processing technology, laser wafer  
drift trimming and well-matched ion-implanted JFETs. Input  
offset voltage, input bias current and input offset current are  
specified in the warmed-up condition and are 100% tested.  
The single pole response of the AD746 provides fast settling:  
500 ns to 0.01%. This feature, combined with its high dc  
precision, makes it suitable for use as a buffer amplifier for 12-  
or 14-bit DACs and ADCs. Furthermore, the AD746’s low total  
harmonic distortion (THD) level of 0.0001% and very close  
matching ac characteristics make it an ideal amplifier for many  
demanding audio applications.  
3. Differential and multichannel systems will benefit from the  
AD746’s very close matching of ac characteristics. Input  
offset voltage specs are fully tested and guaranteed to a  
maximum of 0.5 mV (AD746B).  
4. The AD746 has very close, guaranteed matching of input  
bias current between its two amplifiers.  
The AD746 is internally compensated for stable operation as a  
unity gain inverter or as a noninverting amplifier with a gain of 2  
or greater. It is available in four performance grades. The  
AD746J is rated over the commercial temperature range of 0 to  
+70°C. The AD746A and AD746B are rated over the industrial  
temperature range of –40°C to +85°C. The AD746S is rated  
over the military temperature range of –55°C to +125°C and is  
available processed to MIL-STD-883B, Rev. C.  
5. Unity gain stable version AD712 also available.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
AD746–SPECIFICATIONS  
(@ +25؇C and ؎15 V dc, unless otherwise noted)  
AD746J/A  
Typ  
AD746B  
Typ  
AD746S  
Typ  
Model  
Conditions  
Min  
Max  
Min  
Max Min  
Max Units  
INPUT OFFSET VOLTAGE1  
Initial Offset  
0.3  
1.5  
2.0  
20  
0.25  
0.5  
0.7  
10  
0.3  
1.0  
1.5  
20  
mV  
mV  
µV/°C  
dB  
dB  
Offset  
T
MIN to TMAX  
vs. Temperature  
vs. Supply2 (PSRR)  
vs. Supply (PSRR)  
Long Term Stability  
12  
95  
5
100  
12  
95  
80  
84  
84  
80  
80  
TMIN to TMAX 80  
15  
15  
15  
µV/month  
INPUT BIAS CURRENT3  
Either Input  
Either Input @ TMAX  
Either Input  
Offset Current  
Offset Current @ TMAX  
VCM = 0 V  
VCM = 0 V  
VCM = +10 V  
VCM = 0 V  
VCM = 0 V  
110  
2.5/7  
145  
45  
250  
5.7/16  
350  
125  
2.8/8  
110  
7
145  
45  
3
150  
9.6  
200  
75  
110  
113  
145  
45  
250 pA  
256 nA  
350 pA  
125 pA  
128 nA  
1.0/3  
4.8  
45  
MATCHING CHARACTERISTICS  
Input Offset Voltage  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
0.6  
1.5  
2.0  
20  
0.3  
0.5  
0.7  
20  
0.6  
1.0  
1.5  
20  
125 pA  
dB  
mV  
mV  
µV/°C  
TMIN to TMAX  
125  
75  
Crosstalk  
@ 1 kHz  
@ 100 kHz  
120  
90  
120  
90  
120  
90  
dB  
FREQUENCY RESPONSE  
Gain BW, Small Signal  
Slew Rate, Unity Gain  
Full Power Response  
Settling Time to 0.01%4  
Total Harmonic  
G = –1  
G = –1  
VO = 20 V p-p  
G = 1  
f = 1 kHz  
R1 2 kΩ  
VO = 3 V rms  
8
45  
13  
75  
600  
0.5  
9
50  
13  
75  
600  
0.5  
8
45  
13  
75  
600  
0.5  
MHz  
V/µs  
kHz  
0.75  
0.75  
0.75 µs  
Distortion  
0.0001  
0.0001  
0.0001  
%
INPUT IMPEDANCE  
Differential  
Common Mode  
2.5 × l01lʈ5.5  
2.5 × l01lʈ5.5  
2.5 × l01lʈ5.5  
2.5 × l01lʈ5.5  
ʈpF  
ʈpF  
2.5 × l01lʈ5.5  
2.5 × l01lʈ5.5  
INPUT VOLTAGE RANGE  
Differential5  
Common-Mode Voltage  
Over Max Operating Range6  
Common-Mode Rejection Ratio  
±20  
+14.5, –11.5  
±20  
+14.5, –11.5  
±20  
+14.5, –11.5  
V
V
V
dB  
dB  
dB  
dB  
–11  
+13  
–11  
82  
80  
78  
74  
+13  
–11  
78  
76  
72  
70  
+13  
VCM = ±10 V 78  
TMIN to TMAX 76  
VCM = ±11 V 72  
TMIN to TMAX 70  
88  
84  
84  
80  
88  
84  
84  
80  
88  
84  
84  
80  
INPUT VOLTAGE NOISE  
0.1 to 10 Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
2
2
2
µV p-p  
45  
22  
18  
16  
45  
22  
18  
16  
45  
22  
18  
16  
nV/͙Hz  
nV/͙Hz  
nV/͙Hz  
nV/͙Hz  
INPUT CURRENT NOISE  
OPEN LOOP GAIN  
f = 1 kHz  
0.01  
0.01  
0.01  
pA/͙Hz  
VO = ±10 V  
R1 2 kΩ  
TMIN to TMAX 75  
150  
300  
200  
175  
75  
300  
200  
150  
65  
300  
175  
V/mV  
V/mV  
OUTPUT CHARACTERISTICS  
Voltage  
R1 2 kΩ  
+13, –12.5 +13.9, –13.3  
+13, –12.5 +13.9, –13.3  
+13, –12.5 +13.9, –13.3  
V
V
mA  
pF  
pF  
TMIN to TMAX ±12  
Short Circuit  
Gain = –1  
+13.8, –13.1  
؎12  
+13.8, –13.1  
؎12  
+13.8, –13.1  
Current  
Max Capacitive Load  
Driving Capability  
25  
50  
500  
25  
50  
500  
25  
50  
500  
Gain = –10  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
±15  
±15  
±15  
V
V
mA  
؎4.5  
؎18  
10  
؎4.5  
؎18  
8.0  
؎4.5  
؎18  
10  
7
7
7
TEMPERATURE RANGE  
Rated Performance  
0 to +70/–40 to +85  
–40 to +85  
AD746BQ  
–55 to +125  
AD746SQ  
°C  
PACKAGE OPTIONS  
8-Pin Plastic Mini-DIP (N-8)  
8-Pin Cerdip (Q-8)  
8-Pin Surface Mount (R-8)  
Tape and Reel  
AD746JN  
AD746AQ  
AD746JR  
AD746JR-REEL  
Chips  
AD746SCHIPS  
54  
TRANSISTOR COUNT  
54  
54  
–2–  
REV. B  
AD746  
NOTES  
1Input Offset Voltage specifications are guaranteed after 5 minutes of operation at TA = +25°C.  
2PSRR test conditions: +VS = 15 V, –VS = –12 V to –18 V and +VS = 12 V to 18 V, –VS = –15 V.  
3Bias Current Specifications are guaranteed maximum at either input after 5 minutes of operation at TA = +25°C. For higher temperature, the current doubles every  
10°C.  
4Gain = –1, Rl = 2 k, Cl = 10 pF.  
5Defined as voltage between inputs, such that neither exceeds ±10 V from ground.  
6Typically exceeding –14.1 V negative common-mode voltage on either input results in an output phase reversal.  
Specifications subject to change without notice.  
Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and  
max specifications are guaranteed, although only those shown in boldface are tested on all production units.  
ABSOLUTE MAXIMUM RATINGS1  
Lead Temperature Range  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±18 V  
Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . . . . 500 mW  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±VS  
Output Short Circuit Duration  
(For One Amplifier) . . . . . . . . . . . . . . . . . . . . . . . Indefinite  
Differential Input Voltage . . . . . . . . . . . . . . . . . . +VS and –VS  
Storage Temperature Range (Q) . . . . . . . . . . –65°C to +150°C  
Storage Temperature Range (N, R) . . . . . . . . –65°C to +125°C  
Operating Temperature Range  
(Soldering 60 seconds) . . . . . . . . . . . . . . . . . . . . . . . +300°C  
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NOTES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
28-Pin Plastic Package: θJA = 100°C/Watt, θJC = 50°C/Watt  
8-Pin Cerdip Package: θJA = 110°C/Watt, θJC = 30°C/Watt  
8-Pin Small Outline Package: θJA = 160°C/Watt, θJC = 42°C/Watt  
AD746J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0°C to +70°C  
AD746A/B . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
AD746S . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
METALIZATION PHOTOGRAPH  
Contact factory for latest dimensions.  
Dimensions shown in inches and (mm).  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD746 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–3–  
REV. B  
AD746  
–Typical Characteristics  
Figure 3. Output Voltage Swing  
vs. Load Resistance  
Figure 1. Input Voltage Swing vs.  
Supply Voltage  
Figure 2. Output Voltage Swing  
vs. Supply Voltage  
Figure 5. Input Bias Current vs.  
Temperature  
Figure 4. Quiescent Current vs.  
Supply Voltage  
Figure 6. Output Impedance vs.  
Frequency  
Figure 8. Short Circuit Current  
Limit vs. Temperature  
Figure 9. Gain Bandwidth Product  
vs. Temperature  
Figure 7. Input Bias Current vs.  
Common Mode Voltage  
–4–  
REV. B  
AD746  
Figure 10. Open Loop Gain and  
Phase Margin vs. Frequency  
Figure 11. Settling Time vs.  
Closed Loop Voltage Gain  
Figure 12. Open Loop Gain vs.  
Supply Voltage  
Figure 15. Output Swing and  
Error vs. Settling Time  
Figure 13. Common-Mode and  
Power Supply Rejection vs.  
Frequency  
Figure 14. Large Signal Frequency  
Response  
Figure 18. Slew Rate vs. Input  
Error Signal  
Figure 16. Total Harmonic  
Distortion vs. Frequency Using  
Circuit of Figure 19  
Figure 17. Input Noise Voltage  
Spectral Density  
–5–  
REV. B  
AD746  
POWER SUPPLY BYPASSING  
(with short lead lengths to power supply common) will assure  
adequate high frequency bypassing, in most applications. A  
minimum bypass capacitance of 0.1 µF should be used for any  
application.  
The power supply connections to the AD746 must maintain a  
low impedance to ground over a bandwidth of 13 MHz or more.  
This is especially important when driving a significant resistive  
or capacitive load, since all current delivered to the load comes  
from the power supplies. Multiple high quality bypass capacitors  
are recommended for each power supply line in any critical  
application. A 0.1 µF ceramic and a 1 µF tantalum capacitor as  
shown in Figure 20 placed as close as possible to the amplifier  
If only one of the two amplifiers inside the AD746 is to be  
utilized, the unused amplifier should be connected as shown in  
Figure 21a. Note that the noninverting input should be  
grounded and that RL and CL are not required.  
Figure 20. Power Supply  
Bypassing  
Figure 19. THD Test Circuit  
Figure 21a. Gain of 2 Follower  
Figure 21b. Gain of 2 Follower  
Large Signal Pulse Response  
Figure 21c. Gain of 2 Follower  
Small Signal Pulse Response  
Figure 22b. Unity Gain Inverter  
Large Signal Pulse Response  
Figure 22a. Unity Gain Inverter  
Figure 22c. Unity Gain Inverter  
Small Signal Pulse Response  
–6–  
REV. B  
AD746  
A HIGH SPEED 3 OR AMP INSTRUMENTATION  
AMPLIFIER CIRCUIT  
Table I. Performance Summary for the 3 Op Amp  
Instrumentation Amplifier Circuit  
The instrumentation amplifier circuit shown in Figure 23 can  
provide a range of gains from 2 up to 1000 and higher. The  
circuit bandwidth is 2.5 MHz at a gain of 2 and 750 kHz at a  
gain of 10; settling time for the entire circuit is less than 2 µs to  
within 0.01% for a 10 volt step, (G = 10).  
TSETTLE  
(0.01%)  
Gain  
RG  
Bandwidth  
2
10  
100  
20 kΩ  
4.04 kΩ  
404 Ω  
2.5 MHz  
1 MHz  
290 kHz  
1.0 µs  
2.0 µs  
5.0 µs  
Figure 25. Settling Time of the 3 Op  
Amp Instrumentation Amplifier.  
Gain = 10, Horizontal Scale: 0.5 µs/Div,  
Vertical Scale: 5 V/Div.  
Error Signal Scale: 0.01%/Div.  
THD Performance Considerations  
The AD746 was carefully optimized to offer excellent  
performance in terms of total harmonic distortion (THD) in  
signal processing applications. The THD level when operating  
the AD746 in inverting gain applications will show a gradual  
rise from the distortion floor of 20 dB/decade (see Figure 28).  
In noninverting applications, care should be taken to balance  
the source impedances at both the inverting and noninverting  
inputs, to avoid distortion caused by the modulation of input  
capacitance inherent in all BiFET op amps.  
Figure 23. A High Performance, 3 Op Amp, Instrumenta-  
tion Amplifier Circuit  
Figure 26. THD Measurement, Inverter Circuit  
Figure 24. Pulse Response of the 3  
Op Amp Instrumentation Amplifier.  
Gain = 10, Horizontal Scale:  
0.5 µs/Div, Vertical Scale: 5 V/Div.  
Figure 27. THD Measurement, Follower Circuit  
–7–  
REV. B  
AD746  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Mini-DIP (N) Package  
Figure 28. THD vs. Frequency Using Standard Distortion  
Analyzer  
2k  
Cerdip (Q) Package  
2kΩ  
VOUT  
#1  
1/2  
2
1
AD746  
SINE WAVE  
GENERATOR  
20V p-p  
20V p-p  
+
3
4
VS  
OUTPUT  
LEVEL  
+
1µF  
0.1µF  
20kΩ  
+VS  
+
1µF  
0.1µF  
2.21kΩ  
VOUT  
#2  
1/2  
AD746  
+
6
5
8
7
V
OUT #1  
CROSSTALK = 20 LOG10  
+ 20dB  
V
OUT #2  
Plastic Small Outline  
(R) Package  
Figure 29. Crosstalk Test Circuit  
Figure 30. Crosstalk vs. Frequency  
–8–  
REV. B  

相关型号:

AD746BH

Voltage-Feedback Operational Amplifier
ETC

AD746BQ

Dual Precision, 500 ns Settling, BiFET Op Amp
ADI

AD746BQ

DUAL OP-AMP, 700uV OFFSET-MAX, 13MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8
ROCHESTER

AD746BR

IC DUAL OP-AMP, 700 uV OFFSET-MAX, 13 MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8, Operational Amplifier
ADI

AD746CH

Voltage-Feedback Operational Amplifier
ETC

AD746CQ

Voltage-Feedback Operational Amplifier
ETC

AD746J

Dual Precision, 500 ns Settling, BiFET Op Amp
ADI

AD746JN

Dual Precision, 500 ns Settling, BiFET Op Amp
ADI

AD746JN

DUAL OP-AMP, 2000uV OFFSET-MAX, 13MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8
ROCHESTER

AD746JNZ

DUAL OP-AMP, 2000 uV OFFSET-MAX, 13 MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8
ROCHESTER

AD746JQ

IC DUAL OP-AMP, 2000 uV OFFSET-MAX, 13 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

AD746JR

Dual Precision, 500 ns Settling, BiFET Op Amp
ADI