AD7709 [ADI]

16-Bit Sigma Delta ADC with Current Sources, Switchable Reference Inputs and I/O Port; 16位Σ-Δ型ADC,电流源,可切换基准电压输入和I / O端口
AD7709
型号: AD7709
厂家: ADI    ADI
描述:

16-Bit Sigma Delta ADC with Current Sources, Switchable Reference Inputs and I/O Port
16位Σ-Δ型ADC,电流源,可切换基准电压输入和I / O端口

文件: 总17页 (文件大小:249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY TECHNICAL DATA  
16-Bit Sigma Delta ADC with Current Sources,  
a
Preliminary Technical Data  
SwitchableReferenceInputsandI/OPort  
AD7709  
FEATURES  
G E NE R AL D E S C R IP T IO N  
16-BIT SINGLE CHANNEL SIGMA DELTA-ADC  
Factory Calibrated (field calibration not required)  
Output settles in one conversion cycle (single conver  
sion m ode)  
Program m able Gain Front End  
16-bit No Missing Codes  
13-bit Pk-Pk Resolution @ 20Hz, 20m V Range  
16-bit Pk-PK Resolution @ 20Hz, 2.56V Range  
INTERFACE  
T he AD7709 is a complete analog front-end for low  
frequency measurement applications. T he AD7709  
contains a 16-bit sigma delta ADC with PGA and can be  
configured as 2 fully-differential input channels or 4  
pseudo-differential input channels. Inputs signal ranges  
from 20mV to 2.56V can be directly converted using the  
AD7709. T hese signals can be converted directly from a  
transducer without the need for signal conditioning. Other  
on-chip features include three software configurable  
current sources, switchable reference inputs, low side  
power switches and a 4-bit digital I/O port.  
Three-Wire Serial  
SPITM, QSPITM, MICROWIRETM and DSP Com patible  
Schm itt Trigger on SCLK  
T he device operates from a 32kHz crystal with an on-  
board PLL generating the required internal operating  
frequency. T he output data rate from the part is software  
programmable. T he pk-pk resolution from the part varies  
with the programmed gain and output data rate.  
POWER  
Specified for Single 3V and 5V operation  
Norm al : 2m A @ 3V  
Pow erdow n : 20uA (32kHz Crystal Running)  
On-Chip Functions  
T he part operates from a single +3V or +5V supply.  
When operating from +3V supplies, the power dissipation  
for the part is XmW. T he AD7709 are housed in a 24-  
pin SOIC and T SSOP packages.  
Rail-to-Rail Input Buffer and PGA  
Sw itchable Reference Inputs  
3 Configurable Current Sources  
Low Side Pow er Sw tches  
Digital I/ O Port  
APPLICATIONS  
Industrial Process Control  
Instrum entation  
FUNC TIO NAL BLO C K D IAGRAM  
REFIN2(+) REFIN1(+)  
REFIN2(-) REFIN1(-)  
XTAL1 XTAL2  
VDD  
Pressure Transducers  
Portable Instrum entation  
OSC  
&
.
I2  
I3  
I1  
PLL  
IOUT 1  
IOUT 2  
DOUT  
DIN  
SERIAL  
INTERFACE  
&
CONTROL  
LOGIC  
AIN1  
AIN2  
16-BIT  
Σ−∆ ADC  
BUF  
PGA  
SCLK  
CS  
MUX  
AIN3 / P3  
AIN4 / P4  
RDY  
RESET  
AINCOM  
AD7709  
VDD  
I/O PORT  
GND  
PWRGND  
SW1/P1 SW2/P2  
®
SPIand QSPI are a Registered Trademark of Motorola Inc.  
REV. PrA January 2001  
® MICROWIRE is a Registered Trademark of National Semiconductor Corp.  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
World Wide Web Site: http:/ / w w w.analog.com  
Analog Devices, Inc., 2001  
Fax: 781/ 326-8703  
PRELIMINARY TECHNICAL DATA  
(V = +3V or +5.0V , REFIN(+) = +2.5V; REFIN(-) = 0V;  
XTAL1/XTAL2 = 32 kHz Crystal;  
All specifications TMIN to TMAX unless otherwise noted.)  
1
DD  
AD7709-SPECIFICATIONS  
P ARAME TE R  
B Gr ade  
Units  
Test Conditions  
Output Update Rate  
5.4  
105  
H z min.  
H z max.  
0.021H z (0.732msec.) increments  
N o M issing Codes  
Resolution  
16  
13  
16  
bits min.  
bits pk-pk  
bits pk-pk  
+20mV range, 20H z Update Rate  
+2.56V range, 20H z Update Rate  
Output Noise and Update Rates  
Integral Nonlinearity  
See T ables Below in ADC Description  
15  
ppm of FSR max.  
Offset Error  
T BD  
10  
T BD  
T BD  
1
Offset Error Drift Vs T emp  
Offset Error Drift Vs T ime  
Gain Error  
Gain Error Drift Vs T emp  
Gain Error Drift Vs T ime  
Power Supply Rejection(PSR)  
nV/°C typ.  
nV/1000 H ours typ.  
ppm/°C typ.  
ppm/1000 H ours typ.  
T BD  
90  
dB min.  
dB min.  
Input Range = ±20mV  
Input Range = ±2.56V  
90  
C ommon M ode Rejection(C M R)  
On AIN  
90  
90  
90  
90  
dB min.  
dB min.  
dB min.  
dB min.  
At DC, Range = ±20mV  
At DC, Range = ±2.56V  
At DC, Range = ±20mV  
At DC, Range = ±2.56V  
On AIN  
On REFIN  
On REFIN  
Analog Input Current  
DC Bias Current  
DC Bias Current Drift  
DC Offset Current  
DC Offset Current Drift  
1
nA max.  
nA typ.  
nA typ.  
nA typ.  
T BD  
T BD  
T BD  
REF EREN C E IN PU T S (REF IN 1& REF IN 2)  
Normal Mode  
50Hz/60Hz Rejection  
60  
T BD  
+ 2.5V  
+ 1  
VDD  
dB min.  
µA typ.  
nom .  
V min.  
V max.  
V min.  
V max.  
Reference DC Input Current  
REFIN(+) to REFIN(-) Voltage  
REFIN(+) to REFIN(-) Range  
REFIN referes to both REFIN1 and REFIN2  
REFIN Common Mode Range  
G N D -30m V  
V
D D +30mV  
REFIN Common Mode  
50/60Hz Rejection  
T BD  
dB min.  
ANALO G INP UTS  
Normal Mode 50H z/60H z Rejection  
Common Mode 50/60Hz Rejection  
60  
90  
90  
dB min.  
dB min.  
dB min.  
50/60Hz ±1Hz , 20Hz Update Rate  
50/60Hz ±1Hz, Range = ±20mV  
50/60Hz ±1Hz, Range = ±2.5V  
Differential Input Voltage Ranges  
± REF IN /G AIN  
V nom.  
REFIN refers to both REFIN1 and  
REF IN 2.  
REF IN = REF IN (+ )-REF IN (-)  
GAIN =1to 128.  
Pseudo-Differential Input Voltage Ranges  
0V to REFIN /GAIN V nom.  
Full-scale Range Matching  
Absolute Ain Voltage Limits  
Buffered Inputs  
5
uV typ.  
G N D + 50m V  
DD -50mV  
G N D -30m V  
D D +30mV  
V min.  
V max  
Vm in  
V
Unbuffered Inputs  
V
Vm ax  
REV. PrA J anuary 2001  
–2–  
PRELIMINARY TECHNICAL DATA  
AD7709  
P ARAMETER  
B Grade  
Units  
Test Conditions  
LO G IC IN PU T S  
All Inputs Except SCLK and XT AL1  
VINL, Input Low Voltage  
VINL, Input Low Voltage  
VINH, Input High Voltage  
0.8  
0.4  
2.0  
V max.  
V max.  
V min.  
VDD = 5V  
VDD = 3V  
VDD = 3V or 5V  
SCLK Only (Schmitt T riggered Input)  
VT (+)  
VT (-)  
1.4/3  
V min/V max VDD = 5V  
V min/V max VDD = 5V  
V min/V max VDD = 5V  
V min/V max VDD = 3V  
V min/V max VDD = 3V  
V min/V max VDD = 3V  
0.8/1.4  
0.4/0.85  
0.95/2.5  
0.4/1.1  
0.4/0.85  
VT (+)- VT (-)  
VT (+)  
VT (-)  
VT (+)-VT (-)  
XT AL1 Only  
V
V
V
V
INL, Input Low Voltage  
0.8  
3.5  
0.4  
2.5  
± 10  
10  
V max.  
V min.  
V max.  
V min.  
µA max.  
pF typ.  
VDD = 5V  
VDD = 5V  
VDD = 3V  
VDD = 3V  
VIN = 0V or VDD  
All Digital Inputs  
INH, Input High Voltage  
INL, Input Low Voltage  
INH, Input High Voltage  
Input Currents  
Input Capacitance  
LOG IC OU T PU T S (Excluding XT AL2)  
V
V
V
V
OH , Output High Voltage  
OL, Output Low Voltage  
OH , Output High Voltage  
OL, Output Low Voltage  
VDD- 0.6  
0.4  
4
0.4  
± 10  
± 10  
Binary  
Offset Binary  
V min.  
V max.  
V min.  
V max.  
uA max.  
pF typ.  
VDD = 3V, ISOURCE = 100µA  
VDD = 3V, ISINK = 100µA  
VDD = 5V, ISOURCE = 200µA  
VDD = 5V, ISINK = 1.6mA  
Floating State Leakage Current  
Floating State Output Capacitance  
Data Output Coding  
U nipolar M ode  
Bipolar M ode  
EXC IT AT IO N C U RREN T SO U RC ES  
I1 and I2 Output Current  
I3 Output Current  
200  
25  
± 10  
20  
± 1  
1
T BD  
T BD  
AVDD -0.5  
µA nom.  
µA nom.  
% typ.  
ppm/°C typ.  
%
ppm/°C typ.  
nA/V max.  
nA/V max.  
V max.  
Initial T olerance at 25°C  
D rift  
Initial Current Matching at 25°C  
D rift M atching  
Matching between I1 and I2  
VDD = 5V±10%  
Line Regulation (VDD  
Load Regulation  
)
Output C ompliance  
Low-Side Power Switches (SW1 and SW2)  
Ron  
5
7
20  
typ  
typ  
mA max  
VDD = 5V  
VDD = 3V  
Per Switch  
Allowable Current  
SYST EM C ALIBRAT IO N  
Full-Scale C alibration Limit  
Zero-Scale C alibration Limit  
Input Span  
1.05 X FS  
-1.05 X FS  
0.8 X FS  
2.1 X FS  
V max.  
V min.  
V min.  
V max.  
ST ART UP T IM E  
From Power-On  
500  
1
1
msec typ.  
msec. typ.  
msec. typ.  
msec. typ.  
From Idle Mode  
From Power-D own M ode  
500  
Osc. powered down  
P O WER REQ U IREM EN T S  
P ower Supply Voltages  
VDD - GND  
2.7/3.6  
4.5/5.5  
V min/max  
V min/max  
VDD = 3V nom.  
VDD = 5V nom.  
REV. PrA January 2001  
–3–  
PRELIMINARY TECHNICAL DATA  
AD7709  
P ARAMETER  
B Grade  
Units  
Test Conditions  
P ower Supply Cur r ents  
VDD Current (Normal Mode)  
VDD Current (Normal Mode)  
T BD  
T BD  
m A  
m A  
VDD =3V  
VDD =5V  
VDD Current (Idle Mode)  
VDD Current (Idle Mode)  
T BD  
T BD  
m A  
m A  
VDD =3V  
VDD =5V  
VDD Current (Power-Down Mode)  
VDD Current (Power-Down Mode)  
20  
30  
µA max.  
µA max.  
VDD =3V, 32.768kH z Osc. Running  
VDD =5V, 32.768kH z Osc. Running  
NOTES  
1 TemperatureRange-40°C to+85°C  
2
3
4
REV. PrA J anuary 2001  
–4–  
PRELIMINARY TECHNICAL DATA  
AD7709  
AB SO LUT E M AXIM UM RAT ING S 1  
(T A = +25°C unless otherwise noted)  
O U T LINE D IM E NS IO NS  
24-lead plastic SO IC (R-24)  
VD D to GN D .............................................-0.3V to +7V  
Analog Input Voltage to GND...........-0.3V to VDD +0.3V  
Reference Input Voltage to GND.......-0.3V to VDD +0.3V  
AIN /REFIN C urrent (Indefinite)...........................30mA  
Digital Input Voltage to GND...........-0.3V to VDD +0.3V  
Digital Output Voltage to GND........-0.3V to VDD +0.3V  
PWRG N D to GN D ...............................-0.3V to +0.3V  
Operating T emperature Range..................-40°C to 85°C  
Storage T emperature Range....................-65°C to 150°C  
Junction T emperature........................................+ 150°C  
PAC KAG E Power D issipation........................T BD mW  
θJA T hermal Impedance..................................90°C /W  
Lead T emperature, Soldering  
0.6141 (15.60)  
0.5985 (15.20)  
24  
13  
1
12  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
x 45¡  
0.0098 (0.25)  
Vapor Phase (60sec)..................................+215°C  
Infrared (15 sec).......................................+220°C  
0.0500 (1.27)  
0.0157 (0.40)  
8¡  
0¡  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0138 (0.35)  
0.0091 (0.23)  
1 Stressesabove those listed under "Absolute Maximum Ratings"maycause permanent  
damage to the device. T hisisa stressratingonlyand functionaloperation ofthe device  
at these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods mayaffect device reliability.  
24-lead plastic TSSO P (RU-24)  
24-lead plastic  
T SSO P (RU- 24)  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7709 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
O R D E R ING G U ID E  
Model  
Tem perature  
Range  
P ackage  
Description  
P ackage D rawing  
Option  
AD 7709BR  
AD 7709BRU  
-40°C to +85°C  
-40°C to +85°C  
SO IC  
T SSO P  
R-24  
RU -24  
REV. PrA January 2001  
–5–  
PRELIMINARY TECHNICAL DATA  
AD7709  
1,2  
TIMINGCHARACTERISTICS (V = +3V±10%orV = +5V±10%;GND= 0V:X = 32.768kHz;InputLogic0= 0V,Logic1= V  
DD  
DD  
TAL  
DD  
unlessotherwisenoted)  
Lim it at TMIN, TMAX  
P ar am eter  
(B Version)  
Units  
Conditions/Com m ents  
t1  
t2  
32.768  
50  
kH z typ  
ns min  
Crystal Oscillator Frequency.  
RESET Pulse Width  
Read O per ation  
t3  
t4  
0
0
ns min  
ns min  
RDY to CS Setup T ime  
CS Falling Edge to SCLK Active Edge Setup  
T ime3  
4
t5  
0
ns min  
ns max  
ns max  
ns min  
ns max  
ns max  
ns min  
ns min  
ns min  
SCLK Active Edge to Data Valid Delay3  
VDD = +4.5 V to +5.5 V  
60  
80  
0
60  
80  
100  
100  
0
VDD = +2.7 V to +3.6 V  
4,5  
t5A  
CS Falling Edge to Data Valid Delay3  
VDD = +4.5 V to +5.5 V  
VDD = +2.7 V to +3.6 V  
SCLK H igh Pulse Width  
SCLK Low Pulse Width  
t6  
t7  
t8  
CS Rising Edge to SCLK Inactive Edge Hold  
T ime3  
6
t9  
10  
80  
100  
ns min  
ns max  
ns max  
Bus Relinquish T ime after SCLK Inactive Edge3  
7
t10  
SCLK Active Edge to RDY High3,  
Wr ite O per ation  
t11  
0
ns min  
CS Falling Edge to SCLK Active Edge Setup  
T ime3  
t12  
t13  
t14  
t15  
t16  
30  
25  
100  
100  
0
ns min  
ns min  
ns min  
ns min  
ns min  
Data Valid to SCLK Edge Setup T ime  
Data Valid to SCLK Edge Hold T ime  
SCLK H igh Pulse Width  
SCLK Low Pulse Width  
CS Rising Edge to SCLK Edge Hold T ime  
NOTES  
1 Sampletestedduringinitialreleasetoensurecompliance.Allinputsignalsarespecifiedwithtr= tf= 5ns(10%to90%ofVDD)andtimedfromavoltagelevelof1.6V.  
2 SeeFigures1and2.  
3 SCLKactiveedgeisfallingedgeofSCLK.  
4 ThesenumbersaremeasuredwiththeloadcircuitofFigure3anddefinedasthetimerequiredfortheoutputtocrosstheVOL orVOH limits.  
5 ThisspecificationonlycomesintoplayifCSgoeslowwhileSCLKislow.ItisrequiredprimarilyforinterfacingtoDSPmachines.  
6 Thesenumbersarederivedfromthemeasuredtimetakenbythedataoutputtochange0.5VwhenloadedwiththecircuitofFigure3.Themeasurednumberisthenextrapolatedbacktoremoveeffectsofchargingor  
dischargingthe50pFcapacitor.Thismeansthatthetimesquotedinthetimingcharacteristicsarethetruebusrelinquishtimesofthepartandassuchareindependentofexternalbusloadingcapacitances.  
7 RDYreturnshighafterthefirstreadfromthedeviceafteranoutputupdate.Thesamedatacanbereadagain,ifrequired,whileRDYishigh,althoughcareshouldbetakenthatsubsequentreadsdonotoccurcloseto  
thenextoutputupdate.  
REV. PrA J anuary 2001  
–6–  
PRELIMINARY TECHNICAL DATA  
AD7709  
CS  
t16  
t11  
t14  
SCLK  
t15  
t12  
t13  
MSB  
LSB  
DIN  
Figure1.WriteCycleTiming Diagram  
RDY  
t10  
t3  
CS  
t8  
t4  
t6  
SCLK  
t7  
t6  
t5  
t9  
t5A  
MSB  
LSB  
DOUT  
Figure2.ReadCycleTimingDiagram  
REV. PrA January 2001  
–7–  
PRELIMINARY TECHNICAL DATA  
AD7709  
PINCONFIGURATION  
XTAL1  
XTAL2  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
IOUT 1  
IOUT 2  
REFIN1(+)  
REFIN1(-)  
V
D D  
AD7709  
GND  
DIN  
AIN1  
AIN 2  
TOP VIEW  
(Not to Scale)  
19 DOUT  
18  
17  
16  
DRDY  
CS  
AIN3/P3  
AIN4/P4  
SCLK  
9
AINCOM  
10  
REFIN2(+)  
15  
RESET  
REFIN2(-)  
P2/SW2  
11  
12  
P1/SW1  
PWRGND  
14  
13  
P in Fu n c t io n De s c rip t io n  
Pin No  
Mnemonic  
Function  
1
IO U T 1  
Output for internal excitation current sources. A single current source or any  
combination of the internal current sources I1,I2 and I3 can be switched to this  
output.  
2
3
IO U T 2  
Output for internal excitation current sources. A single current source or any  
combination of the internal current sources I1,I2 and I3 can be switched to this  
output.  
Positive reference input. REFIN(+) can lie anywhere between VDD and GND.  
T he nominal reference voltage (REFIN(+)-REFIN(-)) is 2.5V but the part is  
REF IN 1(+ )  
functional with a reference range from 1V to VDD  
.
4
5
REF IN 1(-)  
AIN 1  
Negative reference input. T his reference input can lie anywhere between GND  
and VDD-1V.  
Analog Input Channel 1. Programmable-gain analog input which can be used  
as a pseudo-differential input when used with AINCOM or as the positive in-  
put of a fully-differential input pair when used with AIN2. (see Communica-  
tions Register section)  
6
7
8
AIN 2  
Analog Input Channel 2. Programmable-gain analog input which can be used  
as a pseudo-differential input when used with AINCOM or as the negative  
input of a fully-differential input pair when used with AIN1. (see Communica-  
tions Register section)  
AIN 3/P 3  
AIN 4/P 4  
Analog Input Channel 3 or Digital Port Bit. Programmable-gain analog input  
which can be used as a pseudo-differential input when used with AINCOM or  
as the positive input of a fully-differential input pair when used with AIN4.  
T he second function of this bit is as a general purpose digital input bit.  
Analog Input Channel 4 or digital port bit. Programmable-gain analog input  
which can be used as a pseudo-differential input when used with AINCOM or  
as the negative input of a fully-differential input pair when used with AIN3.  
T he second function of this bit is as a general purpose digital input bit.  
All analog inputs are referenced to this input when configured in pseudo-dif-  
ferential input mode.  
9
AI N C O M  
10  
REF IN 2(+ )  
Positive reference input. REFIN2(+) can lie anywhere between VDD and GND.  
T he nominal reference voltage (REFIN2(+)-REFIN2(-)) is 2.5V but the part  
is functional with a reference range from 1V to VDD  
.
REV. PrA J anuary 2001  
–8–  
PRELIMINARY TECHNICAL DATA  
AD7709  
11  
12  
13  
14  
15  
16  
REF IN 2(-)  
P 2/SW2  
P W R G N D  
P 1/SW1  
RESET  
Negative reference input. T his reference input can lie anywhere between GND  
and VDD-1V.  
P2 can act as a general purpose Input/Output bit referenced between VDD and  
GND or as a low-side power switch to PWRGND..  
Ground point for the low-side power switches SW2 and SW1. PWRGND  
must be tied to GND.  
P1 can act as a general purpose Output bit referenced between VDD and GND  
or as a low-side power switch to PWRGND.  
Digital input used to reset the ADC to its power-on-reset status. T his pin has  
a weak pull-up internally to DVDD  
.
SC L K  
Serial clock input for data transfers to and from the ADC. T he SCLK has a  
schmitt triggered input making the interface suitable for opto-isolated applica-  
tions. T he serial clock can be continuous with all data transmitted in a con-  
tinuous train of pulses. Alternatively, it can be noncontinuous clock with the  
information being transmitted to or from the AD7709 in smaller batches of  
data.  
17  
18  
CS  
Chip Select Input. T his is an active low logic input used to select the  
AD7709. CS can be used to select the AD7709 in systems with more than one  
device on the serial bus or as a frame synchronisation signal in communicating  
with the device. CS can be hardwired low allowing the AD7709 to be operated  
in three-wire mode with SCLK, DIN and DOUT used to interface with the  
device.  
RDY is a logic low status output from the AD7709. RDY is low if the ADC  
has valid data in its data register. T his output returns high on completion of a  
read operation from the data register. If data is not read, RDY will return high  
prior to the next update indicating to the user that a read operation should not  
be initiated.  
RDY  
19  
20  
D O U T  
D I N  
Serial data output with serial data being read from the output shift register of  
the ADC. T he output shift register can contain data from any of the on-chip  
data, calibration or control registers.  
Serial Data Input with serial data being written to the input shift register on  
the AD7709. Data in this shift register is transferred to the control registers  
within the ADC depending on the selection bits of the Communications regis-  
ter.  
21  
22  
23  
24  
G N D  
VDD  
XT AL2  
XT AL1  
Ground Reference point for the AD7709.  
Supply voltage, 3V or 5V nominal.  
Output from the 32kH z crystal oscillator inverter.  
Input to the 32kHz crystal oscillator inverter.  
REV. PrA January 2001  
–9–  
PRELIMINARY TECHNICAL DATA  
AD7709  
AD C C IR C U IT INF O R M AT IO N  
O verview  
T he AD7709 incorporates an analog multiplexer with a Sigma-Delta ADC, on-chip programmable gain amplifier and  
digital filtering intended for the measurement of wide dynamic range, low frequency signals such as those in weigh-scale,  
strain-gauge, pressure transducer or temperature measurement applications. T he AD7709 offers 16-bit resolution. T he  
AD7709 can be configured as 2 fully differential input channels or as 4 pseudo differential input channels referenced to  
AINCOM. T he channel is buffered and can be programmed for one of 8 input ranges from +20mV to +2.56V. Buffering  
the input channel means that the part can handle significant source impedances on the analog input and that R, C  
filtering (for noise rejection or RFI reduction) can be placed on the analog inputs if required. T hese input channels are  
intended to convert signals directly from sensors without the need for external signal conditioning. Other functions  
contained on-chip that augment the operation of the ADC include software configurable current sources, switchable  
reference inputs and low side power switches.  
T he ADC employs a sigma-delta conversion technique to realize up to 16-bits of no missing codes performance. T he  
sigma-delta modulator converts the sampled input signal into a digital pulse train whose duty cycle contains the digital  
information. A Sinc3 programmable low pass filter is then employed to decimate the modulator output data stream to  
give a valid data conversion result at programmable output rates from 5.35Hz (186.77mS) to 105.03Hz (9.52mS). A  
Chopping scheme is also employed to minimize ADC channel offset errors. A block diagram of the ADC input channel  
is shown in Figure 3 below.  
fchop  
fin  
fmod  
fchop  
fadc  
Analog  
Input  
3
)
Digital  
Output  
1
---  
2
1
S-D  
MOD0  
(
3 ×(8  
× SF)  
×
SF  
8
3
Mux  
Buffer  
PGA  
XOR  
Sinc Filter  
A in + Vos  
Ain - Vos  
Figure3.AD7709 ADC ChannelBlockDiagram  
REV. PrA J anuary 2001  
–10–  
PRELIMINARY TECHNICAL DATA  
AD7709  
AD C NO ISE P E RF O RM ANC E  
T ables I and II below show the output rms noise and output peak-to-peak resolution in bits (rounded to the nearest  
0.5LSB) for some typical output update rates . T he numbers are typical and generated at a differential input voltage of  
0V. T he output update rate is selected via the SF7-SF0 bits in the Filter Register. It is important to note that the peak-  
to-peak resolution figures represent the resolution for which there will be no code flicker within a six-sigma limit.T he  
output noise comes from two sources. T he first is the electrical noise in the semiconductor devices (device noise) used in  
the implementation of the modulator. Secondly, when the analog input is converted into the digital domain, quantization  
noise is added. T he device noise is at a low level and is independant of frequency. T he quantization noise starts at an even  
lower level but rises rapidly with increasing frequency to become the dominant noise source.T he numbers in the tables are  
given for the bipolar input ranges. For the unipolar ranges the rms noise numbers will be the same as the bipolar range  
but the peak to peak resolution is now based on half the signal range which effectively means loosing 1 bit of resolution.  
Table I. Typical O utput RMS Noise vs. Input Range and Update Rate for AD 7709  
O utput RMS Noise in µV  
SF  
Wor d  
D ata Update  
Rate (H z)  
Input Range  
±20m V ±40m V ±80m V ±160m V ±320m V ±640m V ±1.24V  
±2.56V  
11.75  
2.30  
13  
105.3  
19.79  
5.35  
1.50  
0.60  
0.35  
1.50  
0.65  
0.35  
1.60  
0.65  
0.37  
1.75  
0.65  
0.37  
3.50  
0.65  
0.37  
4.50  
0.95  
0.51  
6.70  
1.40  
0.82  
69  
255  
1.25  
Table II. P eak-to-P eak Resolution vs. Input Range and Update Rate for AD 7709  
P eak-to-P eak Resolution in Bits  
SF  
Wor d  
D ata Update  
Rate (H z)  
Input Range  
±20m V ±40m V ±80m V ±160m V ±320m V ±640m V ±1.24V  
±2.56V  
16  
13  
105.3  
19.79  
5.35  
12  
13  
14  
13  
14  
15  
14  
15  
16  
15  
16  
16  
15  
16  
16  
15.5  
16  
16  
16  
16  
69  
16  
255  
16  
16  
AD 7709 O N- C H IP RE G IST E RS  
Both the AD7709 is controlled and configured via 4 on-chip registers as shown in figure 4 and described in more detail  
in the following section. In the following descriptions, SET implies a logic 1 state and CLEARED implies a logic 0 state  
unless otherwise stated.  
Com m unications Register  
DIN  
DIN  
OSC PD  
STBY  
0
0
A1  
A0  
W EN R/W  
DOUT  
DOUT  
Status Register  
REGISTER  
SELECT  
DECODER  
DIN  
DOUT  
Configuration Register(24-Bits)  
DIN  
DOUT  
DOUT  
Filter Register  
ADC Data Register  
Figure4.AD7709On-ChipRegisters  
REV. PrA January 2001  
–11–  
PRELIMINARY TECHNICAL DATA  
AD7709  
Com m unications Register - ( A1, A0= 0,0):  
T he Communications Register is an 8-bit write-only register. All communications to the part must start with a write  
operation to the Communications Register. T he data written to the Communications Register determines whether the  
next operation is a read or write operation, the type of read operation and to which register this operation takes place.  
For read or write operations, once the subsequent read or write operation to the selected register is complete, the inter-  
face returns to where it expects a write operation to the Communications Register. T his is the default state of the inter-  
face, and on power-up or after a RESET, the AD7709 is in this default state waiting for a write operation to the  
Communications Register. In situations where the interface sequence is lost, a write operation of at least 32 serial clock  
cycles with DIN high, returns the AD7709 to this default state by resetting the part. T able III outlines the bit designa-  
tions for the Communications Register. CR0 through CR7 indicate the bit location, CR denoting the bits are in the  
Communications Register. CR7 denotes the first bit of the data stream.  
CR7  
CR6  
CR5  
CR4  
CR3  
CR2  
CR1  
CR0  
WEN( 0)  
R/W(0)  
ST BY(0)  
O SCP D (0)  
0 (0)  
0(0)  
A1(0)  
A(0)  
Table III. Com m unications Register Bit D esignations  
Bit  
Bit  
Location Mnem onic Description  
C R7  
WEN  
Write Enable Bit. A 0 must be written to this bit so the write operation to the Communications  
Register actually takes place. If a 1 is written to this bit, the part will not clock on to subse-  
quent bits in the register. It will stay at this bit location until a 0 is written to this bit. Once a 0  
is written to the WEN bit, the next seven bits will be loaded to the Communications Register.  
C R6  
C R5  
C R4  
R /W  
A zero in this bit location indicates that the next operation will be a write to a specified regis-  
ter. A one in this position indicates that the next operation will be a read from the designated  
register.  
ST BY  
O SC P D  
Standby bit indication.  
Set when its required to put the AD7709 in low power mode.  
Clear to power up the AD7709.  
Oscillator Power D own Bit.  
If this bit is set, then placing the AD7709 in standby mode will stop the crystal oscillator reduc-  
ing the power drawn by these parts to a minimum. T he oscillator will require 500ms to begin  
oscillating when the ADC is taken out of standby mode.  
If this bit is clear ed the oscillator is not shut off when the ADC is put into standby mode and  
will not require the 500ms start-up time when the ADC is taken out of standby.  
C R3  
C R2  
0
0
T his bit must be programmed with a logic 0 for correct operation.  
T his bit must be programmed with a logic 0 for correct operation.  
C R1-C R0 A1-A0  
Register Address Bits. T hese address bits are used to address the AD7709’s registers and are  
outlined in table IV.  
Table IV. AD7709 Register Selection Table  
A1  
A0  
Register  
0
0
0
1
1
0
0
1
0
1
Communications register during a write operation.  
Status Register register during a read operation.  
C onfiguration Register  
Filter register  
ADC Data Register  
REV. PrA J anuary 2001  
–12–  
PRELIMINARY TECHNICAL DATA  
AD7709  
Status Register - (A1,A0=0,0; P ower -O n-Reset = 00H ex):  
T he ADC Status Register is an 8-bit read-only register. T o access the ADC Status Register, the user must write to the  
Communications Register selecting the next operation to be a read and load bits A1-A0 with 0,0. T able V outlines the  
bit designations for the Status Register. SR0 through SR7 indicate the bit location, SR denoting the bits are in  
the Status Register. SR7 denotes the first bit of the data stream. T he number in brackets indicates the power-on/reset  
default status of that bit.  
SR7  
SR6  
SR5  
SR4  
SR3  
SR2  
SR1  
SR0  
RD Y(0)  
0(0)  
0(0)  
0(0)  
ERR (0)  
0(0)  
ST BY(0)  
LO CK(0)  
Table V. Status Register Bit D esignations  
Bit  
Bit  
Location Mnem onic Description  
SR7  
RD Y  
Ready bit for the ADC  
Set when data is transferred to the ADC data register.  
T he RDY bit is clear ed automatically a period of time before the data register is updated with a  
new conversion result or after the ADC data register has been read.  
SR6  
SR5  
SR4  
SR3  
0
Bit is automatically clear ed. Reserved for future use  
T his bit is automatically clear ed. Reserved for future use  
T his bit is automatically clear ed. Reserved for future use  
0
0
E RR  
ADC Error Bit. T his qualifying bit is set at the same at the RDY bit.  
When Set it indicates that the result written to the ADC data register has been clamped to all  
zeros or all ones. Error sources include Overrange and loss of lock.  
T his bit is Clear ed at the same time as the RDY bit.  
SR2  
SR1  
0
T his bit is automatically clear ed. Reserved for future use  
ST BY  
Standby bit indication.  
When Set it indicates that the AD7709 is in low power mode.  
Clear ed when the ADC is powerd up.  
SR0  
L O C K  
PLL lock status bit.  
T his bit is SET if the PLL has locked onto the 32kHz crystal oscillator clock. T he ADC will  
not start conversion till this bit has been set. If the LOCK bit subsequently goes low the ERR  
bit will be set.  
Configur ation Register (CO NFIG) :(A1,A0 = 0,1; P ower -O n-Reset = 000000H ex)  
T he CONFIG Register is a 24-bit register from which data can either be read or to which data can be written. T his  
register is used to select the input channel and configure the input range, excitation current sources and I/O port.T able  
XIII outlines the bit designations for this register. CONFIG24 through CONFIG0 indicate the bit location, CONFIG  
denoting the bits are in the Configuration Register. CONFIG24 denotes the first bit of the data stream. T he number in  
brackets indicates the power-on/reset default status of that bit. A write to the CONFIG register has immediate effect and  
does not reset the the ADCs. T hus , if a current source is switched while the ADC is converting the user will have to wait  
for the fullsettling time of the sinc^3 filter before getting a fully settled output. T his equates to 4 outputs.  
REV. PrA January 2001  
–13–  
PRELIMINARY TECHNICAL DATA  
AD7709  
C O N F IG 2 3  
C O N F IG 2 2 C O N F IG 2 1 C O N F IG 2 0  
P SW2(0) I3EN1 (0) I3EN1(0)  
C O N F IG 1 9 C O N F IG 1 8 C O N F IG 1 7  
I2EN1(0) I2EN0(0) I1EN1(0)  
C O N F IG 1 6  
P SW1(0)  
I1EN0(0)  
C O N F IG 1 5  
C O N F IG 1 4 C O N F IG 1 3 C O N F IG 1 2  
P 3D IG(0) P 2E N(0) P 1E N(0)  
C O N F IG 1 1 C O N F IG 1 0 C O N F IG 9  
C O N F IG 8  
P 4D IG(0)  
P 4D AT(0)  
P 3D AT(0)  
P 2D AT(0)  
P 1D AT(0)  
C O N F I G 7  
C O N F I G 6 C O N F I G 5 C O N F I G 4  
C H 1(0) C H 0(0)  
C O N F I G 3 C O N F I G 2  
UNI(0) RN2(0)  
C O N F I G 1  
C O N F I G 0  
RE FSE L(0) C H 2(0)  
RN1(0)  
RN0(0)  
Table VI. Configur ation Register Bit D esignations  
Bit  
Location  
Bit  
Mnem onic  
Description  
C O N F IG 23 P SW 1  
Power Switch 1 Control bit.  
Set by user to enable Power switch P1 to PWRGND.  
Clear ed by user to enable use as a standard I/O pin.  
When ADC is in standby mode the power switches are open.  
C O N F IG 22 P SW 2  
Power Switch 2 Control bit.  
Set by user to enable Power switch P2 to PWRGND.  
Clear ed by user to enable use as a standard I/O pin.  
When ADC is in standby mode the power switches are open.  
C O N F IG 2 1 I3EN 1  
C O N F IG 2 0 I3EN 0  
Current Source Enable Bits. Used in conjunction with bit I3EN0 to determine the function  
of current source I3  
Current Source Enable Bits. Used in conjunction with bit I3EN1 to determine the function  
of current source I3  
I3EN1  
I3EN0  
Function  
0
0
1
1
0
1
0
1
Current Source OFF  
Current Source Routed to IOUT 1 pin.  
Current Source Routed to IOUT 2 pin.  
Current Source Routed to GND  
C O N F IG 1 9 I2EN 1  
C O N F IG 1 8 I2EN 0  
Current Source Enable Bits. Used in conjunction with bit I2EN0 to determine the function  
of current source I2  
Current Source Enable Bits. Used in conjunction with bit I2EN1 to determine the function  
of current source I2  
I2EN1  
I2EN0  
Function  
0
0
1
1
0
1
0
1
Current Source OFF  
Current Source Routed to IOUT 1 pin.  
Current Source Routed to IOUT 2 pin.  
Current Source Routed to GND  
C O N F IG 1 7 I1EN 1  
C O N F IG 1 6 I1EN 0  
Current Source Enable Bits. Used in conjunction with bit I1EN0 to determine the function  
of current source I3  
Current Source Enable Bits. Used in conjunction with bit I1EN1 to determine the function  
of current source I3  
I1EN1  
I1EN0  
Function  
0
0
1
1
0
1
0
1
Current Source OFF  
Current Source Routed to IOUT 1 pin.  
Current Source Routed to IOUT 2 pin.  
Current Source Routed to GND  
C O N F IG 1 5 P 4D IG  
D igital Input Enable  
Set by user to enable P4 as a digital input  
Clear ed by user to configure as pin P4/AIN4 as analog input.  
REV. PrA J anuary 2001  
–14–  
PRELIMINARY TECHNICAL DATA  
AD7709  
C O N F IG 1 4 P 3D IG  
C O N F IG 1 3 P 2E N  
C O N F IG 1 2 P 1E N  
D igital Input Enable  
Set by user to enable P3 as a digital input  
Clear ed by user to configure as pin P3/AIN3 as analog input. T he default configuration is  
analog input.  
P2 digital output enable bit.  
Set by user to enable P2 as a regular digital output pin.  
Clear ed by user to tristate P2 output.  
PSW2 takes presedance over P2EN.  
P1 digital output enable bit.  
Set by user to enable P1 as a regular digital output pin.  
Clear ed by user to tristate P1 output.  
PSW1 takes presedance over P1EN.  
C O N F IG 1 1 P 4D AT  
C O N F IG 1 0 P 3D AT  
Digital input port data bit. P4DAT is read only and will return a 0 if P4DIG=0. If P4 is  
enabled as a digital input then the read back value indicates the status of pin P4.  
Digital input port data bit. P3DAT is read only and will return a 0 if P3DIG=0. If P3 is  
enabled as a digital input then the read back value indicates the status of pin P3.  
C O N F I G 9  
C O N F I G 8  
C O N F I G 7  
P 2D AT  
P 1D AT  
R E F SE L  
Digital output port data bit. P2 is digital output only. When the port is active as an output  
(P2EN=1), then the value written to the this data bit appears at the output port. Reading  
P2DAT will return what was last written to the P2DAT bit on the AD7709.  
Digital output port data bit. P1 is digital output only. When the port is active as an output  
(P1EN=1), then the value written to the this data bit appears at the output port. Reading  
P1DAT will return what was last written to the P1DAT bit on the AD7709.  
ADC reference input select.  
Clear ed by user to select REFIN1(+) and REFIN1(-) as the ADC reference.  
Set by user to select REFIN2(+) and REFIN2(-) as the ADC reference.  
C O N F I G 6  
C O N F I G 5  
C O N F I G 4  
C H 2  
C H 1  
C H 0  
ADC Input Channel Selection bit. Used in conjunction with CH1 and CH0 as shown in  
the analog input selection table.  
ADC Input Channel Selection bit. Used in conjunction with CH2 and CH0 as shown in  
the analog input selection table.  
ADC Input Channel Selection bit. Used in conjunction with CH2 and CH2 as shown in  
the analog input selection table.  
CH 2  
CH 1  
CH 0  
P ositive Input  
AIN 1  
AIN 2  
AIN 3  
AIN 4  
AIN 1  
AIN 3  
AI N C O M  
Negative Input  
AI N C O M  
AI N C O M  
AI N C O M  
AI N C O M  
AIN 2  
Buffer  
Positive Analog Input  
Positive Analog Input  
Positive Analog Input  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Positive Analog Input  
Positive and Negative Analog Inputs  
Positive and Negative Analog Inputs  
Positive and Negative Analog Inputs  
AIN 4  
AI N C O M  
T he final column indicates if the analog inputs are buffered or unbuffered. T his determines the common mode  
input range on each input. If the input is unbuffered (AINCOM) the common mode input includes GND.  
C O N F I G 3  
U N I  
Unipolar/Bipolar Operation Selection Bit.  
Set by user to enable unipolar operation with straight binary output coding i.e. zero differ-  
ential input will result in 0000hex output and a fullscale differential input will result in  
FFFF H ex output.  
Clear ed by user to enable pseudo bipolar operation and offset binary coding, negative  
fullscale differential input will result in an output code of 0000 Hex, zero differential in-  
put will result in an output code of 8000Hex and a positive fullscale differential input will  
result in an output code of FFFF Hex.  
REV. PrA January 2001  
–15–  
PRELIMINARY TECHNICAL DATA  
AD7709  
C O N F I G 2  
C O N F I G 1  
C O N F I G 0  
RN 2  
RN 1  
RN 0  
Used in conjunction with RN1 and RN0 to select the analog input range.  
Used in conjunction with RN2 and RN0 to select the analog input range.  
Used in conjunction with RN2 and RN1 to select the analog input range.  
RN2  
RN1  
RN0  
Selected Main AD C Input Range (Vr ef=2.5V)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
± 20m V  
± 40m V  
± 80m V  
± 160m V  
± 320m V  
± 640m V  
± 1.28V  
± 2.56V  
Filter Register :(A1,A0=1,0; P ower -O n-Reset = 00H ex)  
T he Filter Register is an 8-bit register from which data can either be read or to which data can be written. T his register  
determines the amount of averaging performed by the sinc filter. T able VII outlines the bit designations for the Filter  
Register. FR7 through FR0 indicate the bit location, FR denoting the bits are in the Filter Register. FR7 denotes the  
first bit of the data stream. T he number in brackets indicates the power-on/reset default status of that bit. T he number in  
this register is used to set the decimation factor and thus the output update rate for the ADCs. T he filter register cannot  
be written to by the user while the ADC is active. T he update rate is used for the ADC is calculated as follows :  
fadc  
=
1
3
1
fmod  
X
X
8.SF  
Wher e :  
fadc =  
fmod =  
SF =  
ADC Output Update Rate  
Modulator Clock Frequency= 32.768KH z (Main and Aux ADC)  
Decimal Value written to SF Register  
F R7  
SF7(0)  
F R6  
F R5  
F R4  
F R3  
F R2  
F R1  
F R0  
SF6(1)  
SF5(0)  
SF4(0)  
SF3(0)  
SF2(1)  
SF1(0)  
SF0(1)  
Table VII. Filter Register Bit D esignations  
T he allowable range for SF is 13dec to 255dec. Examples of SF values and corresponding conversion rate (fadc) and time  
(tadc) are shown in table XII below. It should also be noted that both ADC input channels are chopped to minimise offset  
errors. T his means that the time for a single conversion or the time to the first conversion result is 2 X tadc  
.
SF (d ec)  
S F ( h e x)  
fadc (H z)  
105.3  
tadc (m s)  
9.52  
13  
0D  
45  
69  
19.79  
50.34  
255  
FF  
5.35  
186.77  
Table XII. Update Rate Vs SF Wor d.  
AD C D ata Result Register (D ATA):(A1,A0=1,1; P ower -O n-Reset = 000000H ex)  
T he conversion result for the selected ADC channel is stored in the ADC data register (DAT A). T his register is 16-bits  
wide. T his is a read only register. On completion of a read from this register the RDY bit in the status register is cleared.  
REV. PrA J anuary 2001  
–16–  
PRELIMINARY TECHNICAL DATA  
AD7709  
C O NF IG URING T H E AD 7709  
On the AD7709 there are only four user accessable registers and these are configured via the serial interface. Communica-  
tion with any of these registers is initiated by firstly writing to the Communications Register. T he AD7709 starts convert-  
ing after a power up without the requiring any register to be written to. T he defaults conditions are used and the AD7709  
operates at a 20Hz update rate offering 50 and 60Hz rejection.  
Figure 5 outlines a flow diagram of the sequence used to configure the registers on the AD7709 following a power-up.  
T he flowchart shows two methods of determining when its valid to read the data register. T he first method is hardware  
polling of the RDY pin and the second method involves software interrogation of bits in the status and mode registers. The  
flowchart details all the necessary programming steps required to initialize the ADC and read data from the selected ADC chan-  
nel following a power-on or reset.The steps can be broken down as follows:  
1. Configure and initialize the microcontroller or microprocessor serial port.  
2. Initialize the AD7709 by configuring the following registers:  
a)FILTER registers which determines the update rate. The AD7709 must be put into standby mode before writing to the  
filter register.  
b) CONFIGURATION register to select the input channel to be converted, its input range and reference. This register is  
also used to configure the internal current sources, power switches and I/O port.  
Both of these operations consist of a write to the communications register to specify the next operation as a write to a specified  
register. Data is then written to this register. When each sequence is complete the ADC defaults to waiting for another write to  
the communications register to specify the next operation.  
3) When configuration is complete the user needs to determine when its valid to read the data from the data register. T his  
is accomplished by either polling the RDY pin (hardware polling) or by interrogating the bits in the ST AT US register  
(software polling). Both are shown in the following flowchart.  
START  
SOFTWARE POLLING  
HARDWARE POLLING  
POWER-ON/RESET FOR AD7709  
POLL RDY PIN  
CONFIGURE & INITIALIZE  
C/ P SERIAL PORT  
␮ ␮  
WRITE TO COMMUNICATIONS REGISTER SETTING UP NEXT  
OPERATION TO BE A READ FROM THE STATUS REGISTER  
WRITE 40HEX TO COMMS REGISTER  
WRITE TO COMMUNICATIONS REGISTER SELECTING  
NEXT OPERATION TO BE A WRITE TO  
THE FILTER REGISTER (WRITE 22HEX TO COMMS REG)  
NO  
RDY  
LOW?  
READ STATUS REGISTER  
WRITE TO FILTER REGISTER TO CONFIGURE  
THE REQUIRED UPDATE RATE.  
NO  
WRITE TO COMMUNICATIONS REGISTER SETTING UP  
NEXT OPERATION TO BE A READ OF THE  
RDY=1  
DATA REGISTER (WRITE 43HEX TO COMMS REGISTER)  
YES  
WRITE TO COMMUNICATIONS REGISTER SETTING UP  
NEXT OPERATION TO BE A WRITE TO THE  
CONFIGURATION REGISTER (WRITE 01Hex TO COMMS REG)  
WRITE TO COMMUNICATIONS REGISTER SETTING UP  
NEXT OPERATION TO BE A READ OF THE DATA  
REGISTER. WRITE 43HEX TO COMMS REGISTER  
READ16-BIT DATA RESULT  
WRITE TO CONFIGURATION REGISTER TO SELECT INPUT  
CHANNEL, INPUT RANGE AND REFERENCE. CURRENT  
SOURCES AND I/O PORT CAN ALSO BE CONFIGURED  
READ16-BIT DATA RESULT  
YES  
ANOTHER  
READ?  
NO  
YES  
ANOTHER  
READ DATA FROM OUTPUT REGISTER  
READ?  
YES  
CHANNEL  
CHANGE  
NO  
HARDWARE  
POLLING  
NO  
SOFTWARE  
POLLING  
YES  
CHANNEL  
CHANGE  
NO  
END  
END  
Figure5.FlowchartforConfiguringandreadingfromAD7709  
REV. PrA January 2001  
–17–  

相关型号:

AD7709ARU

16-Bit-ADC with Switchable Current Sources
ADI

AD7709ARU-REEL

暂无描述
ADI

AD7709ARU-REEL7

暂无描述
ADI

AD7709ARUZ

16-Bit-ADC with Switchable Current Sources
ADI

AD7709ARUZ-REEL7

16-Bit Sigma Delta ADC with Current Sources, Switchable Reference Inputs and I/O Port
ADI

AD7709BR

16-Bit Sigma Delta ADC with Current Sources, Switchable Reference Inputs and I/O Port
ADI

AD7709BR-REEL7

IC 4-CH 16-BIT DELTA-SIGMA ADC, SERIAL ACCESS, PDSO20, PLASTIC, SOIC-24, Analog to Digital Converter
ADI

AD7709BRU

16-Bit Sigma Delta ADC with Current Sources, Switchable Reference Inputs and I/O Port
ADI

AD7709BRU-REEL

4-CH 16-BIT DELTA-SIGMA ADC, SERIAL ACCESS, PDSO24, PLASTIC, TSSOP-24
ADI

AD7709BRU-REEL7

16-Bit Sigma Delta ADC with Current Sources, Switchable Reference Inputs and I/O Port
ADI

AD7709BRUZ

16-Bit Sigma Delta ADC with Current Sources, Switchable Reference Inputs and I/O Port
ADI

AD7709BRUZ-REEL

暂无描述
ADI