AD7538JRZ-REEL1 [ADI]

LC2MOS Microprocessor-Compatible 14-Bit DAC; LC2MOS微处理器兼容14位DAC
AD7538JRZ-REEL1
型号: AD7538JRZ-REEL1
厂家: ADI    ADI
描述:

LC2MOS Microprocessor-Compatible 14-Bit DAC
LC2MOS微处理器兼容14位DAC

微处理器
文件: 总16页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LC2MOS  
Microprocessor-Compatible 14-Bit DAC  
AD7538  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
DD  
All grades 14-bit monotonic over the full temperature range  
Low cost, 14-bit upgrade for 12-bit systems  
14-bit parallel load with double buffered inputs  
Small 24-pin, 0.30” DIP and SOIC  
23  
AD7538  
2
3
R
I
FB  
14-BIT DAC  
1
V
REF  
OUT  
Low output leakage (<20 nA) over the full temperature range  
4
AGND  
LDAC  
APPLICATIONS  
20  
DAC REGISTER  
Microprocessor-based control systems  
Digital audio  
Precision servo control  
21  
22  
CS  
INPUT  
REGISTER  
WR  
14  
Control and measurement in high temperature environments  
5
24  
6
19  
V
DB13 TO DB0  
DGND  
SS  
Figure 1.  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD7538 is a 14-bit monolithic CMOS digital-to-analog  
converter (DAC) that uses laser trimmed thin-film resistors to  
achieve excellent linearity.  
1. Guaranteed Monotonicity.  
The AD7538 is guaranteed monotonic to 14-bits over the  
full temperature range for all grades.  
2. Low Cost.  
The DAC is loaded by a single 14-bit wide word using standard  
chip select and memory write logic. Double buffering, which is  
The AD7538, with its 14-bit dynamic range, affords a low  
cost solution for 12-bit system upgrades.  
3. Small Package Size.  
The AD7538 is packaged in a small 24-pin, 0.3" DIP and a  
24-pin SOIC.  
4. Low Output Leakage.  
By tying VSS (Pin 24) to a negative voltage, it is possible to  
achieve a low output leakage current at high temperatures.  
5. Wide Power Supply Tolerance.  
LDAC  
optional using  
, allows simultaneous updates in a system  
containing multiple AD7538s.  
A novel low leakage configuration enables the AD7538 to  
exhibit excellent output leakage current characteristics over  
the specified temperature range.  
The AD7538 is manufactured using the linear-compatible  
CMOS (LC2MOS) process. It is speed compatible with most  
microprocessors and accepts TTL or CMOS logic level inputs.  
The device operates on a +12 V to +15 V VDD, with a 5ꢀ  
tolerance on this nominal figure. All specifications are  
guaranteed over this range.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
 
AD7538  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Equivalent Circuit Analysis ...................................................... 10  
Digital Section ............................................................................ 10  
Unipolar Binary Operation (2-Quadrant Multiplication).... 10  
Bipolar Operation (4-Quadrant Multiplication).................... 11  
Low Leakage Configuration...................................................... 11  
Programmable Gain Amplifier................................................. 12  
Application Hints ........................................................................... 13  
Output Offset.............................................................................. 13  
General Ground Management.................................................. 13  
Microprocessor Interfacing....................................................... 13  
AD7538-to-8086 Interface........................................................ 13  
AD7538-to-MC68000 Interface ............................................... 13  
Digital Feedthrough................................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Performance Characteristics................................................ 4  
Timing Characteristics ................................................................ 4  
Timing Diagram ........................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Terminology ...................................................................................... 8  
DAC Section...................................................................................... 9  
Circuit Information........................................................................ 10  
REVISION HISTORY  
1/09—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Table 1............................................................................ 3  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 15  
5/87—Rev. 0 to Rev. A  
Rev. B | Page 2 of 16  
 
AD7538  
SPECIFICATIONS  
VDD = 11.4 V to 15.75 V1, VREF = 10 V; VPIN3 = VPIN4 = 0 V, VSS = −300 mV; all specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
A, J  
Versions  
B, K  
Versions  
Parameter2  
ACCURACY  
S Version  
T Version  
Unit  
Test Conditions/Comments  
Resolution  
Relative Accuracy  
14  
±2  
14  
±1  
14  
±2  
14  
±1  
Bits  
LSB max  
All grades guaranteed  
monotonic  
Differential Nonlinearity  
Full-Scale Error  
+25°C  
TMIN to TMAX  
Gain Temperature Coefficient3;  
ΔGain/ΔTemperature  
±1  
±1  
±1  
±1  
LSB max  
Over temperature  
Measured using internal RFB DAC  
Registers loaded with all 1s  
±4  
±±  
±2  
±4  
±5  
±2  
±4  
±1ꢀ  
±2  
±4  
±6  
±2  
LSB max  
LSB max  
ppm/°C typ  
Output Leakage Current  
IOUT (Pin 3)  
25°C  
TMIN to TMAX  
TMIN to TMAX  
±5  
±1ꢀ  
±25  
±5  
±1ꢀ  
±25  
±5  
±2ꢀ  
±15ꢀ  
±5  
±2ꢀ  
±15ꢀ  
nA max  
nA max  
nA max  
All digital inputs ꢀ V  
VSS = –3ꢀꢀ mV  
VSS = ꢀ V  
REFERENCE INPUT  
Input Resistance (Pin 1)  
3.5  
1ꢀ  
3.5  
1ꢀ  
3.5  
1ꢀ  
3.5  
1ꢀ  
kΩ min  
kΩ max  
Typical input resistance = 6 kΩ  
DIGITAL INPUTS  
VIH (Input High Voltage)  
VIL (Input Low Voltage)  
IIN (Input Current)  
25°C  
2.4  
ꢀ.±  
2.4  
ꢀ.±  
2.4  
ꢀ.±  
2.4  
ꢀ.±  
V min  
V max  
±1  
±1ꢀ  
7
±1  
±1ꢀ  
7
±1  
±1ꢀ  
7
±1  
±1ꢀ  
7
μA max  
μA max  
pF max  
VIN = ꢀ V or VDD  
TMIN to TMAX  
CIN (Input Capacitance)3  
POWER SUPPLY  
VDD Range  
11.4/15.75 11.4/15.75 11.4/15.75  
−2ꢀꢀ/−5ꢀꢀ −2ꢀꢀ/−5ꢀꢀ −2ꢀꢀ/−5ꢀꢀ  
11.4/15.75  
V min/V max Specification guaranteed over  
this range  
VSS Range  
IDD  
−2ꢀꢀ/−5ꢀꢀ mV min/  
mV max  
4
Specification guaranteed over  
this range  
All digital inputs are VIL or VIH  
All digital inputs are ꢀ V or VDD  
4
5ꢀꢀ  
4
5ꢀꢀ  
4
5ꢀꢀ  
mA max  
μA max  
5ꢀꢀ  
1 Specifications are guaranteed for a VDD of 11.4 V to 15.75 V. At VDD = 5 V, the device is fully functional with degraded specifications.  
2 Temperature range as follows: J, K Versions: ꢀ°C to +7ꢀ°C  
A, B Versions: −25°C to +±5°C  
S, T Versions: −55°C to +125°C  
3 Sample tested to ensure compliance.  
Rev. B | Page 3 of 16  
 
AD7538  
AC PERFORMANCE CHARACTERISTICS  
These characteristics are included for design guidance only and are not subject to test. VDD = 11.4 V to 15.75 V, VREF = 10 V, VPIN3 = VPIN4  
0 V, VSS = 0 V or −300 mV, output amplifier is AD711 except where noted.  
=
Table 2.  
TA = 25°C  
TA = TMIN, TMAX  
Parameter  
Unit  
Test Conditions/Comments  
Output Current Settling Time  
1.5  
μs max  
To ꢀ.ꢀꢀ3% of full-scale range  
IOUT load= 1ꢀꢀ Ω, CEXT = 13 pF DAC register alternately loaded  
with all 1s and all ꢀs; typical value of settling time is ꢀ.± μs  
Digital-to-Analog Glitch Impulse  
Multiplying Feedthrough Error  
2ꢀ  
nV-sec typ  
mV p-p typ  
Measured with VREF = ꢀ V. IOUT load = 1ꢀꢀ Ω, CEXT = 13 pF; DAC  
register alternately loaded with all 1s and all ꢀs  
VREF = ±1ꢀ V, 1ꢀ kHz sine wave DAC  
Register loaded with all ꢀs  
3
5
Power Supply Rejection  
ΔGain/ΔVDD  
±ꢀ.ꢀ1  
±ꢀ.ꢀ2  
% per % max  
ΔVDD = ±5%  
Output Capacitance  
COUT (Pin 3)  
COUT (Pin 3)  
26ꢀ  
13ꢀ  
26ꢀ  
13ꢀ  
pF max  
pF max  
DAC register loaded with all 1s  
DAC register loaded with all ꢀs  
Output Noise Voltage Density  
(1ꢀ Hz to 1ꢀꢀ kHz)  
15  
nV√Hz typ  
Measured between RFB and IOUT  
TIMING CHARACTERISTICS  
VDD = 11.4 V to 15.75 V, VREF = 10 V, VPIN3 = VPIN4 = 0 V, VSS = 0 V or −300 mV. All specifications TMIN to TMAX unless otherwise noted. See  
Figure 2 for a timing diagram.  
Table 3.  
Limit at  
TA = +25°C  
Limit at TA = 0°C to +70°C  
TA = −25°C to +85°C  
Limit at  
TA = −55°C to +125°C  
Parameter1  
Unit  
Test Conditions/Comments  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
CS to WR setup time  
CS to WR hold time  
LDAC pulse width  
Write pulse width  
Data setup time  
t1  
t2  
t3  
t4  
t5  
t6  
17ꢀ  
17ꢀ  
14ꢀ  
2ꢀ  
2ꢀꢀ  
2ꢀꢀ  
16ꢀ  
2ꢀ  
24ꢀ  
24ꢀ  
1±ꢀ  
3ꢀ  
Data hold time  
1 Temperature range as follows: J, K Versions: ꢀ°C to +7ꢀ°C  
A, B Versions: −25°C to +±5°C  
S, T Versions: −55°C to +125°C  
Rev. B | Page 4 of 16  
 
 
AD7538  
TIMING DIAGRAM  
t1  
t2  
5V  
0V  
CS  
LDAC  
WR  
t3  
5V  
0V  
t4  
5V  
0V  
t6  
t5  
5V  
0V  
DATA  
NOTES  
1. ALL INPUT SIGNAL RISE AND FALL TIMES MEASURES FROM 10%  
TO 90% OF 5V, tR  
= tF = 20ns.  
V
+ V  
2
IH  
IL  
2. TIMING MEASUREMENT REFERENCE LEVEL IS  
.
3. IF LDAC IS ACTIVATED PRIOR TO THE RISING EDGE OF WR,  
THEN IT MUST STAY LOW FOR t3 OR LONGER AFTER WR GOES HIGH.  
Figure 2. Timing Diagram  
Rev. B | Page 5 of 16  
 
 
AD7538  
ABSOLUTE MAXIMUM RATINGS  
TA = +25°C unless, otherwise stated.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Rating  
VDD (Pin 23) to DGND  
VSS (Pin 24) to AGND  
VREF (Pin 1) to AGND  
VRFB (Pin 2) to AGND  
Digital Input Voltage (Pins 6 to 22)  
to DGND  
−ꢀ.3 V, +17 V  
−15 V, +ꢀ.3 V  
±25 V  
±25 V  
ESD CAUTION  
−ꢀ.3 V, VDD +ꢀ.3 V  
−ꢀ.3 V, VDD +ꢀ.3 V  
−ꢀ.3 V, VDD +ꢀ.3 V  
VPIN3 to DGND  
AGND to DGND  
Power Dissipation (Any Package)  
To 75°C  
1ꢀꢀꢀ mW  
1ꢀ mW/°C  
Derates Above 75°C  
Operating Temperature Range  
Commercial (J, K Versions)  
Industrial (A, B Versions)  
Extended (S, T Versions)  
Storage Temperature  
Lead Temperature (Soldering, 1ꢀ sec)  
ꢀ°C to +7ꢀ°C  
−25°C to +±5°C  
−55°C to +125°C  
−65°C to +15ꢀ°C  
3ꢀꢀ°C  
Rev. B | Page 6 of 16  
 
 
AD7538  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
9
24  
23  
V
V
REF  
SS  
DD  
R
FB  
I
22 WR  
OUT  
AGND  
21 CS  
AD7538  
TOP VIEW  
(Not to Scale)  
DGND  
(MSB) DB13  
DB12  
20 LDAC  
19 DB0 (LSB)  
18 DB1  
17 DB2  
16 DB3  
15 DB4  
14 DB5  
13 DB6  
DB11  
DB10  
DB9 10  
DB8 11  
DB7 12  
Figure 3. Pin Configuration  
Table 5. Pin Function Description  
Pin No. Mnemonic Description  
Voltage Reference.  
1
2
3
4
5
VREF  
RFB  
IOUT  
AGND  
DGND  
Feedback Resistor. Used to close the loop around an external op amp.  
Current Output Terminal.  
Analog Ground  
Digital Ground.  
6 to 19 DB13 to DBꢀ  
Data Inputs. Bit DB13 (MSB) to Bit DBꢀ (LSB).  
Chip Select Input. Active low.  
2ꢀ  
21  
22  
LDAC  
CS  
Asynchronous Load DAC Input. Active low.  
WR  
Write Input. Active low.  
CS  
LDAC  
WR  
Operation  
1
1
1
1
1
Load input register.  
X1  
Load DAC register from input register.  
Input and DAC registers are transparent.  
No operation.  
X1  
1
X1  
No operation.  
23  
24  
VDD  
VSS  
+12 V to +15 V Supply Input.  
Bias pin for high temperature low leakage configuration. To implement low leakage system, the pin should be  
at a negative voltage. See Figure 6 and Figure ± for recommended circuitry.  
1 X = don’t care.  
Rev. B | Page 7 of 16  
 
AD7538  
TERMINOLOGY  
Digital-To-Analog Glitch Impulse  
Relative Accuracy  
The amount of charge injected from the digital inputs to the  
analog output when the inputs change state is called digital-to-  
analog glitch impulse. This is normally specified as the area of  
the glitch in either pA-secs or nV-secs depending upon whether  
the glitch is measured as a current or voltage. It is measured  
with VREF = AGND.  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting for zero error and full-scale error and is normally  
expressed in least significant bits or as a percentage of full-  
scale reading.  
Output Capacitance  
This is the capacitance from IOUT to AGND.  
Differential Nonlinearity  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
over the operating temperature range ensures monotonicity.  
Output Leakage Current  
Output leakage current is current which appears at IOUT with the  
DAC register loaded to all 0s.  
Gain Error  
Multiplying Feedthrough Error  
Gain error is a measure of the output error between an ideal  
DAC and the actual device output. It is measured with all 1s  
in the DAC after the offset error has been adjusted out and is  
expressed in least significant bits. Gain error is adjustable to  
zero with an external potentiometer.  
This is the ac error due to capacitive feedthrough from the VREF  
terminal to IOUT with the DAC register loaded to all zeros.  
Rev. B | Page ± of 16  
 
AD7538  
DAC SECTION  
Figure 4 shows a simplified circuit diagram for the AD7538  
DAC section. The three MSBs of the 14-bit data word are  
decoded to drive the seven switches (A to G). The 11 LSBs  
of the data word consist of an R-2R ladder operated in a  
current steering configuration.  
Switch A to Switch G steer equally weighted currents between  
I
OUT and AGND.  
Because the input resistance at VREF is constant, it may be driven  
by a voltage source or a current source of positive or negative  
polarity.  
The R-2R ladder current is ⅛ of the total reference input  
current. ⅞ current flows in the parallel ladder structure.  
R
R
R
V
REF  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
R/4  
R
FB  
G
F
E
D
C
B
A
S10  
S9  
S0  
I
OUT  
AGND  
Figure 4. Simplified Circuit Diagram for the AD7538 DAC Section  
Rev. B | Page 9 of 16  
 
 
AD7538  
CIRCUIT INFORMATION  
R1  
20  
V
DD  
R2  
10Ω  
EQUIVALENT CIRCUIT ANALYSIS  
V
IN  
Figure 5 shows an equivalent circuit for the analog section  
of the AD7538 DAC. The current source ILEAKAGE is composed  
of surface and junction leakages. The RO resistor denotes the  
equivalent output resistance of the DAC, which varies with  
input code. COUT is the capacitance due to the current steering  
switches and varies from about 90 pF to 180 pF (typical values)  
depending upon the digital input. g(VREF, N) is the Thevenin  
equivalent voltage generator due to the reference input voltage,  
1
23  
2
C1  
33pF  
V
V
R
FB  
REF  
DD  
20  
21  
22  
LDAC  
LDAC  
I
3
OUT  
AD7538  
CS  
CS  
A1  
AD711  
4
AGND  
V
WR  
WR  
O
V
DB13 TO DB0 DGND  
SS  
24  
C2  
4.7µF  
5
6
19  
ANALOG  
GND  
+
VREF, and the transfer function of the DAC ladder, N.  
R3  
1kΩ  
DIGITAL  
GND  
INPUT DATA  
R/4  
R4  
47kΩ  
R
FB  
R
O
–15V  
I
OUT  
Figure 6. Unipolar Binary Operation  
I
C
OUT  
g (V  
REF  
, N)  
LEAKAGE  
AGND  
Table 6. Unipolar Binary Code Table  
Figure 5. AD7538 Equivalent Analog Output Circuit  
Binary Number In  
DAC Register  
DIGITAL SECTION  
MSB  
LSB  
Analog Output, VOUT  
The digital inputs are designed to be both TTL and 5 V CMOS  
compatible. All logic inputs are static protected MOS gates with  
typical input currents of less than 1 nA. To minimize power supply  
currents, it is recommended that the digital input voltages be  
driven as close as possible to 0 V and 5 V logic levels.  
11 1111 1111 1111  
10 0000 0000 0000  
00 0000 0000 0001  
00 0000 0000 0000  
VIN(16,383/16,384)  
VIN(8192/16,384) = −½VIN  
VIN(1/16,384)  
0 V  
UNIPOLAR BINARY OPERATION (2-QUADRANT  
MULTIPLICATION)  
For zero offset adjustment, the DAC register is loaded with  
all 0s and amplifier offset (VOS) adjusted so that VOUT is 0 V.  
Adjusting VOUT to 0 V is not necessary in many applications,  
but it is recommended that VOS be no greater than (25 × 10−6)  
(VREF) to maintain specified DAC accuracy (see the Application  
Hints section).  
Figure 6 shows the circuit diagram for unipolar binary  
operation. With an ac input, the circuit performs 2-quadrant  
multiplication. The code table for Figure 6 is given in Table 6.  
Capacitor C1 provides phase compensation and helps prevent  
overshoot and ringing when high-speed op amps are used.  
Full-scale trimming is accomplished by loading the DAC  
register with all 1s and adjusting R1 so that VOUTA = −VIN  
(16,383/16,384). For high temperature operation, resistors  
and potentiometers should have a low temperature coefficient.  
In many applications, because of the excellent gain TC and  
gain error specifications of the AD7538, gain error trimming is  
not necessary. In fixed reference applications, full scale can also  
be adjusted by omitting R1 and R2 and trimming the reference  
voltage magnitude.  
Rev. B | Page 10 of 16  
 
 
 
 
 
 
AD7538  
BIPOLAR OPERATION (4-QUADRANT  
MULTIPLICATION)  
Table 7. Bipolar Code Table for the Offset Binary Circuit  
of Figure 8  
The recommended circuit diagram for bipolar operation is  
shown in Figure 8. Offset binary coding is used. The code table  
for Figure 8 is given in Table 7.  
Binary Number In  
DAC Register  
MSB  
LSB  
Analog Output VOUT  
+VIN(8191/8192)  
+VIN(1/8192)  
0 V  
−VIN(1/8192)  
VIN(8191/8192)  
11 1111 1111 1111  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
00 0000 0000 0000  
With the DAC loaded to 10 0000 0000 0000, adjust R1 for VO =  
0 V. Alternatively, one can omit R1 and R2 and adjust the ratio  
of R5 and R6 for VO = 0 V. Full-scale trimming can be accom-  
plished by adjusting the amplitude of VIN or by varying the  
value of R7.  
The values given for R1, R2 are the minimum necessary to  
calibrate the system for Resistors R5, R6, R7 ratio matched to  
0.1%. System linearity error is independent of resistor ratio  
matching and is affected by DAC linearity error only.  
V
= 15V  
= 10V  
DD  
60  
50  
40  
30  
20  
10  
0
V
REF  
When operating over a wide temperature range, it is important  
that the resistors be of the same type so that their temperature  
coefficients match.  
V
= 0V  
SS  
LOW LEAKAGE CONFIGURATION  
V
= –0.3V  
SS  
For CMOS multiplying DAC, as the device is operated at higher  
temperatures, the output leakage current increases. For a 14-bit  
resolution system, this can be a significant source of error. The  
AD7538 features a leakage reduction configuration to keep the  
leakage current low over an extended temperature range. One  
may operate the device with or without this configuration. If VSS  
(Pin 24) is tied to AGND then the DAC exhibits normal output  
leakage currents at high temperatures. To use the low leakage  
facility, VSS should be tied to a voltage of approximately −0.3 V  
as in Figure 6 and Figure 8. A simple resistor divider (R3, R4)  
produces approximately −300 mV from −15 V. The C2  
capacitor in parallel with R3 is an integral part of the low  
leakage configuration and must be 4.7 μF or greater. Figure 7  
is a plot of leakage current vs. temperature for both conditions.  
It clearly shows the improvement gained by using the low  
leakage configuration.  
30 40 50 60 70 80 90 100 110 120  
TEMPERATURE (°C)  
Figure 7. Graph of Typical Leakage Current vs. Temperature for AD7538  
V
IN  
V
R2  
22  
DD  
R6  
20kΩ  
R1  
50Ω  
1
23  
2
C1  
33pF  
R7  
20kΩ  
V
V
R
FB  
REF  
DD  
20  
21  
22  
LDAC  
LDAC  
R5  
10kΩ  
I
3
OUT  
AD7538  
CS  
CS  
A1  
4
AGND  
A2  
AD711  
WR  
WR  
AD711  
V
O
R8  
5k, 10%  
V
DB13 TO DB0 DGND  
SS  
24  
C2  
4.7µF  
5
6
19  
+
R3  
1kΩ  
ANALOG  
GND  
DIGITAL  
GND  
INPUT DATA  
R4  
47kΩ  
–15V  
Figure 8. Bipolar Operation  
Rev. B | Page 11 of 16  
 
 
 
 
AD7538  
Substituting this expression into Equation 1 and assuming  
zero gain error for the DAC (RIN = RFB), the transfer function  
simplifies to  
PROGRAMMABLE GAIN AMPLIFIER  
The circuit shown in Figure 9 provides a programmable gain  
amplifier (PGA). In it the DAC behaves as a programmable  
resistance and thus allows the circuit gain to be digitally  
controlled.  
2n  
N
VOUT  
VIN  
= −  
(3)  
DIGITAL  
INPUT  
The ratio N/2n is commonly represented by the term, D, and, as  
such, is the fractional representation of the digital input word.  
N
V
DD  
2n 1  
I
OUT  
VOUT  
VIN  
= −  
=
(4)  
AD7538  
N
D
GND  
V
REF  
A
Equation 4 indicates that the gain of the circuit can be varied  
from 16,384 down to unity (actually 16,384/16,383) in 16,383  
steps. The all 0s code is never applied. This avoids an open-loop  
condition thereby saturating the amplifier. With the all 0s code  
excluded there remains (2n – 1) possible input codes allowing a  
choice of (2n – 1) output levels. In decibels the dynamic range is  
V
DD  
R
FB  
V
IN  
V
OUT  
A
V
SS  
NOTES  
1. RESISTOR R IS ACTUALLY  
INCLUDED ON THE DICE.  
FB  
Figure 9. Programmable Gain Amplifier (PGA)  
VOUT  
VIN  
20 log10  
= 20 log10  
(
2n 1  
= 84 dB  
)
The transfer function of Figure 9 is:  
REQ  
RFB  
VOUT  
VIN  
Gain =  
= −  
(1)  
(2)  
R
V
EQ is the equivalent transfer impedance of the DAC from the  
REF pin to the IOUT pin and can be expressed as  
2n RIN  
REQ  
where:  
=
N
n is the resolution of the DAC.  
N is the DAC input code in decimal.  
RIN is the constant input impedance of the DAC (RIN = RLAD).  
Rev. B | Page 12 of 16  
 
 
AD7538  
APPLICATION HINTS  
In a multiple DAC system, the double buffering of the AD7538  
allows the user to simultaneously update all DACs. In Figure 11,  
a 14-bit word is loaded to the input registers of each of the DACs  
in sequence. Then, with one instruction to the appropriate  
OUTPUT OFFSET  
CMOS DACs in circuits such as Figure 6 and Figure 8 exhibit  
a code dependent output resistance, which in turn can cause a  
code dependent error voltage at the output of the amplifier.  
The maximum amplitude of this error, which adds to the DAC  
nonlinearity, depends on VOS, where VOS is the amplifier input  
offset voltage. To maintain specified accuracy with VREF at 10 V,  
it is recommended that VOS be no greater than 0.25 mV, or (25 ×  
10−6) (VREF), over the temperature range of operation. The AD711 is  
a suitable op amp. The op amp has a wide bandwidth and high  
slew rate and is recommended for ac and other applications  
requiring fast settling.  
LDAC  
address, CS4 (that is,  
DACs simultaneously.  
) is brought low, updating all the  
ADDRESS BUS  
16-BIT  
LATCH  
ADDRESS  
DECODE  
CS1  
ALE  
CS  
AD75381  
CS4 CS3 CS2  
8096  
LDAC  
WR  
WR  
DB0 TO DB13  
AD0 TO AD15  
DATA BUS  
GENERAL GROUND MANAGEMENT  
Because the AD7538 is specified for high accuracy, it is impor-  
tant to use a proper grounding technique. AC or transient  
voltages between AGND and DGND can cause noise injection  
into the analog output. The simplest method of ensuring that  
voltages at AGND and DGND are equal is to tie AGND and  
DGND together at the AD7538. In more complex systems  
where the AGND and DGND intertie on the backplane, it is  
recommended that two diodes be connected in inverse  
parallel between the AD7538 AGND and DGND pins  
(1N914 or equivalent).  
CS  
AD75381  
LDAC  
WR  
DB0 TO DB13  
CS  
AD75381  
MICROPROCESSOR INTERFACING  
LDAC  
WR  
The AD7538 is designed for easy interfacing to 16-bit micro-  
processors and can be treated as a memory mapped peripheral.  
This reduces the amount of external logic needed for interfacing  
to a minimal.  
DB0 TO DB13  
1
LINEAR CIRCUITRY OMITTED FOR CLARITY.  
Figure 11. AD7538-to-8086 Interface: Multiple DAC System  
AD7538-TO-8086 INTERFACE  
AD7538-TO-MC68000 INTERFACE  
Figure 10 shows the 8086 processor interface to a single device.  
LDAC  
In this setup, the double buffering feature (using  
) of the  
Figure 12 shows the MC68000 processor interface to a single  
device. In this setup, the double buffering feature of the DAC  
is not used and the appropriate data is written into the DAC in  
one MOVE instruction.  
DAC is not used. The 14-bit word is written to the DAC in one  
MOVE instruction and the analog output responds  
immediately.  
ADDRESS BUS  
A1 TO A23  
MC68000  
AS  
ADDRESS BUS  
16-BIT  
LATCH  
ADDRESS  
DECODE  
ALE  
CS  
ADDRESS  
DECODE  
CS  
LDAC  
8096  
AD75381  
WR  
LDAC  
DTACK  
AD75381  
WR  
AD13  
AD0  
WR  
R/W  
DB0 TO DB13  
AD0 TO AD15  
DATA BUS  
DB0 TO DB13  
D0 TO D15  
DATA BUS  
1
LINEAR CIRCUITRY OMITTED FOR CLARITY.  
Figure 10. AD7538-to-8086 Interface Circuit  
1
LINEAR CIRCUITRY OMITTED FOR CLARITY.  
Figure 12. AD7538-to-MC68000 Interface  
Rev. B | Page 13 of 16  
 
 
 
 
 
 
 
 
 
 
AD7538  
DIGITAL FEEDTHROUGH  
ADDRESS  
DECODE  
A0 TO A15  
MICRO-  
PROCESSOR  
SYSTEM  
AD75381  
The digital inputs to the AD7538 are directly connected to the  
microprocessor bus in the preceding interface configurations.  
These inputs are constantly changing even when the device is  
not selected. The high frequency logic activity on the bus can  
feed through the DAC package capacitance to show up as noise  
on the analog output. To minimize this digital feedthrough  
isolate the DAC from the noise source. Figure 13 shows an  
interface circuit, which uses this technique. All data inputs are  
CS  
LDAC  
WR  
EN  
WR  
16-BIT  
LATCH  
DB0 TO DB13  
D0 TO D15  
1
LINEAR CIRCUITRY OMITTED FOR CLARITY.  
Figure 13. AD7538 Interface Circuit Using Latches to Minimize Digital  
Feedthrough  
CS  
latched from the bus by the  
signal. One may also use other  
means, such as peripheral interface devices, to reduce the digital  
feedthrough.  
Rev. B | Page 14 of 16  
 
 
AD7538  
OUTLINE DIMENSIONS  
1.280 (32.51)  
1.250 (31.75)  
1.230 (31.24)  
24  
1
13  
12  
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 14. 24-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-24-1)  
Dimensions shown in inches and (millimeters)  
0.098 (2.49)  
MAX  
0.005 (0.13)  
MIN  
0.310 (7.87)  
0.220 (5.59)  
24  
13  
12  
1
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.320 (8.13)  
0.200 (5.08)  
1.280 (32.51) MAX  
MAX  
0.290 (7.37)  
0.150 (3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
15°  
0°  
0.200 (5.08)  
0.125 (3.18)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 15. 24-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-24-1)  
Dimensions shown in inches and (millimeters)  
Rev. B | Page 15 of 16  
 
AD7538  
15.60 (0.6142)  
15.20 (0.5984)  
24  
1
13  
12  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
BSC  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AD  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 16. 24-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-24)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
AD753±JN  
Temperature Range  
ꢀ°C to +7ꢀ°C  
Relative Accuracy  
±2 LSB  
±2 LSB  
±1 LSB  
±1 LSB  
±2 LSB  
±2 LSB  
±2 LSB  
±2 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±2 LSB  
±1 LSB  
±2 LSB  
±1 LSB  
Full-Scale Error  
±± LSB  
±± LSB  
±5 LSB  
±5 LSB  
±± LSB  
±± LSB  
±± LSB  
±± LSB  
±5 LSB  
±5 LSB  
±5 LSB  
±5 LSB  
±± LSB  
±5 LSB  
±1ꢀ LSB  
±6 LSB  
Package Description  
24-Lead PDIP  
24-Lead PDIP  
24-Lead PDIP  
24-Lead PDIP  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead CERDIP  
24-Lead CERDIP  
24-Lead CERDIP  
24-Lead CERDIP  
Package Option  
N-24-1  
N-24-1  
N-24-1  
N-24-1  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
Q-24-1  
Q-24-1  
Q-24-1  
Q-24-1  
AD753±JNZ1  
ꢀ°C to +7ꢀ°C  
AD753±KN  
ꢀ°C to +7ꢀ°C  
AD753±KNZ1  
AD753±JR  
ꢀ°C to +7ꢀ°C  
ꢀ°C to +7ꢀ°C  
AD753±JR-REEL  
AD753±JRZ1  
AD753±JRZ-REEL1  
AD753±KR  
ꢀ°C to +7ꢀ°C  
ꢀ°C to +7ꢀ°C  
ꢀ°C to +7ꢀ°C  
ꢀ°C to +7ꢀ°C  
AD753±KR-REEL  
AD753±KRZ1  
AD753±KRZ-REEL1  
AD753±AQ  
AD753±BQ  
AD753±SQ  
ꢀ°C to +7ꢀ°C  
ꢀ°C to +7ꢀ°C  
ꢀ°C to +7ꢀ°C  
−25°C to +±5°C  
−25°C to +±5°C  
−55°C to +125°C  
−55°C to +125°C  
AD753±TQ  
1 Z = RoHS Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D01139-0-1/09(B)  
Rev. B | Page 16 of 16  
 

相关型号:

AD7538JRZ1

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538KN

LC2MOS uP-Compatible 14-Bit DAC
ADI

AD7538KNZ

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538KNZ1

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538KR

LC2MOS uP-Compatible 14-Bit DAC
ADI

AD7538KR-REEL

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538KRZ

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538KRZ-REEL

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538KRZ-REEL1

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538KRZ1

LC2MOS Microprocessor-Compatible 14-Bit DAC
ADI

AD7538SQ

LC2MOS uP-Compatible 14-Bit DAC
ADI

AD7538TQ

LC2MOS uP-Compatible 14-Bit DAC
ADI