AD7771_17 [ADI]

8-Channel, 24-Bit, Simultaneous Sampling ADC;
AD7771_17
型号: AD7771_17
厂家: ADI    ADI
描述:

8-Channel, 24-Bit, Simultaneous Sampling ADC

文件: 总99页 (文件大小:1848K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Channel, 24-Bit,  
Simultaneous Sampling ADC  
AD7771  
Data Sheet  
voltage from 1 V up to 3.6 V. The analog inputs accept unipolar  
(0 V to VREF) or true bipolar ( VREF/2 V) analog input signals with  
3.3 V or 1.65 V analog supply voltages, respectively. The analog  
inputs can be configured to accept true differential or single-ended  
signals to match different sensor output configurations.  
FEATURES  
8-channel, 24-bit simultaneous sampling ADC  
Single-ended or true differential inputs  
PGA per channel (gains of 1, 2, 4, and 8)  
Low dc input current  
4 nA (differential)/ 8 nA (single-ended)  
Up to 128 kSPS ODR per channel  
Programmable ODRs and bandwidth  
SRC for coherent sampling  
Sampling rate resolution up to 15.2 × 10−6 SPS  
Low latency sinc3 and sinc5 filter paths  
Adjustable phase synchronization  
Internal 2.5 V reference  
Each channel contains an ADC modulator and a sinc3/sinc5, low  
latency digital filter. A sample rate converter (SRC) is provided to  
allow fine resolution control over the AD7771 output data rate  
(ODR). This control can be used in applications where the ODR  
resolution is required to maintain coherency with 0.01 Hz  
changes in the line frequency. The SRC is programmable through  
the serial port interface (SPI). The AD7771 implements two  
different interfaces: a data output interface and SPI control  
interface. The ADC data output interface is dedicated to trans-  
mitting the ADC conversion results from the AD7771 to the  
processor. The SPI writes to and reads from the AD7771  
configuration registers and for the control and reading of data  
from the successive approximation register (SAR) ADC. The SPI  
can also be configured to output the Σ-Δ conversion data.  
Two power modes  
High resolution mode  
Low power mode  
Optimizes power dissipation and performance  
Low resolution SAR ADC for system and chip diagnostics  
Power supply  
Bipolar ( 1.65 V) or unipolar (3.3 V) supplies  
Digital I/O supply: 1.8 V to 3.6 V  
Performance temperature range: −40°C to +105°C  
Functional temperature range: −40°C to +125°C  
Performance  
Combined ac and dc performance  
107 dB SNR/dynamic range at 32 kSPS in high resolution  
mode (sinc5)  
−109 dB THD  
8 ppm of FSR INL  
The AD7771 includes a 12-bit SAR ADC. This ADC can be used  
for AD7771 diagnostics without having to decommission one of  
the Σ-Δ ADC channels dedicated to system measurement func-  
tions. With the use of an external multiplexer, which can be  
controlled through the three general-purpose input/output pins  
(GPIOs), and signal conditioning, the SAR ADC can validate  
the Σ-Δ ADC measurements in applications where functional  
safety is required. In addition, the AD7771 SAR ADC includes  
an internal multiplexer to sense internal nodes.  
The AD7771 contains a 2.5 V reference and reference buffer. The  
reference has a typical temperature coefficient of 10 ppm/°C.  
15 µV offset error  
0.1% FS gain error  
10 ppm/°C typical temperature coefficient  
The AD7771 offers two modes of operation: high resolution  
mode and low power mode. High resolution mode provides a  
higher dynamic range while consuming 16.6 mW per channel;  
low power mode consumes only 5.25 mW per channel at a  
reduced dynamic range specification.  
APPLICATIONS  
Power quality and measurement applications  
General-purpose data acquisition  
Electroencephalography (EEG)  
Industrial process control  
The specified operating temperature range is −40°C to +105°C,  
although the device is operational up to +125°C.  
GENERAL DESCRIPTION  
The AD77711 is an 8-channel, simultaneous sampling analog-to-  
digital converter (ADC). Eight full Σ-Δ ADCs are on-chip. The  
AD7771 provides an ultralow input current to allow direct sensor  
connection. Each input channel has a programmable gain stage  
allowing gains of 1, 2, 4, and 8 to map lower amplitude sensor  
outputs into the full-scale ADC input range, maximizing the  
dynamic range of the signal chain. The AD7771 accepts a VREF  
Note that throughout this data sheet, certain terms are used to  
refer to either the multifunction pins or a range of pins. The  
multifunction pins, such as DCLK0/SDO, are referred to either  
by the entire pin name or by a single function of the pin, for  
example, DCLK0, when only that function is relevant. In the  
case of ranges of pins, AVSSx refers to the following pins:  
AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4.  
1 This product is protected by at least U.S. Patent No. 9.432,043.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
AD7771* PRODUCT PAGE QUICK LINKS  
Last Content Update: 07/28/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
TOOLS AND SIMULATIONS  
AD7770/AD7771/AD7779 Filter Model  
AD7771 CRC Calculator  
EVALUATION KITS  
AD7770 / AD7771 / AD7779 Evaluation Board  
AD7770/AD7771/AD7779 IBIS Model  
REFERENCE MATERIALS  
AD7771 Evaluation Board  
Press  
DOCUMENTATION  
Application Notes  
Analog Devices Improves Monitoring and Protection of  
Smart Grid Transmission and Distribution Equipment  
AN-1388: Coherent Sampling for Power Quality  
Measurements Using the AD7779 24-Bit Simultaneous  
Sampling Sigma-Delta ADC  
DESIGN RESOURCES  
AD7771 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
AN-1392: How to Calculate Offset Errors and Input  
Impedance in ADC Converters with Chopped Amplifiers  
AN-1393: Translating System Level Protection and  
Measurement Requirements to ADC Specifications  
AN-1405: Diagnostic Features on the AD7770 and AD7779  
DISCUSSIONS  
View all AD7771 EngineerZone Discussions.  
Data Sheet  
AD7771: 8-Channel, 24-Bit Simultaneous Sampling ADCs  
Data Sheet  
SAMPLE AND BUY  
User Guides  
Visit the product page to see pricing options.  
UG-884: Evaluating the AD7770, AD7771, and AD7779 8-  
Channel, 24-Bit, Simultaneous Sampling, Sigma-Delta  
ADCs with Power Scaling  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
SOFTWARE AND SYSTEMS REQUIREMENTS  
AD7770/AD7771/AD7779 - No-OS Driver  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD7771  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Σ-∆ Output Data............................................................................. 53  
ADC Conversion Output—Header and Data ........................ 53  
Sample Rate Converter (SRC) (SPI Control Mode) .............. 54  
Data Output Interface................................................................ 56  
Calculating the CRC Checksum .............................................. 60  
Register Summary .......................................................................... 61  
Register Details ............................................................................... 65  
Channel 0 Configuration Register ........................................... 65  
Channel 1 Configuration Register ........................................... 65  
Channel 2 Configuration Register ........................................... 66  
Channel 3 Configuration Register ........................................... 66  
Channel 4 Configuration Register ........................................... 67  
Channel 5 Configuration Register ........................................... 67  
Channel 6 Configuration Register........................................... 68  
Channel 7 Configuration Register ........................................... 68  
Disable Clocks to ADC Channel Register .............................. 69  
Channel 0 Sync Offset Register ................................................ 69  
Channel 1 Sync Offset Register ................................................ 69  
Channel 2 Sync Offset Register ................................................ 69  
Channel 3 Sync Offset Register ................................................ 70  
Channel 4 Sync Offset Register ................................................ 70  
Channel 5 Sync Offset Register ................................................ 70  
Channel 6 Sync Offset Register ................................................ 70  
Channel 7 Sync Offset Register ................................................ 70  
General User Configuration 1 Register................................... 71  
General User Configuration 2 Register................................... 72  
General User Configuration 3 Register................................... 73  
Data Output Format Register ................................................... 73  
Main ADC Meter and Reference Mux Control Register ...... 74  
Global Diagnostics Mux Register............................................. 75  
GPIO Configuration Register................................................... 75  
GPIO Data Register.................................................................... 76  
Buffer Configuration 1 Register............................................... 76  
Buffer Configuration 2 Register............................................... 76  
Channel 0 Offset Upper Byte Register..................................... 77  
Channel 0 Offset Middle Byte Register................................... 77  
Channel 0 Offset Lower Byte Register..................................... 77  
Channel 0 Gain Upper Byte Register....................................... 77  
Channel 0 Gain Middle Byte Register..................................... 77  
Channel 0 Gain Lower Byte Register....................................... 78  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 3  
Functional Block Diagram .............................................................. 4  
Specifications..................................................................................... 5  
DOUTx Timing Characterististics............................................. 9  
SPI Timing Characterististics ................................................... 10  
Synchronization Pins and Reset Timing Characteristics...... 11  
SAR ADC Timing Characterististics ....................................... 12  
GPIO SRC Update Timing Characterististics......................... 12  
Absolute Maximum Ratings.......................................................... 13  
Thermal Resistance .................................................................... 13  
ESD Caution................................................................................ 13  
Pin Configuration and Function Descriptions........................... 14  
Typical Performance Characteristics ........................................... 17  
Terminology .................................................................................... 32  
Theory of Operation ...................................................................... 34  
Analog Inputs.............................................................................. 34  
Transfer Function ....................................................................... 35  
Core Signal Chain....................................................................... 36  
Capacitive PGA........................................................................... 36  
Internal Reference and Reference Buffers............................... 36  
Integrated LDOs ......................................................................... 37  
Clocking and Sampling.............................................................. 37  
Digital Reset and Synchronization Pins .................................. 37  
Digital Filtering........................................................................... 38  
Shutdown Mode.......................................................................... 38  
Controlling the AD7771............................................................ 39  
Pin Control Mode....................................................................... 39  
SPI Control.................................................................................. 42  
Digital SPI.................................................................................... 44  
RMS Noise and Resolution............................................................ 47  
High Resolution Mode............................................................... 47  
Low Power Mode........................................................................ 48  
Diagnostics and Monitoring ......................................................... 49  
Self Diagnostics Error................................................................ 49  
Monitoring Using the AD7771 SAR ADC (SPI Control  
Mode)........................................................................................... 50  
Σ-Δ ADC Diagnostics (SPI Control Mode)............................ 52  
Rev. 0 | Page 2 of 98  
Data Sheet  
AD7771  
Channel 1 Offset Upper Byte Register .....................................78  
Channel 1 Offset Middle Byte Register....................................78  
Channel 1 Offset Lower Byte Register .....................................78  
Channel 1 Gain Upper Byte Register........................................78  
Channel 1 Gain Middle Byte Register......................................79  
Channel 1 Gain Lower Byte Register........................................79  
Channel 2 Offset Upper Byte Register .....................................79  
Channel 2 Offset Middle Byte Register....................................79  
Channel 2 Offset Lower Byte Register .....................................79  
Channel 2 Gain Upper Byte Register........................................80  
Channel 2 Gain Middle Byte Register......................................80  
Channel 2 Gain Lower Byte Register........................................80  
Channel 3 Offset Upper Byte Register .....................................80  
Channel 3 Offset Middle Byte Register....................................80  
Channel 3 Offset Lower Byte Register .....................................81  
Channel 3 Gain Upper Byte Register........................................81  
Channel 3 Gain Middle Byte Register......................................81  
Channel 3 Gain Lower Byte Register........................................81  
Channel 4 Offset Upper Byte Register .....................................81  
Channel 4 Offset Middle Byte Register....................................82  
Channel 4 Offset Lower Byte Register .....................................82  
Channel 4 Gain Upper Byte Register........................................82  
Channel 4 Gain Middle Byte Register......................................82  
Channel 4 Gain Lower Byte Register........................................82  
Channel 5 Offset Upper Byte Register .....................................83  
Channel 5 Offset Middle Byte Register....................................83  
Channel 5 Offset Lower Byte Register .....................................83  
Channel 5 Gain Upper Byte Register........................................83  
Channel 5 Gain Middle Byte Register......................................83  
Channel 5 Gain Lower Byte Register........................................84  
Channel 6 Offset Upper Byte Register .....................................84  
Channel 6 Offset Middle Byte Register....................................84  
Channel 6 Offset Lower Byte Register .....................................84  
Channel 6 Gain Upper Byte Register........................................84  
Channel 6 Gain Middle Byte Register......................................85  
Channel 6 Gain Lower Byte Register .......................................85  
Channel 7 Offset Upper Byte Register .....................................85  
Channel 7 Offset Middle Byte Register....................................85  
Channel 7 Offset Lower Byte Register .....................................85  
Channel 7 Gain Upper Byte Register .......................................86  
Channel 7 Gain Middle Byte Register......................................86  
Channel 7 Gain Lower Byte Register .......................................86  
Channel 0 Status Register ..........................................................86  
Channel 1 Status Register ..........................................................87  
Channel 2 Status Register ..........................................................87  
Channel 3 Status Register ..........................................................88  
Channel 4 Status Register ..........................................................88  
Channel 5 Status Register ..........................................................89  
Channel 6 Status Register ..........................................................89  
Channel 7 Status Register ..........................................................90  
Channel 0/Channel 1 DSP Errors Register..............................90  
Channel 2/Channel 3 DSP Errors Register..............................91  
Channel 4/Channel 5 DSP Errors Register..............................91  
Channel 6/Channel 7 DSP Errors Register..............................92  
Channel 0 to Channel 7 Error Register Enable Register .......92  
General Errors Register 1...........................................................93  
General Errors Register 1 Enable..............................................93  
General Errors Register 2...........................................................94  
General Errors Register 2 Enable..............................................94  
Error Status Register 1................................................................95  
Error Status Register 2................................................................95  
Error Status Register 3................................................................96  
Decimation Rate (N) MSB Register .........................................96  
Decimation Rate (N) LSB Register...........................................96  
Decimation Rate (IF) MSB Register.........................................96  
Decimation Rate (IF) LSB Register ..........................................97  
SRC Load Source and Load Update Register..........................97  
Outline Dimensions........................................................................98  
Ordering Guide ...........................................................................98  
REVISION HISTORY  
6/2017—Revision 0: Initial Version  
Rev. 0 | Page 3 of 98  
 
AD7771  
Data Sheet  
FUNCTIONAL BLOCK DIAGRAM  
AVDD1x REF_OUT  
REFx+ REFx–  
AVDD2x AREGxCAP  
IOVDD  
DREGCAP  
COMMON-  
XTAL1  
ANALOG  
LDO  
DIGITAL  
LDO  
MODE  
VCM  
XTAL2/MCLK  
SYNC_IN  
SYNC_OUT  
START  
VOLTAGE  
CLOCK  
MANAGER  
2.5V REF  
AIN0+  
AIN0–  
SINC3/  
GAIN  
OFFSET  
SINC5  
SRC  
PGA  
Σ-Δ ADC  
280mV p-p  
EXT_REF  
INT_REF  
DCLK  
FILTER  
DRDY  
DOUT3  
DOUT2  
DOUT1  
DOUT0  
DATA OUTPUT  
SINC3/  
SINC5  
SRC  
GAIN  
AIN1+  
AIN1–  
INTERFACE  
PGA  
PGA  
Σ-Δ ADC  
Σ-Δ ADC  
Σ-Δ ADC  
Σ-Δ ADC  
Σ-Δ ADC  
Σ-Δ ADC  
Σ-Δ ADC  
OFFSET  
FILTER  
REFERENCES  
REFERENCES  
REFERENCES  
REFERENCES  
REFERENCES  
REFERENCES  
REFERENCES  
SINC3/  
SINC5  
SRC  
REGISTER MAP  
AND  
LOGIC CONTROL  
AIN2+  
AIN2–  
GAIN  
OFFSET  
RESET  
FILTER  
FORMAT1  
SINC3/  
SINC5  
SRC  
AIN3+  
AIN3–  
GAIN  
OFFSET  
FORMAT0  
PGA  
PGA  
FILTER  
HARDWARE  
MODE  
CONFIGURATION  
MODE3/ALERT  
MODE2/GPIO2  
MODE1/GPIO1  
MODE0/GPIO0  
SINC3/  
SINC5  
SRC  
AIN4+  
AIN4–  
GAIN  
OFFSET  
FILTER  
SINC3/  
SINC5  
SRC  
AIN5+  
AIN5–  
GAIN  
OFFSET  
PGA  
PGA  
PGA  
ALERT/CS  
FILTER  
DCLK2/SCLK  
DCLK1/SDI  
DCLK0/SDO  
SPI INTERFACE  
SINC3/  
SINC5  
SRC  
AIN6+  
AIN6–  
GAIN  
OFFSET  
FILTER  
SINC3/  
SINC5  
SRC  
AIN7+  
AIN7–  
GAIN  
OFFSET  
FILTER  
AUXAIN+  
AUXAIN–  
AD7771  
SAR ADC  
DIAGNOSTIC  
INPUTS  
AVSSx  
AVDD4  
CONVST_SAR  
Figure 1.  
Rev. 0 | Page 4 of 98  
 
Data Sheet  
AD7771  
SPECIFICATIONS  
AVDD1x = 1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVS Sx = analog ground (AGND) (single-supply operation),  
AVDD2x − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V AVSSx (internal/external), master clock  
(MCLK) = 8192 kHz for high resolution mode and 4096 kHz for low power mode, ODR = 128 kSPS for high resolution mode and 32 kSPS  
for low power mode; all specifications at TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
VREF/PGAGAIN  
0 to VREF/PGAGAIN  
AVDD1x − 0.10  
Unit  
ANALOG INPUTS  
Differential Input Voltage Range  
Single-Ended Input Voltage Range  
AINx Common-Mode Input Range  
VREF = (REFx+ − REFx−)  
V
V
V
AVSSx + 0.10 (AVDD1x +  
AVSSx)/2  
Absolute AINx Voltage Limits  
DC Input Current  
AVSSx + 0.10  
AVDD1x − 0.10  
V
Differential  
High resolution mode  
Low power mode  
4
1
nA  
nA  
Single-Ended  
High resolution mode  
Low power mode  
8
2
nA  
nA  
Input Current Drift  
AC Input Capacitance  
50  
8
pA/°C  
pF  
PROGRAMMABLE GAIN AMPLIFIER (PGA)  
Gain Settings (PGAGAIN  
)
1, 2, 4, or 8  
Bandwidth  
Small Signal  
High resolution mode  
Low power mode  
2
512  
MHz  
kHz  
Large Signal  
High resolution mode  
Low power mode  
See Figure 39, Figure 40, and Figure 44  
See Figure 42, Figure 43, and Figure 47  
REFERENCE  
Internal  
Initial Accuracy  
Temperature Coefficient  
REF_OUT, TA = 25°C  
Line regulation  
2.495  
−10  
2.5  
10  
2.505  
38  
+10  
V
ppm/°C  
mA  
dB  
µV/mA  
µV rms  
nV/√Hz  
ms  
Reference Load Current, IL  
DC Power Supply Rejection  
Load Regulation, ∆VOUT/∆IL  
Voltage Noise, eN p-p  
Voltage Noise Density, eN  
Turn On Settling Time  
95  
100  
6.8  
273.5  
1.5  
0.1 Hz to 10 Hz  
1 kHz, 2.5 V reference  
100 nF  
External  
Input Voltage  
Buffer Headroom  
REFx− Input Voltage  
Average REFx Input Current  
VREF = (REFx+ − REFx−)  
Current per channel  
1
2.5  
AVDD1x  
AVDD1x − 0.1  
AVDD1x − REFx+  
V
V
V
AVSSx + 0.1  
AVSSx  
Reference buffer disabled,  
high resolution mode  
Reference buffer precharge mode  
(pre-Q), high resolution mode  
Reference buffer disabled,  
low power mode  
Reference buffer pre-Q,  
low power mode  
Reference buffer enabled,  
high resolution mode  
Reference buffer enabled,  
low power mode  
18  
µA/V  
nA/V  
µA/V  
nA/V  
nA/V  
nA/V  
600  
4.5  
100  
12  
5
Rev. 0 | Page 5 of 98  
 
AD7771  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Specified Performance  
Functional2  
TMIN to TMAX  
TMIN to TMAX  
−40  
−40  
+105  
+125  
°C  
°C  
TEMPERATURE SENSOR  
Accuracy  
2
°C  
DIGITAL FILTER RESPONSE  
Group Delay  
Settling Time  
See the SRC Group Delay section  
See the Settling Time section  
See the SRC Bandwidth section  
See the SRC Bandwidth section  
Pass Band  
−0.1 dB  
−3 dB  
Decimation Rate  
Sinc3  
Sinc5  
16  
16  
4095.99  
2048  
CLOCK SOURCE  
Frequency  
High resolution mode  
Low power mode  
0.655  
1.3  
45:55  
8.192  
4.096  
55:45  
MHz  
MHz  
%
Duty Cycle  
Σ-Δ ADC  
50:50  
Speed and Performance  
Resolution  
24  
Bits  
ODR  
High resolution mode  
Low power mode  
Sinc3, up to 24 kSPS  
Sinc5  
128  
32  
kSPS  
kSPS  
Bits  
No Missing Codes  
24  
24  
Bits  
AC Accuracy  
Dynamic Range  
128 kSPS  
32 kSPS  
16 kSPS  
4 kSPS  
32 kSPS  
Shorted inputs, PGAGAIN = 1  
High resolution mode (sinc5)  
High resolution mode (sinc5)  
High resolution mode (sinc3)  
High resolution mode (sinc3)  
Low power mode (sinc5)  
95  
107  
105.9  
116  
94.5  
106.5  
95.8  
111.8  
−109  
−105  
106  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
8 kSPS  
Low power mode (sinc5)  
8 kSPS  
Low power mode (sinc3)  
2 kSPS  
Low power mode (sinc3)  
Total Harmonic Distortion (THD)  
−0.5 dBFS, high resolution mode  
−0.5 dBFS, low power mode  
Signal-to-Noise-and-Distortion Ratio fIN = 60 Hz  
(SINAD)  
Spurious-Free Dynamic Range  
(SFDR)  
Intermodulation Distortion (IMD)  
High resolution mode, 16 kSPS,  
PGAGAIN = 1  
fA = 50 Hz, fB = 51 Hz,  
high resolution mode  
fA = 50 Hz, fB = 51 Hz,  
low power mode  
132  
dB  
dB  
dB  
−125  
−105  
−90  
DC Power Supply Rejection  
DC Common-Mode Rejection Ratio  
Crosstalk  
AVDD1x = 3.3 V  
dB  
dB  
dB  
80  
−120  
DC ACCURACY  
Integral Nonlinearity (INL)  
High Resolution  
Endpoint method  
PGAGAIN = 1  
8
4
15  
15  
ppm of  
FSR  
ppm of  
FSR  
Other PGA gains  
Rev. 0 | Page 6 of 98  
Data Sheet  
AD7771  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Low Power  
PGAGAIN = 1  
9
17  
ppm of  
FSR  
Other PGA gains  
Over time  
6
15  
90  
ppm of  
FSR  
µV  
µV/°C  
µV/1000  
hours  
Offset Error  
Offset Error Drift  
15  
0.25  
−2  
Offset Matching  
Gain Error  
Gain Error Drift vs. Temperature  
Gain Matching  
25  
0.1  
0.75  
0.1  
µV  
% FS  
ppm/°C  
%
PGAGAIN = 1  
SAR ADC  
Speed and Performance  
Resolution  
Analog Input Range  
Analog Input Common-Mode Range  
12  
Bits  
V
V
AVSS4 + 0.1  
AVSS4 + 0.1  
AVDD4 − 0.1  
AVDD4 − 0.1  
(AVDD4 +  
AVSS4)/2  
Analog Input Current  
100  
nA  
Throughput  
DC Accuracy  
INL  
Differential Nonlinearity (DNL)  
Offset  
Gain  
256  
1
kSPS  
Differential mode  
1.5  
LSB  
LSB  
LSB  
LSB  
No missing codes (12-bit)  
−0.99  
1
12  
AC Performance  
Signal-to-Noise Ratio (SNR)  
THD  
1 kHz  
1 kHz  
66  
−81  
dB  
dB  
VCM PIN  
Output (VCM)  
(AVDD1x +  
AVSSx)/2  
V
Load Current, IL  
Load Regulation, ∆VOUT/∆IL  
Short-Circuit Current  
LOGIC INPUTS  
Input Voltage  
High, VIH  
Low, VIL  
Hysteresis  
Input Currents  
LOGIC OUTPUTS3  
Output Voltage  
High, VOH  
1
12  
5
mA  
mV/mA  
mA  
0.7 × IOVDD  
−10  
V
V
V
µA  
0.4  
0.1  
+10  
IOVDD ≥ 3 V, ISOURCE = 1 mA  
2.3 V ≤ IOVDD < 3 V,  
ISOURCE = 500 µA  
0.8 × IOVDD  
0.8 × IOVDD  
V
V
IOVDD < 2.3 V, ISOURCE = 200 µA  
IOVDD ≥ 3 V, ISINK = 2 mA  
2.3 V ≤ IOVDD < 3 V, ISINK = 1 mA  
IOVDD < 2.3 V, ISINK = 100 µA  
Floating state  
0.8 × IOVDD  
V
V
V
V
µA  
pF  
Low, VOL  
0.4  
0.4  
0.4  
+10  
Leakage Current  
Output Capacitance  
−10  
Floating state  
10  
Σ-Δ ADC Data Output Coding  
SAR ADC Data Output Coding  
Twos complement  
Binary  
Rev. 0 | Page 7 of 98  
AD7771  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER SUPPLIES  
AVDD1x − AVSSx  
IAVDD1x  
All Σ-Δ channels enabled  
3.0  
3.6  
V
4, 5  
Reference buffer pre-Q, VCM  
enabled, internal reference  
enabled  
High resolution mode  
Low power mode  
18.3  
5
23.7  
6.4  
mA  
mA  
Reference buffer enabled, VCM  
enabled, internal reference  
enabled  
High resolution mode  
Low power mode  
20.5  
5.5  
26.7  
7.1  
mA  
mA  
Reference buffer disabled, VCM  
disabled, internal reference  
disabled  
High resolution mode  
Low power mode  
14.3  
3.9  
18.8  
5.1  
3.6  
10.65  
4
3.6  
2
10  
0
3.6  
17  
5.5  
14.2  
4.9  
mA  
mA  
V
mA  
mA  
V
mA  
µA  
V
AVDD2x − AVSSx  
IAVDD2x  
2.2  
3
High resolution mode  
Low power mode  
10.2  
3.8  
AVDD4 − AVSSx  
IAVDD4  
SAR enabled  
SAR disabled  
1.7  
1
AVSSx − DGND  
IOVDD − DGND  
IIOVDD  
−1.8  
1.8  
V
High resolution mode (sinc5)  
Low power mode (sinc5)  
High resolution mode (sinc3)  
Low power mode (sinc3)  
14.3  
4.6  
12.2  
2.2  
mA  
mA  
mA  
mA  
Power Dissipation6  
Internal buffers bypassed, internal  
reference disabled, internal  
oscillator disabled, SAR disabled  
High Resolution Mode  
Low Power Mode  
Power-Down  
128 kSPS  
32 kSPS  
All ADCs disabled  
133  
42  
530  
153  
48.5  
mW  
mW  
µW  
1 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVDD3, and AVSS4. This term is used throughout the data sheet.  
2 At temperatures higher than 105°C, the device can be operated normally, though slight degradation on the maximum/minimum specifications is expected because  
these specifications are only guaranteed up to 105°C. See the Typical Performance Characteristics section for plots showing the typical performance of the device at  
high temperatures.  
3 The SDO pin and the DOUTx pin are configured in the default mode of strength.  
4 AVDD1x = 3.3 V, AVSSx = GND = ground, IOVDD = 1.8 V, CMOS clock.  
5 Disabling either the VCM pin or the internal reference results in a 40 µA typical current consumption reduction.  
6 Power dissipation is calculated using the maximum supply voltage, 3.6 V.  
Rev. 0 | Page 8 of 98  
 
Data Sheet  
AD7771  
DOUTx TIMING CHARACTERISTISTICS  
AVDD1x = 1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND (single-supply operation), AVDD2 −  
AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V internal/external, MCLK = 8192 kHz; all  
specifications at TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Description2  
Test Conditions/Comments  
Min  
0.655  
60  
Typ  
Max  
Unit  
MHz  
ns  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
MCLK frequency  
MCLK low time  
MCLK high time  
DCLK high time  
DCLK low time  
MCLK falling edge to DCLK rising edge  
MCLK falling edge to DCLK falling edge  
50:50  
8.192  
60  
121  
121  
ns  
ns  
ns  
ns  
ns  
ns  
MCLK/2  
MCLK/2  
45  
45  
DRDY  
DRDY  
2
DCLK rising edge to  
DCLK rising edge to  
DOUTx setup time  
DOUTx hold time  
rising edge  
falling edge  
1
ns  
20  
20  
ns  
ns  
1 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet.  
2 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.  
t1  
t2  
t3  
MCLK  
DCLK  
t6  
t4  
t5  
t7  
t8  
t9  
DRDY  
DOUTx  
LSB  
MSB  
MSB – 1  
LSB + 1  
LSB  
t10  
t11  
Figure 2. Data Interface Timing Diagram  
Rev. 0 | Page 9 of 98  
 
AD7771  
Data Sheet  
SPI TIMING CHARACTERISTISTICS  
AVDD1x = 1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V;  
IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX  
unless otherwise noted.  
,
Table 3.  
Parameter  
Description2  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
MHz  
ns  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22A  
t22B  
t23  
t24  
t25  
SCLK period  
SCLK low time  
SCLK high time  
SCLK rising edge to CS falling edge  
CS falling edge to SCLK rising edge  
SCLK rising edge to CS rising edge  
CS rising edge to SCLK rising edge  
Minimum CS high time  
SDI setup time  
50:50  
30  
7
7
ns  
ns  
10  
10  
10  
10  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SDI hold time  
5
CS falling edge to SDO enable (SPI = Mode 0)  
SCLK falling edge to SDO enable (SPI = Mode 1)  
SDO setup time  
SDO hold time  
CS rising edge to SDO disable  
30  
49  
10  
10  
30  
ns  
ns  
ns  
ns  
1 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet.  
2 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.  
t19  
CS  
t17  
t15  
t16  
t13  
t14  
t18  
SCLK  
SDI  
t20  
t12  
MSB  
MSB  
MSB – 1  
LSB + 1  
LSB  
t22A  
t21  
SDO  
MSB – 1  
LSB + 1  
LSB  
t22B  
t25  
t24  
t23  
Figure 3. SPI Control Interface Timing Diagram  
Rev. 0 | Page 10 of 98  
 
 
Data Sheet  
AD7771  
SYNCHRONIZATION PINS AND RESET TIMING CHARACTERISTICS  
AVDD1x = 1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V;  
IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX  
unless otherwise noted.  
,
Table 4.  
Parameter  
Description2  
Test Conditions/Comments  
Min  
Typ Max Unit  
t26  
START setup time  
10  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ms  
t27  
START hold time  
MCLK  
MCLK  
10  
t28  
MCLK falling edge to SYNC_OUT falling edge  
SYNC_IN setup time  
t29  
t30  
SYNC_IN hold time  
MCLK  
145  
SYNC_IN rising edge to first DRDY  
RESET rising edge to first DRDY  
RESET hold time  
16 kSPS, high resolution mode  
16 kSPS, high resolution mode  
tINIT_SYNC_IN  
tINIT_RESET  
t31  
225  
2 × MCLK  
tPOWER_UP  
Start time  
tPOWER_UP is not shown in Figure 4  
2
1 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet.  
2 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.  
MCLK  
START  
t26  
t27  
SYNC_OUT  
t28  
SYNC_IN  
t29  
t30  
DRDY  
tINIT_SYNC_IN  
RESET  
t31  
tINIT_RESET  
Figure 4. Synchronization Pins and Reset Control Interface Timing Diagram  
Rev. 0 | Page 11 of 98  
 
 
AD7771  
Data Sheet  
SAR ADC TIMING CHARACTERISTISTICS  
AVDD1x = 1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V;  
IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX  
unless otherwise noted.  
,
Table 5.  
Parameter  
Description2  
Min  
1
500  
50  
Typ  
Max  
Unit  
µs  
ns  
ns  
kSPS  
t32  
t33  
t34  
t35  
Conversion time  
Acquisition time3  
Delay time  
3.4  
Throughput data rate  
256  
1 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3 and AVSS4. This term is used throughout the data sheet.  
2 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.  
3 Direct mode enabled. If deglitch mode is enabled, add 1.5/MCLK as described in Table 29.  
CS  
t33  
t32  
t34  
CONVST_SAR  
t35  
Figure 5. SAR ADC Timing Diagram  
GPIO SRC UPDATE TIMING CHARACTERISTISTICS  
AVDD1x = 1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V;  
IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications TMIN to TMAX  
unless otherwise noted.  
,
Table 6.  
Parameter  
Description2  
Min  
10  
MCLK  
2 × MCLK  
20  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
t36  
t37  
GPIO2 setup time  
GPIO2 hold time—high resolution mode  
GPIO2 hold time—low power mode  
MCLK rising edge to GPIO1 rising edge time  
GPIO0 setup time  
t38  
t39  
t40  
5
ns  
ns  
GPIO0 hold time  
MCLK  
1 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3 and AVSS4. This term is used throughout the data sheet.  
2 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.  
MCLK  
GPIO2  
t36  
t37  
GPIO1  
t38  
GPIO0  
t39  
t40  
Figure 6. GPIOs for SRC Update Timing Diagram  
Rev. 0 | Page 12 of 98  
 
 
Data Sheet  
AD7771  
ABSOLUTE MAXIMUM RATINGS  
Stresses at or above those listed under Absolute Maximum  
Table 7.  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Any Supply Pin to AVSSx  
AVSSx to DGND  
AREGxCAP to AVSSx  
DREGCAP to DGND  
IOVDD to DGND  
IOVDD to AVSSx  
−0.3 V to +3.96 V  
−1.98 V to +0.3 V  
−0.3 V to +1.98 V  
−0.3 V to +1.98 V  
−0.3 V to +3.96 V  
−0.3 V to +5.94 V  
−0.3 V to +3.96 V  
AVSSx − 0.3 V to AVDD1x + 0.3 V or  
3.96 V (whichever is less)  
AVSSx − 0.3 V to AVDD1x + 0.3 V or  
3.96 V (whichever is less)  
AVSSx − 0.3 V to AVDD4 + 0.1 V or  
3.96 V (whichever is less)  
DGND − 0.3 V to IOVDD + 0.3 V or  
3.96 V (whichever is less)  
DGND − 0.3 V to IOVDD + 0.3 V or  
3.96 V (whichever is less)  
DGND − 0.3 V to DREGCAP + 0.3 V  
or 1.98 V (whichever is less)  
THERMAL RESISTANCE  
AVDD4 to AVSSx  
Analog Input Voltage  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Close attention to  
PCB thermal design is required.  
REFx Input Voltage  
AUXAIN  
Table 8. Thermal Resistance  
Package Type  
CP-64-151  
No Thermal Vias  
49 Thermal Vias  
θJA  
θJB  
ΨJT  
ΨJB  
Unit  
Digital Input Voltage to  
DGND  
Digital Output Voltage to  
DGND  
30.43  
22.62  
N/A2  
3.17  
0.13  
0.09  
6.59  
3.19  
°C/W  
°C/W  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board. See JEDEC JESD51.  
XTAL1 to DGND  
2 N/A means not applicable.  
AINx , AUXAIN , and  
Digital Input Current  
10 mA  
ESD CAUTION  
Operating Temperature  
Range  
Junction Temperature,  
TJ Maximum  
−40°C to +125°C  
150°C  
Storage Temperature Range −65°C to +150°C  
Reflow Soldering  
ESD  
260°C  
2 kV  
Field Induced Charged  
Device Model (FICDM)  
500 V  
Rev. 0 | Page 13 of 98  
 
 
 
AD7771  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AIN0–  
AIN0+  
AIN1–  
1
2
3
4
5
6
7
8
9
48 AIN4–  
47 AIN4+  
46 AIN5–  
45 AIN5+  
44 AVSS1B  
43 AVDD1B  
42 REF2–  
41 REF2+  
40 AIN6–  
AIN1+  
AVSS1A  
AVDD1A  
REF1–  
REF1+  
AIN2–  
AD7771  
TOP VIEW  
(Not to Scale)  
39 AIN6+  
38 AIN7–  
AIN2+ 10  
AIN3– 11  
AIN3+ 12  
37 AIN7+  
MODE0/GPIO0 13  
MODE1/GPIO1 14  
MODE2/GPIO2 15  
MODE3/ALERT 16  
36 RESET  
35 SYNC_IN  
34 SYNC_OUT  
33 START  
NOTES  
1. EXPOSED PAD. CONNECT THE EXPOSED PAD TO AVSSx.  
Figure 7. Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Direction Description  
1
2
3
4
5
AIN0−  
AIN0+  
AIN1−  
AIN1+  
Analog input  
Analog input  
Analog input  
Analog input  
Supply  
Input  
Input  
Input  
Input  
Supply  
Analog Input Channel 0, Negative.  
Analog Input Channel 0, Positive.  
Analog Input Channel 1, Negative.  
Analog Input Channel 1, Positive.  
Negative Front-End Analog Supply for Channel 0 to Channel 3, Typical at −1.65 V  
(Dual Supply) and AGND (Single Supply). Connect all the AVSSx pins to the  
same potential.  
AVSS1A  
6
7
AVDD1A  
REF1−  
Supply  
Supply  
Input  
Positive Front-End Analog Supply for Channel 0 to Channel 3, Typical at  
AVSSx + 3.3 V. Connect this pin to AVDD1B.  
Negative Reference Input 1 for Channel 0 to Channel 3, Typical at AVSSx.  
Connect all the REFx− pins to the same potential.  
Reference  
8
9
10  
11  
12  
13  
REF1+  
AIN2−  
AIN2+  
AIN3−  
AIN3+  
MODE0/GPIO0  
Reference  
Input  
Input  
Input  
Input  
Input  
I/O  
Positive Reference Input 1 for Channel 0 to Channel 3, Typical at REF1− + 2.5 V.  
Analog Input Channel 2, Negative.  
Analog Input Channel 2, Positive.  
Analog Input Channel 3, Negative.  
Analog Input Channel 3, Positive.  
Analog input  
Analog input  
Analog input  
Analog input  
Digital I/O  
Mode 0 Input in Pin Control Mode (MODE0). See Table 14 for more details.  
Configurable General-Purpose Input/Output 0 in SPI Control Mode (GPIO0).  
If not in use, connect this pin to DGND or IOVDD.  
14  
15  
16  
MODE1/GPIO1  
MODE2/GPIO2  
MODE3/ALERT  
Digital I/O  
Digital I/O  
Digital I/O  
I/O  
I/O  
I/O  
Mode 1 Input in Pin Control Mode (MODE1). See Table 14 for more details.  
Configurable General-Purpose Input/Output 1 in SPI Control Mode (GPIO1).  
If not in use, connect this pin to DGND or IOVDD.  
Mode 2 Input in Pin Control Mode (MODE2). See Table 14 for more details.  
Configurable General-Purpose Input/Output 2 in SPI Control Mode (GPIO2).  
If not in use, connect this pin to DGND or IOVDD.  
Mode 3 Input in Pin Control Mode (MODE3). See Table 14 for more details.  
Alert Output in SPI Control Mode (ALERT).  
Rev. 0 | Page 14 of 98  
 
Data Sheet  
AD7771  
Pin No.  
Mnemonic  
Type  
Direction Description  
17  
CONVST_SAR  
Digital input  
Input  
Σ-Δ Output Interface Selection Pin in Pin Control Mode. See Table 13 for more  
details. This pin also functions as the start for the SAR conversion in SPI control  
mode.  
18  
19  
ALERT/CS  
Digital input  
Digital input  
Input  
Input  
Alert Output in Pin Control Mode (ALERT).  
Chip Select in SPI Control Mode (CS).  
DCLK2/SCLK  
Data Clock Frequency Selection Pin 2 in Pin Control Mode (DCLK2). See Table 15  
for more details.  
SPI Clock in SPI Control Mode (SCLK).  
20  
21  
DCLK1/SDI  
DCLK0/SDO  
Digital input  
Digital output  
Input  
Data Clock Frequency Selection Pin 1 in Pin Control Mode (DCLK1). See Table 15  
for more details.  
SPI Data Input in SPI Control Mode (SDI). Connect this pin to DGND if the  
device is configured in pin control mode with the SPI as the data output interface.  
Data Clock Frequency Selection Pin 0 in Pin Control Mode (DCLK0). See Table 15  
for more details.  
Output  
SPI Data Output in SPI Control Mode (SDO).  
Digital Ground.  
Digital Low Dropout (LDO) Output. Decouple this pin to DGND with a 1 µF  
capacitor.  
22  
23  
DGND  
DREGCAP  
Supply  
Supply  
Supply  
Output  
24  
25  
26  
IOVDD  
DOUT3  
DOUT2  
Supply  
Supply  
I/O  
Digital Levels Input/Output and Digital LDO (DLDO) Supply from 1.8 V to 3.6 V.  
IOVDD must not be lower than DREGCAP.  
Data Output Pin 3. If the device is configured in daisy-chain mode, this pin  
acts as an input pin. See the Daisy-Chain Mode section for more details.  
Data Output Pin 2. If the device is configured in daisy-chain mode, this pin  
acts as an input pin. See the Daisy-Chain Mode section for more details.  
Digital output  
Digital output  
I/O  
27  
28  
29  
30  
31  
DOUT1  
DOUT0  
DCLK  
Digital output  
Digital output  
Digital output  
Digital output  
Clock  
Output  
Output  
Output  
Output  
Input  
Data Output Pin 1.  
Data Output Pin 0.  
Data Output Clock.  
Data Output Ready Pin.  
DRDY  
XTAL1  
Crystal 1 Input Connection. If CMOS is used as a clock source, tie this pin to  
DGND. See Table 12 for more details.  
32  
33  
XTAL2/MCLK  
START  
Clock  
Input  
Input  
Crystal 2 Input Connection (XTAL2). See Table 12 for more details.  
CMOS Clock (MCLK). See Table 12 for more details.  
Synchronization Pulse. This pin internally synchronizes an external START  
asynchronous pulse with MCLK. The synchronize signal is shifted out by the  
SYNC_OUT pin. If not in use, tie this pin to DGND. See the Phase Adjustment  
section and the Digital Reset and Synchronization Pins section for more details.  
Digital input  
34  
SYNC_OUT  
Digital output  
Input  
Synchronization Signal. This pin generates a synchronous pulse generated  
and driven by hardware (via the START pin) or by software (GENERAL_USER_  
CONFIG_2, Bit 0). If this pin is in use, it must be wired to the SYNC_IN pin.  
See the Phase Adjustment section and the Digital Reset and Synchronization  
Pins section for more details.  
35  
36  
SYNC_IN  
RESET  
Digital input  
Digital input  
Input  
Input  
Reset for the Internal Digital Block and Synchronize for Multiple Devices. See  
the Digital Reset and Synchronization Pins section for more details.  
Asynchronous Reset Pin. This pin resets all registers to their default value. It is  
recommended to generate a pulse on this pin after the device is powered up  
because a slow slew rate in the supplies may generate an incorrect initialization  
in the digital block.  
37  
38  
39  
40  
41  
42  
AIN7+  
AIN7−  
AIN6+  
AIN6−  
REF2+  
REF2−  
Analog input  
Analog input  
Analog input  
Analog input  
Reference  
Input  
Input  
Input  
Input  
Input  
Input  
Analog Input Channel 7, Positive.  
Analog Input Channel 7, Negative.  
Analog Input Channel 6, Positive.  
Analog Input Channel 6, Negative.  
Positive Reference Input 2 for Channel 4 to Channel 7, Typical at REF2− + 2.5 V.  
Negative Reference Input 2 for Channel 4 to Channel 7, Typical at AVSSx.  
Connect all the REFx− pins to the same potential.  
Reference  
43  
AVDD1B  
Supply  
Supply  
Positive Front-End Analog Supply for Channel 4 to Channel 7. Connect this pin  
to AVDD1A.  
Rev. 0 | Page 15 of 98  
AD7771  
Data Sheet  
Pin No.  
Mnemonic  
Type  
Direction Description  
44  
AVSS1B  
Supply  
Supply  
Negative Front-End Analog Supply for Channel 4 to Channel 7, Typical at  
−1.65 V (Dual Supply) or AGND (Single Supply). Connect all the AVSSx pins to  
the same potential.  
45  
46  
47  
48  
49  
AIN5+  
AIN5−  
AIN4+  
AIN4−  
REF_OUT  
Analog input  
Analog input  
Analog input  
Analog input  
Reference  
Input  
Input  
Input  
Input  
Output  
Analog Input Channel 5, Positive.  
Analog Input Channel 5, Negative.  
Analog Input Channel 4, Positive.  
Analog Input Channel 4, Negative.  
2.5 V Reference Output. Connect a 100 nF capacitor on this pin if using the  
internal reference.  
50  
51  
52  
53  
54  
55  
56  
57  
58  
AVSS2B  
AREG2CAP  
AVDD2B  
AVSS3  
FORMAT1  
FORMAT0  
CLK_SEL  
VCM  
Supply  
Supply  
Supply  
Supply  
Digital input  
Digital input  
Digital input  
Analog output Output  
Supply  
Supply  
Output  
Supply  
Supply  
Input  
Negative Analog Supply. Connect all the AVSSx pins together.  
Analog LDO Output 2. Decouple this pin to AVSS2B with a 1 µF capacitor.  
Positive Analog Supply. Connect this pin to AVDD2A.  
Negative Analog Ground. Connect all the AVSSx to the same potential.  
Output Data Frame 1. See Table 13 for more details.  
Output Data Frame 0. See Table 13 for more details.  
Select Clock Source. See Table 12 for more details.  
Common-Mode Voltage Output, Typical at (AVDD1x + AVSSx)/2.  
Analog Supply from 2.2 V to 3.6 V. AVSS2x must not be lower than AREGxCAP.  
Connect this pin to AVDD2B.  
Input  
Input  
AVDD2A  
Input  
59  
60  
61  
AREG1CAP  
AVSS2A  
AVSS4  
Supply  
Supply  
Supply  
Output  
Input  
Supply  
Analog LDO Output 1. Decouple this pin to AVSSx with a 1 µF capacitor.  
Negative Analog supply. Connect all the AVSSx pins to the same potential.  
Negative SAR Analog Supply and Reference. Connect all AVSSx pins to the same  
potential.  
62  
63  
64  
AVDD4  
AUXAIN+  
AUXAIN−  
EPAD  
Supply  
Supply  
Input  
Input  
Input  
Positive SAR Analog Supply and Reference Source.  
Positive SAR Analog Input Channel.  
Negative SAR Analog Input Channel.  
Analog input  
Analog input  
Supply  
Exposed Pad. Connect the exposed pad to AVSSx.  
Rev. 0 | Page 16 of 98  
Data Sheet  
AD7771  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
15  
10  
5
T
= 25°C  
A
T = 25°C  
A
GAIN = 1  
DIFFERENTIAL INPUT SIGNAL  
GAIN = 1  
DIFFERENTIAL INPUT SIGNAL  
8
6
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
REF  
CM  
REF  
CM  
4
2
0
0
–2  
–4  
–6  
–8  
–10  
CH 0  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
–5  
–10  
–15  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 8. INL vs. Input Voltage and Channel at 64 kSPS,  
High Resolution Mode  
Figure 11. INL vs. Input Voltage and Channel at 16 kSPS,  
Low Power Mode  
10  
8
10  
8
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
6
6
4
4
2
2
0
0
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
T
= 25°C  
T
= 25°C  
A
A
DIFFERENTIAL V × GAIN  
V
V
DIFFERENTIAL V × GAIN  
V
V
IN  
IN  
= 2.5V  
= 2.5V  
REF  
CM  
REF  
CM  
= (AVDD1x + AVSSx) ÷ 2  
= (AVDD1x + AVSSx) ÷ 2  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 9. INL vs. Input Voltage and PGA Gain at 64 kSPS,  
High Resolution Mode  
Figure 12. INL vs. Input Voltage and PGA Gain at 16 kSPS,  
Low Power Mode  
10  
8
10  
T
T
T
T
= –40°C  
= +25°C  
= +105°C  
= +125°C  
T
T
T
T
= –40°C  
= +25°C  
= +105°C  
= +125°C  
A
A
A
A
A
A
A
A
6
5
4
2
0
0
–2  
–4  
–6  
–8  
–10  
–5  
–10  
–15  
GAIN = 1  
DIFFERENTIAL INPUT SIGNAL  
GAIN = 1  
DIFFERENTIAL INPUT SIGNAL  
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
REF  
CM  
REF  
CM  
–3  
–2  
–1  
0
1
2
3
–3  
–2  
–1  
0
1
2
3
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 10. INL vs. Input Voltage and Temperature at 64 kSPS,  
High Resolution Mode  
Figure 13. INL vs. Input Voltage and Temperature at 16 kSPS,  
Low Power Mode  
Rev. 0 | Page 17 of 98  
 
AD7771  
Data Sheet  
20  
15  
10  
5
15  
10  
5
V
V
V
V
V
V
= 1.0V  
= 1.5V  
= 2.0V  
= 2.5V  
= 3.0V  
= 3.3V  
V
V
V
V
V
V
= 1.0V  
= 1.5V  
= 2.0V  
= 2.5V  
= 3.0V  
= 3.3V  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
0
0
–5  
–10  
–15  
–5  
–10  
–15  
T
= 25°C  
A
GAIN = 1  
DIFFERENTIAL INPUT SIGNAL  
V
V
T
= 25°C  
A
GAIN = 1  
DIFFERENTIAL INPUT SIGNAL  
V
= (AVDD1x + AVSSx) ÷ 2  
= 2.5V  
CM  
REF  
= (AVDD1x + AVSSx) ÷ 2  
CM  
–20  
–4  
–3  
–2  
–1  
0
1
2
3
4
–4  
–3  
–2  
–1  
0
1
2
3
4
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 14. INL vs. Input Voltage and Reference Voltage (VREF  
at 64 kSPS, High Resolution Mode  
)
Figure 17. INL vs. Input Voltage and Reference Voltage (VREF  
at 16 kSPS, Low Power Mode  
)
10  
15  
V
V
V
= 1.95V  
= 1.65V  
= 1.35V  
V
V
V
= 1.95V  
= 1.65V  
= 1.35V  
CM  
CM  
CM  
CM  
CM  
CM  
8
6
10  
5
4
2
0
0
–2  
–4  
–6  
–8  
–10  
–5  
–10  
–15  
T
= 25°C  
T
= 25°C  
A
A
GAIN = 1  
DIFFERENTIAL INPUT SIGNAL  
V
GAIN = 1  
DIFFERENTIAL V × GAIN  
V
IN  
= 2.5V  
= 2.5V  
REF  
REF  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 15. INL vs. Input Voltage and VCM at 64 kSPS,  
High Resolution Mode  
Figure 18. INL vs. Input Voltage and VCM at 16 kSPS,  
Low Power Mode  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
= 25°C  
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
= 25°C  
REF  
REF  
CM  
CM  
T
T
A
A
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
ADC CODE  
ADC CODE  
Figure 16. Noise Histogram at 16 kSPS, High Resolution Mode,  
Sinc3 Filter Enabled  
Figure 19. Noise Histogram at 4 kSPS, Low Power Mode,  
Sinc3 Filter Enabled  
Rev. 0 | Page 18 of 98  
Data Sheet  
AD7771  
300  
300  
250  
200  
150  
100  
50  
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
= 25°C  
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
REF  
REF  
CM  
CM  
T
T = 25°C  
A
A
250  
200  
150  
100  
50  
GAIN = 1  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 2  
GAIN = 4  
GAIN = 8  
0
0
ADC CODE  
ADC CODE  
Figure 20. Noise Histogram at 64 kSPS, High Resolution Mode,  
Sinc5 Filter Enabled  
Figure 23. Noise Histogram at 16 kSPS, Low Power Mode,  
Sinc5 Filter Enabled  
12  
10  
8
12  
10  
8
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
REF  
CM  
REF  
CM  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
6
6
4
4
2
2
0
–40  
0
–40  
25  
105  
125  
25  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. Noise vs. Temperature at 16 kSPS, High Resolution Mode,  
Sinc3 Filter Enabled  
Figure 24. Noise vs. Temperature at 4 kSPS, Low Power Mode,  
Sinc3 Filter Enabled  
18  
20  
GAIN = 1  
GAIN = 2  
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
REF  
CM  
18  
16  
14  
12  
10  
8
16  
GAIN = 4  
GAIN = 8  
14  
12  
10  
8
6
6
4
4
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
REF  
CM  
2
2
0
–40  
0
–40  
25  
105  
125  
25  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22. Noise vs. Temperature at 64 kSPS, High Resolution Mode,  
Sinc5 Filter Enabled  
Figure 25. Noise vs. Temperature at 16 kSPS, Low Power Mode,  
Sinc5 Filter Enabled  
Rev. 0 | Page 19 of 98  
AD7771  
Data Sheet  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
9.0  
8.0  
7.0  
1.80  
1.60  
1.40  
1.20  
1.00  
8.00  
6.00  
4.00  
2.00  
0
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
V
V
= 2.5V  
= (AVDD1x + AVSSx) ÷ 2  
= 25°C  
REF  
REF  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
CM  
CM  
T = 25°C  
T
A
A
DECIMATION = 256  
DECIMATION = 256  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
CLOCK FREQUENCY (Hz)  
CLOCK FREQUENCY (Hz)  
Figure 26. Noise vs. Clock Frequency, High Resolution Mode  
Figure 29. Noise vs. Clock Frequency, Low Power Mode  
160  
700  
600  
500  
400  
300  
200  
100  
0
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
140  
120  
100  
80  
60  
40  
20  
0
1000  
4000  
8000  
16000  
500  
2000  
4000  
8000  
ODR (SPS)  
ODR (SPS)  
Figure 27. Noise vs. ODR, High Resolution Mode, Sinc3 Filter Enabled  
Figure 30. Noise vs. ODR, Low Power Mode, Sinc3 Filter Enabled  
180  
400  
GAIN = 1  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 2  
160  
GAIN = 4  
GAIN = 8  
350  
300  
250  
200  
150  
100  
50  
140  
120  
100  
80  
60  
40  
20  
0
0
8000  
32000  
64000  
128000  
1000  
8000  
16000  
ODR (SPS)  
32000  
ODR (SPS)  
Figure 28. Noise vs. ODR, High Resolution Mode, Sinc5 Filter Enabled  
Figure 31. Noise vs. ODR, Low Power Mode, Sinc5 Filter Enabled  
Rev. 0 | Page 20 of 98  
Data Sheet  
AD7771  
10  
0
–10  
10  
0
–10  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
–20  
–20  
–30  
–30  
T
V
V
= 25°C  
–40  
–50  
–60  
–70  
T
V
V
= 25°C  
–40  
–50  
–60  
–70  
A
A
= 2.5V  
= 2.5V  
REF  
REF  
= (AVDD1x + AVSSx) ÷ 2  
= (AVDD1x + AVSSx) ÷ 2  
CM  
CM  
INPUT FREQUENCY = 50Hz  
INPUT FREQUENCY = 50Hz  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 35. FFT Plot, Low Power Mode at 4 kSPS,  
Input Frequency (fIN) = 50 Hz, Sinc3 Filter Enabled  
Figure 32. FFT Plot, High Resolution Mode at 16 kSPS,  
Input Frequency (fIN) = 50 Hz, Sinc3 Filter Enabled  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
GAIN = 1  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 2  
GAIN = 4  
GAIN = 8  
T
V
V
= 25°C  
A
T
V
V
= 25°C  
= 2.5V  
A
= 2.5V  
REF  
REF  
= (AVDD1x + AVSSx) ÷ 2  
= (AVDD1x + AVSSx) ÷ 2  
CM  
CM  
ODR = 32kSPS  
ODR = 128kSPS  
INPUT FREQUENCY = 50Hz  
INPUT FREQUENCY = 50Hz  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 33. FFT Plot, High Resolution Mode at 128 kSPS,  
Input Frequency (fIN) = 50 Hz, Sinc5 Filter Enabled  
Figure 36. FFT Plot, Low Power Mode at 32 kSPS,  
Input Frequency (fIN) = 50 Hz, Sinc5 Filter Enabled  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
T
V
V
= 25°C  
= 2.5V  
A
T = 25°C  
A
REF  
= (AVDD1x + AVSSx) ÷ 2  
INPUT FREQUENCY = 1kHz  
V
= 2.5V  
REF  
V
= (AVDD1x + AVSSx) ÷ 2  
INPUT FREQUENCY = 1kHz  
CM  
CM  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37. FFT Plot, Low Power Mode at 4 kSPS,  
Input Frequency (fIN) = 1 kHz, Sinc3 Filter Enabled  
Figure 34. FFT Plot, High Resolution Mode at 16 kSPS,  
Input Frequency (fIN) = 1 kHz, Sinc3 Filter Enabled  
Rev. 0 | Page 21 of 98  
AD7771  
Data Sheet  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
T
V
V
= 25°C  
A
T
V
V
= 25°C  
A
= 2.5V  
REF  
= 2.5V  
REF  
= (AVDD1x + AVSSx) ÷ 2  
CM  
= (AVDD1x + AVSSx) ÷ 2  
CM  
ODR = 32kSPS  
ODR = 128kSPS  
INPUT FREQUENCY = 1kHz  
INPUT FREQUENCY = 1kHz  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 41. FFT Plot, Low Power Mode at 32 kSPS,  
Input Frequency (fIN) = 1 kHz, Sinc5 Filter Enabled  
Figure 38. FFT Plot, High Resolution Mode at 128 kSPS,  
Input Frequency (fIN) = 1 kHz, Sinc5 Filter Enabled  
–100  
–105  
–110  
–115  
–120  
–125  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
GAIN = 1  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 2  
GAIN = 4  
GAIN = 8  
T
= 25°C  
A
GAIN = 1  
T
V
V
= 25°C  
A
V
V
V
= 2.5V  
REF  
= 2.5V  
REF  
= (AVDD1x + AVSSx) ÷ 2  
CM  
= –0.5dBFS  
IN  
= –0.5dBFS  
IN  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
Figure 42. THD vs. Input Frequency at 16 kSPS, Low Power Mode,  
Sinc5 Filter Enabled  
Figure 39. THD vs. Input Frequency at 64 kSPS, High Resolution Mode,  
Sinc5 Filter Enabled  
–100  
–100  
GAIN = 1  
GAIN = 2  
GAIN = 1  
GAIN = 2  
GAIN = 4  
–105  
GAIN = 4  
GAIN = 8  
–105  
GAIN = 8  
T
V
V
= 25°C  
A
–110  
–115  
–120  
–125  
T
V
V
= 25°C  
= 2.5V  
A
REF  
= –0.5dBFS  
–110  
–115  
–120  
–125  
= 2.5V  
REF  
= –0.5dBFS  
IN  
IN  
–130  
–135  
–130  
–135  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
Figure 43. THD vs. Input Frequency at 4 kSPS, Low Power Mode,  
Sinc3 Filter Enabled  
Figure 40. THD vs. Input Frequency at 16 kSPS, High Resolution Mode,  
Sinc3 Filter Enabled  
Rev. 0 | Page 22 of 98  
 
 
 
 
Data Sheet  
AD7771  
–100  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
GAIN = 1  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 2  
GAIN = 4  
GAIN = 8  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
T
A
V
= 25°C  
= 2.5V  
T
V
= 25°C  
A
REF  
= 2.5V  
REF  
INPUT FREQUENCY = 50Hz  
INPUT FREQUENCY = 50Hz  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 44. THD vs. Input Voltage at 64 kSPS, High Resolution Mode  
Figure 47. THD vs. Input Voltage at 16 kSPS, Low Power Mode  
–90  
–90  
GAIN = 1  
GAIN = 2  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
T
±V  
= 25°C  
A
REF  
GAIN = 4  
INPUT FREQUENCY = 50Hz  
–95  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
GAIN = 8  
–100  
–105  
–110  
–115  
T
±V  
= 25°C  
A
–120  
–125  
REF  
INPUT FREQUENCY = 50Hz  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
Figure 45. THD vs. Reference Voltage at 64 kSPS, High Resolution Mode  
Figure 48. THD vs. Reference Voltage at 16 kSPS, Low Power Mode  
–100  
–100  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
T
V
= 25°C  
A
= 2.5V  
REF  
–102  
–104  
–106  
–108  
–110  
–112  
–114  
–116  
–118  
INPUT FREQUENCY = 50Hz  
–105  
–110  
–115  
–120  
GAIN = 1  
T
V
= 25°C  
A
GAIN = 2  
GAIN = 4  
GAIN = 8  
= 2.5V  
REF  
INPUT FREQUENCY = 50Hz  
–125  
MCLK FREQUENCY (Hz)  
MCLK FREQUENCY (Hz)  
Figure 46. THD vs. Master Clock Frequency, High Resolution Mode  
Figure 49. THD vs. Master Clock Frequency, Low Power Mode  
Rev. 0 | Page 23 of 98  
 
 
AD7771  
Data Sheet  
125  
120  
115  
110  
105  
100  
95  
120  
115  
110  
105  
100  
95  
90  
90  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
T
V
V
= 25°C  
T = 25°C  
A
A
85  
= 2.5V  
V
= 2.5V  
85  
REF  
REF  
= 0dBFS  
IN  
= 0dBFS  
V
IN  
80  
1000  
80  
500  
4000  
8000  
16000  
2000  
4000  
8000  
ODR (SPS)  
ODR (SPS)  
Figure 50. SNR vs. ODR at 16 kSPS, High Resolution Mode  
(AVDDx = 3.6 V, IOVDD = 3.6 V)  
Figure 53. SNR vs. ODR at 4 kSPS, Low Power Mode  
(AVDDx = 3.6 V, IOVDD = 3.6 V)  
115  
110  
105  
100  
95  
120  
GAIN = 1  
T
V
V
= 25°C  
A
GAIN = 2  
GAIN = 4  
GAIN = 8  
= 2.5V  
REF  
115  
110  
105  
100  
95  
= 0dBFS  
IN  
T
V
V
= 25°C  
A
= 2.5V  
REF  
= 0dBFS  
IN  
90  
90  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
85  
85  
80  
8000  
80  
1000  
32000  
64000  
128000  
8000  
16000  
32000  
ODR (SPS)  
ODR (SPS)  
Figure 51. SNR vs. ODR at 64 kSPS, High Resolution Mode  
(AVDDx = 3.6 V, IOVDD = 3.6 V)  
Figure 54. SNR vs. ODR at 16 kSPS, Low Power Mode  
(AVDDx = 3.6 V, IOVDD = 3.6 V)  
108  
108  
106  
104  
102  
100  
98  
T
= 25°C  
A
T
= 25°C  
A
ODR = 4kSPS  
ODR = 16kSPS  
106  
104  
102  
100  
98  
96  
94  
1
2
4
8
1
2
4
8
PGA GAIN  
PGA GAIN  
Figure 52. Dynamic Range vs. PGA Gain at 16 kSPS,  
High Resolution Mode  
Figure 55. Dynamic Range vs. PGA Gain at 4 kSPS,  
Low Power Mode  
Rev. 0 | Page 24 of 98  
Data Sheet  
AD7771  
104  
102  
100  
98  
105  
100  
95  
T
= 25°C  
T = 25°C  
A
ODR = 16kSPS  
A
ODR = 64kSPS  
96  
94  
92  
90  
90  
88  
85  
86  
84  
82  
80  
1
2
4
8
1
2
4
8
PGA GAIN  
PGA GAIN  
Figure 56. Dynamic Range vs. PGA Gain at 64 kSPS,  
High Resolution Mode  
Figure 59. Dynamic Range vs. PGA Gain at 16 kSPS,  
Low Power Mode  
0
–5  
0
–5  
10  
T
V
V
= 25°C  
T = 25°C  
A
A
= 2.5V  
V
= 2.5V  
REF  
REF  
= 0V  
V = 0V  
IN  
IN  
SUPPLY = AVDD1x = 3.3V  
SUPPLY = AVDD1x = 3.3V  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–15  
–20  
–25  
–30  
–35  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
1
2
4
8
1
2
4
8
PGA GAIN  
PGA GAIN  
Figure 57. Offset Error vs. PGA Gain at 64 kSPS,  
High Resolution Mode  
Figure 60. Offset Error vs. PGA Gain at 16 kSPS,  
Low Power Mode  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–10  
–15  
–20  
–25  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
T
V
V
= 25°C  
A
= 2.5V  
REF  
= 0V  
IN  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
T
V
V
= 25°C  
A
= 2.5V  
REF  
= 0V  
IN  
3.0  
3.3  
3.6  
3.0  
3.3  
3.6  
AVDD1x SUPPLY  
AVDD1x SUPPLY  
Figure 58. Offset Error vs. AVDD1x Supply,  
High Resolution Mode  
Figure 61. Offset Error vs. AVDD1x Supply,  
Low Power Mode  
Rev. 0 | Page 25 of 98  
AD7771  
Data Sheet  
40  
45  
40  
35  
30  
25  
20  
15  
10  
5
AVDD1x = 3.3V  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
0
–5  
–10  
–15  
–20  
0
168  
500  
1000  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TIME (Hours)  
Figure 65. Gain Error Drift vs. Time  
Figure 62. Offset Drift vs. Temperature  
0.017  
0.008  
0
0.017  
0.008  
0
CH 0  
TEMPERATURE = 25°C  
GAIN = 1  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
TEMPERATURE = 25°C  
GAIN = 1  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
V
V
= 2.5V  
= 0dBFS  
V
V
= 2.5V  
REF  
REF  
= 0dBFS  
IN  
IN  
–0.008  
–0.017  
–0.026  
–0.035  
–0.043  
–0.008  
–0.017  
–0.026  
–0.035  
–0.043  
3.0  
3.3  
AVDD1x SUPPLY (V)  
3.6  
3.0  
3.3  
AVDD1x SUPPLY (V)  
3.6  
Figure 66. Gain Error vs. AVDD1x Supply, Low Power Mode  
Figure 63. Gain Error vs. AVDD1x Supply, High Resolution Mode  
0.017  
0.011  
0.005  
0
0.017  
CH 0  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
AVDD1x = 3.3V  
AVDD1x = 3.3V  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
V
V
= 2.5V  
= 0dBFS  
V
= 2.5V  
REF  
REF  
0.011  
0.005  
0
V = 0dBFS  
IN  
IN  
–0.005  
–0.011  
–0.017  
–0.023  
–0.029  
–0.035  
–0.400  
–0.005  
–0.011  
–0.017  
–0.023  
–0.029  
–0.035  
–0.400  
–40  
25  
105  
125  
–40  
25  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 67. Gain Error vs. Temperature, Low Power Mode  
Figure 64. Gain Error vs. Temperature, High Resolution Mode  
Rev. 0 | Page 26 of 98  
Data Sheet  
AD7771  
0.09  
4
3
TEMPERATURE = 25°C  
AVDD1x = 3.3V  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
V
= 2.5V  
= 0dBFS  
REF  
2
IN  
1
0
HIGH RESOLUTION  
LOW POWER  
–1  
–2  
–3  
–4  
–5  
–6  
1
2
4
8
–40  
25  
105  
125  
PGA GAIN  
TEMPERATURE (°C)  
Figure 68. Channel Gain Mismatch  
Figure 71. Internal Reference Voltage Drift  
0.008  
0.006  
0.004  
0.002  
0
0.006  
0.004  
0.002  
0
V
V
= 2.5V  
= –0.5dBFS  
REF  
IN  
SUPPLY = AVDD1x = 3.3V  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.002  
–0.004  
–0.006  
–0.008  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
V
V
= 2.5V  
= –0.5dBFS  
REF  
CH 5  
CH 6  
CH 7  
IN  
SUPPLY = AVDD1x = 3.3V  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100 110 125  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 69. Total Unadjusted Error (TUE) (as Percent of Input) vs. Temperature,  
High Resolution Mode  
Figure 72. Total Unadjusted Error (TUE) (as Percent of Input) vs.  
Temperature, Low Power Mode  
3
1.0  
AINx+, V  
AINx–, V  
= 1.95V  
= 1.95V  
= 1.35V  
= 1.35V  
CM  
CM  
AINx+, V  
AINx–, V  
= 1.95V  
= 1.95V  
= 1.35V  
= 1.35V  
CM  
CM  
0.8  
0.6  
2
1
AINx+; V  
CM  
CM  
AINx+; V  
CM  
CM  
AINx–, V  
AINx–, V  
0.4  
0
0.2  
–1  
–2  
–3  
–4  
–5  
0
–0.2  
–0.4  
–0.6  
–0.8  
V
= 2.5V  
V
= 2.5V  
REF  
SUPPLY = AVDD1x = 3.3V  
REF  
SUPPLY = AVDD1x = 3.3V  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))  
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))  
Figure 70. Input Current vs. Differential Input Voltage,  
High Resolution Mode  
Figure 73. Input Current vs. Differential Input Voltage,  
Low Power Mode  
Rev. 0 | Page 27 of 98  
AD7771  
Data Sheet  
10  
6
4
AIN0+  
AIN0–  
AIN2+  
AIN2–  
AIN0+  
AIN0–  
AIN2+  
AIN2–  
5
2
0
0
–2  
–4  
–6  
–8  
–5  
–10  
V
= 2.5V  
= 2.5V  
SUPPLY = AVDD1x = 3.3V  
V
V
= 2.5V  
= 2.5V  
REF  
REF  
V
IN  
IN  
SUPPLY = AVDD1x = 3.3V  
–15  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 74. Absolute Input Current vs. Temperature, High Resolution Mode  
Figure 77. Absolute Input Current vs. Temperature, Low Power Mode  
4
1.0  
AINx+ – AINx–, V  
AINx+ – AINx–, V  
= 1.95V  
= 1.35V  
CM  
CM  
AINx+ – AINx–, V  
AINx+ – AINx–, V  
= 1.95V  
= 1.35V  
CM  
CM  
0.8  
0.6  
3
2
0.4  
1
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
V
= 2.5V  
REF  
SUPPLY = AVDD1x = 3.3V  
V
= 2.5V  
REF  
SUPPLY = AVDD1x = 3.3V  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))  
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))  
Figure 75. Differential Input Current vs. Differential Input Voltage,  
High Resolution Mode  
Figure 78. Differential Input Current vs. Differential Input Voltage,  
Low Power Mode  
14  
12  
V
V
= 2.5V  
REF  
= 2.5V  
V
V
= 2.5V  
REF  
= 2.5V  
IN  
IN  
12  
10  
8
SUPPLY = AVDD1x = 3.3V  
SUPPLY = AVDD1x = 3.3V  
10  
8
6
6
4
4
2
2
0
0
–40  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 76. Differential Input Current vs. Temperature,  
High Resolution Mode  
Figure 79. Differential Input Current vs. Temperature,  
Low Power Mode  
Rev. 0 | Page 28 of 98  
Data Sheet  
AD7771  
0
0
–20  
GAIN = 1  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
V
= 1.65V + 100mV p-p  
V
= 1.65V + 100mV p-p  
CM  
CM  
GAIN = 2  
GAIN = 4  
GAIN = 8  
SUPPLY = AVDD1x = 3.3V + 100mV p-p  
SUPPLY = AVDD1x = 3.3V + 100mV p-p  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
Figure 80. CMRR vs. Input Frequency at 128 kSPS, High Resolution Mode  
Figure 83. CMRR vs. Input Frequency at 32 kSPS, Low Power Mode  
0
0
T
= 25°C  
T = 25°C  
A
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 1  
GAIN = 2  
GAIN = 4  
GAIN = 8  
A
–10  
–20  
–10  
–20  
SUPPLY = AVDD1x = 3.3V+100mVpp  
SUPPLY = AVDD1x = 3.3V + 100mV p-p  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
INPUT FREQUENCY(Hz)  
INPUT FREQUENCY(Hz)  
Figure 81. AC PSRR vs. Input Frequency at 128 kSPS, High Resolution  
Mode  
Figure 84. AC PSRR vs. Input Frequency at 32 kSPS, Low Power Mode  
10  
0
GAIN = 1  
GAIN = 1  
0
–10  
GAIN = 2  
GAIN = 2  
GAIN = 4  
GAIN = 8  
GAIN = 4  
GAIN = 8  
–10  
–20  
–20  
–30  
–40  
–30  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 82. Filter Profiles at 64 kSPS, High Resolution Mode  
Figure 85. Filter Profiles at 16 kSPS, Low Power Mode  
Rev. 0 | Page 29 of 98  
AD7771  
Data Sheet  
20  
18  
16  
14  
12  
10  
8
6
5
4
3
2
1
0
AVDD1x  
AVDD2x  
AVDD4  
IOVDD  
AVDD1x  
AVDD2x  
AVDD4  
IOVDD  
6
4
2
0
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 86. Supply Current vs. Supply Voltage, High Resolution Mode  
Figure 89. Supply Current vs. Supply Voltage, Low Power Mode  
30  
7
AVDD1x  
AVDD2x  
AVDD4  
AVDD1x  
AVDD2x  
AVDD4  
IOVDD  
6
5
4
3
2
1
0
25  
IOVDD  
20  
15  
10  
5
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 87. Supply Current vs. Temperature High Resolution Mode  
Figure 90. Supply Current vs. Temperature Low Power Mode  
800  
300  
REF1–  
REF1+  
REF2–  
REF2+  
200  
100  
600  
400  
0
200  
–100  
–200  
–300  
–400  
–500  
–600  
0
–200  
–400  
–600  
–800  
REF1–  
REF1+  
REF2–  
REF2+  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 88. Reference Input Current vs. Temperature, High Resolution Mode  
Figure 91. Reference Input Current vs. Temperature, Low Power Mode  
Rev. 0 | Page 30 of 98  
Data Sheet  
AD7771  
80  
70  
60  
50  
40  
30  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
AVDD1x  
AVDD2x  
AVDD4  
IOVDD  
20  
AVDD1x  
AVDD2x  
10  
AVDD4  
IOVDD  
0
1.8  
0
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 92. Shutdown Supply Current vs. Supply Voltage  
Figure 95. Shutdown Supply Current vs. Temperature  
60  
50  
40  
30  
20  
10  
0
20  
18  
16  
14  
12  
10  
8
AVDD1x  
AVDD2x  
AVDD4  
IOVDD  
AVDD1x  
AVDD2x  
AVDD4  
IOVDD  
6
4
2
0
2.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 93. Power Consumption per Channel vs. Supply Voltage,  
High Resolution Mode  
Figure 96. Power Consumption per Channel vs. Supply Voltage,  
Low Power Mode  
90  
25  
AVDD1x  
AVDD1x  
AVDD2x  
AVDD4  
AVDD2x  
AVDD4  
IOVDD  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOVDD  
20  
15  
10  
5
0
–40  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 94. Power Dissipation vs. Temperature, High Resolution Mode  
Figure 97. Power Dissipation vs. Temperature, Low Power Mode  
Rev. 0 | Page 31 of 98  
AD7771  
Data Sheet  
TERMINOLOGY  
Common-Mode Rejection Ratio (CMRR)  
Gain Error  
CMRR is the ratio of the power in the ADC output at full-scale  
frequency, f, to the power of a 100 mV p-p sine wave applied to  
the common-mode voltage of AINx+ and AINx− at frequency, fS.  
The first transition (from 100 … 000 to 100 … 001) occurs at a  
level ½ LSB above nominal negative full scale (−2.49999 V for the  
2.5 V range). The last transition (from 011 … 110 to 011 …  
111) occurs for an analog voltage 1½ LSB below the nominal  
full scale (2.49999 V for the 2.5 V range). The gain error is the  
deviation of the difference between the actual level of the last  
transition and the actual level of the first transition from the  
difference between the ideal levels.  
CMRR (dB) = 10 log(Pf/PfS)  
where:  
Pf is the power at frequency, f, in the ADC output.  
PfS is the power at frequency, fS, in the ADC output.  
Differential Nonlinearity (DNL) Error  
Gain Error Drift  
In an ideal ADC, code transitions are 1 LSB apart. Differential  
nonlinearity is the maximum deviation from this ideal value.  
DNL error is often specified in terms of resolution for which no  
missing codes are guaranteed.  
Gain error drift is the ratio of the gain error change due to a  
temperature change of 1°C and the full-scale range (2N). It is  
expressed in ppm/°C.  
Least Significant Bit (LSB)  
Integral Nonlinearity (INL) Error  
The least significant bit, or LSB, is the smallest increment that  
can be represented by a converter. For a fully differential input  
ADC with N bits of resolution, the LSB expressed in volts is  
Integral nonlinearity error refers to the deviation of each individual  
code from a line drawn from negative full scale through positive  
full scale. The point used as negative full scale occurs ½ LSB before  
the first code transition. Positive full scale is a level 1½ LSB beyond  
the last code transition. The deviation is measured from the middle  
of each code to the true straight line.  
2×VREF  
LSB (V) =  
2N  
The LSB referred to the input is  
Dynamic Range  
2×VREF  
Dynamic range is the ratio of the rms value of the full-scale  
input signal to the rms noise measured for an input. The value  
for dynamic range is expressed in decibels.  
PGAGAIN  
LSB (VIN) =  
2N  
Power Supply Rejection Ratio (PSRR)  
Channel to Channel Isolation  
Variations in power supply affect the full-scale transition but not  
the linearity of the converter. PSRR is the maximum change in the  
full-scale transition point due to a change in the power supply  
voltage from the nominal value.  
Channel to channel isolation is a measure of the level of  
crosstalk between channels. It is measured by applying a full-scale  
frequency sweep sine wave signal to all seven unselected input  
channels and determining how much that signal is attenuated in  
the selected channel. The value is given for worst case scenarios  
across all eight channels of the AD7771.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, excluding harmonics and dc. The value for SNR is  
expressed in decibels.  
Intermodulation Distortion  
With inputs consisting of sine waves at two frequencies, fA and  
fB, any active device with nonlinearities creates distortion  
products at the sum and difference frequencies of mfA and nfB,  
where m, n = 0,1, 2, 3, and so on. Intermodulation distortion  
terms are those for which neither m nor n are equal to 0. For  
example, the second-order terms include (fA + fB) and (fA − fB and  
the third-order terms include (2fA + fB), (2fA − fB), (fA + 2fB), and  
(fA − 2fB). The AD7771 is tested using the CCIF standard, where  
two input frequencies near the top end of the input bandwidth  
are used. In this case, the second-order terms are usually distanced  
in frequency from the original sine waves, and the third-order terms  
are usually at a frequency close to the input frequencies. As a result,  
the second-order and third-order terms are specified separately.  
The calculation of the intermodulation distortion is per the THD  
specification, where it is the ratio of the rms sum of the individual  
distortion products to the rms amplitude of the sum of the  
fundamentals, expressed in decibels.  
Signal-to-(Noise + Distortion) Ratio (SINAD)  
SINAD is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc. The value for  
SINAD is expressed in decibels.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels, between the rms amplitude of  
the input signal and the peak spurious signal including harmonics.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first five harmonic  
components to the rms value of a full-scale input signal and  
is expressed in decibels.  
Rev. 0 | Page 32 of 98  
 
Data Sheet  
AD7771  
Offset Error  
Offset Error Drift  
Offset error is the difference between the ideal midscale input  
voltage (0 V) and the actual voltage producing the midscale  
output code.  
Offset error drift is the ratio of the offset error change due to a  
temperature change of 1°C and the full-scale code range (2N). It  
is expressed in µV/°C.  
Rev. 0 | Page 33 of 98  
AD7771  
Data Sheet  
THEORY OF OPERATION  
The AD7771 is an 8-channel, simultaneously sampling, low  
noise, 24-bit Σ-Δ ADC with integrated digital filtering per  
channel and SRC.  
QUANTIZATION NOISE  
fCLKIN/2  
The AD7771 offers two operation modes: high resolution mode,  
which offers up to 128 kSPS, and low power mode, which offers  
up to 32 kSPS.  
BAND OF INTEREST  
Figure 98. Σ-Δ ADC Operation, Reduction of Noise Energy Contained in the  
Band of Interest (Linear Scale X-Axis)  
The AD7771 employs a Σ-Δ conversion technique to convert  
the analog input signal into an equivalent digital word. The  
overview of the Σ-Δ technique is that the modulator samples  
the input waveform and outputs an equivalent digital word at  
NOISE SHAPING  
fCLKIN/2  
the input clock frequency, fCLKIN  
.
BAND OF INTEREST  
Figure 99. Σ-Δ ADC Operation, Majority of Noise Energy Shifted Out of the  
Band of Interest (Linear Scale X-Axis)  
Due to the high oversampling rate, this technique spreads the  
quantization noise from 0 Hz to fCLKIN/2 (in the case of the AD7771,  
fCLKIN relates to the external clock); therefore, the noise energy  
contained in the band of interest is reduced (see Figure 98). To  
further reduce the quantization noise, a high order modulator is  
employed to shape the noise spectrum so that most of the noise  
energy is shifted out of the band of interest (see Figure 99). The  
digital filter that follows the modulator removes the large out of  
band quantization noise (see Figure 100).  
DIGITAL FILTER CUTOFF FREQUENCY  
fCLKIN/2  
BAND OF INTEREST  
Figure 100. Σ-Δ ADC Operation, Removal of Noise Energy from the Band of  
Interest (Linear Scale X-Axis)  
The Σ-Δ ADC starts the conversions of the input signal after the  
supplies generated by the internal LDO regulators become stable.  
An external signal is not required to generate the conversions.  
For more information on basic and advanced concepts of Σ-Δ  
ADCs, see the MT-022 Tutorial and MT-023 Tutorial.  
Digital filtering has certain advantages over analog filtering.  
Because digital filtering occurs after the analog-to-digital  
conversion process, it can remove noise injected during the  
conversion. Analog filtering cannot remove noise injected  
during conversion.  
ANALOG INPUTS  
The AD7771 can be operated in bipolar or unipolar modes and  
accepts true differential, pseudo differential, and single-ended  
input signals, as shown in Figure 101 through Figure 104.  
Table 10 summarizes the maximum differential input signal and  
dynamic range for the different input modes.  
Table 10. Input Signal Modes  
Input Signal Mode PGA Gain  
Maximum Differential Signal  
Maximum Peak-to-Peak Signal  
2 × VREF/PGAGAIN  
2 × VREF/PGAGAIN  
True differential  
Pseudo differential  
Single-ended  
All gains  
All gains  
All gains  
(VREF/PGAGAIN  
(VREF/PGAGAIN  
VREF/PGAGAIN  
)
)
VREF/PGAGAIN  
Rev. 0 | Page 34 of 98  
 
 
 
 
 
 
Data Sheet  
AD7771  
1.6500  
1.2375  
BIPOLAR OR UNIPOLAR  
TRUE DIFFERENTIAL  
PSEUDO DIFFERENTIAL  
AVDD1x – 0.1V  
0.8250  
0.4125  
(AVDD1x + AVSSx)/2  
–0.4125  
AINx+  
AINx+  
VCM  
/PGA  
GAIN  
V
REF  
–0.8250  
V
= 2.5V  
REF  
–1.2375  
AVDD1x = 1.65V  
AVSSx = –1.65V  
–1.6500  
1
2
4
8
AVSSx + 0.1V  
PGA GAIN  
Figure 101. Σ-Δ ADC Input Signal Configuration, True Differential  
BIPOLAR OR UNIPOLAR  
Figure 105. Maximum Common-Mode Voltage Range for a Maximum  
Differential Input Signal  
The AD7771 provides a common-mode voltage pin (AVDD1x +  
AVSSx)/2), VCM, for the single-supply, pseudo differential, or true  
differential input configurations.  
AVDD1x – 0.1V  
V
/PGA  
GAIN  
REF  
TRANSFER FUNCTION  
AINx+  
AINx+  
VCM  
The AD7771 can operate with up to a 3.6 V reference, typical  
at 2.5 V, and converts the differential voltage between the analog  
inputs (AINx+ and AINx−) into a digital output. The ADC  
converts the voltage difference between the analog input pins  
(AINx+ − AINx−) into a digital code on the output. The 24-bit  
conversion result is in MSB first, twos complement format, as  
shown in Table 11 and Figure 106.  
AVSSx + 0.1V  
Figure 102. Σ-Δ ADC Input Signal Configuration, Pseudo Differential  
BIPOLAR  
Table 11. Output Codes and Ideal Input Voltages for PGA = 1×  
Analog Input  
((AINx+) − (AINx−)), Twos Complement  
Digital Output Code,  
V
/PGA  
GAIN  
REF  
AINx+  
AINx+  
Condition  
FS − 1 LSB  
Midscale + 1 LSB  
Midscale  
Midscale − 1 LSB  
−FS + 1 LSB  
−FS  
VREF = 2.5 V  
+2.499999702 V  
+298 nV  
0 V  
−298 nV  
(Hexadecimal)  
0x7FFFFF  
0x000001  
0x000000  
0xFFFFFF  
AVSSx + 0.1V  
−2.499999702 V  
−2.5 V  
0x800001  
0x800000  
Figure 103. Σ-Δ ADC Input Signal Configuration, Single-Ended Bipolar  
UNIPOLAR  
011 ... 111  
011 ... 110  
011 ... 101  
V
/PGA  
GAIN  
REF  
AINx+  
AINx+  
+ 0.1V  
100 ... 010  
100 ... 001  
Figure 104. Σ-Δ ADC Input Signal Configuration, Single-Ended Unipolar  
100 ... 000  
The common mode input signal is not limited, but keep the  
absolute input signal voltage on any AINx pin between  
AVSSx + 100 mV and AVDD1x − 100 mV; otherwise, the input  
signal linearity degrades and, if the signal voltage exceeds the  
absolute maximum signal rating, damages the device.  
–FSR  
–FSR + 1LSB  
+FSR – 1LSB  
–FSR + 0.5LSB  
+FSR – 1.5LSB  
ANALOG INPUT  
Figure 106. Transfer Function  
Figure 105 shows the maximum and minimum voltage common-  
mode range at different PGA gains for a maximum differential  
input voltage.  
Rev. 0 | Page 35 of 98  
 
 
 
 
 
 
AD7771  
Data Sheet  
MCLK  
START SYNC_OUT  
SYNC_IN  
RESET  
PGA  
GAIN 1, 2, 4, 8  
GAIN  
SCALING  
AND  
DIGITAL  
FILTER  
SINC3/  
SINC5  
DRDY  
DOUTx  
DCLK  
AINx+  
AINx–  
Σ-Δ  
MODULATOR  
CONVERSION  
DATA INTERFACE  
OFFSET  
CORRECTION  
SRC  
ESD  
PROTECTION  
SIGNAL CHAIN FOR CHANNEL x  
CONTROL BLOCK  
FORMAT0  
AND  
FORMAT1  
CONTROL  
OPTION  
PIN OR SPI  
PIN CONTROL  
SPI CONTROL  
MODE0 TO MODE3  
CS SCLK SDO SDI  
Figure 107. Top Level Core Signal Chain  
for the maximum common-mode voltage at maximum  
differential input signals.  
CORE SIGNAL CHAIN  
Each Σ-Δ ADC channel on the AD7771 has an identical signal path  
from the analog input pins to the digital output pins. Figure 107  
shows a top level implementation of this signal chain. Prior to  
each Σ-Δ ADC, a PGA maps sensor outputs into the ADC inputs,  
providing low input current in dc ( 8 nA, input current, and  
2 nA differential input current for high resolution mode), an  
8 pF input capacitance in ac, and configurable gains of 1, 2, 4,  
and 8. See the AN-1392 Application Note for more information.  
Each ADC channel has its own Σ-Δ modulator, which oversamples  
the analog input and passes the digital representation to the  
digital filter block. The data is filtered, scaled for gain and  
offset, and is then output on the data interface.  
INTERNAL REFERENCE AND REFERENCE BUFFERS  
The AD7771 integrates a 2.5 V, 10 ppm/°C (typical), voltage  
reference that is disabled at power-up. The buffered reference is  
available at Pin 49 and offers up to 10 mA of continuous current.  
A 100 nF capacitor is required if the reference is enabled.  
In applications where a low noise reference is required, it is  
recommended to add a low-pass filter (LPF) with a cutoff  
frequency (fCUTOFF) below 10 Hz to the REF_OUT pin. Connect  
the output of this filter to REFx+, and connect AVSSx to REFx−.  
In this scenario, configure the Σ-Δ reference as external. An  
example of performance with and without the output filter is  
shown in Figure 108.  
To minimize power consumption, the channels can be  
individually disabled.  
115  
V
= INTERNAL REFERENCE  
REF  
CAPACITIVE PGA  
fCUTOFF = 10Hz  
Each Σ-Δ ADC has a dedicated PGA, offering gain ranges of 1,  
2, 4, and 8. This PGA reduces the need for an external input buffer  
and allows the user to amplify small sensor signals to use the  
full dynamic range of the AD7771.  
105  
95  
The PGA maximizes the signal chain dynamic range for small  
sensor output signals.  
85  
The AD7771 uses chopping of the PGA to minimize offset and  
offset drift in the input amplifier, reducing the 1/f noise as well.  
For the AD7771, the chopping frequency is set to 128 kHz for  
high resolution mode, and 32 kHz for low power mode (see the  
AN-1392 Application Note for more information). The chopping  
tone is rejected by the sinc3 or sinc5 filters.  
75  
0.05  
0.50  
1.00  
2.00  
2.50  
DIFFERENTIAL INPUT VOLTAGE (V)  
Figure 108. SNR Adding External LPF with VREF = Internal Reference and  
CUTOFF = 10 Hz  
f
To minimize intermodulation effects that may cause an image  
in the band of interest, it is recommended to limit the input  
signal bandwidth to 2/3 of the chop frequency.  
The AD7771 can be used with an external reference connected  
between the REFx+ and REFx− pins. Recommended reference  
voltage sources for the AD7771 include the ADR441 and ADR4525  
family of low noise, high accuracy voltage references.  
The capacitive PGA common-mode voltage does not depend on  
the gain, and can be any value as long as the input signal voltage is  
within AVSSx + 100 mV to AVDD1x − 100 mV. See Figure 105  
Rev. 0 | Page 36 of 98  
 
 
 
 
 
Data Sheet  
AD7771  
DCLK DIVIDER  
1, 2, 4, 8, 16, 32, 64, 128  
MCLK DIVIDER  
HIGH RESOLUTION MODE: MCLK/4  
LOW POWER MODE: MCLK/8  
MCLK  
MOD_MCLK  
DCLKx  
DRDY  
AINx+  
AINx–  
DATA  
INTERFACE  
CONTROL  
ADC  
MODULATOR  
SINC  
FILTER  
PGA  
DOUT3  
TO  
DOUT0  
DEC RATES = ×16, ×32, ×64, ×128, ×256, ×512, ×1024, ×2048, ×4095.99  
Figure 109. Clock Generation on the AD7771  
The reference buffers can be operated in three different modes:  
buffer enabled mode, buffer bypassed mode, and buffer  
precharged mode.  
CLOCKING AND SAMPLING  
The AD7771 includes eight Σ-Δ ADC cores. Each ADC receives  
the same master clock signal. The AD7771 requires a maximum  
external MCLK frequency of 8192 kHz for high resolution mode  
and 4096 kHz for low power mode. The MCLK is internally  
divided by 4 in high performance mode and by 8 in low power  
mode to produce the modulator MCLK (MOD_MCLK) signal  
used as the modulator sampling clock for the ADCs. The MCLK  
can be decreased to accommodate lower ODRs if the minimum  
ODR selected by the sinc3 filter is not low enough. If the external  
clock is lower than 250 kHz, set the CLK_QUAL_DIS bit (in  
SPI control mode only).  
In buffer enabled mode, the buffer is fully enabled, minimizing  
the current requirements from the external references. Note that  
the buffer output voltage headroom is 100 mV from the rails.  
In buffer bypassed mode, the external reference is directly  
connected to the ADC reference capacitors; the reference must  
provide enough current to correctly charge the internal ADC  
reference capacitors. In this mode of operation, a degradation in  
crosstalk is expected because the ADC channels are not isolated  
from each other.  
The AD7771 integrates an internal oscillator clock that initializes  
the internal registers at power-up. The CLK_SEL pin defines the  
external clock used after initialization (see Table 12).  
Buffer precharged (pre-Q) mode is the default operation mode.  
It is a hybrid mode where the internal reference buffers are  
connected during the initial acquisition time to precharge the  
internal ADC reference capacitors. During the final phase of the  
acquisition, the reference is connected directly to the ADC  
capacitors. This mode has some benefits compared to the buffer  
enabled and buffer bypassed modes. In buffer pre-Q mode, the  
reference current requirements are minimized compared to  
buffer bypassed mode and the noise contribution from the  
internal reference buffers is removed (compared to buffer  
enabled mode).  
Table 12. Clock Sources  
CLK_SEL State Clock Source Connection  
0
CMOS  
Input to XTAL2/MCLK, IOVDD  
logic level. XTAL1 must be  
tied to DGND.  
1
Crystal  
Connected between XTAL1  
and XTAL2/MCLK.  
The MCLK signal generates the DCLK output signal, which in  
turn clocks the Σ-Δ conversion data from the AD7771, as  
shown in Figure 109.  
In buffer pre-Q mode, the headroom/footroom of the buffer  
reference is not applicable because the reference sets the final  
voltage in the ADC reference capacitors.  
DIGITAL RESET AND SYNCHRONIZATION PINS  
INTEGRATED LDOs  
An external pulse in the  
pin generates the internal  
SYNC_IN  
The AD7771 has three internal LDOs to regulate the internal  
supplies: two LDOs for the analog block and one LDO for the  
digital core. The internal LDOs requires an external 1 µF  
decoupling capacitor on the DREGCAP, AREG1CAP, and  
the AREG2CAP pins. The LDO slew rate may be low because  
it depends on the main supply slew rate; therefore, a hardware  
reset of the digital block; this pulse does not affect the data  
programmed in the internal registers. A pulse in this pin is  
required in two cases as follows:  
After updating one or more registers directly related to the  
sinc filter (power mode, offset, gain, phase compensation,  
and sinc filter).  
RESET  
reset generated by pulsing the  
pin at power-up is required  
To synchronize multiple devices.  
to guarantee that the digital block initializes correctly.  
SYNC_IN  
The pulse in the  
pin must be synchronous with MCLK.  
Rev. 0 | Page 37 of 98  
 
 
 
 
 
AD7771  
Data Sheet  
There are two different ways to achieve a synchronous pulse if  
the controller/processor cannot generate it as follows:  
The digital sinc3 filter implements three main notches, one at  
the maximum ODR (128 kHz or 32 kHz, depending on the  
power mode) and another two at the ODR frequency selected to  
stop noise aliasing into the pass band. The sinc5 filter implements  
five notches, one at the maximum ODR (128 kHz or 32 kHz,  
depending on the power mode) and another four at the ODR  
frequency selected to stop noise aliasing into the pass band.  
It is recommended to select the sinc5 digital filter for output  
data rates higher than 24 kSPS.  
Applying an asynchronous pulse on the  
pin, which  
START  
is then internally synchronized with the external MCLK  
clock, and the resulting synchronous signal is output on  
SYNC_OUT  
Triggering the  
the  
pin.  
SYNC_OUT  
internally. When the AD7771  
is configured in SPI control mode, toggling Bit 0 in the  
GENERAL_USER_CONFIG_2 register generates a  
Figure 111 and Figure 112 show the typical filter transfer  
function for the high resolution and low power modes using a  
decimation rate of 32 samples for the sinc3 and sinc5 filters.  
SYNC_OUT  
synchronous pulse that is output on the  
pin.  
SYNC_IN  
SYNC_OUT  
pins must be externally  
The  
and  
0
connected if internal synchronization is used.  
SINC3  
SINC5  
–10  
If multiple AD7771 devices must be synchronized, the  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
SYNC_OUT  
pin of one device can be connected to multiple  
devices. This synchronization method requires the use of a  
common MCLK signal for all the AD7771 devices connected,  
as shown in Figure 110.  
If the  
pin is not used, tie it to DGND.  
START  
ASYNCHRONOUS  
PULSE  
AD7771  
START  
SYNC_OUT  
MCLK  
SYNCHRONIZATION  
0
32  
64  
96  
128  
160  
192  
224  
256  
LOGIC  
FREQUENCY (MHz)  
DIGITAL FILTER  
Figure 111. Sinc3/Sinc5 Frequency Response in High Resoltuion Mode  
0
SYNC_IN  
SINC3  
SINC5  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
IOVDD  
AD7771  
START  
SYNC_OUT  
MCLK  
SYNCHRONIZATION  
MCLK  
NC  
LOGIC  
DIGITAL FILTER  
SYNC_IN  
IOVDD  
AD7771  
0
8
16  
24  
32  
40  
48  
56  
64  
START  
FREQUENCY (MHz)  
MCLK  
SYNC_OUT  
SYNCHRONIZATION  
NC  
LOGIC  
Figure 112. Sinc3/Sinc5 Frequency Response in Low Power Mode  
DIGITAL FILTER  
The sample rate converter feature allows fine tuning of the  
decimation rate, even for noninteger multiples of the decimation  
rate. See the Sample Rate Converter (SRC) section for more  
information on filter profiles for noninteger decimation rates.  
SYNC_IN  
Figure 110. Multiple AD7771 Devices Synchronization  
SHUTDOWN MODE  
DIGITAL FILTERING  
The AD7771 can be placed in shutdown mode by pulling  
AVDD2x to ground and connecting 1 MΩ resistance, pulled  
low, to XTAL2/MCLK. In this mode, the average current  
consumption is reduced to 1 mA, as shown in Figure 113.  
The AD7771 offers low latency sinc3 and sinc5 filters. Most  
precision Σ-Δ ADCs use sinc filters because the sinc filters offer  
a low latency path for applications requiring low bandwidth  
signals, for example, in control loops or where application  
specific postprocessing is required. The digital filter adds notches  
at multiples of the sampling frequency.  
Rev. 0 | Page 38 of 98  
 
 
 
 
 
Data Sheet  
AD7771  
1.0  
I
PIN CONTROL MODE  
AVDD1x  
I
I
I
AVDD2x  
AVDD4  
IOVDD  
In pin control mode, the AD7771 is configured at power-up  
based on the level of the mode pins, MODE0, MODE1, MODE2,  
and MODE3. These four pins set the following functions on the  
AD7771: the mode of operation, the decimation rate/ODR, the  
PGA gain, and the reference source, as shown in Table 14.  
AVDDx = 3.3V  
IOVDD = 3.3V  
0.5  
Due to the limited number of mode pins and the number of  
options available, the PGA gain control is grouped into blocks  
of 4, and the ODR is selected for the maximum value defined by  
the decimation rate; ODR (kHz) = 2048/decimation for high  
resolution mode, and ODR (kHz) = 512/decimation for low  
power mode.  
0
–0.5  
–40  
10  
60  
125  
TEMPERATURE (°C)  
Depending on the mode selected, the device is configured to  
use an external or an internal reference.  
Figure 113. Shutdown Current  
CONTROLLING THE AD7771  
The conversion data can be read back using the SPI or the data  
output interface, as shown in Table 13. If the data output interface is  
used to read back the data from the conversions, the number of  
DOUTx lines enabled and the number of clocks required for  
the Σ-Δ data transfer are determined by the logic level of the  
CONVST_SAR, FORMAT0, and FORMAT1 pins. In this case,  
the DCLK2, DCLK1, and DCLK0 pins select the Σ-Δ output  
interface and control the DCLKx divide function, which is a  
submultiple of MCLK, as shown in Table 15. The DCLKx divide  
function sets the frequency of the data output interface DCLKx  
signal. The DCLK minimum frequency depends on the  
decimation rate and operation mode. See the Data Output  
Interface section for more details about the minimum DCLKx  
frequency.  
The AD7771 can be controlled using either pin control mode or  
SPI control mode.  
Pin control mode allows the AD7771 to be hardwired to predefined  
settings that offer a subset of the overall functionality of the  
AD7771. In this mode, the SRC and diagnostic features or  
extended errors source are not available.  
Controlling the AD7771 over the SPI allows the user access to  
the full monitoring, diagnostic, and Σ-Δ control functionality.  
SPI control offers additional functionality such as offset, gain,  
and phase correction per channel, in addition to access to the  
flexible SRC to achieve a coherent sampling.  
See Table 13 for more details about these different configurations.  
All the pins that define the AD7771 configuration mode are  
reevaluated each time the  
pin is pulsed. The typical  
SYNC_IN  
connection diagram for pin control mode is shown in Figure 114.  
Table 13. Format of the Data Interface  
CONVST_SAR State  
FORMAT1  
FORMAT0  
Control Mode  
Data Output Mode  
1
0
0
1
1
0
0
1
1
1
0
Pin  
Pin  
Pin  
SPI  
Pin  
SPI output  
SPI output  
SPI output  
Defined in Register 0x014  
DOUT0, Channel 0 and Channel 1  
DOUT1, Channel 2 and Channel 3  
DOUT2, Channel 4 and Channel 5  
DOUT3, Channel 6 and Channel 7  
DOUT0, Channel 0 to Channel 3  
DOUT1, Channel 4 to Channel 7  
DOUT0, Channel 0 to Channel 7  
Defined in Register 0x014  
0
0
1
Pin  
1
1
0
1
Pin  
SPI  
Rev. 0 | Page 39 of 98  
 
 
 
 
AD7771  
Data Sheet  
Table 14. Pin Control Mode Options  
Pin State  
PGA Gain Channel  
Decimation  
Rate  
Channel 0 to Channel 4 to  
Reference  
MODE3  
MODE2  
MODE1  
MODE0  
Power Mode  
High resolution  
High resolution  
High resolution  
High resolution  
High resolution  
High resolution  
High resolution  
High resolution  
High resolution  
High resolution  
High resolution  
High resolution  
Low power  
Channel 3  
Channel 7  
Source  
External  
External  
External  
External  
External  
External  
External  
External  
External  
Internal  
Internal  
Internal  
External  
External  
External  
External  
Filter  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc3  
Sinc3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
16  
16  
32  
32  
64  
64  
128  
128  
256  
16  
32  
64  
16  
32  
64  
32  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
1
4
1
4
1
4
1
1
1
1
1
1
1
1
Low power  
Low power  
Low power  
Table 15. DCLKx Selection for Pin Control Mode State  
DCLK2/SCLK  
DCLK1/SDI  
DCLK0/SDO  
MCLK Divider  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
4
8
16  
32  
64  
128  
Rev. 0 | Page 40 of 98  
 
 
Data Sheet  
AD7771  
EXTERNAL  
REFERENCE  
AVDD 3.3V  
AVDD3.3V  
AVDD3.3V  
IOVDD 2V TO 3.6V  
AVSSx  
REFx+  
AVSSx  
AVSSx  
AVDD4  
AVSSx  
AVSSx  
AVSSx  
AVDD1x  
REFx–  
REF_OUT  
AVDD2x AREGxCAP IOVDD DREGCAP  
SYNC_IN  
SYNC_OUT  
START  
VCM  
VCM  
BUFFER  
BUFFER  
AD7771  
RESET  
DRDY  
AIN0+  
AIN0–  
PGA  
PGA  
DCLK  
ADC  
DOUT0  
DOUT1  
DOUT2  
DOUT3  
DATA  
SERIAL  
INTERFACE  
SPI/SPORT  
SLAVE  
AIN7+  
AIN7–  
24-BIT  
Σ-Δ  
ADC  
INTERFACE  
SINC3/SINC5  
FPGA  
SRC  
OR  
DSP  
CS  
SCLK  
SDO  
SPI  
CONTROL  
INTERFACE  
SPI  
MASTER  
INTERFACE  
SDI  
CLK_SEL  
AVSSx  
MODE3  
TO  
MODE0  
XTAL1  
XTAL2  
CONVST_SAR  
DCLK2  
TO  
DCLK0  
FORMAT1  
AND  
FORMAT0  
CLOCK  
SOURCE  
Figure 114. Pin Control Mode Connection Diagram with External Reference  
AVDD 3.3V  
AVDD3.3V  
IOVDD 2V TO 3.6V  
AVSSx  
REFx+  
AVSSx  
REFx–  
AVSSx  
AVSSx  
AVSSx  
AVDD1x  
REF_OUT  
AVDD4 AVDD2x AREGxCAP IOVDD DREGCAP  
SYNC_IN  
SYNC_OUT  
START  
VCM  
VCM  
BUFFER  
BUFFER  
AD7771  
RESET  
DRDY  
AIN0+  
AIN0–  
PGA  
PGA  
DCLK  
ADC  
DOUT0  
DOUT1  
DOUT2  
DOUT3  
DATA  
SERIAL  
INTERFACE  
SPI/SPORT  
SLAVE  
AIN7+  
AIN7–  
24-BIT  
Σ-Δ  
ADC  
INTERFACE  
SINC3/SINC5  
SRC  
FPGA  
OR  
DSP  
CS  
SPI  
CONTROL  
INTERFACE  
SCLK  
SDO  
SDI  
SPI  
MASTER  
INTERFACE  
DIAGNOSTIC  
INPUTS  
FULL BUFFER  
AUXAIN+  
AUXAIN–  
12-BIT  
SAR ADC  
CLK_SEL  
MUX  
AVSSx  
GPIO2  
TO  
GPIO0  
CONVST_SAR  
XTAL1  
XTAL2  
FORMAT1  
FORMAT0  
IOVDD  
IOVDD  
CLOCK  
SOURCE  
Figure 115. SPI Control Mode Connection Diagram with Internal Reference  
Rev. 0 | Page 41 of 98  
 
 
AD7771  
Data Sheet  
Then, an LSB of the offset register adjustment changes the digital  
output by −4/3 × 0.75 = 1 LSB. Program the gain register as follows:  
SPI CONTROL  
The second option for control and monitoring the AD7771 is  
via the SPI. This option allows access to the full functionality  
on the AD7771, including access to the SAR converter, phase  
synchronization, offset and gain adjustment, diagnostics, and  
the SRC. To use the SPI control, set the FORMAT0 and  
FORMAT1 pins to logic high.  
CHx_GAIN_UPPER_BYTE = 0x40  
CHx_GAIN_MID_BYTE = 0x00  
CHx_GAIN_LOWER_BYTE = 0x00  
SPI Control Functionality  
Global Control Functions  
In this mode, the SPI can also read the Σ-Δ conversation data by  
setting the SPI_SLAVE_MODE_EN bit.  
The following list details the global control functions of the  
AD7771:  
The typical connection diagram for SPI control mode is shown  
in Figure 115.  
High resolution and low power modes of operation  
ODR: SRC  
Sinc3 and sinc5 filters  
VCM buffer power-down  
Internal/external reference selection  
Enable, pre-Q, or bypassed reference buffer modes  
Internal reference power-down  
SAR diagnostic mux  
SAR power-down  
GPIO write/read  
SPI SAR conversion readback  
SPI slave mode—read Σ-Δ results  
SDO and DOUTx drive strength  
DOUTx mode  
Functionality Available in SPI Control Mode  
SPI control of the AD7771 offers the super set of the functions and  
diagnostics. The SPI Control Functionality section describes the  
functionality and diagnostics offered when in SPI control mode.  
Offset and Gain Correction  
Offset and gain registers are available for system calibration.  
The gain register is preprogrammed during final production for  
a PGA gain of 1, but can be overwritten with a new value if  
required.  
The gain register is 24 bits long and is split across three registers,  
CHx_GAIN_UPPER_BYTE, CHx_GAIN_MID_BYTE, and  
CHx_GAIN_LOWER_BYTE, which set the gain on a per  
channel basis.  
DCLK division  
Internal LDO bypassed  
Cyclic redundancy check (CRC) protection: enabled or  
disabled  
The gain value is relative to 0x555555, which represents a gain of 1.  
The offset register is 24 bits long and is spread across three byte  
registers, CHx_OFFSET_UPPER_BYTE, CHx_OFFSET_MID_  
BYTE, and CHx_OFFSET_LOWER_BYTE. The default value is  
0x000000 at power-up. Program the offset as a twos complement,  
signed 24-bit number. If the channel gain is set to its nominal  
value of 0x555555, an LSB of offset register adjustment changes  
the digital output by −4/3 LSBs.  
Per Channel Functions  
The following list details the per channel functions of the  
AD7771:  
PGA gain.  
Σ-Δ channel power-down.  
Phase delay: synchronization phase offset per channel.  
Calibration of offset.  
As an example of calibration, the offset measured is −200 LSB  
(with both AINx pins connected to the same potential).  
An offset adjustment of −150 LSB changes the digital output by  
−150 × (−4/3) = 200 LSBs (gain value = 0x555555), representing  
this number as two complement, 0xFFFFFF − 0x96 + 1 =  
0xFFFF70. Program the offset register as follows:  
Calibration of gain.  
Σ-Δ input signal mux.  
Channel error register.  
PGA gain.  
CHx_OFFSET_UPPER_BYTE = 0xFF  
CHx_OFFSET_MID_BYTE = 0xFF  
CHx_OFFSET_LOWER_BYTE = 0x70  
Phase Adjustment  
The AD7771 phase delay can be adjusted to compensate for phase  
mismatches between channels due to sensors or signal channel  
phase errors connected to the AD7771. Achieve phase adjustment  
by programming the CHx_SYNC_OFFSET register. This  
programming delays the synchronization signal by a certain  
number of modulator clocks (MOD_MCLK) to individually  
initiate the digital filter for each Σ-Δ ADC.  
Note that the offset compensation is performed before the gain  
compensation. The gain is programmed during final testing for  
PGAGAIN = 1. The gain register values can be overwritten; however,  
after a reset or power cycle, the gain register values revert to the  
hard coded programmed factory setting.  
If the gain required is 0.75 of the nominal value (0x555555), the  
value that must be programmed is  
The phase adjustment register is read during the pulse; conse-  
quently, any further changes on the register have no effect unless a  
pulse is generated (see the Digital Reset and Synchronization  
0x555555 × 0.75 = 0x400000  
Rev. 0 | Page 42 of 98  
 
 
 
Data Sheet  
AD7771  
Pins section for more information on how to generate a pulse in  
the pin).  
Refer to the Sample Rate Converter (SRC) section for more  
information.  
The phase offset register is multiplied internally by a factor that  
depends on the decimation rate, as shown in Table 16.  
GPIOx Pins  
If the AD7771 operates in SPI control mode, the mode pins  
operate as GPIOx pins, as shown in Figure 116. The GPIOx pins  
can be configured as inputs or outputs in any order.  
Table 16. Phase Adjustment vs. Decimation Rate  
Phase Adjustment Compensation  
Decimation Rate  
×1  
×2  
×4  
×8  
×16  
≤255  
≤511  
≤1023  
≤2047  
GPIO0  
GPIO1  
REGISTER  
MAP  
≤4095  
GPIO2  
The maximum phase delay cannot be equal to or greater than  
the decimation rate. If this is the case, the value changes  
internally to the decimation rate value minus 1.  
Figure 116. GPIOx Pin Functionality  
As an example, the phase mismatch between Channel 0 and  
Channel 1 is 5°, and the ODR is 5 kSPS in high resolution mode. In  
this case, the decimation rate is 2048 kHz/5 kHz = 409.6, which  
means that the offset register value is multiplied internally by 2.  
Configuration control and readback of the GPIOx pins are set  
via Bits[2:0] in the GPIO_CONFIG register (0 = input, 1 = output)  
and the GPIO_DATA register. Among other uses, the GPIOs  
can control an external mux connected to the auxiliary inputs of  
the SAR ADC. Use this mux to verify the results on the Σ-Δ ADCs.  
Assuming an input signal of 50 Hz, the number of MOD_  
MCLK pulses required to sample a full period is 2048 kHz/  
50 Hz = 40960 > 360°/40960 = 0.00878°.  
In addition, the GPIOx pins can be used to externally trigger a  
new decimation rate. Refer to the Sample Rate Converter (SRC)  
section for more information about this functionality.  
If a 5° delay is required, the number of MOD_MCLK delays  
must be 569 (5°/0.00878°) because the offset register is multiplied  
by 2; the final offset register value is 409.6/2 − 569/2, which  
gives a negative value. In this case, if the offset value programmed  
to the register is higher than 204 (for example, 210 × 2 = 420),  
the value is internally changed to 408, resulting in a phase  
compensation of 408 × 0.00878° = 3.58°.  
Σ-Δ Reference Configuration  
The AD7771 can operate with internal or external references. In  
addition, for diagnostic purposes, the analog supply can be used  
as a reference, as shown in Table 18. REFx−/REFx+ allow the  
selection of a voltage reference where the REFx+ voltage is  
lower than the voltage on the REFx− pin.  
PGA Gain  
The PGA gain can be selected individually by appropriately select-  
ing Bits[7:6] in the CHx_CONFIG register, as shown in Table 17.  
Table 18. Σ-Δ References  
Setting for  
ADC_MUX_CONFIG, Channel 0 to  
Channel 4 to  
Channel 7  
Table 17. PGA Gain Settings via CHx_CONFIG  
Bits[7:6]  
Channel 3  
CHx_CONFIG, Bits[7:6] Setting  
PGA Gain Setting  
00  
01  
10  
11  
REF1+/REF1−  
Internal reference  
AVDD1A/AVSS1A  
REF1−/REF1+  
REF2+/REF2−  
00  
01  
10  
11  
×1  
×2  
×4  
×8  
Internal reference  
AVDD1B/AVSS1B  
REF2−/REF2+  
Reference buffer operation is described in Table 19. The selected  
reference and buffer operation mode affect all channels.  
If the Σ-Δ reference is updated, it is recommended to apply a  
pulse on the pin to remove invalid samples during  
the transition of the reference.  
SYNC_IN  
If the Σ-Δ reference is updated, it is recommended to apply a  
SYNC_IN  
pulse on the  
pin to remove invalid samples during  
Decimation  
the transition of the reference.  
The decimation defines the sampling frequency as follows:  
In high resolution mode, the sampling frequency = MCLK/  
(4 × decimation)  
In low power mode, the sampling frequency = MCLK/  
(8 × decimation)  
Rev. 0 | Page 43 of 98  
 
 
 
 
AD7771  
Data Sheet  
Table 19. Reference Buffer Operation Modes  
Reference Buffer  
Operation Mode  
REFx+  
REFx−  
Enabled  
BUFFER_CONFIG_1, Bit 4 = 1; BUFFER_CONFIG_2, Bit 7 = 0 BUFFER_CONFIG_1, Bit 3 = 1; BUFFER_CONFIG_2, Bit 6 = 0  
Precharged  
Disabled  
BUFFER_CONFIG_1, Bit 4 = 1; BUFFER_CONFIG_2, Bit 7 = 1  
BUFFER_CONFIG_1, Bit 4 = 0  
BUFFER_CONFIG_1, Bit 3 = 1; BUFFER_CONFIG_2, Bit 6 = 1  
BUFFER_CONFIG_1, Bit 3 = 0  
Table 20. Additional Disable Power-Down Blocks  
Block  
Register  
Notes  
VCM  
GENERAL_USER_CONFIG_1, Bit 5  
BUFFER_CONFIG_1, Bits[4:3]  
GENERAL_USER_CONFIG_1, Bit 4  
CH_DISABLE, Bits[7:0]  
GENERAL_USER_CONFIG_1, Bit 3  
GENERAL_USER_CONFIG_1, Bit 2  
Enabled by default  
Precharge mode by default  
Disabled by default  
All channels enabled  
Disabled by default  
Enabled by default  
Reference Buffer  
Internal Reference Buffer  
Σ-Δ Channel  
SAR  
Internal Oscillator  
Power Modes  
DIGITAL SPI  
The AD7771 offers different power modes to improve the  
power efficiency, high resolution and low power mode, which  
can be controlled via GENERAL_USER_CONFIG_1, Bit 6. To  
further reduce the power, additional blocks can be disabled  
independently, as described in Table 20.  
The SPI serial interface on the AD7771 consists of four signals:  
CS  
SPI is shown in Figure 117.  
, SDI, SCLK, and SDO. A typical connection diagram of the  
DSP/FPGA  
AD7771  
CS  
SYNC_IN  
If the power mode changes, a pulse on the  
required.  
pin is  
SCLK  
SDI  
Sinc3 and Sinc5 Filters  
The AD7771 implements sinc3 and sinc5 digital filters. By  
default, the device powers up with the sinc3 filter, but it can be  
changed by setting GENERAL_USER_CONFIG_2, Bit 6. If the  
SDO  
Figure 117. SPI Control Interface—AD7771 is the SPI Slave, Digital Signal  
Processor (DSP)/Field Programmable Gate Array (FPGA) is the Master  
SYNC_IN  
sinc filter is changed, a pulse in the  
pin is required.  
LDO Bypassing  
The SPIs operates in Mode 0 and Mode 3, CPOL = 0, CPHA = 0  
(Mode 0) or CPOL = 1, CPHA = 1 (Mode 3).  
The internal LDOs can be individually bypassed and an external  
supply can be applied directly to the AREG1CAP, AREG2CAP,  
or DREGCAP pin. Table 21 shows the absolute minimum and  
maximum supplies for these pins, as well as the associated  
register used to bypass the regulator.  
In pin control mode, the SDI can read back the Σ-Δ results,  
depending on the level of the CONVST_SAR pin, as described in  
Table 13.  
In SPI control mode, the SPI transfers data into the on-chip  
registers while the SDO pin reads back data from the on-chip  
registers or reads the SAR or the Σ-Δ conversions results,  
depending on the selected operation mode.  
Table 21. LDO Bypassing  
Supply  
Min (V)  
BUFFER_CONFIG_2,  
Bits[2:0]1  
LDO  
Max (V)  
1.9  
1.9  
AREG1CAP 1XX  
AREG2CAP X1X  
1.85  
1.85  
1.65  
The SDO data source in SPI control mode is defined by the  
GENERAL_USER_CONFIG_2 and GENERAL_USER_  
CONFIG_3 registers, as described in Table 22.  
DREGCAP  
XX1  
1.9  
1 X means don’t care.  
Table 22. SPI Operation Mode in SPI Control Mode  
GENERAL_USER_ GENERAL_USER_  
CONFIG_2, Bit 5  
Setting  
CONFIG_3, Bit 4  
Setting1  
Mode  
0
0
1
0
1
X
Internal register  
Σ-Δ data conversion  
SAR conversion  
1 X means don’t care.  
Rev. 0 | Page 44 of 98  
 
 
 
 
 
 
Data Sheet  
AD7771  
In SPI control mode, there are four different levels of input/  
output (I/O) strength on the SDO pin that can be selected in  
GENERAL_USER_CONFIG_2, Bits[4:3], as described in Table 23.  
Enabling the SPI_CRC_TEST_EN bit results in a CRC checksum  
W
being performed on all the R/ operations. When SPI_CRC_  
TEST_EN is enabled, an 8-bit CRC word is appended to every  
SPI transaction for SAR and register map operations. For more  
information on Σ-Δ readback operations, see the CRC Header  
section.  
Table 23. SDO Strength  
GENERAL_USER_CONFIG_2, Bits[4:3] Setting  
Mode  
00  
01  
10  
11  
Nominal  
Strong  
Weak  
To ensure that the register write is successful, it is recommended to  
read back the register and verify the checksum.  
For CRC checksum calculations, the following polynomial is  
always used: x8 + x2 + x + 1. See the SPI Control Mode Checksum  
section for more information.  
Extra strong  
SCLK is the serial clock input for the device. All data transfers  
(on either SDO or SDI) occur with respect to this SCLK signal.  
SPI Read/Write Register Mode (SPI Control Mode)  
The SPI can operate in multiples of eight bits. For example, in  
SPI control mode, if the SDO pin is used to read back the data  
from the internal register or the SAR ADC, the data frame is  
16 bits wide (CRC disabled), as shown in Figure 118, or 24 bits  
wide (CRC enabled), as shown in Figure 119. In this case, the  
controller can generate one frame of 16 bits or 24 bits (with and  
without the CRC enabled), or two or three frames of 8 bits (with  
and without the CRC enabled). When the SDO pin reads back  
the data from the Σ-Δ channels, 64 bits must be read back from  
the controller (in this case, the controller can generate a frame  
of 64 bits—either 2 × 32 bits, 4 × 16 bits, or 8 × 8 bits).  
The AD7771 has on-board registers to configure and control  
the device.  
The registers have 7-bit addresses—the 7-bit register address on  
the SDI line selects the register for the read/write function. The  
W
7-bit register address follows the R/ bit in the SDI data. The  
8 bits on the SDI line following the 7-bit register address are the  
data to be written to the selected register if the SPI is a write  
transfer. Data on the SDI line is clocked into the AD7771 on  
the rising edge of SCLK, as shown in Figure 3.  
The data on the SDO line during the SPI transfer contains the  
8-bit 0010 0000 header: 8 bits of register data in the case of a read  
SPI CRC—Checksum Protection (SPI Control Mode)  
W
(R) operation, or 8 zeros in the case of a write ( ) operation.  
The AD7771 has a checksum mode that improves SPI  
With the CRC disabled, the basic data frame on the SDI line  
during the transfer is 16 bits long, as shown in Figure 118.  
When the CRC is enabled, a minimum frame length of 24 SCLK  
periods are required on SPI transfers. The 24 bits of data on the  
SDO line consist of an 8-bit header (0010 0000), 8 bits of data, and  
an 8-bit CRC (see Figure 119).  
robustness in SPI control mode. Using the checksum ensures  
that only valid data is written to a register and allows data read  
from the device to be validated. The SPI CRC can be enabled by  
setting the SPI_CRC_TEST_EN bit. If an error occurs during a  
register write, the SPI_CRC_ERR is set in the error register.  
CS  
SCLK  
SDI  
R/W A6  
A5  
1
A4  
0
A3  
0
A2  
0
A1  
0
A0  
0
D7  
R7  
D6  
R6  
D5  
R5  
D4  
R4  
D3  
R3  
D2  
R2  
D1  
R1  
D0  
R0  
SDO  
0
0
Figure 118. 16-Bit SPI Transfer—CRC Disabled  
CS  
SCLK  
SDI  
ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0  
R/W A6  
A5  
1
A4  
0
A3  
0
A2  
0
A1  
A0  
0
D7  
R7  
D6  
R6  
D5  
R5  
D4  
R4  
D3  
R3  
D2  
R2  
D1  
R1  
D0  
R0  
SDO  
ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0  
0
0
0
Figure 119. 24-Bit SPI Transfer—CRC Enabled  
Rev. 0 | Page 45 of 98  
 
 
 
 
AD7771  
Data Sheet  
SPI SAR Diagnostic Mode (SPI Control Mode)  
to the device, which is ignored because the SDO pin shifts out  
the content of the SAR ADC.  
Setting Bit 5 in the GENERAL_USER_CONFIG_2 register  
configures the SDO line to shift out data from the SAR ADC  
conversions, as described in Table 22.  
If consecutive conversions are performed in the SAR ADC, read  
back the result from the previous conversion before a new  
conversion is generated. Otherwise, the results are corrupted.  
In SAR mode, the AD7771 internal registers can be written to,  
but any readback command is ignored because the SDO data  
frame is dedicated to shift out the conversion results from the  
SAR ADC.  
Σ-Δ Data, ADC Mode  
In pin control mode, the SPI can be used to read back the Σ-Δ  
conversions as described in Table 13. In SPI control mode, the  
SPI reads back the Σ-Δ conversions by setting GENERAL_USER_  
CONFIG_3, Bit 4, as described in Table 22; in this mode, the  
AD7771 internal register can be written to, but any readback  
command is ignored because the SDO data frame is dedicated to  
shifting out the conversion results from the Σ-Δ ADCs. To  
avoid unwanted writes to the internal register, it is recommended  
to send a readback command, for example, 0x8000, to the device,  
which is ignored because the SDO pin shifts out the content of  
the Σ-Δ ADC.  
To exit this mode of operation, reset Bit 5 in the GENERAL_  
USER_CONFIG_2 register.  
The data on the SDO line during the SPI transfer contains a  
4-bit 0010 header and the 12-bit SAR conversion result if the  
CRC is disabled.  
When the CRC is enabled, a minimum frame length of 24 SCLK  
periods is required on SPI transfers. The 24 bits of data on the  
SDO line consist of a 4-bit header (0010), the 12-bit data, and  
an 8-bit CRC, as shown in Figure 120.  
The SDO pin data can be read back in any multiple of 8 bits, for  
example, as 64 bits, 2 × 32 bits, 4 × 16 bits, or 8 × 8 bits.  
Per the SPI read/write register mode (see the SPI Read/Write  
Register Mode section), the SDI line contains the R/ bit, a 7-bit  
register address, the 8-bit data, and an 8-bit CRC (if enabled).  
To avoid unwanted writes to the internal register while the SAR  
conversions are read back through the SDO line, it is recom-  
mended to send a readback command, for example, 0x8000,  
W
SPI Software Reset  
Keeping the SDI pin high during 64 consecutives clocks  
generates a software reset.  
CS  
SCLK  
ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0  
SDI  
R/W A6  
A5  
1
A4  
0
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR  
11  
SDO  
ICRC7 ICRC6 ICRC5 ICRC4 ICRC3 ICRC2 ICRC1 ICRC0  
0
0
10  
9
8
7
6
5
4
3
2
1
0
Figure 120. SAR ADC/Diagnostic Mode—CRC Enabled  
Rev. 0 | Page 46 of 98  
 
 
Data Sheet  
AD7771  
RMS NOISE AND RESOLUTION  
Table 24 through Table 27 show the dynamic range (DR), rms  
noise (RTI), effective number of bits (ENOB), and effective  
resolution (ER) of the AD7771 for various output data rates and  
gain settings. The numbers given are for the bipolar input range  
with an external 2.5 V reference. These numbers are typical and  
are generated with a differential input voltage of 0 V when the  
ADC is continuously converting on a single channel.  
It is important to note that the effective resolution is calculated  
using the rms noise; 16,384 consecutives samples were used to  
calculate the rms noise.  
Effective Resolution = log2(Input Range/RMS Noise)  
ENOB = (DR − 1.78)/6  
HIGH RESOLUTION MODE  
Table 24. DR and RTI for High Resolution Mode  
Gain = 1  
Gain = 2  
RTI  
Gain = 4  
RTI  
Gain = 8  
RTI  
Sinc  
Filter  
Decimation  
Rate  
Output Data  
Rate (SPS)  
f−3 dB  
(Hz)  
DR  
(dB)  
RTI  
DR  
DR  
DR  
(µV rms)  
(dB)  
(µV rms)  
(dB)  
(µV rms)  
(dB)  
(µV rms)  
Sinc5  
16  
32  
64  
256  
128  
256  
512  
1024  
128,000  
64,000  
32,000  
8,000  
26542.34  
13403.14  
6833.54  
1906.34  
4878.83  
2756.43  
1695.23  
899.33  
95.1  
31.32  
14.31  
7.90  
3.34  
9.01  
4.32  
2.86  
1.39  
91.7  
98.5  
22.68  
10.30  
4.85  
1.84  
4.88  
2.31  
1.51  
0.73  
87.1  
94.4  
19.39  
8.41  
3.65  
1.16  
2.99  
1.52  
0.96  
0.47  
82.0  
89.7  
96.9  
107.9  
99.6  
105.5  
109.5  
115.7  
17.11  
7.37  
3.14  
0.91  
2.26  
1.19  
0.75  
0.36  
101.8  
107.1  
114.4  
105.7  
112.1  
115.8  
122.0  
105.3  
113.8  
105.2  
111.5  
115.6  
121.6  
101.5  
111.6  
103.2  
109.3  
113.5  
119.6  
Sinc3  
16,000  
8,000  
4,000  
1,000  
Table 25. ENOB and ER for High Resolution Mode  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Sinc  
Filter  
Decimation  
Rate  
Output Data  
Rate (SPS)  
f−3 dB  
(Hz)  
ENOB  
(Bits)  
ER  
(Bits)  
ENOB  
(Bits)  
ER  
(Bits)  
ENOB  
(Bits)  
ER  
(Bits)  
ENOB  
(Bits)  
ER  
(Bits)  
Sinc5  
16  
32  
64  
256  
128  
256  
512  
1024  
128,000  
64,000  
32,000  
8,000  
26542.34  
13403.14  
6833.54  
1906.34  
4878.83  
2756.43  
1695.23  
899.33  
15.5  
16.6  
17.5  
18.7  
17.3  
18.3  
18.9  
20.0  
17.3  
18.4  
19.3  
20.5  
19.1  
20.1  
20.7  
21.8  
14.9  
16.1  
17.2  
18.6  
17.2  
18.2  
18.9  
19.9  
17.8  
18.9  
20.0  
21.4  
20.0  
21.0  
21.7  
22.7  
14.2  
15.4  
16.6  
18.2  
16.9  
17.9  
18.6  
19.6  
18.0  
19.2  
20.4  
22.0  
20.7  
21.6  
22.3  
23.3  
13.3  
14.6  
15.8  
17.6  
16.3  
17.2  
17.9  
18.9  
18.2  
19.4  
20.6  
22.4  
21.1  
22.0  
22.7  
23.7  
Sinc3  
16,000  
8,000  
4,000  
1,000  
Rev. 0 | Page 47 of 98  
 
 
 
AD7771  
Data Sheet  
LOW POWER MODE  
Table 26. DR and RTI for Low Power Mode  
Gain = 1  
RTI  
Gain = 2  
RTI  
Gain = 4  
RTI  
Gain = 8  
Sinc  
Filter  
Decimation  
Rate  
Output Data  
Rate (SPS)  
f−3 dB  
(Hz)  
DR  
(dB)  
DR  
(dB)  
DR  
(dB)  
DR  
(dB)  
RTI  
(µV rms)  
(µV rms)  
(µV rms)  
(µV rms)  
Sinc5  
16  
32  
64  
512  
64  
128  
256  
1024  
32,000  
16,000  
8,000  
1,000  
8,000  
4,000  
2,000  
500  
6833.54  
3548.74  
1906.34  
469.24  
94.3  
34.2  
15.7  
83.3  
25.2  
29.86  
9.47  
4.62  
2.1  
90.9  
97.8  
25.04  
11.22  
5.18  
86.5  
93.6  
20.5  
9.0  
4.03  
8.41  
8.9  
3.21  
1.57  
0.7  
81.3  
87.9  
96.1  
110.7  
90.8  
98.7  
104.8  
112.5  
19.43  
8.39  
3.46  
0.67  
6.11  
2.51  
1.27  
0.54  
100.9  
106.7  
117.1  
95.5  
105.4  
111.7  
118.6  
104.6  
116.8  
95.0  
105.1  
111.2  
118.2  
100.6  
114.4  
93.7  
102.7  
108.9  
116.2  
1.29  
Sinc3  
2756.43  
1695.23  
1164.63  
766.68  
15.26  
4.95  
2.41  
1.07  
Table 27. ENOB and ER for Low Power Mode  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Sinc  
Filter  
Decimation  
Rate  
Output Data  
Rate (SPS)  
f−3 dB  
(Hz)  
ENOB  
ER  
(Bits)  
ENOB  
(Bits)  
ER  
(Bits)  
ENOB  
(Bits)  
ER  
(Bits)  
ENOB  
ER  
(Bits  
(Bits)  
15.4  
16.5  
17.4  
19.2  
15.6  
17.2  
18.3  
19.4  
(Bits)  
13.2  
14.3  
15.7  
18.1  
14.8  
16.1  
17.1  
18.4  
Sinc5  
16  
32  
64  
512  
64  
128  
256  
1024  
32,000  
16,000  
8000  
1000  
8,000  
4,000  
2,000  
500  
6833.54  
3548.74  
1906.34  
469.24  
17.2  
18.3  
15.9  
17.6  
17.4  
19.0  
20.0  
21.2  
14.8  
16.0  
17.1  
19.1  
15.5  
17.2  
18.2  
19.3  
17.6  
18.8  
19.9  
21.9  
18.3  
19.9  
21.0  
22.2  
14.1  
15.3  
16.4  
18.7  
15.3  
16.8  
17.8  
19.0  
17.9  
19.1  
20.2  
19.2  
19.1  
20.6  
21.6  
22.8  
18.0  
19.2  
20.5  
22.8  
19.6  
20.9  
21.9  
23.1  
Sinc3  
2756.43  
1695.23  
1164.63  
766.68  
Rev. 0 | Page 48 of 98  
 
 
Data Sheet  
AD7771  
DIAGNOSTICS AND MONITORING  
the CMOS clock. In SPI control mode, if an error occurs in the  
handover, the EXT_MCLK_SWITCH_ERR bit is set in the  
general error register, GEN_ERR_REG_2.  
SELF DIAGNOSTICS ERROR  
The AD7771 includes self diagnostic features to guarantee the  
correct operation. If an error is detected, the ALERT pin (Pin 18  
when using pin control mode or Pin 16 when using SPI control  
mode) is pulled high to generate an external interruption to the  
controller. In addition, the header of the Σ-Δ output data  
contains an alert bit that informs the controller of a chip error  
(see the ADC Conversion Output—Header and Data section).  
If EXT_MCLK_SWITCH_ERR is set, this means that the device  
is operating using the internal oscillator.  
To use a slow external clock (<265 kHz), set the CLK_QUAL_  
DIS bit. Setting this bit also clears the error bit.  
If the external clock is between 132 kHz and 265 kHz, depending  
on the internal synchronization between the internal oscillator  
and the external clock, the error may not trigger. However, it is  
still recommended to set the CLK_QUAL_DIS bit.  
Both the ALERT pin and bit (status header) are automatically  
cleared if the error is no longer present. The errors related to the  
SPI do not recover automatically; read back the appropriate  
register to clear the error. The ALERT pin and bit reset in the  
next SPI access after the bit is read back.  
If a slow clock is not in use and the error triggers, a reset is required.  
Reset Detection  
If an error detector is manually disabled, it does not generate an  
internal error and, consequently, the register map or the  
ALERT pin and bit are not triggered.  
The AD7771 general error register contains a RESET_DETECTED  
bit. This bit is asserted if a reset pulse is applied to the AD7771  
and is cleared by reading the general error register. This bit  
indicates that the power-on reset (POR) initialized correctly on  
the device. In addition, this bit can be used to detect an unexpected  
device reset or glitch on the  
in SPI control mode, toggle the  
general error register, GEN_ERR_REG_2. To reset this error  
There are different sources of errors, as described in Table 28. In  
pin control code, it is not possible to check the error source, and  
some sources of error are not enabled. In SPI control mode, check  
the source of an error by reading the appropriate register bit.  
RESET  
pin. To reset this error signal  
SYNC_IN  
pin or read from the  
The STATUS_REG_x register bits identify the register that  
generates an error, as summarized in Table 28.  
SYNC_IN  
signal in pin control mode, toggle the  
pin.  
Table 28. Register Error Source  
Bit Name  
ERR_LOC_GEN2  
ERR_LOC_GEN1  
ERR_LOC_CH7  
ERR_LOC_CH6  
ERR_LOC_CH5  
ERR_LOC_CH4  
ERR_LOC_CH3  
ERR_LOC_CH2  
ERR_LOC_CH1  
ERR_LOC_CH0  
ERR_LOC_SAT_CH6_7  
ERR_LOC_SAT_CH4_5  
ERR_LOC_SAT_CH2_3  
ERR_LOC_SAT_CH0_1  
Internal LDO Status  
Register Source  
GEN_ERR_REG_2  
GEN_ERR_REG_1  
CH7_ERR_REG  
CH6_ERR_REG  
CH5_ERR_REG  
CH4_ERR_REG  
CH3_ERR_REG  
CH2_ERR_REG  
CH1_ERR_REG  
CH0_ERR_REG  
CH6_7_SAT_ERR  
CH4_5_SAT_ERR  
CH2_3_SAT_ERR  
CH0_1_SAT_ERR  
The AD7771 has three internal LDOs to regulate the internal  
analog and digital supply rails. The LDOs have internal power  
supply monitors. Internal comparators monitor and flag errors  
with these supplies after they pass a predetermined limit.  
The ALDO1_PSM_ERR, ALDO2_PSM_ERR, and DLDO_PSM_  
ERR bits indicate either an LDO malfunction, or, if the LDOs  
are bypassed, an incorrect external supply.  
The internal analog and digital voltage monitors can be disabled  
by appropriately selecting the LDO_PSM_TEST_EN bits.  
Use the SAR ADC to verify the error.  
Additionally, the levels of the internal monitors can be manually  
triggered to check if the detector works correctly by appropriately  
setting the LDO_PSM_TRIP_TEST_EN bits. These bits increase  
the comparator window threshold above the LDO outputs,  
forcing the comparator to trigger.  
In addition, the STATUS_REG_x registers have a bit that indicates  
if any internal error bit is set, CHIP_ERROR. This bit clears if the  
error is no longer present and the register is read back.  
ROM and Memory Map CRC  
If an error is found at power-up during the ROM verification,  
or if the internal memory map is corrupted, the AD7771  
generates an error and sets MEMMAP_CRC_ERR or ROM_  
CRC_ERR, depending on the source of the error.  
The INIT_COMPLETE bit in the STATUS_REG_3 indicates  
that the device is initialized correctly. This bit is not an error bit but  
an indicator.  
General Errors  
The checker can be disabled by clearing the MEMMAP_  
CRC_TEST_EN and ROM_CRC_TEST_EN bits.  
MCLK Switch Error (SPI Control Mode)  
After power-up, the AD7771 initiates a clocking handover  
sequence to pass clocking control to the external oscillator, or  
The device must be reset if any of these errors trigger.  
Rev. 0 | Page 49 of 98  
 
 
 
 
AD7771  
Data Sheet  
Σ-Δ ADC Errors  
Output Saturation  
Reference Detect (SPI Control Mode)  
An output saturation event can occur when gain and offset  
calibration causes the output from the digital filter to clip at  
either positive or negative full scale. The output does not wrap.  
Reading the CHx_ERR_OUTPUT_SAT bit clears the bit if the  
error corrects itself.  
In SPI control mode, the AD7771 includes on-chip circuitry to  
detect if there is a valid reference for conversions or calibrations. If  
the voltage between the selected REFx+ and REFx− pins goes  
below 0.7 V, the AD7771 detects that it no longer has a valid  
reference. CHx_ERR_REF_DET can be interrogated to identify  
the affected channel, which clears the bits if the error is no  
longer present. The voltage detector can be disabled by clearing  
the REF_DET_TEST_EN bit.  
The detection can be disabled by clearing OUTPUT_SAT_  
TEST_EN bit.  
SPI Transmission Errors (SPI Control Mode)  
All SPI errors clear after reading GEN_ERR_REG_1, which  
contains the SPI errors. These errors are not recovered automatically  
and, consequently, the ALERT pin and the ALERT bit remain  
set until the error register is read back.  
Use the Σ-Δ ADC diagnostic or the SAR ADC to verify the error.  
Overvoltage and Undervoltage Events  
The AD7771 includes on-chip overvoltage/undervoltage  
circuitry on each analog input pin. When the voltage on an  
analog input pin goes above AVDD1x + 0.04 mV, the CHx_  
ERR_AINx_OV bit is set. The error disappears if the input  
voltage falls below AVDD1x − 40 mV.  
CRC Checksum Error  
If the CRC checksum is enabled by setting the SPI_CRC_  
TEST_EN bit, an error bit, SPI_CRC_ERR, is raised if the CRC  
message does not match the message computed by the AD7771  
internal CRC block. If the CRC message does not match the  
internally computed message, the register is not updated.  
If an undervoltage event occurs (AVSSx − 40 mV), the CHx_  
ERR_AINx_UV bit is set. The error disappears if the input  
voltage increases to AVSSx + 0.04 V.  
SCLK Counter  
The CHx_ERR_AINM_UV, CHx_ERR_AINM_OV, CHx_ERR_  
AINP_UV, and CHx_ERR_AINP_OV bits can be read back to  
verify the affected channel input, which clears the bits if the  
error is no longer present. The overvoltage and undervoltage  
detection can be disabled independently by clearing the AINM_  
UV_TEST_EN, AINM_OV_TEST_EN, AINP_UV_TEST_EN,  
or AINP_OV_TEST_EN bit.  
If the number of clocks generated by the controller is not a  
CS  
multiple of 8 after  
is pulled high, an error bit, SPI_CLK_  
COUNT_ERR is raised. The last command multiple of 8 is  
executed; however, the SCLK counter can be disabled by setting  
the SPI_CLK_COUNT_TEST_EN bit.  
Invalid Read  
When attempting to read back an invalid register address, the  
SPI_INVALID_READ_ERR bit is set.  
The input voltage can be checked independently with the  
SAR ADC.  
The invalid readback address detection can be disabled by  
setting the SPI_INVALID_READ_TEST_EN bit.  
Modulator Saturation  
The AD7771 includes modulator saturation detection on each  
of the Σ-Δ ADCs. If 20 consecutive codes for the modulator  
are either all 1s or 0s, this condition is flagged as a modulator  
saturation event. Reading CHx_ERR_MOD_SAT clears the bit  
if the error corrects itself.  
Invalid Write  
When attempting to write to an invalid register address, the  
SPI_INVALID_WRITE_ERR bit is set.  
The invalid write address detection can be disabled by setting  
the SPI_INVALID_WRITE_TEST_EN bit.  
Modulator saturation detection can be disabled by clearing the  
MOD_SAT_TEST_EN bit.  
MONITORING USING THE AD7771 SAR ADC  
(SPI CONTROL MODE)  
Note that the modulator input voltage is attenuated internally,  
which means that a modulator output of all 1s or 0s represents a  
The AD7771 contains an on-chip SAR ADC for chip diagnostics,  
system diagnostics, or measurement verification. The SAR ADC  
has a 12-bit resolution. The AVDD4 and AVSS4 pins operate in  
complete independence of the Σ-Δ ADC supplies and, therefore,  
can be used for chip diagnostics in systems where functional  
safety is important. The reference for the SAR conversion  
process is taken from the SAR ADC supply voltage (AVDD4/  
AVSS4) and, therefore, the SAR analog input range is from AVSS4  
to AVDD4.  
RESET  
modulator that is out of bounds and that a  
pulse is required.  
Filter Saturation  
TheAD7771 includes digital filter saturation detection on each  
Σ-Δ ADC channel. This detection indicates that the filter output is  
out of bounds, which represents an output code approximately 20%  
higher than positive or negative full scale. Reading the CHx_ERR_  
FILTER_SAT bit clears the bit if the error corrects itself.  
The detection can be disabled by clearing FILTER_SAT_TEST_  
EN bit.  
Rev. 0 | Page 50 of 98  
 
 
Data Sheet  
AD7771  
The SAR ADC has a maximum throughput rate of 256 kSPS.  
The CONVST_SAR pin initiates a conversion on the SAR ADC.  
The maximum allowable frequency of the CONVST_SAR pin is  
256 kHz. If consecutive conversions are performed in the SAR  
ADC, read back the result from the previous conversion before  
a new conversion is generated. Otherwise, the results are  
corrupted.  
Use the auxiliary inputs, AUXAIN+ and AUXAIN−, to validate  
the Σ-Δ measurements. While operating in SPI control mode,  
the AD7771 has three available GPIOx ports controlled via the  
SPI. The GPIOx pins can be used to control an external, dual  
8:1 multiplexer, which, in turn, samples the eight Σ-Δ channels.  
Use this diagnostic in applications where functional safety is  
required. This diagnostic aids in removing the need for a  
secondary external ADC to validate primary measurements on  
the Σ-Δ channels.  
The SAR ADC is only available in SPI control mode. To read  
conversion results from the SAR ADC, set the SAR_DIAG_  
MODE_EN bit. After this bit is set, all data shifted out from the  
SDO pin originates from the SAR ADC conversion, as shown in  
Figure 121.  
Temperature Sensor  
The internal die temperature can be measured with an accuracy  
of 2°C. The differential voltage base emitter (DVBE) is  
proportional to the temperature measured referred to 25°C.  
The CONVST_SAR signal can be internally deglitched to avoid  
false triggers.  
DVBE 0.6 V  
Temperature (°C) =  
2 mV  
Table 29. SAR Synchronization and Deglitching  
CONVST_DEGLITCH_DIS  
(Register 0x013, Bits[7:6]) Effect on CONVST_SAR  
Table 30. SAR Mux Inputs  
SAR  
Input  
Positive  
Signal  
Negative  
Signal  
11  
10  
CONVST_SAR goes directly to the SAR  
CONVST_SAR reaches the SAR when  
it is 1.5/MCLK cycles wide  
Attenuation ÷ 6  
0
1
2
3
4
5
6
7
AUXAIN+  
DVBE  
REF1+  
REF2+  
REF_OUT  
VCM  
AREG1CAP  
AREG2CAP  
DREGCAP  
AVDD1A  
AVDD1B  
AVDD2A  
AVDD2B  
IOVDD  
AVDD4  
DGND  
AUXAIN−  
AVSSx  
REF1−  
REF2−  
AVSSx  
AVSSx  
AVSSx  
AVSSx  
DGND  
AVSSx  
AVSSx  
AVSSx  
AVSSx  
DGND  
AVSSx  
AVSSx  
AVSSx  
AVSSx  
AVSSx  
AVSSx  
AVSSx  
AVDD4  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
Yes  
Increase the acquisition time by 1.5/MCLK when the deglitch  
circuitry is enabled.  
Prior to the SAR ADC, the AD7771 contains an internal  
multiplexer. This multiplexer can be configured over the SPI to  
set the inputs to the SAR ADC to be either internal circuit  
nodes (in the case of diagnostics) or to select the external  
AUXAIN+ and AUXAIN− pins.  
8
9
Along with converting external voltages, the SAR ADC monitors  
the internal nodes on the AVDD, IOVDD, and DGND pins, and  
the DLDO and analog LDO (ALDO) outputs. Some voltages are  
internally attenuated by 6, and the resulting voltage is applied to  
the SAR ADC, as shown in Table 30. This is useful because  
variations in the power supply voltage can be monitored.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
The input multiplexer of the SAR is controlled by the GLOBAL_  
MUX_CONFIG register, and the different inputs available are  
described in Table 30.  
DGND  
DGND  
AVDD4  
REF1+  
REF2+  
The SAR ADC also contains an SAR driver amplifier, as shown  
in Figure 122. This amplifier settles the SAR input to 12-bit  
accuracy within the t33 time. This driver amplifier helps  
minimize the kickback from the SAR converter to the global  
diagnostic mux input circuit nodes.  
AVSSx  
CS  
SET BIT 5  
GENERAL_USER_CONFIG_2 REG  
WRITE TO ADC MUX REGISTER  
ADC CONVERSION RESULT REG  
WRITE TO ADC MUX REGISTER  
ADC CONVERSION RESULT REG  
SDI  
SDO  
Figure 121. Configuring the AD7771 to Operate the SPI to Read from the SAR ADC  
Rev. 0 | Page 51 of 98  
 
 
 
AD7771  
Data Sheet  
AVDD4  
AVSS4  
DEGLITCH  
CONVST_SAR  
AUXAIN+  
AUXAIN–  
REF  
FIFO  
SAR ADC  
MUX  
SAR DRIVER  
CONTROL LOGIC  
SPI  
ON-CHIP  
DIAGNOSTICS  
Figure 122. SAR ADC Configuration and Control  
Table 31. Σ-Δ Diagnostic  
Input  
Voltage  
Floating  
Floating  
Recommended Voltage Reference  
Not applicable  
Not applicable  
Internal/external  
External  
External  
External  
Internal  
Internal  
Notes/Result  
0
1
2
3
4
5
6
7
8
9
Not applicable  
Not applicable  
PGA gain verification  
Positive full scale  
Negative full scale  
Zero scale  
Positive full scale  
Negative full scale  
Zero scale  
280 mV differential signal  
External reference, positive/negative  
External reference, negative/positive  
External reference, negative/negative  
Internal reference, positive/negative  
Internal reference, negative/positive  
Internal reference, positive/positive  
External reference, positive/positive  
Internal  
External  
Zero scale  
There are two different ways to enable the diagnostic mux, as  
follows:  
Σ-Δ ADC DIAGNOSTICS (SPI CONTROL MODE)  
The AD7771 Σ-Δ ADC diagnostic functions are accessible  
through the SPI. The internal mux placed before the PGA has  
different inputs, allowing the user to select a zero-scale, positive  
full-scale, or negative full-scale input to the Σ-Δ ADC, which  
can be converted to verify the correct operation of the  
Σ-Δ ADC channel.  
Setting the CHx_RX bit. This bit enables the input Σ-Δ  
mux. The multiplexer inputs are described in Table 31. The  
reference used during the conversions are controlled by the  
REF_MUX_CTRL bits.  
Setting CHx_REF_MONITOR. This bit has the same effect  
as enabling the CHx_RX bit and selects the VDD1x/  
AVSSx supplies as the main reference.  
The diagnostic mux control signals are shared across all the Σ-Δ  
channels. Depending on the diagnostic selected, connect the  
Σ-Δ ADC reference to a different reference source to guarantee  
that the conversion is within the measurable range.  
If the AINx pin is connected to AVSSx, the input range is  
outside the range of AVSSx + 100 mV; therefore, results may  
differ slightly from the expected value.  
Alternatively, the inputs can be used to calibrate gain and offset  
errors.  
Rev. 0 | Page 52 of 98  
 
 
 
Data Sheet  
AD7771  
Σ-∆ OUTPUT DATA  
ADC CONVERSION OUTPUT—HEADER AND DATA  
Table 32. Channel ID  
Channel  
CH_ID_2  
CH_ID_1  
CH_ID_0  
The AD7771 Σ-Δ conversion results are output on the DOUT0  
to DOUT3 pins or over the SPI, depending on the selected  
interface. If the DOUTx interface is selected, the AD7771 acts  
as the master in the transmission. If the SPI is selected, the  
controller is the master.  
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DRDY  
The  
signal indicates the end of conversion independent of  
the interface selected to read back the Σ-Δ conversion. When  
the SPI reads back the Σ-Δ conversion, if a new conversion is  
DRDY  
completed (  
falling edge) before the previous conversion is  
read back, the results from previous conversion are overwritten  
and, consequently, the previous conversion data is corrupted.  
The CRC generated is eight bits long; the 4 MSBs are placed on the  
header for the first channel in the pairing and the 4 LSBs on the  
header of the second channel in the pairing, as shown in  
Table 33. If a channel is disabled, the 24-bit output data for this  
channel is 0x000000.  
For each channel, the width is 32 bits long: 8 bits for the header  
and 24 bits for the Σ-Δ conversion, as shown in Figure 123.  
DRDY  
Table 33. 8-Bit CRC, Header Configuration (Channel 2)  
CE  
0
1
0
CRC7  
CRC6  
CRC5  
CRC4  
ADC DATA N  
24-BITS  
DOUTx N – 1  
HEADER N  
8-BITS  
Table 34. 8-Bit CRC, Header Configuration (Channel 3)  
CE CRC3 CRC2 CRC1 CRC0  
0
1
1
Figure 123. ADC Output—8-Bit Header Plus 24-Bit Conversion Data  
In pin control mode, the header is fixed to the CRC while in SPI  
mode, and can be selected between the CRC and error headers.  
Error Header (SPI Control Mode)  
In SPI control mode, the default header can be replaced by an  
error header. If the Σ-Δ conversion is read back through the  
SPI, disable the CRC by clearing the SPI_CRC_TEST_EN bit. If  
the DOUTx interface is used, clear the DOUT_HEADER_  
FORMAT bit.  
CRC Header  
The CRC header is the header generated in pin control mode or  
in SPI control mode if DOUT_HEADER_FORMAT is set.  
As shown in Figure 124, the header consists of an alert bit,  
three bits for the ADC channel ID, as shown in Table 32, and  
four bits for the CRC.  
The error header provides information of common error  
sources specific for each channel, as shown in Table 35.  
Modulator and filter errors are indicated even if the checker for  
these errors are specifically disabled, as described in the Σ-Δ  
ADC Errors section.  
The alert bit is set high if an error is detected in any channel, as  
explained in the General Errors section. The alert bit remains  
set to 1 until the error disappears.  
CHANNEL CHANNEL CHANNEL  
ALERT  
CRC CRC CRC CRC  
NUMBER  
NUMBER  
NUMBER  
Figure 124. CRC Header  
Table 35. Status Header Output  
Bits Name  
Description  
7
Alert  
This bit is set high if any of the enabled diagnostic functions have detected an error, including an  
external clock not detected, a memory map bit flip, or an internal CRC error. This bit is not channel specific.  
This bit clears if the error is no longer present.  
6:4  
3
2
CH_ID_[2:0]  
RESET_DETECTED  
MODULATOR_SATURATE  
These bits indicate which ADC channel the following conversion data came from (see Table 32).  
This bit indicates if a reset condition occurs. This bit is not channel specific.  
This bit indicates that the modulator output is 20 consecutive 0s or 1s. The bit resets automatically  
after the error is no longer present.  
1
0
FILTER_SATURATE  
AIN_OV_UVERROR  
This bit indicates that the filter output is out of bounds. The bit resets automatically after the error is  
no longer present.  
This bit indicates that there is an AINx overvoltage/undervoltage condition on the inputs. This bit is  
set until the appropriate register is read back and the error is no longer present.  
Rev. 0 | Page 53 of 98  
 
 
 
 
 
 
 
 
AD7771  
Data Sheet  
The ODR can be updated on the fly, but a new ODR is effective  
in three conversion cycles of the Σ-Δ ADCs. This condition  
guarantees a smooth transition with no conversion results out  
of range.  
SAMPLE RATE CONVERTER (SRC) (SPI CONTROL  
MODE)  
The AD7771 implements a patented featured called the SRC on  
each Σ-Δ channel that allows the user to configure the output  
data rate or sampling frequency to any desired value, including  
noninteger values. The SRC achieves fine resolution control  
over the Σ-Δ ADC ODR, up to 15.2 µSPS. In applications where  
the ODR must change based on changes in the input signal to  
maintain sampling coherency, the SRC provides fine control  
over the ODR. For example, to achieve the highest classification  
standard, Class A, in power quality applications, coherency  
must be maintained for 0.01 Hz changes in the input power  
line. Use the SRC to achieve this sampling frequency accuracy.  
There are two different ways to change the ODR after a new  
value is written in the SRC registers: via software or via  
hardware, depending on the SRC_LOAD_SOURCE bit  
(SRC_UPDATE register, Bit 7).  
If the SRC_LOAD_SOURCE bit is clear, the new ODR value is  
updated by setting the SRC_LOAD_UPDATE bit to 1. This bit  
must be held high for at least two MLCK periods; return the bit  
to 0 before attempting another update.  
If SRC_LOAD_SOURCE is set, the GPIO0 pin controls the ODR  
update externally. Apply a pulse in the GPIO2 pin, which is then  
internally synchronized with the external MCLK clock, and the  
resultant synchronous signal is output on the GPIO1 pin.  
In pin control mode, the ODR is fixed per the predefined pin  
control options. Consequently, a noninteger number cannot be  
selected, as shown in Table 13.  
To set the ODR, the user must program up to four registers,  
depending on the decimation value: two registers to program the  
integer value, N (the effective decimation rate), and two registers  
to program the decimal value, the interpolation factor (IF).  
The GPIO1 and GPIO0 pins must be externally connected.  
If multiple AD7771 devices must be synchronized, the GPIO1 pin  
of one device can be connected to multiple devices. This synchro-  
nization method requires the use of a common MCLK signal for all  
the AD7771 devices connected, as shown in Figure 125.  
The integer value registers are SRC_N_MSB, Bits[3:0] and  
SRC_N_LSB, Bits[7:0]. The decimal part value registers are  
SRC_IF_MSB, Bits[7:0] and SRC_IF_LSB, Bits[7:0].  
PULSE  
AD7771  
As an example, if an output data rate of 2.8 kHz is required, the  
decimation rate equates to  
GPIO2  
GPIO1  
MCLK  
SYNCHRONIZATION  
LOGIC  
High resolution mode = 2048/2.8 = 731.428  
Low power mode = 512/2.8 = 182.857  
DIGITAL FILTER  
GPIO0  
The register values for high resolution mode are as follows:  
731 (decimal) = 0x2DB  
SRC_N_MSB, Bits[3:0] = 0x02  
SRC_N_LSB, Bits[7:0] = 0xDB  
AD7771  
0.428 (decimal) = 0.428 × 216 = 28049 (decimal) = 0x6D91  
SRC_IF_MSB, Bits[7:0] = 0x6D  
SRC_IF_LSB, Bits[7:0] = 0x91  
GPIO2  
GPIO1  
MCLK  
SYNCHRONIZATION  
MCLK  
NC  
LOGIC  
DIGITAL FILTER  
The SRC resolution depends on the decimal number used in the  
decimation, as well as the modulator clock (MOD_MCLK), as  
follows:  
GPIO0  
MODMCLK  
16 ×DEC2 + 3×DEC + 2×  
AD7771  
Resolution =  
GPIO2  
1
2
MCLK  
GPIO1  
SYNCHRONIZATION  
216  
NC  
LOGIC  
where:  
MODMCLK is the modulator frequency.  
DIGITAL FILTER  
GPIO0  
DEC is the decimal portion of the decimation rate.  
In high resolution mode, for a decimal decimation of 450, the  
resolution is defined as  
Figure 125. Hardware ODR Update  
2048  
= 15.2 ×10–6 SPS  
1
2
16 × 4502 + 3× 4502 ×  
216  
Rev. 0 | Page 54 of 98  
 
 
Data Sheet  
AD7771  
40  
35  
30  
25  
20  
15  
10  
5
SRC Bandwidth  
The sinc3 and sinc5 filters architecture allows the user to select  
a noninteger value as the decimation range This versatility  
means that the filter notches must be adjusted dynamically:  
two notches (sinc3) or four notches (sinc5) at the variable  
frequency, and one fixed notch to remove the PGA chopping  
tone. Consequently, the traditional formula for the −0.1 dB and  
−3 dB bandwidth must be adjusted depending on the selected  
decimation rate.  
y = 0.2653x + 634.03  
The bandwidth transfer function is not linear but can be  
approximated by using a linear function.  
0
Figure 126 to Figure 129 show the correction factor for the  
−0.1 dB and −3 dB bandwidth, respectively. In low power mode,  
the offset must be divided by 4. For example, for sinc5 when the  
ODR = 1000 SPS, the −0.1 dB point is  
0
50  
100  
ODR (kHz)  
Figure 128. −3 dB Correction Factor, Sinc3 Filter Enabled  
30  
25  
20  
15  
10  
5
49.355  
BW = 0.0377 × 1000 +  
= 50.03 Hz  
4
7
6
y = 0.2053x + 263.94  
5
y = 0.049x + 120.41  
4
3
2
1
0
0
50  
100  
ODR (kHz)  
Figure 129. −3 dB Correction Factor, Sinc5 Filter Enabled  
0
0
SRC Group Delay  
50  
100  
ODR (kHz)  
The SRC group delay depends on the selected ODR and is  
defined by the following equation:  
Figure 126. −0.1 dB Correction Factor, Sinc3 Filter Enabled  
6
PM + SRC _ N  
SRC Group Delay =  
SRC _ N ×ODR  
5
where:  
4
PM is a constant equal to 8.  
y = 0.0377x + 49.355  
SRC_N is the integer value of the programmed ODR.  
ODR is the programmed output data rate.  
3
When using the sinc5 filter, the equation that defines the group  
delay is  
2
1
0
PM + 2×SRC _ N  
SRC Group Delay =  
SRC _ N ×ODR  
0
50  
100  
The latency is the contribution of the group delay and the  
calibration time.  
ODR (kHz)  
Figure 127. −0.1 dB Correction Factor, Sinc5 Filter Enabled  
Latency = Group Delay + tCAL  
In high resolution mode, the calibration delay is defined as 62 ×  
tMCLK, with a maximum error of 2 × tMCLK. In low power mode,  
the calibration delay is defined as 121 × tMCLK, with a maximum  
error of 4 × tMCLK. tMCLK is the modulator period and is 488 ns in  
high resolution mode and 1.9 µs in low power mode.  
Rev. 0 | Page 55 of 98  
 
 
 
 
AD7771  
Data Sheet  
Settling Time  
is configured in SPI control mode, the SPI_SLAVE_MODE_  
EN bit enables the SPI to transmit the Σ-Δ ADC conversion  
results, as shown in Table 22.  
The settling time is defined by the contribution of all the internal  
stages, the filter delay, and the block calibration.  
DOUT3 to DOUT0 Data Interface  
When using the sinc3 filter option, the filter delay is defined as  
3/ODR. In some extreme cases, such as when an external pulse is  
applied, this value may increase to 4/ODR. If using the sinc5 filter,  
the filter delay is defined as 5/ODR, or 6/ODR for extreme cases.  
Standalone Mode  
In standalone mode, the AD7771 interface acts as a master.  
There are three different DOUT configurations, configurable  
through the FORMATx pins in pin control mode, as shown in  
Figure 130 through Figure 132, or via the DOUT_FORMAT bits,  
Bits[7:6], in SPI control mode, as described in Table 36.  
DATA OUTPUT INTERFACE  
The Σ-Δ output data interface is defined by the CONVST_SAR,  
FORMAT0, and FORMAT1 pins in pin control mode at power-up.  
The FORMATx pins cannot be changed dynamically. Table 14  
shows the available options for pin control mode. If the device  
Figure 133, Figure 134, and Figure 135 show the expected data  
outputs for different DOUTx output modes.  
Table 36. DOUTx Channels  
DOUT_FORMAT Bits/  
FORMATx Pins  
Number of DOUTx  
Lines Enabled  
Associated Channels  
00  
4
DOUT0—Channel 0 and Channel 1  
DOUT1—Channel 2 and Channel 3  
DOUT2—Channel 4 and Channel 5  
DOUT3—Channel 6 and Channel 7  
01  
2
1
DOUT0—Channel 0, Channel 1, Channel 2, and Channel 3  
DOUT1—Channel 4, Channel 5, Channel 6, and Channel 7  
10 or 11  
DOUT0—Channel 0, Channel 1, Channel 2, Channel 3, Channel 4, Channel 5,  
Channel 6, and Channel 7  
AD7771  
DRDY  
DCLK  
CH 0  
CH 0  
CH 0  
CH 0  
CH 1  
CH 1  
CH 1  
CH 1  
DOUT0  
DOUT1  
DOUT2  
DOUT3  
00  
FORMAT0  
FORMAT1  
DOUT0: CH 0, CH 1  
DOUT1: CH 2, CH 3  
DOUT2: CH 4, CH 5  
DOUT3: CH 6, CH 7  
0
0
DGND  
DAISY-CHAINING IS  
NOT POSSIBLE IN THIS FORMAT  
Figure 130. FORMATx Pin Configuration—FORMAT0 = 0, FORMAT1 = 0  
AD7771  
DRDY  
DCLK  
IOVDD  
01  
CH 0 CH 1 CH 2 CH 3  
CH 4 CH 5 CH 6 CH 7  
DOUT0  
DOUT1  
CH 0, CH 1, CH 2, CH 3  
OUTPUT ON DOUT0  
FORMAT0  
FORMAT1  
1
0
CH 4, CH 5, CH 6, CH 7  
OUTPUT ON DOUT1  
DGND  
DAISY-CHAINING IS  
POSSIBLE IN THIS FORMAT  
Figure 131. FORMATx Pin Configuration—FORMAT0 = 1, FORMAT1 = 0  
AD7771  
DRDY  
DCLK  
DGND  
10  
FORMAT0  
FORMAT1  
CH 0 TO CH 7  
OUTPUT ON DOUT0  
0
1
DOUT0  
CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7  
IOVDD  
DAISY-CHAINING IS  
POSSIBLE IN THIS FORMAT  
Figure 132. FORMATx Pin Configuration—FORMAT0 = 0, FORMAT1 = 1  
Rev. 0 | Page 56 of 98  
 
 
 
 
 
Data Sheet  
AD7771  
DCLK  
SAMPLE N  
SAMPLE N + 1  
DRDY  
DOUT0  
CH0-S0  
CH2-S0  
CH4-S0  
CH6-S0  
CH1-S0  
CH3-S0  
CH5-S0  
CH7-S0  
CH0-S1  
CH2-S1  
CH4-S1  
CH6-S1  
CH1-S1  
CH3-S1  
CH5-S1  
CH7-S1  
DOUT1  
DOUT0  
DOUT1  
Figure 133. FORMAT0 = 0, FORMAT1 = 0—Each DOUTx Outputs Two ADC Conversions (S0 Means Sample 0 and S1 Means Sample 1)  
DCLK  
SAMPLE N  
SAMPLE N + 1  
DRDY  
DOUT0  
DOUT1  
DOUT2  
CH0-S0  
CH4-S0  
CH1-S0  
CH5-S0  
CH2-S0  
CH3-S0  
CH7-S0  
CH0-S1  
CH4-S1  
CH1-S1  
CH2-S1  
CH6-S1  
CH3-S1  
CH7-S1  
CH6-S0  
CH5-S1  
DOUT3  
Figure 134. FORMAT0 = 0, FORMAT1 = 1—Channel 0 to Channel 3 Share DOUT0, and Channel 4 to Channel 7 Share DOUT1 (S0 Means Sample 0 and S1 Means Sample 1)  
DCLK  
SAMPLE N  
SAMPLE N + 1  
SAMPLE N + 2  
DRDY  
DOUT0  
CH0-S0 CH1-S0 CH2-S0 CH...-S0 CH6-S0 CH7-S0 CH0-S1 CH1-S1 CH2-S1 CH...-S1 CH6-S1 CH7-S2 CH0-S2 CH1-S2 CH2-S2 CH...-S2 CH6-S2 CH7-S2 CH0-S3  
DOUT1  
DOUT2  
DOUT3  
Figure 135. FORMAT0 = 1, FORMAT1 = 0—Channel 0 to Channel 7 Output on DOUT0 Only (S0 Means Sample 0 and S1 Means Sample 1)  
Rev. 0 | Page 57 of 98  
 
 
 
AD7771  
Data Sheet  
the Digital Reset and Synchronization Pins section for more  
information.  
Daisy-Chain Mode  
Daisy-chaining devices allows numerous devices to use the  
same data interface lines by cascading the outputs of multiple  
ADCs from separate AD7771 devices. In daisy-chain configura-  
tion, only one device has a direct connection between the  
DOUTx interface and the digital host. For the AD7771, daisy-  
chain capability is implemented by cascading DOUT0 and DOUT1  
through a number of devices, or by just using DOUT0 (the  
number of DOUTx pins available depends on the selected  
DOUTx mode). The ability to daisy-chain devices and the limit  
on the number of devices that can be handled by the chain is  
dependent on the selected DOUTx mode and the decimation  
rate employed.  
This feature is especially useful for reducing the component  
count and wiring connections in, for example, isolated  
multiconverter applications or for systems with a limited  
interfacing capacity.  
For daisy-chain operation, there are two different configurations  
possible, as described in Table 37.  
Using the FORMATx = 10 mode, DOUT2 acts as an input pin, as  
shown in Figure 136. In this case, the DOUT0 pin of the AD7771  
devices is cascaded to the DOUT2 pin of the next device in the  
chain. Data readback is analogous to clocking a shift register  
where data is clocked on the rising edge of DCLK.  
When operating in daisy-chain mode, it is required that all  
AD7771 devices in the chain are correctly synchronized. See  
Table 37. DOUTx Modes in Daisy-Chain Operation  
DOUT_FORMAT Bits/  
FORMATx Pins  
Number of DOUTx Lines Enabled  
Associated Channels  
01  
2
DOUT0—Channel 0 to Channel 3 and DOUT2  
DOUT1—Channel 4 to Channel 7 and DOUT3  
DOUT2—input channel  
DOUT3—input channel  
10  
1
DOUT0—Channel 0 to Channel 7 and DOUT2  
DOUT2—input channel  
U2  
U2  
DOUT0  
DOUT0  
DOUT2/DIN0  
DOUT2/DIN0  
DCLK  
DRDY  
U2 DOUT2/DIN0  
U2 DOUT0  
0
0
0
0
0
0
0
U2 S0 CH0 TO CH7  
U2 S1 CH0 TO CH7  
U2 S0 CH0 TO CH7  
U1 DOUT2/DIN0  
U1 DOUT0  
U2 S0 CH0 TO CH7 U2 S0 CH0 TO CH7 U2 S1 CH0 TO CH7 U2 S1 CH0 TO CH7 U2 S0 CH0 TO CH7  
U1 S0 CH0 TO CH7 U1 S0 CH0 TO CH7 U1 S1 CH0 TO CH7 U2 S3 CH0 TO CH7 U1 S1 CH0 TO CH7  
Figure 136. Daisy-Chain Connection Mode, FORMAT0 = 1, FORMAT1 = 0 (S0 Means Sample 0 and S1 Means Sample 1); When Connected in Daisy-Chain Mode,  
DOUT2 Acts as an Input Pin, Represented by DIN0  
Rev. 0 | Page 58 of 98  
 
 
 
Data Sheet  
AD7771  
Table 39. Maximum ODRs and Minimum DCLKx  
Frequencies in High Resolution Mode  
Minimum DCLKx Frequency  
Select the DCLKx frequency ratio in such a way that the data is  
completely shifted out before a new conversion is completed;  
otherwise, the previous conversion is overwritten and the trans-  
mission becomes corrupt. The minimum DCLKx frequency ratio  
is defined by the decimation rate, the operation mode, and the  
lines enabled on the DOUT3 to DOUT0 data interface as  
described in the following equations:  
Minimum DCLKx (kHz)1  
Decimation ODR  
Rate  
4095  
2048  
1024  
512  
256  
128  
64  
(kSPS)  
1 × DOUTx 2 × DOUTx 4 × DOUTx  
0.500122 128  
1
2
4
64  
32  
64  
256  
128  
512  
256  
128  
256  
512  
1024  
2048  
4096  
8192  
1024  
2048  
4096  
8192  
N/A  
512  
8
1024  
2048  
4096  
8192  
N/A  
In standalone, high resolution mode,  
16  
32  
64  
128  
DCLKMIN_RATIO < Decimation/(8 × DOUT_FORMAT)  
In standalone, low power mode,  
32  
16  
N/A  
DCLKMIN_RATIO < Decimation/(4 × DOUT_FORMAT)  
In daisy-chain, high resolution mode,  
1 N/A means not applicable.  
Table 40. Maximum ODRs and Minimum DCLK  
Frequencies in Low Power Mode  
DCLKMIN_RATIO < Decimation/(8 × Devices × DOUTx Channels)  
In daisy-chain, low power mode,  
Minimum DCLKx (kHz)  
Decimation ODR  
DCLKMIN_RATIO < Decimation/(4 × Devices × DOUTx Channels)  
Rate  
2048  
1024  
512  
256  
128  
64  
(kSPS) 1 × DOUTx 2 × DOUTx 4 × DOUTx  
As an example, when operating in master interface mode,  
FORMATx = 01, the DOUT0 and DOUT1 pins shift out four  
Σ-Δ channels each and, assuming a maximum output rate in  
high resolution mode, the decimation = 128.  
0.25  
0.5  
1
64  
128  
256  
32  
64  
16  
32  
64  
128  
256  
512  
1024  
2048  
128  
256  
512  
1024  
2048  
4096  
2
512  
4
8
16  
32  
1024  
2048  
4096  
N/A1  
DCLKMIN < 128/(8 × 4) = 4  
If the DCLKMIN_RATIO is selected above the necessary minimum,  
a Logic 0 is continuously transmitted until a new sample is  
available.  
32  
16  
1 N/A means not applicable.  
An example in daisy-chain mode, assuming FORMATx = 01,  
and with three devices connected and a decimation rate of 256  
in high resolution mode, is as follows:  
If the AD7771 operates in SPI control mode, it is possible to  
adjust the DOUTx strength, which can be selected in the  
DOUT_DRIVE_STR bits, as described in Table 41.  
DCLKMIN_RATIO < 256/(8 × 3 × 4) = 2.66 = 2  
Table 41. DOUTx Strength  
The different ratios are summarized in Table 38.  
DOUT_DRIVE_STR  
Mode  
Table 38. Available DCLK Ratios  
DCLK_CLK_DIV (SPI Control Mode),  
DCLKx (Pin Control Mode)  
00  
01  
10  
11  
Nominal  
Strong  
Weak  
DCLKx Ratio  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
32  
64  
128  
Extra strong  
SPI  
The SPI gives the user flexibility to read the conversion from the  
Σ-Δ ADC where the processor or microcontroller is the master.  
DRDY  
When a new conversion is completed, the  
toggled to indicate that data can be accessed. When  
signal is  
DRDY  
toggles, the internal channel counter is reset and the next SPI  
read originates from Channel 0 again. Conversely, after the last  
There are maximum achievable ODRs and minimum DCLKx  
frequencies required for a given DOUTx pin configuration, as  
shown in Table 39 and Table 40.  
DRDY  
channel data is read, all successive reads before the next  
signal originate from Channel 7 (LSB).  
Rev. 0 | Page 59 of 98  
 
 
 
 
AD7771  
Data Sheet  
CS  
CH0_HEADER _+_CH0_8_BITS_MSB  
CH0_16_BITS_LSB  
SDO  
Figure 137. SPI Readback, 16 Bits per Frame  
CS  
CH0_HEADER _+_CH0_16_BITS_MSB  
CH0_8_BITS_LSB_+_CH1_HEADER_+CH1_8_BITS_MSB  
SDO  
Figure 138. SPI Readback, 24 Bits per Frame  
The SPI operates in multiples of 8 bits per frame; Figure 137 shows  
a readback example in 16 bits per frames, and Figure 138 shows a  
readback in 24 bits per frame.  
Σ-Δ CRC Checksum  
The CRC message is calculated internally by the AD7771 on  
ADC pairs. The CRC is calculated using the ADC output data  
from two ADCs and Bits[7:4] from the header. Therefore, 56 bits  
are used to calculate the 8-bit CRC. This CRC is split between  
the two channel headers. The CRC data covers channel pairings  
as follows: Channel 0 and Channel 1, Channel 2 and Channel 3,  
Channel 4 and Channel 5, and Channel 6 and Channel 7.  
Note that if the device is configured in SPI control mode, the  
AD7771 generates a software reset if the SDI pin is sampled  
high for 64 consecutive clocks. To avoid a reset or unwanted  
register writes, it is recommended to transfer a 0x8000 command,  
which generates a readback command that is ignored by the  
device, as explained in the SPI Software Reset section.  
To generate the checksum, the data is left shifted by eight bits to  
create a number ending in eight Logic 1s.  
CALCULATING THE CRC CHECKSUM  
The AD7771 implements two different CRC checksum  
generators, one for the Σ-Δ results and another for the SPI  
control mode.  
The CRC is calculated from 56 bits across two consecutive/  
channel pairings (Channel 0 and Channel 1, Channel 2 and  
Channel 3, Channel 4 and Channel 5, Channel 6, and Channel 7).  
The 56 bits consist of the alert bit, the 3 bits for the first ADC  
pairing channel, and the 24 bits of data of each pairing channel.  
For example, for the second channel pairing, Channel 2 and  
Channel 3,  
The AD7771 uses a CRC polynomial to calculate the CRC  
checksum value. The 8-bit CRC polynomial used is x8 + x2 + x + 1.  
The polynomial is aligned so that its MSB is adjacent to the  
leftmost Logic 1 of the data. An exclusive OR (XOR) function is  
applied to the data to produce a new, shorter number. The  
polynomial is again aligned so that its MSB is adjacent to the  
leftmost Logic 1 of the new result, and the procedure is  
repeated. This process is repeated until the original data is  
reduced to a value less than the polynomial. This is the 8-bit  
checksum.  
56 bits = alert bit + 3 ADC channel bits (010) + 24 data bits  
(Channel 2) + alert bit + 3 ADC channel bits (011) +  
24 data bits (Channel 3)  
SPI Control Mode Checksum  
The CRC message is calculated internally by the AD7771. The  
data transferred to the AD7771 uses the R/W bit, a 7-bit address,  
and 8 bits of data for the CRC calculation.  
An example of CRC calculation for 12-bit data is shown in  
Table 42.  
The CRC calculated and appended to the data that is shifted  
out uses a 0010 0000 header and 8 bits of data for the register  
readback, as well as the 0010 header and 12 bits of SAR conversion  
data for the SAR readback transfers.  
Table 42. Example CRC Calculation for 12-Bit Data1  
Data  
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
0
0
0
0
1
1
0
1
1
1
0
1
1
1
1
1
1
0
0
0
Polynomial  
1
1
1
1
CRC  
1 This table represents the division of the data; blank cells are for formatting  
purposes.  
Rev. 0 | Page 60 of 98  
 
 
 
 
 
Data Sheet  
AD7771  
REGISTER SUMMARY  
Table 43. Register Summary  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x000 CH0_CONFIG  
0x001 CH1_CONFIG  
0x002 CH2_CONFIG  
0x003 CH3_CONFIG  
0x004 CH4_CONFIG  
0x005 CH5_CONFIG  
0x006 CH6_CONFIG  
0x007 CH7_CONFIG  
0x008 CH_DISABLE  
[7:0]  
CH0_GAIN  
CH0_REF_  
MONITOR  
CH0_RX  
RESERVED  
0x00  
/W R  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
CH1_GAIN  
CH2_GAIN  
CH3_GAIN  
CH4_GAIN  
CH5_GAIN  
CH6_GAIN  
CH7_GAIN  
CH6_  
CH1_REF_  
MONITOR  
CH1_RX  
CH2_RX  
CH3_RX  
CH4_RX  
CH5_RX  
CH6_RX  
CH7_RX  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CH1_  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x24  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CH2_REF_  
MONITOR  
CH3_REF_  
MONITOR  
CH4_REF_  
MONITOR  
CH5_REF_  
MONITOR  
CH6_REF_  
MONITOR  
CH7_REF_  
MONITOR  
CH7_  
CH5_DISABLE  
CH4_  
DISABLE  
CH3_  
DISABLE  
CH2_  
DISABLE  
CH0_  
DISABLE  
DISABLE  
DISABLE  
DISABLE  
0x009 CH0_SYNC_  
OFFSET  
CH0_SYNC_OFFSET  
CH1_SYNC_OFFSET  
CH2_SYNC_OFFSET  
CH3_SYNC_OFFSET  
CH4_SYNC_OFFSET  
CH5_SYNC_OFFSET  
CH6_SYNC_OFFSET  
CH7_SYNC_OFFSET  
0x00A CH1_SYNC_  
OFFSET  
0x00B CH2_SYNC_  
OFFSET  
0x00C CH3_SYNC_  
OFFSET  
0x00D CH4_SYNC_  
OFFSET  
0x00E CH5_SYNC_  
OFFSET  
0x00F CH6_SYNC_  
OFFSET  
0x010 CH7_SYNC_  
OFFSET  
0x011 GENERAL_  
USER_  
ALL_  
POWER-  
MODE  
PDB_VCM  
PDB_  
REFOUT_BUF SAR  
PDB_  
PDB_  
RC_OSC  
SOFT_RESET  
CH_DIS_  
MCLK_EN  
CONFIG_1  
0x012 GENERAL_  
USER_  
[7:0]  
[7:0]  
[7:0]  
RESERVED FILTER_  
MODE  
SAR_DIAG_  
MODE_EN  
SDO_DRIVE_STR  
DOUT_DRIVE_STR  
SPI_SYNC  
0x09  
0x80  
0x20  
R/W  
R/W  
R/W  
CONFIG_2  
0x013 GENERAL_  
USER_  
CONVST_  
DEGLITCH_DIS  
RESERVED  
SPI_SLAVE_  
MODE_EN  
RESERVED  
CLK_  
QUAL_DIS  
CONFIG_3  
0x014 DOUT_FORMAT  
DOUT_FORMAT  
REF_MUX_CTRL  
DOUT_  
HEADER_  
FORMAT  
RESERVED  
DCLK_CLK_DIV  
RESERVED  
0x015 ADC_MUX_  
CONFIG  
[7:0]  
[7:0]  
MTR_MUX_CTRL  
RESERVED  
RESERVED  
GPIO_OP_EN  
0x00  
0x00  
R/W  
R/W  
0x016 GLOBAL_MUX_  
CONFIG  
GLOBAL_MUX_CTRL  
RESERVED  
0x017 GPIO_CONFIG  
0x018 GPIO_DATA  
[7:0]  
[7:0]  
[7:0]  
0x00  
0x00  
0x38  
R/W  
R/W  
R/W  
RESERVED  
GPIO_READ_DATA  
GPIO_WRITE_DATA  
RESERVED  
0x019 BUFFER_  
CONFIG_1  
RESERVED  
REF_BUF_  
POS_EN  
REF_  
BUF_  
NEG_EN  
0x01A BUFFER_  
CONFIG_2  
[7:0]  
REF-  
BUFP_  
PREQ  
REF-  
BUFN_  
PREQ  
RESERVED  
PDB_  
PDB_  
PDB_  
DLDO_  
OVRDRV  
0xC0  
R/W  
ALDO1_OVR ALDO2_  
DRV OVRDRV  
0x01C CH0_OFFSET_  
UPPER_BYTE  
[7:0]  
[7:0]  
CH0_OFFSET_ALL[23:16]  
CH0_OFFSET_ALL[15:8]  
0x00  
0x00  
R/W  
R/W  
0x01D CH0_OFFSET_  
MID_BYTE  
Rev. 0 | Page 61 of 98  
 
AD7771  
Data Sheet  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x01E CH0_OFFSET_  
LOWER_BYTE  
[7:0]  
CH0_OFFSET_ALL[7:0]  
CH0_GAIN_ALL[23:16]  
CH0_GAIN_ALL[15:8]  
CH0_GAIN_ALL[7:0]  
0x00  
R/W  
0x01F CH0_GAIN_  
UPPER_BYTE  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x020 CH0_GAIN_  
MID_BYTE  
0x021 CH0_GAIN_  
LOWER_BYTE  
0x022 CH1_OFFSET_  
UPPER_BYTE  
CH1_OFFSET_ALL[23:16]  
CH1_OFFSET_ALL[15:8]  
CH1_OFFSET_ALL[7:0]  
CH1_GAIN_ALL[23:16]  
CH1_GAIN_ALL[15:8]  
CH1_GAIN_ALL[7:0]  
0x023 CH1_OFFSET_  
MID_BYTE  
0x024 CH1_OFFSET_  
LOWER_BYTE  
0x025 CH1_GAIN_  
UPPER_BYTE  
0x026 CH1_GAIN_  
MID_BYTE  
0x027 CH1_GAIN_  
LOWER_BYTE  
0x028 CH2_OFFSET_  
UPPER_BYTE  
CH2_OFFSET_ALL[23:16]  
CH2_OFFSET_ALL[15:8]  
CH2_OFFSET_ALL[7:0]  
CH2_GAIN_ALL[23:16]  
CH2_GAIN_ALL[15:8]  
CH2_GAIN_ALL[7:0]  
0x029 CH2_OFFSET_  
MID_BYTE  
0x02A CH2_OFFSET_  
LOWER_BYTE  
0x02B CH2_GAIN_  
UPPER_BYTE  
0x02C CH2_GAIN_  
MID_BYTE  
0x02D CH2_GAIN_  
LOWER_BYTE  
0x02E CH3_OFFSET_  
UPPER_BYTE  
CH3_OFFSET_ALL[23:16]  
CH3_OFFSET_ALL[15:8]  
CH3_OFFSET_ALL[7:0]  
CH3_GAIN_ALL[23:16]  
CH3_GAIN_ALL[15:8]  
CH3_GAIN_ALL[7:0]  
0x02F CH3_OFFSET_  
MID_BYTE  
0x030 CH3_OFFSET_  
LOWER_BYTE  
0x031 CH3_GAIN_  
UPPER_BYTE  
0x032 CH3_GAIN_  
MID_BYTE  
0x033 CH3_GAIN_  
LOWER_BYTE  
0x034 CH4_OFFSET_  
UPPER_BYTE  
CH4_OFFSET_ALL[23:16]  
CH4_OFFSET_ALL[15:8]  
CH4_OFFSET_ALL[7:0]  
CH4_GAIN_ALL[23:16]  
CH4_GAIN_ALL[15:8]  
CH4_GAIN_ALL[7:0]  
0x035 CH4_OFFSET_  
MID_BYTE  
0x036 CH4_OFFSET_  
LOWER_BYTE  
0x037 CH4_GAIN_  
UPPER_BYTE  
0x038 CH4_GAIN_  
MID_BYTE  
0x039 CH4_GAIN_  
LOWER_BYTE  
0x03A CH5_OFFSET_  
UPPER_BYTE  
CH5_OFFSET_ALL[23:16]  
CH5_OFFSET_ALL[15:8]  
CH5_OFFSET_ALL[7:0]  
CH5_GAIN_ALL[23:16]  
CH5_GAIN_ALL[15:8]  
0x03B CH5_OFFSET_  
MID_BYTE  
0x03C CH5_OFFSET_  
LOWER_BYTE  
0x03D CH5_GAIN_  
UPPER_BYTE  
0x03E CH5_GAIN_  
MID_BYTE  
Rev. 0 | Page 62 of 98  
Data Sheet  
AD7771  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x03F CH5_GAIN_  
LOWER_BYTE  
[7:0]  
CH5_GAIN_ALL[7:0]  
0x00  
R/W  
0x040 CH6_OFFSET_  
UPPER_BYTE  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
CH6_OFFSET_ALL[23:16]  
CH6_OFFSET_ALL[15:8]  
CH6_OFFSET_ALL[7:0]  
CH6_GAIN_ALL[23:16]  
CH6_GAIN_ALL[15:8]  
CH6_GAIN_ALL[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0x041 CH6_OFFSET_  
MID_BYTE  
0x042 CH6_OFFSET_  
LOWER_BYTE  
0x043 CH6_GAIN_  
UPPER_BYTE  
0x044 CH6_GAIN_  
MID_BYTE  
0x045 CH6_GAIN_  
LOWER_BYTE  
0x046 CH7_OFFSET_  
UPPER_BYTE  
CH7_OFFSET_ALL[23:16]  
CH7_OFFSET_ALL[15:8]  
CH7_OFFSET_ALL[7:0]  
CH7_GAIN_ALL[23:16]  
CH7_GAIN_ALL[15:8]  
CH7_GAIN_ALL[7:0]  
0x047 CH7_OFFSET_  
MID_BYTE  
0x048 CH7_OFFSET_  
LOWER_BYTE  
0x049 CH7_GAIN_  
UPPER_BYTE  
0x04A CH7_GAIN_  
MID_BYTE  
0x04B CH7_GAIN_  
LOWER_BYTE  
0x04C CH0_ERR_REG  
0x04D CH1_ERR_REG  
0x04E CH2_ERR_REG  
0x04F CH3_ERR_REG  
0x050 CH4_ERR_REG  
0x051 CH5_ERR_REG  
0x052 CH6_ERR_REG  
0x053 CH7_ERR_REG  
RESERVED  
CH0_ERR_  
AINM_UV  
CH0_ERR_ CH0_ERR_  
AINM_OV AINP_UV  
CH1_ERR_ CH1_ERR_  
AINM_OV AINP_UV  
CH2_ERR_ CH2_ERR_  
AINM_OV AINP_UV  
CH3_ERR_ CH3_ERR_  
AINM_OV AINP_UV  
CH4_ERR_ CH4_ERR_  
AINM_OV AINP_UV  
CH5_ERR_ CH5_ERR_  
AINM_OV AINP_UV  
CH6_ERR_ CH6_ERR_  
AINM_OV AINP_UV  
CH7_ERR_ CH7_ERR_  
AINM_OV AINP_UV  
CH1_ERR_ CH0_ERR_  
CH0_ERR_  
AINP_OV  
CH0_ERR_  
REF_DET  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CH1_ERR_  
AINM_UV  
CH1_ERR_  
AINP_OV  
CH1_ERR_  
REF_DET  
R
CH2_ERR_  
AINM_UV  
CH2_ERR_  
AINP_OV  
CH2_ERR_  
REF_DET  
R
CH3_ERR_  
AINM_UV  
CH3_ERR_  
AINP_OV  
CH3_ERR_  
REF_DET  
R
CH4_ERR_  
AINM_UV  
CH4_ERR_AI CH4_ERR_  
NP_OV  
R
REF_DET  
CH5_ERR_  
AINM_UV  
CH5_ERR_  
AINP_OV  
CH5_ERR_  
REF_DET  
R
CH6_ERR_  
AINM_UV  
CH6_ERR_  
AINP_OV  
CH6_ERR_  
REF_DET  
R
CH7_ERR_  
AINM_UV  
CH7_ERR_  
AINP_OV  
CH7_ERR_  
REF_DET  
R
0x054 CH0_1_SAT_  
ERR  
RESERVED  
CH1_ERR_  
MOD_SAT  
CH1_ERR_  
CH0_ERR_  
FILTER_SAT  
CH0_ERR_  
OUTPUT_  
SAT  
R
FILTER_SAT  
OUTPUT_  
SAT  
MOD_SAT  
0x055 CH2_3_SAT_  
ERR  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
CH3_ERR_  
MOD_SAT  
CH3_ERR_  
FILTER_SAT  
CH3_ERR_ CH2_ERR_  
CH2_ERR_  
FILTER_SAT  
CH2_ERR_  
OUTPUT_  
SAT  
0x00  
0x00  
0x00  
0xFE  
0x00  
0x3E  
R
OUTPUT_  
SAT  
MOD_SAT  
0x056 CH4_5_SAT_  
ERR  
CH5_ERR_  
MOD_SAT  
CH5_ERR_  
FILTER_SAT  
CH5_ERR_ CH4_ERR_  
CH4_ERR_  
FILTER_SAT  
CH4_ERR_  
OUTPUT_  
SAT  
R
OUTPUT_  
SAT  
MOD_SAT  
0x057 CH6_7_SAT_  
ERR  
CH7_ERR_  
MOD_SAT  
CH7_ERR_  
FILTER_SAT  
CH7_ERR_ CH6_ERR_  
CH6_ERR_  
FILTER_SAT  
CH6_ERR_  
OUTPUT_  
SAT  
R
OUTPUT_  
SAT  
MOD_SAT  
0x058 CHX_ERR_  
REG_EN  
OUTPUT_ FILTER_  
MOD_SAT_  
TEST_EN  
AINM_UV_  
TEST_EN  
AINM_OV_ AINP_UV_  
AINP_OV_  
TEST_EN  
REF_DET_  
TEST_EN  
R/W  
R
SAT_  
SAT_  
TEST_EN  
TEST_EN  
TEST_EN  
TEST_EN  
0x059 GEN_ERR_  
REG_1  
RESERVED  
MEMMAP_  
CRC_ERR  
ROM_CRC_  
ERR  
SPI_CLK_  
COUNT_  
ERR  
SPI_  
INVALID_  
READ_ERR  
SPI_  
INVALID_  
WRITE_ERR  
SPI_CRC_  
ERR  
0x05A GEN_ERR_  
REG_1_EN  
RESERVED  
MEMMAP_  
CRC_TEST_EN  
ROM_CRC_  
TEST_EN  
SPI_CLK_  
COUNT_  
TEST_EN  
SPI_  
SPI_  
SPI_CRC_  
TEST_EN  
R/W  
INVALID_  
READ_  
TEST_EN  
INVALID_  
WRITE_  
TEST_EN  
0x05B GEN_ERR_  
REG_2  
[7:0]  
[7:0]  
RESERVED  
RESERVED  
RESET_  
DETECTED  
EXT_MCLK_  
SWITCH_ERR  
RESERVED ALDO1_  
PSM_ERR  
ALDO2_  
PSM_ERR  
DLDO_  
PSM_ERR  
0x00  
0x3C  
R
0x05C GEN_ERR_  
REG_2_EN  
RESET_  
DETECT_EN  
RESERVED  
LDO_PSM_TEST_EN  
LDO_PSM_TRIP_TEST_EN  
R/W  
Rev. 0 | Page 63 of 98  
AD7771  
Data Sheet  
Reg.  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
ERR_LOC_ ERR_LOC_  
CH3 CH2  
ERR_LOC_ ERR_LOC_  
GEN1 CH7  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x05D STATUS_REG_1  
0x05E STATUS_REG_2  
0x05F STATUS_REG_3  
[7:0]  
RESERVED  
CHIP_ERROR  
ERR_LOC_  
CH4  
ERR_LOC_  
CH1  
ERR_LOC_C 0x00  
H0  
R
[7:0]  
[7:0]  
RESERVED  
RESERVED  
CHIP_ERROR  
CHIP_ERROR  
ERR_LOC_  
GEN2  
ERR_LOC_  
CH6  
ERR_LOC_C 0x00  
H5  
R
R
INIT_  
ERR_LOC_ ERR_LOC_  
ERR_LOC_  
ERR_LOC_  
0x00  
COMPLETE  
SAT_CH6_ SAT_CH4_5  
7
SAT_CH2_3  
SAT_CH0_1  
0x060 SRC_N_MSB  
0x061 SRC_N_LSB  
0x062 SRC_IF_MSB  
0x063 SRC_IF_LSB  
0x064 SRC_UPDATE  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
SRC_N_ALL[11:8]  
0x00  
0x80  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
SRC_N_ALL[7:0]  
SRC_IF_ALL[15:8]  
SRC_IF_ALL[7:0]  
RESERVED  
SRC_  
LOAD_  
SRC_LOAD_ 0x00  
UPDATE  
SOURCE  
Rev. 0 | Page 64 of 98  
Data Sheet  
AD7771  
REGISTER DETAILS  
CHANNEL 0 CONFIGURATION REGISTER  
Address: 0x000, Reset: 0x00, Name: CH0_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH0_GAIN (R/W)  
AFE Gain  
00: Gain 1.  
01: Gain 2.  
10: Gain 4.  
11: Gain 8.  
[2:0] RESERVED  
[3] RESERVED  
[5] CH0_REF_MONITOR (R/W)  
Channel used as Reference monitor  
[4] CH0_RX (R/W)  
Channel Meter Mux RX Mode  
Table 44. Bit Descriptions for CH0_CONFIG  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] CH0_GAIN  
AFE Gain  
0x0  
R/W  
00 Gain = 1  
01 Gain = 2  
10 Gain = 4  
11 Gain = 8  
5
4
CH0_REF_MONITOR  
CH0_RX  
Channel Used as Reference Monitor  
Channel Meter Mux Rx Mode  
Reserved  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
[3:0] RESERVED  
CHANNEL 1 CONFIGURATION REGISTER  
Address: 0x001, Reset: 0x00, Name: CH1_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH1_GAIN (R/W)  
AFE Gain  
00: Gain = 1.  
01: Gain = 2.  
10: Gain = 4.  
11: Gain = 8.  
[2:0] RESERVED  
[3] RESERVED  
[5] CH1_REF_MONITOR (R/W)  
Channel used as Reference monitor  
[4] CH1_RX (R/W)  
Channel Meter Mux RX Mode  
Table 45. Bit Descriptions for CH1_CONFIG  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] CH1_GAIN  
AFE Gain  
0x0  
R/W  
00 Gain = 1  
01 Gain = 2  
10 Gain = 4  
11 Gain = 8  
5
4
CH1_REF_MONITOR  
CH1_RX  
Channel Used as Reference Monitor  
Channel Meter Mux Rx Mode  
Reserved  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
[3:0] RESERVED  
Rev. 0 | Page 65 of 98  
 
 
 
AD7771  
Data Sheet  
CHANNEL 2 CONFIGURATION REGISTER  
Address: 0x002, Reset: 0x00, Name: CH2_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH2_GAIN (R/W)  
AFE Gain  
00: Gain 1.  
01: Gain 2.  
10: Gain 4.  
11: Gain 8.  
[2:0] RESERVED  
[3] RESERVED  
[5] CH2_REF_MONITOR (R/W)  
Channel used as Reference monitor  
[4] CH2_RX (R/W)  
Channel Meter Mux RX Mode  
Table 46. Bit Descriptions for CH2_CONFIG  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] CH2_GAIN  
AFE Gain  
0x0  
R/W  
00 Gain = 1  
01 Gain = 2  
10 Gain = 4  
11 Gain = 8  
5
4
CH2_REF_MONITOR  
CH2_RX  
Channel Used as Reference Monitor  
Channel Meter Mux Rx Mode  
Reserved  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
[3:0] RESERVED  
CHANNEL 3 CONFIGURATION REGISTER  
Address: 0x003, Reset: 0x00, Name: CH3_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH3_GAIN (R/W)  
AFE Gain  
00: Gain 1.  
01: Gain 2.  
10: Gain 4.  
11: Gain 8.  
[2:0] RESERVED  
[3] RESERVED  
[5] CH3_REF_MONITOR (R/W)  
Channel used as Reference monitor  
[4] CH3_RX (R/W)  
Channel Meter Mux RX Mode  
Table 47. Bit Descriptions for CH3_CONFIG  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] CH3_GAIN  
AFE Gain  
0x0  
R/W  
00 Gain = 1  
01 Gain = 2  
10 Gain = 4  
11 Gain = 8  
5
4
CH3_REF_MONITOR  
CH3_RX  
Channel Used as Reference Monitor  
Channel Meter Mux Rx Mode  
Reserved  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
[3:0] RESERVED  
Rev. 0 | Page 66 of 98  
 
 
Data Sheet  
AD7771  
CHANNEL 4 CONFIGURATION REGISTER  
Address: 0x004, Reset: 0x00, Name: CH4_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH4_GAIN (R/W)  
AFE Gain  
00: Gain 1.  
01: Gain 2.  
10: Gain 4.  
11: Gain 8.  
[2:0] RESERVED  
[3] RESERVED  
[5] CH4_REF_MONITOR (R/W)  
Channel used as Reference monitor  
[4] CH4_RX (R/W)  
Channel Meter Mux RX Mode  
Table 48. Bit Descriptions for CH4_CONFIG  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] CH4_GAIN  
AFE Gain  
0x0  
R/W  
00 Gain = 1  
01 Gain = 2  
10 Gain = 4  
11 Gain = 8  
5
4
CH4_REF_MONITOR  
CH4_RX  
Channel Used as Reference Monitor  
Channel Meter Mux Rx Mode  
Reserved  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
[3:0] RESERVED  
CHANNEL 5 CONFIGURATION REGISTER  
Address: 0x005, Reset: 0x00, Name: CH5_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH5_GAIN (R/W)  
AFE Gain  
00: Gain 1.  
01: Gain 2.  
10: Gain 4.  
11: Gain 8.  
[2:0] RESERVED  
[3] RESERVED  
[5] CH5_REF_MONITOR (R/W)  
Channel used as Reference monitor  
[4] CH5_RX (R/W)  
Channel Meter Mux RX Mode  
Table 49. Bit Descriptions for CH5_CONFIG  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] CH5_GAIN  
AFE Gain  
0x0  
R/W  
00 Gain = 1  
01 Gain = 2  
10 Gain = 4  
11 Gain = 8  
5
4
CH5_REF_MONITOR  
CH5_RX  
Channel Used as Reference Monitor  
Channel Meter Mux Rx Mode  
Reserved  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
[3:0] RESERVED  
Rev. 0 | Page 67 of 98  
 
 
AD7771  
Data Sheet  
CHANNEL 6 CONFIGURATION REGISTER  
Address: 0x006, Reset: 0x00, Name: CH6_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH6_GAIN (R/W)  
AFE Gain  
00: Gain 1.  
01: Gain 2.  
10: Gain 4.  
11: Gain 8.  
[2:0] RESERVED  
[3] RESERVED  
[5] CH6_REF_MONITOR (R/W)  
Channel used as Reference monitor  
[4] CH6_RX (R/W)  
Channel Meter Mux RX Mode  
Table 50. Bit Descriptions for CH6_CONFIG  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] CH6_GAIN  
AFE Gain  
0x0  
R/W  
00 Gain = 1  
01 Gain = 2  
10 Gain = 4  
11 Gain = 8  
5
4
CH6_REF_MONITOR  
CH6_RX  
Channel Used as Reference Monitor  
Channel Meter Mux Rx Mode  
Reserved  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
[3:0] RESERVED  
CHANNEL 7 CONFIGURATION REGISTER  
Address: 0x007, Reset: 0x00, Name: CH7_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] CH7_GAIN (R/W)  
AFE Gain  
00: Gain 1.  
01: Gain 2.  
10: Gain 4.  
11: Gain 8.  
[2:0] RESERVED  
[3] RESERVED  
[5] CH7_REF_MONITOR (R/W)  
Channel used as Reference monitor  
[4] CH7_RX (R/W)  
Channel Meter Mux RX Mode  
Table 51. Bit Descriptions for CH7_CONFIG  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] CH7_GAIN  
AFE Gain  
0x0  
R/W  
00 Gain = 1  
01 Gain = 2  
10 Gain = 4  
11 Gain = 8  
5
4
CH7_REF_MONITOR  
CH7_RX  
Channel Used as Reference Monitor  
Channel Meter Mux Rx Mode  
Reserved  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
[3:0] RESERVED  
Rev. 0 | Page 68 of 98  
 
 
Data Sheet  
AD7771  
DISABLE CLOCKS TO ADC CHANNEL REGISTER  
Address: 0x008, Reset: 0x00, Name: CH_DISABLE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] CH7_DISABLE (R/W)  
[0] CH0_DISABLE (R/W)  
Channel 7 Disable  
Channel 0 Disable  
[6] CH6_DISABLE (R/W)  
[1] CH1_DISABLE (R/W)  
Channel 6 Disable  
Channel 1 Disable  
[5] CH5_DISABLE (R/W)  
[2] CH2_DISABLE (R/W)  
Channel 5 Disable  
Channel 2 Disable  
[4] CH4_DISABLE (R/W)  
[3] CH3_DISABLE (R/W)  
Channel 4 Disable  
Channel 3 Disable  
Table 52. Bit Descriptions for CH_DISABLE  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
6
5
4
3
2
1
0
CH7_DISABLE  
CH6_DISABLE  
CH5_DISABLE  
CH4_DISABLE  
CH3_DISABLE  
CH2_DISABLE  
CH1_DISABLE  
CH0_DISABLE  
Channel 7 Disable  
Channel 6 Disable  
Channel 5 Disable  
Channel 4 Disable  
Channel 3 Disable  
Channel 2 Disable  
Channel 1 Disable  
Channel 0 Disable  
CHANNEL 0 SYNC OFFSET REGISTER  
Address: 0x009, Reset: 0x00, Name: CH0_SYNC_OFFSET  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_SYNC_OFFSET (R/W)  
Channel Sync Offset  
Table 53. Bit Descriptions for CH0_SYNC_OFFSET  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH0_SYNC_OFFSET  
Channel Sync Offset  
0x0  
R/W  
CHANNEL 1 SYNC OFFSET REGISTER  
Address: 0x00A, Reset: 0x00, Name: CH1_SYNC_OFFSET  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_SYNC_OFFSET (R/W)  
Channel Sync Offset  
Table 54. Bit Descriptions for CH1_SYNC_OFFSET  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH1_SYNC_OFFSET  
Channel Sync Offset  
0x0  
R/W  
CHANNEL 2 SYNC OFFSET REGISTER  
Address: 0x00B, Reset: 0x00, Name: CH2_SYNC_OFFSET  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_SYNC_OFFSET (R/W)  
Channel Sync Offset  
Table 55. Bit Descriptions for CH2_SYNC_OFFSET  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH2_SYNC_OFFSET  
Channel Sync Offset  
0x0  
R/W  
Rev. 0 | Page 69 of 98  
 
 
 
 
AD7771  
Data Sheet  
CHANNEL 3 SYNC OFFSET REGISTER  
Address: 0x00C, Reset: 0x00, Name: CH3_SYNC_OFFSET  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_SYNC_OFFSET (R/W)  
Channel Sync Offset  
Table 56. Bit Descriptions for CH3_SYNC_OFFSET  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH3_SYNC_OFFSET  
Channel Sync Offset  
0x0  
R/W  
CHANNEL 4 SYNC OFFSET REGISTER  
Address: 0x00D, Reset: 0x00, Name: CH4_SYNC_OFFSET  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_SYNC_OFFSET (R/W)  
Channel Sync Offset  
Table 57. Bit Descriptions for CH4_SYNC_OFFSET  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH4_SYNC_OFFSET  
Channel Sync Offset  
0x0  
R/W  
CHANNEL 5 SYNC OFFSET REGISTER  
Address: 0x00E, Reset: 0x00, Name: CH5_SYNC_OFFSET  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_SYNC_OFFSET (R/W)  
Channel Sync Offset  
Table 58. Bit Descriptions for CH5_SYNC_OFFSET  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH5_SYNC_OFFSET  
Channel Sync Offset  
0x0  
R/W  
CHANNEL 6 SYNC OFFSET REGISTER  
Address: 0x00F, Reset: 0x00, Name: CH6_SYNC_OFFSET  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_SYNC_OFFSET (R/W)  
Channel Sync Offset  
Table 59. Bit Descriptions for CH6_SYNC_OFFSET  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH6_SYNC_OFFSET  
Channel Sync Offset  
0x0  
R/W  
CHANNEL 7 SYNC OFFSET REGISTER  
Address: 0x010, Reset: 0x00, Name: CH7_SYNC_OFFSET  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_SYNC_OFFSET (R/W)  
Channel Sync Offset  
Table 60. Bit Descriptions for CH7_SYNC_OFFSET  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH7_SYNC_OFFSET  
Channel Sync Offset  
0x0  
R/W  
Rev. 0 | Page 70 of 98  
 
 
 
 
 
Data Sheet  
AD7771  
GENERAL USER CONFIGURATION 1 REGISTER  
Address: 0x011, Reset: 0x24, Name: GENERAL_USER_CONFIG_1  
7
6
5
4
3
2
1
0
0
0
1
0
0
1
0
0
[7] ALL_CH_DIS_MCLK_EN (R/W)  
[1:0] SOFT_RESET (R/W)  
Soft Reset  
00: No Effect.  
01: No Effect.  
10: 2nd write.  
11: 1st write.  
If all SD channels are disabled, setting  
this bit high allows DCLK to continue  
toggling  
[6] POWERMODE (R/W)  
Power Mode  
0: Low Power (1/4)  
1: High Resolution.  
[2] PDB_RC_OSC (R/W)  
Power-Down signal for internal oscillator.  
Active Low  
[5] PDB_VCM (R/W)  
Power-Down VCM Buffer. Active Low  
[3] PDB_SAR (R/W)  
Power-Down SAR. Active Low  
[4] PDB_REFOUT_BUF (R/W)  
Power-Down Internal Reference Output  
Buffer. Active Low  
Table 61. Bit Descriptions for GENERAL_USER_CONFIG_1  
Bits Bit Name Settings Description  
Reset  
Access  
7
ALL_CH_DIS_MCLK_EN  
If all Σ-Δ channels are disabled, setting this bit high allows DCLK to  
continue toggling.  
0x0  
R/W  
6
POWERMODE  
Power Mode.  
0x0  
R/W  
0
1
Low power (1/4).  
High resolution.  
5
4
3
2
PDB_VCM  
Power-Down VCM Buffer. Active low.  
Power-Down Internal Reference Output Buffer. Active low.  
Power-Down SAR. Active low.  
Power-Down Signal for Internal Oscillator. Active low.  
Soft Reset  
0x1  
0x0  
0x0  
0x1  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
PDB_REFOUT_BUF  
PDB_SAR  
PDB_RC_OSC  
[1:0] SOFT_RESET  
00 No effect  
01 No effect  
10 2nd write  
11 1st write  
Rev. 0 | Page 71 of 98  
 
AD7771  
Data Sheet  
GENERAL USER CONFIGURATION 2 REGISTER  
Address: 0x012, Reset: 0x09, Name: GENERAL_USER_CONFIG_2  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
1
[7] RESERVED  
[0] SPI_SYNC (R/W)  
SYNC pulse generated thru SPI  
0: This signal is ANDed with the value  
on STARTb pin in the control module,  
generate a pulse in /SYNC_IN pin.  
1: This bit is ANDed with the value on  
STARTb pin in the control module.  
[6] FILTER_MODE (R/W)  
0=Sinc3. 1=Sinc5  
[5] SAR_DIAG_MODE_EN (R/W)  
Sets SPI interface to read back SAR  
result on SDO  
[2:1] DOUT_DRIVE_STR (R/W)  
DOUT Drive Strength  
00: Nominal.  
01: Strong.  
10: Weak.  
11: Extra Strong.  
[4:3] SDO_DRIVE_STR (R/W)  
SDO Drive Strength  
00: Nominal.  
01: Strong.  
10: Weak.  
11: Extra Strong.  
Table 62. Bit Descriptions for GENERAL_USER_CONFIG_2  
Bits Bit Name  
Settings Description  
Reset Access  
7
6
5
RESERVED  
FILTER_MODE  
SAR_DIAG_MODE_EN  
Reserved.  
0 = Sinc3. 1 = Sinc5.  
Sets SPI interface to read back SAR result on SDO.  
SDO Drive Strength.  
0x0  
0x0  
0x0  
0x1  
R/W  
R/W  
R/W  
R/W  
[4:3] SDO_DRIVE_STR  
00  
01  
10  
11  
Nominal.  
Strong.  
Weak.  
Extra Strong.  
[2:1] DOUT_DRIVE_STR  
DOUTx Drive Strength.  
Nominal.  
Strong.  
Weak.  
Extra Strong.  
Sync pulse generated through SPI.  
0x0  
0x1  
R/W  
R/W  
00  
01  
10  
11  
0
SPI_SYNC  
0
1
This signal is AND’ed with the value on START pin in the control module to  
generate a pulse in SYNC_IN pin.  
This bit is AND’ed with the value on START pin in the control module.  
Rev. 0 | Page 72 of 98  
 
Data Sheet  
AD7771  
GENERAL USER CONFIGURATION 3 REGISTER  
Address: 0x013, Reset: 0x80, Name: GENERAL_USER_CONFIG_3  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:6] CONVST_DEGLITCH_DIS (R/W)  
Disable deglitching of CONVST_SAR  
pin  
[0] CLK_QUAL_DIS (R/W)  
Disables the clock qualifier check  
if the user requires to use an MCLK  
signal < 265kHz.  
00: Reserved.  
01: Reserved.  
10: CONVST_SAR Deglitch 1.5/ MCLK.  
11: No deglitch circuit.  
[3:1] RESERVED  
[5] RESERVED  
[4] SPI_SLAVE_MODE_EN (R/W)  
Enable to SPI slave mode to read  
back ADC on SDO  
Table 63. Bit Descriptions for GENERAL_USER_CONFIG_3  
Bits Bit Name  
Settings Description  
Reset  
Access  
[7:6] CONVST_DEGLITCH_DIS  
Disable deglitching of CONVST_SAR pin.  
0x2  
R/W  
00  
01  
10  
11  
Reserved.  
Reserved.  
CONVST_SAR deglitch 1.5/MCLK.  
No deglitch circuit.  
5
4
RESERVED  
Reserved.  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
SPI_SLAVE_MODE_EN  
Enable to SPI slave mode to read back ADC on SDO.  
[3:2] RESERVED  
Reserved.  
Reserved.  
1
0
RESERVED  
CLK_QUAL_DIS  
Disables the clock qualifier check if the user requires to use an MCLK  
signal <265 kHz.  
DATA OUTPUT FORMAT REGISTER  
Address: 0x014, Reset: 0x20, Name: DOUT_FORMAT  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
0
[7:6] DOUT_FORMAT (R/W)  
Data out format  
00: 4 DOUT Lines.  
01: 2 DOUT Lines.  
10: 1 DOUT Lines.  
11: 1 DOUT Lines.  
[0] RESERVED  
[3:1] DCLK_CLK_DIV (R/W)  
Divide MCLK  
000: Divide by 1.  
001: Divide by 2.  
010: Divide by 4.  
011: Divide by 8.  
100: Divide by 16.  
101: Divide by 32.  
110: Divide by 64.  
111: Divide by 128.  
[5] DOUT_HEADER_FORMAT (R/W)  
Dout header format  
0: Status Header.  
1: CRC Header.  
[4] RESERVED  
Table 64. Bit Descriptions for DOUT_FORMAT  
Bits Bit Name  
Settings Description  
Reset  
Access  
[7:6] DOUT_FORMAT  
Data Out Format  
0x0  
R/W  
00 4 DOUTx lines  
01 2 DOUTx lines  
10 1 DOUTx lines  
11 1 DOUTx line  
5
4
DOUT_HEADER_FORMAT  
DOUTx Header Format  
Status header  
CRC header  
0x1  
0x0  
R/W  
R/W  
0
1
RESERVED  
Reserved  
Rev. 0 | Page 73 of 98  
 
 
AD7771  
Data Sheet  
Bits Bit Name  
Settings Description  
Divide MCLK  
Reset  
Access  
[3:1] DCLK_CLK_DIV  
0x0  
R/W  
000 Divide by 1  
001 Divide by 2  
010 Divide by 4  
011 Divide by 8  
100 Divide by 16  
101 Divide by 32  
110 Divide by 64  
111 Divide by 128  
Reserved  
0
RESERVED  
0x0  
R/W  
MAIN ADC METER AND REFERENCE MUX CONTROL REGISTER  
Address: 0x015, Reset: 0x00, Name: ADC_MUX_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] REF_MUX_CTRL (R/W)  
[1:0] RESERVED  
SD ADC Reference Mux  
00: External Reference REFx+/REFx-  
01: Internal Reference.  
10: External Supply AVDD1x/AVSSx.  
11: External Reference REFx-/REFx+.  
[5:2] MTR_MUX_CTRL (R/W)  
SD ADC Meter Mux  
0010: 280mV.  
0011: External Reference REFx+/REFx-  
0100: External Reference REFx-/REFx+.  
0101: External Reference REFx-/REFx-  
0110: Internal Reference +/-  
0111: Internal Reference -/+.  
1000: Internal Reference +/+.  
1001: External Reference REFx+/REFx+.  
Table 65. Bit Descriptions for ADC_MUX_CONFIG  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
REF_MUX_CTRL  
Σ-Δ ADC Reference Mux.  
0x0  
R/W  
00 External reference REFx+/REFx−.  
01 Internal reference.  
10 External supply AVDD1x/AVSSx.  
11 External reference REFx−/REFx+.  
Σ-Δ ADC Meter Mux.  
[5:2]  
MTR_MUX_CTRL  
0x0  
R/W  
0010 280 mV.  
0011 External reference REFx+/REFx−.  
0100 External reference REFx−/REFx+.  
0101 External reference REFx−/REFx−.  
0110 Internal reference +/−.  
0111 Internal reference −/+.  
1000 Internal reference +/+.  
1001 External reference REFx+/REFx+.  
Reserved.  
[1:0]  
RESERVED  
0x0  
R/W  
Rev. 0 | Page 74 of 98  
 
Data Sheet  
AD7771  
GLOBAL DIAGNOSTICS MUX REGISTER  
Address: 0x016, Reset: 0x00, Name: GLOBAL_MUX_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:3] GLOBAL_MUX_CTRL (R/W)  
[2:0] RESERVED  
Global SAR diagnostics mux control  
00000: AUXAin+ AUXAin-  
00001: DVBE AVSSx.  
00010: REF1P REF1N.  
...  
10011: REF1+ AVSSx.  
10100: REF2+ AVSSx.  
10101: AVSSx AVDD4. Attenuated.  
Table 66. Bit Descriptions for GLOBAL_MUX_CONFIG  
Bits Bit Name Settings Description  
[7:3] GLOBAL_MUX_CTRL Global SAR Diagnostics Mux Control.  
00000 AUXAIN+/AUXAIN−.  
Reset  
Access  
0x0  
R/W  
00001 DVBE/AVSSx.  
00010 REF1+/REF1−.  
10011 REF2+/REF2−.  
10100 REF_OUT/AVSSx.  
10101 VCM/AVSSx.  
10110 AREG1CAP/AVSSx.  
10111 AREG2CAP/AVSSx.  
11000 DREGCAP/DGND.  
11001 AVDD1A/AVSSx.  
11010 AVDD1B/AVSSx.  
11011 AVDD2A/AVSSx.  
11100 AVDD2B/AVSSx.  
11101 IOVDD/DGND.  
11110 AVDD4/AVSSx.  
11111 DGND/AVSSx.  
10000 DGND/AVSSx.  
10001 DGND/AVSSx.  
10010 AVDD4/AVSSx.  
10011 REF1+/AVSSx.  
10100 REF2+/AVSSx.  
10101 AVSSx/AVDD4. Attenuated.  
Reserved.  
[2:0] RESERVED  
0x0  
R/W  
GPIO CONFIGURATION REGISTER  
Address: 0x017, Reset: 0x00, Name: GPIO_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:3] RESERVED  
[2:0] GPIO_OP_EN (R/W)  
GPIO input/output  
Table 67. Bit Descriptions for GPIO_CONFIG  
Bits Bit Name  
[7:3] RESERVED  
[2:0] GPIO_OP_EN  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R/W  
R/W  
GPIO Input/Output  
Rev. 0 | Page 75 of 98  
 
 
AD7771  
Data Sheet  
GPIO DATA REGISTER  
Address: 0x018, Reset: 0x00, Name: GPIO_DATA  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[2:0] GPIO_WRITE_DATA (R/W)  
Value sent to GPIO pins  
[5:3] GPIO_READ_DATA (R)  
Data read from GPIO pins  
Table 68. Bit Descriptions for GPIO_DATA  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] RESERVED  
[5:3] GPIO_READ_DATA  
[2:0] GPIO_WRITE_DATA  
Reserved.  
Data Read from the GPIO Pins  
Value Sent to the GPIO Pins  
0x0  
0x0  
0x0  
R/W  
R
R/W  
BUFFER CONFIGURATION 1 REGISTER  
Address: 0x019, Reset: 0x38, Name: BUFFER_CONFIG_1  
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
0
[7] RESERVED  
[0] RESERVED  
[1] RESERVED  
[2] RESERVED  
[6] RESERVED  
[5] RESERVED  
[4] REF_BUF_POS_EN (R/W)  
[3] REF_BUF_NEG_EN (R/W)  
Reference buffer positive enable  
Reference buffer negative enable  
Table 69. Bit Descriptions for BUFFER_CONFIG_1  
Bits  
[7:5]  
4
3
[2:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x1  
0x1  
0x0  
Access  
R/W  
R/W  
R/W  
R/W  
RESERVED  
Reserved  
REF_BUF_POS_EN  
REF_BUF_NEG_EN  
RESERVED  
Reference Buffer Positive Enable  
Reference Buffer Negative Enable  
Reserved  
BUFFER CONFIGURATION 2 REGISTER  
Address: 0x01A, Reset: 0xC0, Name: BUFFER_CONFIG_2  
7
6
5
4
3
2
1
0
1
1
0
0
0
0
0
0
[7] REFBUFP_PREQ (R/W)  
Reference buffer positive precharge  
enable  
[0] PDB_DLDO_OVRDRV (R/W)  
DRegCap Overdrive Enable.  
[1] PDB_ALDO2_OVRDRV (R/W)  
[6] REFBUFN_PREQ (R/W)  
Reference buffer negative precharge  
enable  
AReg2Cap Overdrive Enable  
[2] PDB_ALDO1_OVRDRV (R/W)  
AReg1Cap Overdrive Enable  
[5:3] RESERVED  
Table 70. Bit Descriptions for BUFFER_CONFIG_2  
Bits  
Bit Name  
Settings Description  
Reset  
0x1  
0x1  
0x0  
0x0  
0x0  
0x0  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
6
REFBUFP_PREQ  
REFBUFN_PREQ  
Reference Buffer Positive Precharge Enable  
Reference Buffer Negative Precharge Enable  
Reserved  
AREG1CAP Overdrive Enable  
AREG2CAP Overdrive Enable  
DREGCAP Overdrive Enable  
[5:3] RESERVED  
2
1
0
PDB_ALDO1_OVRDRV  
PDB_ALDO2_OVRDRV  
PDB_DLDO_OVRDRV  
Rev. 0 | Page 76 of 98  
 
 
 
Data Sheet  
AD7771  
CHANNEL 0 OFFSET UPPER BYTE REGISTER  
Address: 0x01C, Reset: 0x00, Name: CH0_OFFSET_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_OFFSET_ALL[23:16] (R/W)  
Combined Offset register Channel 0  
Table 71. Bit Descriptions for CH0_OFFSET_UPPER_BYTE  
Bits Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH0_OFFSET_ALL[23:16]  
Combined Offset Register Channel 0  
0x0  
R/W  
CHANNEL 0 OFFSET MIDDLE BYTE REGISTER  
Address: 0x01D, Reset: 0x00, Name: CH0_OFFSET_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_OFFSET_ALL[15:8] (R/W)  
Combined Offset register Channel 0  
Table 72. Bit Descriptions for CH0_OFFSET_MID_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH0_OFFSET_ALL[15:8]  
Combined Offset Register Channel 0  
0x0  
R/W  
CHANNEL 0 OFFSET LOWER BYTE REGISTER  
Address: 0x01E, Reset: 0x00, Name: CH0_OFFSET_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_OFFSET_ALL[7:0] (R/W)  
Combined Offset register Channel 0  
Table 73. Bit Descriptions for CH0_OFFSET_LOWER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH0_OFFSET_ALL[7:0]  
Combined Offset Register Channel 0  
0x0  
R/W  
CHANNEL 0 GAIN UPPER BYTE REGISTER  
Address: 0x01F, Reset: 0x00, Name: CH0_GAIN_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_GAIN_ALL[23:16] (R/W)  
Combined gain register Channel 0  
Table 74. Bit Descriptions for CH0_GAIN_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH0_GAIN_ALL[23:16]  
Combined Gain Register Channel 0  
0x0  
R/W  
CHANNEL 0 GAIN MIDDLE BYTE REGISTER  
Address: 0x020, Reset: 0x00, Name: CH0_GAIN_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_GAIN_ALL[15:8] (R/W)  
Combined gain register Channel 0  
Table 75. Bit Descriptions for CH0_GAIN_MID_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] CH0_GAIN_ALL[15:8]  
Combined Gain Register Channel 0  
0x0  
R/W  
Rev. 0 | Page 77 of 98  
 
 
 
 
 
AD7771  
Data Sheet  
CHANNEL 0 GAIN LOWER BYTE REGISTER  
Address: 0x021, Reset: 0x00, Name: CH0_GAIN_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH0_GAIN_ALL[7:0] (R/W)  
Combined gain register Channel 0  
Table 76. Bit Descriptions for CH0_GAIN_LOWER_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH0_GAIN_ALL[7:0]  
Combined Gain Register Channel 0  
0x0  
R/W  
CHANNEL 1 OFFSET UPPER BYTE REGISTER  
Address: 0x022, Reset: 0x00, Name: CH1_OFFSET_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_OFFSET_ALL[23:16] (R/W)  
Combined offset register Channel 1  
Table 77. Bit Descriptions for CH1_OFFSET_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH1_OFFSET_ALL[23:16]  
Combined Offset Register Channel 1  
0x0  
R/W  
CHANNEL 1 OFFSET MIDDLE BYTE REGISTER  
Address: 0x023, Reset: 0x00, Name: CH1_OFFSET_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_OFFSET_ALL[15:8] (R/W)  
Combined offset register Channel 1  
Table 78. Bit Descriptions for CH1_OFFSET_MID_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH1_OFFSET_ALL[15:8]  
Combined Offset Register Channel 1  
0x0  
R/W  
CHANNEL 1 OFFSET LOWER BYTE REGISTER  
Address: 0x024, Reset: 0x00, Name: CH1_OFFSET_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_OFFSET_ALL[7:0] (R/W)  
Combined offset register Channel 1  
Table 79. Bit Descriptions for CH1_OFFSET_LOWER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH1_OFFSET_ALL[7:0]  
Combined Offset Register Channel 1  
0x0  
R/W  
CHANNEL 1 GAIN UPPER BYTE REGISTER  
Address: 0x025, Reset: 0x00, Name: CH1_GAIN_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_GAIN_ALL[23:16] (R/W)  
Combined gain register Channel 1  
Table 80. Bit Descriptions for CH1_GAIN_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH1_GAIN_ALL[23:16]  
Combined Gain Register Channel 1  
0x0  
R/W  
Rev. 0 | Page 78 of 98  
 
 
 
 
 
Data Sheet  
AD7771  
CHANNEL 1 GAIN MIDDLE BYTE REGISTER  
Address: 0x026, Reset: 0x00, Name: CH1_GAIN_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_GAIN_ALL[15:8] (R/W)  
Combined gain register Channel 1  
Table 81. Bit Descriptions for CH1_GAIN_MID_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] CH1_GAIN_ALL[15:8]  
Combined Gain Register Channel 1  
0x0  
R/W  
CHANNEL 1 GAIN LOWER BYTE REGISTER  
Address: 0x027, Reset: 0x00, Name: CH1_GAIN_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_GAIN_ALL[7:0] (R/W)  
Combined gain register Channel 1  
Table 82. Bit Descriptions for CH1_GAIN_LOWER_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH1_GAIN_ALL[7:0]  
Combined Gain Register Channel 1  
0x0  
R/W  
CHANNEL 2 OFFSET UPPER BYTE REGISTER  
Address: 0x028, Reset: 0x00, Name: CH2_OFFSET_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_OFFSET_ALL[23:16] (R/W)  
Combined offset register Channel 2  
Table 83. Bit Descriptions for CH2_OFFSET_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH2_OFFSET_ALL[23:16]  
Combined Offset Register Channel 2  
0x0  
R/W  
CHANNEL 2 OFFSET MIDDLE BYTE REGISTER  
Address: 0x029, Reset: 0x00, Name: CH2_OFFSET_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_OFFSET_ALL[15:8] (R/W)  
Combined offset register Channel 2  
Table 84. Bit Descriptions for CH2_OFFSET_MID_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH2_OFFSET_ALL[15:8]  
Combined Offset Register Channel 2  
0x0  
R/W  
CHANNEL 2 OFFSET LOWER BYTE REGISTER  
Address: 0x02A, Reset: 0x00, Name: CH2_OFFSET_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_OFFSET_ALL[7:0] (R/W)  
Combined offset register Channel 2  
Table 85. Bit Descriptions for CH2_OFFSET_LOWER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH2_OFFSET_ALL[7:0]  
Combined Offset Register Channel 2  
0x0  
R/W  
Rev. 0 | Page 79 of 98  
 
 
 
 
 
AD7771  
Data Sheet  
CHANNEL 2 GAIN UPPER BYTE REGISTER  
Address: 0x02B, Reset: 0x00, Name: CH2_GAIN_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_GAIN_ALL[23:16] (R/W)  
Combined gain register Channel 2  
Table 86. Bit Descriptions for CH2_GAIN_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH2_GAIN_ALL[23:16]  
Combined Gain Register Channel 2  
0x0  
R/W  
CHANNEL 2 GAIN MIDDLE BYTE REGISTER  
Address: 0x02C, Reset: 0x00, Name: CH2_GAIN_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_GAIN_ALL[15:8] (R/W)  
Combined gain register Channel 2  
Table 87. Bit Descriptions for CH2_GAIN_MID_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] CH2_GAIN_ALL[15:8]  
Combined Gain Register Channel 2  
0x0  
R/W  
CHANNEL 2 GAIN LOWER BYTE REGISTER  
Address: 0x02D, Reset: 0x00, Name: CH2_GAIN_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_GAIN_ALL[7:0] (R/W)  
Combined gain register Channel 2  
Table 88. Bit Descriptions for CH2_GAIN_LOWER_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH2_GAIN_ALL[7:0]  
Combined Gain Register Channel 2  
0x0  
R/W  
CHANNEL 3 OFFSET UPPER BYTE REGISTER  
Address: 0x02E, Reset: 0x00, Name: CH3_OFFSET_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_OFFSET_ALL[23:16] (R/W)  
Combined offset register Channel 3  
Table 89. Bit descriptions for CH3_OFFSET_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH3_OFFSET_ALL[23:16]  
Combined Offset Register Channel 3  
0x0  
R/W  
CHANNEL 3 OFFSET MIDDLE BYTE REGISTER  
Address: 0x02F, Reset: 0x00, Name: CH3_OFFSET_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_OFFSET_ALL[15:8] (R/W)  
Combined offset register Channel 3  
Table 90. Bit Descriptions for CH3_OFFSET_MID_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH3_OFFSET_ALL[15:8]  
Combined Offset Register Channel 3  
0x0  
R/W  
Rev. 0 | Page 80 of 98  
 
 
 
 
 
Data Sheet  
AD7771  
CHANNEL 3 OFFSET LOWER BYTE REGISTER  
Address: 0x030, Reset: 0x00, Name: CH3_OFFSET_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_OFFSET_ALL[7:0] (R/W)  
Combined offset register Channel 3  
Table 91. Bit Descriptions for CH3_OFFSET_LOWER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH3_OFFSET_ALL[7:0]  
Combined Offset Register Channel 3  
0x0  
R/W  
CHANNEL 3 GAIN UPPER BYTE REGISTER  
Address: 0x031, Reset: 0x00, Name: CH3_GAIN_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_GAIN_ALL[23:16] (R/W)  
Combined gain register Channel 3  
Table 92. Bit Descriptions for CH3_GAIN_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH3_GAIN_ALL[23:16]  
Combined Gain Register Channel 3  
0x0  
R/W  
CHANNEL 3 GAIN MIDDLE BYTE REGISTER  
Address: 0x032, Reset: 0x00, Name: CH3_GAIN_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_GAIN_ALL[15:8] (R/W)  
Combined gain register Channel 3  
Table 93. Bit Descriptions for CH3_GAIN_MID_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] CH3_GAIN_ALL[15:8]  
Combined Gain Register Channel 3  
0x0  
R/W  
CHANNEL 3 GAIN LOWER BYTE REGISTER  
Address: 0x033, Reset: 0x00, Name: CH3_GAIN_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_GAIN_ALL[7:0] (R/W)  
Combined gain register Channel 3  
Table 94. Bit Descriptions for CH3_GAIN_LOWER_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH3_GAIN_ALL[7:0]  
Combined Gain Register Channel 3  
0x0  
R/W  
CHANNEL 4 OFFSET UPPER BYTE REGISTER  
Address: 0x034, Reset: 0x00, Name: CH4_OFFSET_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_OFFSET_ALL[23:16] (R/W)  
Combined offset register Channel 4  
Table 95. Bit Descriptions for CH4_OFFSET_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH4_OFFSET_ALL[23:16]  
Combined Offset Register Channel 4  
0x0  
R/W  
Rev. 0 | Page 81 of 98  
 
 
 
 
 
AD7771  
Data Sheet  
CHANNEL 4 OFFSET MIDDLE BYTE REGISTER  
Address: 0x035, Reset: 0x00, Name: CH4_OFFSET_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_OFFSET_ALL[15:8] (R/W)  
Combined offset register Channel 4  
Table 96. Bit Descriptions for CH4_OFFSET_MID_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH4_OFFSET_ALL[15:8]  
Combined Offset Register Channel 4  
0x0  
R/W  
CHANNEL 4 OFFSET LOWER BYTE REGISTER  
Address: 0x036, Reset: 0x00, Name: CH4_OFFSET_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_OFFSET_ALL[7:0] (R/W)  
Combined offset register Channel 4  
Table 97. Bit Descriptions for CH4_OFFSET_LOWER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH4_OFFSET_ALL[7:0]  
Combined Offset Register Channel 4  
0x0  
R/W  
CHANNEL 4 GAIN UPPER BYTE REGISTER  
Address: 0x037, Reset: 0x00, Name: CH4_GAIN_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_GAIN_ALL[23:16] (R/W)  
Combined gain register Channel 4  
Table 98. Bit Descriptions for CH4_GAIN_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH4_GAIN_ALL[23:16]  
Combined Gain Register Channel 4  
0x0  
R/W  
CHANNEL 4 GAIN MIDDLE BYTE REGISTER  
Address: 0x038, Reset: 0x00, Name: CH4_GAIN_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_GAIN_ALL[15:8] (R/W)  
Combined gain register Channel 4  
Table 99. Bit Descriptions for CH4_GAIN_MID_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] CH4_GAIN_ALL[15:8]  
Combined Gain Register Channel 4  
0x0  
R/W  
CHANNEL 4 GAIN LOWER BYTE REGISTER  
Address: 0x039, Reset: 0x00, Name: CH4_GAIN_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_GAIN_ALL[7:0] (R/W)  
Combined gain register Channel 4  
Table 100. Bit Descriptions for CH4_GAIN_LOWER_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH4_GAIN_ALL[7:0]  
Combined Gain Register Channel 4  
0x0  
R/W  
Rev. 0 | Page 82 of 98  
 
 
 
 
 
Data Sheet  
AD7771  
CHANNEL 5 OFFSET UPPER BYTE REGISTER  
Address: 0x03A, Reset: 0x00, Name: CH5_OFFSET_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_OFFSET_ALL[23:16] (R/W)  
Combined offset register Channel 5  
Table 101. Bit Descriptions for CH5_OFFSET_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH5_OFFSET_ALL[23:16]  
Combined Offset Register Channel 5  
0x0  
R/W  
CHANNEL 5 OFFSET MIDDLE BYTE REGISTER  
Address: 0x03B, Reset: 0x00, Name: CH5_OFFSET_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_OFFSET_ALL[15:8] (R/W)  
Combined offset register Channel 5  
Table 102. Bit Descriptions for CH5_OFFSET_MID_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH5_OFFSET_ALL[15:8]  
Combined Offset Register Channel 5  
0x0  
R/W  
CHANNEL 5 OFFSET LOWER BYTE REGISTER  
Address: 0x03C, Reset: 0x00, Name: CH5_OFFSET_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_OFFSET_ALL[7:0] (R/W)  
Combined offset register Channel 5  
Table 103. Bit Descriptions for CH5_OFFSET_LOWER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH5_OFFSET_ALL[7:0]  
Combined Offset Register Channel 5  
0x0  
R/W  
CHANNEL 5 GAIN UPPER BYTE REGISTER  
Address: 0x03D, Reset: 0x00, Name: CH5_GAIN_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_GAIN_ALL[23:16] (R/W)  
Combined gain register Channel 5  
Table 104. Bit Descriptions for CH5_GAIN_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH5_GAIN_ALL[23:16]  
Combined Gain Register Channel 5  
0x0  
R/W  
CHANNEL 5 GAIN MIDDLE BYTE REGISTER  
Address: 0x03E, Reset: 0x00, Name: CH5_GAIN_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_GAIN_ALL[15:8] (R/W)  
Combined gain register Channel 5  
Table 105. Bit Descriptions for CH5_GAIN_MID_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] CH5_GAIN_ALL[15:8]  
Combined Gain Register Channel 5  
0x0  
R/W  
Rev. 0 | Page 83 of 98  
 
 
 
 
 
AD7771  
Data Sheet  
CHANNEL 5 GAIN LOWER BYTE REGISTER  
Address: 0x03F, Reset: 0x00, Name: CH5_GAIN_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_GAIN_ALL[7:0] (R/W)  
Combined gain register Channel 5  
Table 106. Bit Descriptions for CH5_GAIN_LOWER_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH5_GAIN_ALL[7:0]  
Combined Gain Register Channel 5  
0x0  
R/W  
CHANNEL 6 OFFSET UPPER BYTE REGISTER  
Address: 0x040, Reset: 0x00, Name: CH6_OFFSET_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_OFFSET_ALL[23:16] (R/W)  
Combined offset register Channel 6  
Table 107. Bit Descriptions for CH6_OFFSET_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH6_OFFSET_ALL[23:16]  
Combined Offset Register Channel 6  
0x0  
R/W  
CHANNEL 6 OFFSET MIDDLE BYTE REGISTER  
Address: 0x041, Reset: 0x00, Name: CH6_OFFSET_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_OFFSET_ALL[15:8] (R/W)  
Combined offset register Channel 6  
Table 108. Bit Descriptions for CH6_OFFSET_MID_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH6_OFFSET_ALL[15:8]  
Combined Offset Register Channel 6  
0x0  
R/W  
CHANNEL 6 OFFSET LOWER BYTE REGISTER  
Address: 0x042, Reset: 0x00, Name: CH6_OFFSET_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_OFFSET_ALL[7:0] (R/W)  
Combined offset register Channel 6  
Table 109. Bit Descriptions for CH6_OFFSET_LOWER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH6_OFFSET_ALL[7:0]  
Combined Offset Register Channel 6  
0x0  
R/W  
CHANNEL 6 GAIN UPPER BYTE REGISTER  
Address: 0x043, Reset: 0x00, Name: CH6_GAIN_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_GAIN_ALL[23:16] (R/W)  
Combined gain register Channel 6  
Table 110. Bit Descriptions for CH6_GAIN_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH6_GAIN_ALL[23:16]  
Combined Gain Register Channel 6  
0x0  
R/W  
Rev. 0 | Page 84 of 98  
 
 
 
 
 
Data Sheet  
AD7771  
CHANNEL 6 GAIN MIDDLE BYTE REGISTER  
Address: 0x044, Reset: 0x00, Name: CH6_GAIN_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_GAIN_ALL[15:8] (R/W)  
Combined gain register Channel 6  
Table 111. Bit Descriptions for CH6_GAIN_MID_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] CH6_GAIN_ALL[15:8]  
Combined Gain Register Channel 6  
0x0  
R/W  
CHANNEL 6 GAIN LOWER BYTE REGISTER  
Address: 0x045, Reset: 0x00, Name: CH6_GAIN_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_GAIN_ALL[7:0] (R/W)  
Combined gain register Channel 6  
Table 112. Bit Descriptions for CH6_GAIN_LOWER_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH6_GAIN_ALL[7:0]  
Combined Gain Register Channel 6  
0x0  
R/W  
CHANNEL 7 OFFSET UPPER BYTE REGISTER  
Address: 0x046, Reset: 0x00, Name: CH7_OFFSET_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_OFFSET_ALL[23:16] (R/W)  
Combined offset register Channel 7  
Table 113. Bit Descriptions for CH7_OFFSET_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH7_OFFSET_ALL[23:16]  
Combined Offset Register Channel 7  
0x0  
R/W  
CHANNEL 7 OFFSET MIDDLE BYTE REGISTER  
Address: 0x047, Reset: 0x00, Name: CH7_OFFSET_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_OFFSET_ALL[15:8] (R/W)  
Combined offset register Channel 7  
Table 114. Bit Descriptions for CH7_OFFSET_MID_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH7_OFFSET_ALL[15:8]  
Combined Offset Register Channel 7  
0x0  
R/W  
CHANNEL 7 OFFSET LOWER BYTE REGISTER  
Address: 0x048, Reset: 0x00, Name: CH7_OFFSET_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_OFFSET_ALL[7:0] (R/W)  
Combined offset register Channel 7  
Table 115. Bit Descriptions for CH7_OFFSET_LOWER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH7_OFFSET_ALL[7:0]  
Combined Offset Register Channel 7  
0x0  
R/W  
Rev. 0 | Page 85 of 98  
 
 
 
 
 
AD7771  
Data Sheet  
CHANNEL 7 GAIN UPPER BYTE REGISTER  
Address: 0x049, Reset: 0x00, Name: CH7_GAIN_UPPER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_GAIN_ALL[23:16] (R/W)  
Combined gain register Channel 7  
Table 116. Bit Descriptions for CH7_GAIN_UPPER_BYTE  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0] CH7_GAIN_ALL[23:16]  
Combined Gain Register Channel 7  
0x0  
R/W  
CHANNEL 7 GAIN MIDDLE BYTE REGISTER  
Address: 0x04A, Reset: 0x00, Name: CH7_GAIN_MID_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_GAIN_ALL[15:8] (R/W)  
Combined gain register Channel 7  
Table 117. Bit Descriptions for CH7_GAIN_MID_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] CH7_GAIN_ALL[15:8]  
Combined Gain Register Channel 7  
0x0  
R/W  
CHANNEL 7 GAIN LOWER BYTE REGISTER  
Address: 0x04B, Reset: 0x00, Name: CH7_GAIN_LOWER_BYTE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_GAIN_ALL[7:0] (R/W)  
Combined gain register Channel 7  
Table 118. Bit Descriptions for CH7_GAIN_LOWER_BYTE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
CH7_GAIN_ALL[7:0]  
Combined Gain Register Channel 7  
0x0  
R/W  
CHANNEL 0 STATUS REGISTER  
Address: 0x04C, Reset: 0x00, Name: CH0_ERR_REG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[0] CH0_ERR_REF_DET (R)  
Channel 0 - Reference detect error  
[4] CH0_ERR_AINM_UV (R)  
AIN0- undervoltage error  
[1] CH0_ERR_AINP_OV (R)  
AIN0+ overvoltage error  
[3] CH0_ERR_AINM_OV (R)  
AIN0- overvoltage error  
[2] CH0_ERR_AINP_UV (R)  
AIN0+ undervoltage error  
Table 119. Bit Descriptions for CH0_ERR_REG  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
[7:5] RESERVED  
Reserved  
R/W  
R
R
R
R
4
3
2
1
0
CH0_ERR_AINM_UV  
Channel 0—AIN0− Undervoltage Error  
Channel 0—AIN0− Overvoltage Error  
Channel 0—AIN0+ Undervoltage Error  
Channel 0—AIN0+ Overvoltage Error  
Channel 0—Reference Detect Error  
CH0_ERR_AINM_OV  
CH0_ERR_AINP_UV  
CH0_ERR_AINP_OV  
CH0_ERR_REF_DET  
R
Rev. 0 | Page 86 of 98  
 
 
 
 
Data Sheet  
AD7771  
CHANNEL 1 STATUS REGISTER  
Address: 0x04D, Reset: 0x00, Name: CH1_ERR_REG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[0] CH1_ERR_REF_DET (R)  
Channel 1 - Reference detect error  
[4] CH1_ERR_AINM_UV (R)  
AIN1- undervoltage error  
[1] CH1_ERR_AINP_OV (R)  
AIN1+ overvoltage error  
[3] CH1_ERR_AINM_OV (R)  
AIN1- overvoltage error  
[2] CH1_ERR_AINP_UV (R)  
AIN1+ undervoltage error  
Table 120. Bit Descriptions for CH1_ERR_REG  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
[7:5] RESERVED  
Reserved  
R/W  
R
R
R
R
4
3
2
1
0
CH1_ERR_AINM_UV  
Channel 1—AIN1− Undervoltage Error  
Channel 1—AIN1− Overvoltage Error  
Channel 1—AIN1+ Undervoltage Error  
Channel 1—AIN1+ Overvoltage Error  
Channel 1—Reference Detect Error  
CH1_ERR_AINM_OV  
CH1_ERR_AINP_UV  
CH1_ERR_AINP_OV  
CH1_ERR_REF_DET  
R
CHANNEL 2 STATUS REGISTER  
Address: 0x04E, Reset: 0x00, Name: CH2_ERR_REG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[0] CH2_ERR_REF_DET (R)  
Channel 2 - Reference detect error  
[4] CH2_ERR_AINM_UV (R)  
AIN2- undervoltage error  
[1] CH2_ERR_AINP_OV (R)  
AIN2+ overvoltage error  
[3] CH2_ERR_AINM_OV (R)  
AIN2- overvoltage error  
[2] CH2_ERR_AINP_UV (R)  
AIN2+ undervoltage error  
Table 121. Bit Descriptions for CH2_ERR_REG  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
[7:5] RESERVED  
Reserved  
R/W  
R
R
R
R
4
3
2
1
0
CH2_ERR_AINM_UV  
Channel 2—AIN2− Undervoltage Error  
Channel 2—AIN2− Overvoltage Error  
Channel 2—AIN2+ Undervoltage Error  
Channel 2—AIN2+ Overvoltage Error  
Channel 2—Reference Detect Error  
CH2_ERR_AINM_OV  
CH2_ERR_AINP_UV  
CH2_ERR_AINP_OV  
CH2_ERR_REF_DET  
R
Rev. 0 | Page 87 of 98  
 
 
AD7771  
Data Sheet  
CHANNEL 3 STATUS REGISTER  
Address: 0x04F, Reset: 0x00, Name: CH3_ERR_REG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[0] CH3_ERR_REF_DET (R)  
Channel 3 - Reference detect error  
[4] CH3_ERR_AINM_UV (R)  
AIN3- undervoltage error  
[1] CH3_ERR_AINP_OV (R)  
AIN3+ overvoltage error  
[3] CH3_ERR_AINM_OV (R)  
AIN3- overvoltage error  
[2] CH3_ERR_AINP_UV (R)  
AIN3+ undervoltage error  
Table 122. Bit Descriptions for CH3_ERR_REG  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
[7:5] RESERVED  
Reserved  
R/W  
R
R
R
R
4
3
2
1
0
CH3_ERR_AINM_UV  
Channel 3—AIN3− Undervoltage Error  
Channel 3—AIN3− Overvoltage Error  
Channel 3—AIN3+ Undervoltage Error  
Channel 3—AIN3+ Overvoltage Error  
Channel 3—Reference Detect Error  
CH3_ERR_AINM_OV  
CH3_ERR_AINP_UV  
CH3_ERR_AINP_OV  
CH3_ERR_REF_DET  
R
CHANNEL 4 STATUS REGISTER  
Address: 0x050, Reset: 0x00, Name: CH4_ERR_REG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[0] CH4_ERR_REF_DET (R)  
Channel 4 - Reference detect error  
[4] CH4_ERR_AINM_UV (R)  
AIN4- undervoltage error  
[1] CH4_ERR_AINP_OV (R)  
AIN4+ overvoltage error  
[3] CH4_ERR_AINM_OV (R)  
AIN4- overvoltage error  
[2] CH4_ERR_AINP_UV (R)  
AIN4+ undervoltage error  
Table 123. Bit Descriptions for CH4_ERR_REG  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
[7:5] RESERVED  
Reserved  
R/W  
R
R
R
R
4
3
2
1
0
CH4_ERR_AINM_UV  
Channel 4—AIN4− Undervoltage Error  
Channel 4—AIN4− Overvoltage Error  
Channel 4—AIN4+ Undervoltage Error  
Channel 4—AIN4+ Overvoltage Error  
Channel 4—Reference Detect Error  
CH4_ERR_AINM_OV  
CH4_ERR_AINP_UV  
CH4_ERR_AINP_OV  
CH4_ERR_REF_DET  
R
Rev. 0 | Page 88 of 98  
 
 
Data Sheet  
AD7771  
CHANNEL 5 STATUS REGISTER  
Address: 0x051, Reset: 0x00, Name: CH5_ERR_REG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[0] CH5_ERR_REF_DET (R)  
Channel 5 - Reference detect error  
[4] CH5_ERR_AINM_UV (R)  
AIN5- undervoltage error  
[1] CH5_ERR_AINP_OV (R)  
AIN5+ overvoltage error  
[3] CH5_ERR_AINM_OV (R)  
AIN5- overvoltage error  
[2] CH5_ERR_AINP_UV (R)  
AIN5+ undervoltage error  
Table 124. Bit Descriptions for CH5_ERR_REG  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
[7:5] RESERVED  
Reserved  
R/W  
R
R
R
R
4
3
2
1
0
CH5_ERR_AINM_UV  
Channel 5—AIN5− Undervoltage Error  
Channel 5—AIN5− Overvoltage Error  
Channel 5—AIN5+ Undervoltage Error  
Channel 5—AIN5+ Overvoltage Error  
Channel 5—Reference Detect Error  
CH5_ERR_AINM_OV  
CH5_ERR_AINP_UV  
CH5_ERR_AINP_OV  
CH5_ERR_REF_DET  
R
CHANNEL 6 STATUS REGISTER  
Address: 0x052, Reset: 0x00, Name: CH6_ERR_REG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[0] CH6_ERR_REF_DET (R)  
Channel 6 - Reference detect error  
[4] CH6_ERR_AINM_UV (R)  
AIN6- undervoltage error  
[1] CH6_ERR_AINP_OV (R)  
AIN6+ overvoltage error  
[3] CH6_ERR_AINM_OV (R)  
AIN6- overvoltage error  
[2] CH6_ERR_AINP_UV (R)  
AIN6+ undervoltage error  
Table 125. Bit Descriptions for CH6_ERR_REG  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
[7:5] RESERVED  
Reserved  
R/W  
R
R
R
R
4
3
2
1
0
CH6_ERR_AINM_UV  
Channel 6—AIN6− Undervoltage Error  
Channel 6—AIN6− Overvoltage Error  
Channel 6—AIN6+ Undervoltage Error  
Channel 6—AIN6+ Overvoltage Error  
Channel 6—Reference Detect Error  
CH6_ERR_AINM_OV  
CH6_ERR_AINP_UV  
CH6_ERR_AINP_OV  
CH6_ERR_REF_DET  
R
Rev. 0 | Page 89 of 98  
 
 
AD7771  
Data Sheet  
CHANNEL 7 STATUS REGISTER  
Address: 0x053, Reset: 0x00, Name: CH7_ERR_REG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[0] CH7_ERR_REF_DET (R)  
Channel 7 - Reference detect error  
[4] CH7_ERR_AINM_UV (R)  
AIN7- undervoltage error  
[1] CH7_ERR_AINP_OV (R)  
AIN7+ overvoltage error  
[3] CH7_ERR_AINM_OV (R)  
AIN7- overvoltage error  
[2] CH7_ERR_AINP_UV (R)  
AIN7+ undervoltage error  
Table 126. Bit Descriptions for CH7_ERR_REG  
Bits  
[7:5]  
4
3
2
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
RESERVED  
Reserved  
R
R
R
R
R
R
CH7_ERR_AINM_UV  
CH7_ERR_AINM_OV  
CH7_ERR_AINP_UV  
CH7_ERR_AINP_OV  
CH7_ERR_REF_DET  
Channel 7—AIN7− Undervoltage Error  
Channel 7—AIN7− Overvoltage Error  
Channel 7—AIN7+ Undervoltage Error  
Channel 7—AIN7+ Overvoltage Error  
Channel 7—Reference Detect Error  
1
0
CHANNEL 0/CHANNEL 1 DSP ERRORS REGISTER  
Address: 0x054, Reset: 0x00, Name: CH0_1_SAT_ERR  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] CH0_ERR_OUTPUT_SAT (R)  
Channel 0 - ADC conversion has  
exceeded limits and has been clamped  
[5] CH1_ERR_MOD_SAT (R)  
Channel 1 - Modulator output saturation  
error  
[1] CH0_ERR_FILTER_SAT (R)  
Channel 0 - Filter result has exceeded  
a reasonable level, before offset and  
gain calibration has been applied.  
[4] CH1_ERR_FILTER_SAT (R)  
Channel 1 - Filter result has exceeded  
a reasonable level, before offset and  
gain calibration has been applied.  
[2] CH0_ERR_MOD_SAT (R)  
Channel 0 - Modulator output saturation  
error  
[3] CH1_ERR_OUTPUT_SAT (R)  
Channel 1 - ADC conversion has  
exceeded limits and has been clamped  
Table 127. Bit Descriptions for CH0_1_SAT_ERR  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] RESERVED  
Reserved  
0x0  
0x0  
R
R
R
5
4
CH1_ERR_MOD_SAT  
CH1_ERR_FILTER_SAT  
Channel 1—Modulator output saturation error  
Channel 1—Filter result has exceeded a reasonable level, before offset and 0x0  
gain calibration are applied  
3
2
1
CH1_ERR_OUTPUT_SAT  
CH0_ERR_MOD_SAT  
CH0_ERR_FILTER_SAT  
Channel 1—ADC conversion has exceeded limits and is clamped  
Channel 0—Modulator output saturation error  
Channel 0—Filter result has exceeded a reasonable level, before offset and 0x0  
gain calibration are applied  
0x0  
0x0  
R
R
R
0
CH0_ERR_OUTPUT_SAT  
Channel 0—ADC conversion has exceeded limits and is clamped  
0x0  
R
Rev. 0 | Page 90 of 98  
 
 
Data Sheet  
AD7771  
CHANNEL 2/CHANNEL 3 DSP ERRORS REGISTER  
Address: 0x055, Reset: 0x00, Name: CH2_3_SAT_ERR  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] CH2_ERR_OUTPUT_SAT (R)  
Channel 2 - ADC conversion has  
exceeded limits and has been clamped  
[5] CH3_ERR_MOD_SAT (R)  
Channel 3 - Modulator output saturation  
error  
[1] CH2_ERR_FILTER_SAT (R)  
Channel 2 - Filter result has exceeded  
a reasonable level, before offset and  
gain calibration has been applied.  
[4] CH3_ERR_FILTER_SAT (R)  
Channel 3 - Filter result has exceeded  
a reasonable level, before offset and  
gain calibration has been applied.  
[2] CH2_ERR_MOD_SAT (R)  
Channel 2 - Modulator output saturation  
error  
[3] CH3_ERR_OUTPUT_SAT (R)  
Channel 3 - ADC conversion has  
exceeded limits and has been clamped  
Table 128. Bit Descriptions for CH2_3_SAT_ERR  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] RESERVED  
Reserved  
0x0  
0x0  
R
R
R
5
4
CH3_ERR_MOD_SAT  
CH3_ERR_FILTER_SAT  
Channel 3—Modulator output saturation error  
Channel 3—Filter result has exceeded a reasonable level, before offset and 0x0  
gain calibration are applied  
3
2
1
CH3_ERR_OUTPUT_SAT  
CH2_ERR_MOD_SAT  
CH2_ERR_FILTER_SAT  
Channel 3—ADC conversion has exceeded limits and is clamped  
Channel 2—Modulator output saturation error  
Channel 2—Filter result has exceeded a reasonable level, before offset and 0x0  
gain calibration are applied  
0x0  
0x0  
R
R
R
0
CH2_ERR_OUTPUT_SAT  
Channel 2—ADC conversion has exceeded limits and has been clamped  
0x0  
R
CHANNEL 4/CHANNEL 5 DSP ERRORS REGISTER  
Address: 0x056, Reset: 0x00, Name: CH4_5_SAT_ERR  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] CH4_ERR_OUTPUT_SAT (R)  
Channel 4 - ADC conversion has  
exceeded limits and has been clamped  
[5] CH5_ERR_MOD_SAT (R)  
Channel 5 - Modulator output saturation  
error  
[1] CH4_ERR_FILTER_SAT (R)  
Channel 4 - Filter result has exceeded  
a reasonable level, before offset and  
gain calibration has been applied.  
[4] CH5_ERR_FILTER_SAT (R)  
Channel 5 - Filter result has exceeded  
a reasonable level, before offset and  
gain calibration has been applied.  
[2] CH4_ERR_MOD_SAT (R)  
Channel 4 - Modulator output saturation  
error  
[3] CH5_ERR_OUTPUT_SAT (R)  
Channel 5 - ADC conversion has  
exceeded limits and has been clamped  
Table 129. Bit Descriptions for CH4_5_SAT_ERR  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] RESERVED  
Reserved  
0x0  
0x0  
R
R
R
5
4
CH5_ERR_MOD_SAT  
CH5_ERR_FILTER_SAT  
Channel 5—Modulator output saturation error  
Channel 5—Filter result has exceeded a reasonable level, before offset and 0x0  
gain calibration are applied  
3
2
1
CH5_ERR_OUTPUT_SAT  
CH4_ERR_MOD_SAT  
CH4_ERR_FILTER_SAT  
Channel 5—ADC conversion has exceeded limits and is clamped  
Channel 4—Modulator output saturation error  
Channel 4—Filter result has exceeded a reasonable level, before offset and 0x0  
gain calibration are applied  
0x0  
0x0  
R
R
R
0
CH4_ERR_OUTPUT_SAT  
Channel 4—ADC conversion has exceeded limits and is clamped  
0x0  
R
Rev. 0 | Page 91 of 98  
 
 
AD7771  
Data Sheet  
CHANNEL 6/CHANNEL 7 DSP ERRORS REGISTER  
Address: 0x057, Reset: 0x00, Name: CH6_7_SAT_ERR  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] CH6_ERR_OUTPUT_SAT (R)  
Channel 6 - ADC conversion has  
exceeded limits and has been clamped  
[5] CH7_ERR_MOD_SAT (R)  
Channel 7 - Modulator output saturation  
error  
[1] CH6_ERR_FILTER_SAT (R)  
Channel 6 - Filter result has exceeded  
a reasonable level, before offset and  
gain calibration has been applied.  
[4] CH7_ERR_FILTER_SAT (R)  
Channel 7 - Filter result has exceeded  
a reasonable level, before offset and  
gain calibration has been applied.  
[2] CH6_ERR_MOD_SAT (R)  
Channel 6 - Modulator output saturation  
error  
[3] CH7_ERR_OUTPUT_SAT (R)  
Channel 7 - ADC conversion has  
exceeded limits and has been clamped  
Table 130. Bit descriptions for CH6_7_SAT_ERR  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] RESERVED  
Reserved  
0x0  
0x0  
R
R
R
5
4
CH7_ERR_MOD_SAT  
CH7_ERR_FILTER_SAT  
Channel 7—Modulator output saturation error  
Channel 7—Filter result has exceeded a reasonable level, before offset and 0x0  
gain calibration are applied  
3
2
1
CH7_ERR_OUTPUT_SAT  
CH6_ERR_MOD_SAT  
CH6_ERR_FILTER_SAT  
Channel 7—ADC conversion has exceeded limits and is clamped  
Channel 6—Modulator output saturation error  
Channel 6—Filter result has exceeded a reasonable level, before offset and 0x0  
gain calibration are applied  
0x0  
0x0  
R
R
R
0
CH6_ERR_OUTPUT_SAT  
Channel 6—ADC conversion has exceeded limits and is clamped  
0x0  
R
CHANNEL 0 TO CHANNEL 7 ERROR REGISTER ENABLE REGISTER  
Address: 0x058, Reset: 0xFE, Name: CHX_ERR_REG_EN  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
0
[7] OUTPUT_SAT_TEST_EN (R/W)  
[0] REF_DET_TEST_EN (R/W)  
ADC conversion error test enable  
Reference detect test enable  
[6] FILTER_SAT_TEST_EN (R/W)  
[1] AINP_OV_TEST_EN (R/W)  
Filter saturation error test enable  
AINx+ overvoltage test enable  
[5] MOD_SAT_TEST_EN (R/W)  
[2] AINP_UV_TEST_EN (R/W)  
Enable error flag for Modulator saturation  
AINx+ undervoltage test enable  
[4] AINM_UV_TEST_EN (R/W)  
[3] AINM_OV_TEST_EN (R/W)  
AINx- undervoltage test enable  
AINx- overvoltage test enable  
Table 131. Bit Descriptions for CHX_ERR_REG_EN  
Bits  
Bit Name  
Settings Description  
Reset  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
6
5
4
3
2
1
0
OUTPUT_SAT_TEST_EN  
FILTER_SAT_TEST_EN  
MOD_SAT_TEST_EN  
AINM_UV_TEST_EN  
AINM_OV_TEST_EN  
AINP_UV_TEST_EN  
AINP_OV_TEST_EN  
REF_DET_TEST_EN  
ADC Conversion Error Test Enable  
Filter Saturation Test Enable  
Enable Error Flag for Modulator Saturation  
AINx− Undervoltage Test Enable  
AINx− Overvoltage Test Enable  
AINx+ Undervoltage Test Enable  
AINx+ Overvoltage Test Enable  
Reference Detect Test Enable  
Rev. 0 | Page 92 of 98  
 
 
Data Sheet  
AD7771  
GENERAL ERRORS REGISTER 1  
Address: 0x059, Reset: 0x00, Name: GEN_ERR_REG_1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] SPI_CRC_ERR (R)  
SPI CRC error  
[5] MEMMAP_CRC_ERR (R)  
A CRC of the memory map contents  
is run periodically to check for errors  
[1] SPI_INVALID_WRITE_ERR (R)  
SPI invalid write address  
[4] ROM_CRC_ERR (R)  
A CRC of the fuse contents is run  
periodically to check for errors in  
the fuses  
[2] SPI_INVALID_READ_ERR (R)  
SPI invalid read address  
[3] SPI_CLK_COUNT_ERR (R)  
SPI clock counter error  
Table 132. Bit Descriptions for GEN_ERR_REG_1  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] RESERVED  
Reserved  
0x0  
R
R
R
R
R
R
R
5
4
3
2
1
0
MEMMAP_CRC_ERR  
ROM_CRC_ERR  
SPI_CLK_COUNT_ERR  
SPI_INVALID_READ_ERR  
SPI_INVALID_WRITE_ERR  
SPI_CRC_ERR  
A CRC of the memory map contents is run periodically to check for errors 0x0  
A CRC of the fuse contents is run periodically to check for errors in the fuses  
SPI clock counter error  
SPI invalid read address  
SPI invalid write address  
SPI CRC error  
0x0  
0x0  
0x0  
0x0  
0x0  
GENERAL ERRORS REGISTER 1 ENABLE  
Address: 0x05A, Reset: 0x3E, Name: GEN_ERR_REG_1_EN  
Table 133. Bit Descriptions for GEN_ERR_REG_1_EN  
Bits Bit Name  
Settings Description  
Reset  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
Access  
R
[7:6] RESERVED  
Reserved  
Memory Map CRC Test Error Enable  
Fuse CRC Test Enable  
SPI Clock Counter Test Enable  
SPI Invalid Read Address Test Enable  
SPI Invalid Write Address Test Enable  
SPI CRC Error Test Enable  
5
4
3
2
1
0
MEMMAP_CRC_TEST_EN  
ROM_CRC_TEST_EN  
SPI_CLK_COUNT_TEST_EN  
SPI_INVALID_READ_TEST_EN  
SPI_INVALID_WRITE_TEST_EN  
SPI_CRC_TEST_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Rev. 0 | Page 93 of 98  
 
 
AD7771  
Data Sheet  
GENERAL ERRORS REGISTER 2  
Address: 0x05B, Reset: 0x00, Name: GEN_ERR_REG_2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] DLDO_PSM_ERR (R)  
DRegCap power supply error  
[5] RESET_DETECTED (R)  
Reset detected  
[1] ALDO2_PSM_ERR (R)  
AReg2Cap power supply error  
[4] EXT_MCLK_SWITCH_ERR (R)  
Clock not switched over  
[2] ALDO1_PSM_ERR (R)  
AReg1Cap power supply error  
[3] RESERVED  
Table 134. Bit Descriptions for GEN_ERR_REG_2  
Bits  
Bit Name  
Settings Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
[7:6] RESERVED  
Reserved  
Reset Detected  
R
R
R
R
R
R
R
5
4
3
2
1
0
RESET_DETECTED  
EXT_MCLK_SWITCH_ERR  
RESERVED  
ALDO1_PSM_ERR  
ALDO2_PSM_ERR  
DLDO_PSM_ERR  
Clock Not Switched Over  
Reserved  
AREG1CAP Power Supply Error  
AREG2CAP Power Supply Error  
DREGCAP Power Supply Error  
GENERAL ERRORS REGISTER 2 ENABLE  
Address: 0x05C, Reset: 0x3C, Name: GEN_ERR_REG_2_EN  
7
6
5
4
3
2
1
0
0
0
1
0
1
1
0
0
[7:6] RESERVED  
[1:0] LDO_PSM_TRIP_TEST_EN (R/W)  
LDO PSM trip test enable  
0: 00 - No trip detect test enabled.  
1: 01 - Run trip detect test on AReg1Cap.  
10: 10 - Run trip detect test on AReg2Cap.  
11: 11 - Run trip detect test on DRegCap.  
[5] RESET_DETECT_EN (R/W)  
Reset detect enable  
[4] RESERVED  
[3:2] LDO_PSM_test_EN (R/W)  
LDO PSM test EN  
0: 00 - No power supply monitor test  
enabled.  
1: 01 - Run power supply monitor test  
on ARegxCap.  
10: 10 - Run power supply monitor test  
on DRegCap.  
11: 11 - Run power supply monitor test  
on all LDOs.  
Table 135. Bit Descriptions for GEN_ERR_REG_2_EN  
Bits Bit Name  
Settings Description  
Reset  
0x0  
Access  
R
[7:6] RESERVED  
Reserved  
5
4
RESET_DETECT_EN  
RESERVED  
Reset Detect Enable  
Reserved  
0x1  
R/W  
R/W  
R/W  
0x1  
[3:2] LDO_PSM_TEST_EN  
LDO PSM Test Enable  
0x3  
0
1
00—No power supply monitor test enabled  
01—Run power supply monitor test on AREGxCAP  
10 10—Run power supply monitor test on DREGCAP  
11 11—Run power supply monitor test on all LDOs  
LDO PSM Trip Test Enable  
[1:0] LDO_PSM_TRIP_TEST_EN  
0x0  
R/W  
0
1
00—No trip detect test enabled  
01—Run trip detect test on AREG1CAP  
10 10—Run trip detect test on AREG2CAP  
11 11—Run trip detect test on DREGCAP  
Rev. 0 | Page 94 of 98  
 
 
Data Sheet  
AD7771  
ERROR STATUS REGISTER 1  
Address: 0x05D, Reset: 0x00, Name: STATUS_REG_1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] ERR_LOC_CH0 (R)  
An error specific to CH0_ERR_REG  
is active  
[5] CHIP_ERROR (R)  
Set high if any error bit is high  
[1] ERR_LOC_CH1 (R)  
An error specific to CH1_ERR_REG  
is active  
[4] ERR_LOC_CH4 (R)  
An error specific to CH4_ERR_REG  
is active  
[2] ERR_LOC_CH2 (R)  
An error specific to CH2_ERR_REG  
is active  
[3] ERR_LOC_CH3 (R)  
An error specific to CH3_ERR_REG  
is active  
Table 136. Bit Descriptions for STATUS_REG_1  
Bits Bit Name Settings Description  
[7:6] RESERVED Reserved  
Set this bit high if any error bit is high  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
R
R
R
R
R
R
R
5
4
3
2
1
0
CHIP_ERROR  
ERR_LOC_CH4  
ERR_LOC_CH3  
ERR_LOC_CH2  
ERR_LOC_CH1  
ERR_LOC_CH0  
An error specific to CH4_ERR_REG is active  
An error specific to CH3_ERR_REG is active  
An error specific to CH2_ERR_REG is active  
An error specific to CH1_ERR_REG is active  
An error specific to CH0_ERR_REG is active  
ERROR STATUS REGISTER 2  
Address: 0x05E, Reset: 0x00, Name: STATUS_REG_2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] ERR_LOC_CH5 (R)  
An error specific to CH5_ERR_REG  
is active  
[5] CHIP_ERROR (R)  
Set high if any error bit is high  
[1] ERR_LOC_CH6 (R)  
An error specific to CH6_ERR_REG  
is active  
[4] ERR_LOC_GEN2 (R)  
An error specific to GEN_ERR_REG_2  
is active  
[2] ERR_LOC_CH7 (R)  
An error specific to CH7_ERR_REG  
is active  
[3] ERR_LOC_GEN1 (R)  
An error specific to GEN_ERR_REG_1  
is active  
Table 137. Bit Descriptions for STATUS_REG_2  
Bits  
[7:6]  
5
4
3
2
1
0
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
RESERVED  
Reserved  
Set high if any error bit is high  
R
R
R
R
R
R
R
CHIP_ERROR  
ERR_LOC_GEN2  
ERR_LOC_GEN1  
ERR_LOC_CH7  
ERR_LOC_CH6  
ERR_LOC_CH5  
An error specific to GEN_ERR_REG_2 is active  
An error specific to GEN_ERR_REG_1 is active  
An error specific to CH7_ERR_REG is active  
An error specific to CH6_ERR_REG is active  
An error specific to CH5_ERR_REG is active  
Rev. 0 | Page 95 of 98  
 
 
AD7771  
Data Sheet  
ERROR STATUS REGISTER 3  
Address: 0x05F, Reset: 0x00, Name: STATUS_REG_3  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] ERR_LOC_SAT_CH0_1 (R)  
An error specific to CH0_1_SAT_ERR  
reg is active  
[5] CHIP_ERROR (R)  
Set high if any error bit is high  
[1] ERR_LOC_SAT_CH2_3 (R)  
An error specific to CH2_3_SAT_ERR  
reg is active  
[4] INIT_COMPLETE (R)  
Fuse initialization is complete. Device  
is ready to receive commands  
[2] ERR_LOC_SAT_CH4_5 (R)  
An error specific to CH4_5_SAT_ERR  
reg is active  
[3] ERR_LOC_SAT_CH6_7 (R)  
An error specific to CH6_7_SAT_ERR  
reg is active  
Table 138. Bit Descriptions for STATUS_REG_3  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] RESERVED  
Reserved  
Set high if any error bit is high.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
R
5
4
3
2
1
0
CHIP_ERROR  
INIT_COMPLETE  
ERR_LOC_SAT_CH6_7  
ERR_LOC_SAT_CH4_5  
ERR_LOC_SAT_CH2_3  
ERR_LOC_SAT_CH0_1  
Fuse initialization is complete. Device is ready to receive commands.  
An error specific to CH6_7_SAT_ERR register is active.  
An error specific to CH4_5_SAT_ERR register is active.  
An error specific to CH2_3_SAT_ERR register is active.  
An error specific to CH0_1_SAT_ERR register is active.  
DECIMATION RATE (N) MSB REGISTER  
Address: 0x060, Reset: 0x00, Name: SRC_N_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] RESERVED  
[3:0] SRC_N_ALL[11:8] (R/W)  
SRC N Combined  
Table 139. Bit Descriptions for SRC_N_MSB  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
R
R/W  
RESERVED  
SRC_N_ALL[11:8]  
Reserved  
SRC N Combined  
DECIMATION RATE (N) LSB REGISTER  
Address: 0x061, Reset: 0x80, Name: SRC_N_LSB  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] SRC_N_ALL[7:0] (R/W)  
SRC N Combined  
Table 140. Bit Descriptions for SRC_N_LSB  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
SRC_N_ALL[7:0]  
SRC N Combined  
0x0  
R/W  
DECIMATION RATE (IF) MSB REGISTER  
Address: 0x062, Reset: 0x00, Name: SRC_IF_MSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] SRC_IF_ALL[15:8] (R/W)  
SRC IF ALL  
Table 141. Bit Descriptions for SRC_IF_MSB  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
SRC_IF_ALL[15:8]  
SRC IF All  
0x0  
R/W  
Rev. 0 | Page 96 of 98  
 
 
 
 
Data Sheet  
AD7771  
DECIMATION RATE (IF) LSB REGISTER  
Address: 0x063, Reset: 0x00, Name: SRC_IF_LSB  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] SRC_IF_ALL[7:0] (R/W)  
SRC IF ALL  
Table 142. Bit Descriptions for SRC_IF_LSB  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
SRC_IF_ALL[7:0]  
SRC IF All  
0x0  
R/W  
SRC LOAD SOURCE AND LOAD UPDATE REGISTER  
Address: 0x064, Reset: 0x00, Name: SRC_UPDATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] SRC_LOAD_SOURCE (R/W)  
Select which option to load an SRC  
update  
[0] SRC_LOAD_UPDATE (R/W)  
Assert bit to load SRC registers into  
SRC  
[6:1] RESERVED  
Table 143. Bit Descriptions for SRC_UPDATE  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
R/W  
R
7
SRC_LOAD_SOURCE  
Selects which option to load an SRC update  
Reserved  
Asserts bit to load SRC registers into SRC  
[6:1] RESERVED  
SRC_LOAD_UPDATE  
0
0x0  
R/W  
Rev. 0 | Page 97 of 98  
 
 
AD7771  
Data Sheet  
OUTLINE DIMENSIONS  
9.10  
9.00 SQ  
8.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
49  
64  
1
48  
0.50  
BSC  
EXPOSED  
PAD  
7.70  
7.60 SQ  
7.50  
33  
16  
32  
17  
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
7.50 REF  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.203 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WMMD  
Figure 139. 64-Lead Lead Frame Chip Scale Package [LFCSP]  
9 mm × 9 mm Body and 0.75 mm Package Height  
(CP-64-15)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CP-64-15  
CP-64-15  
AD7771BCPZ  
AD7771BCPZ-RL  
EVAL-AD7771FMCZ  
−40°C to +125°C  
−40°C to +125°C  
64-Lead Lead Frame Chip Scale Package [LFCSP]  
64-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13802-0-6/17(0)  
Rev. 0 | Page 98 of 98  
 
 

相关型号:

AD7772BQ

Analog-to-Digital Converter, 12-Bit
ETC

AD7772CQ

Analog-to-Digital Converter, 12-Bit
ETC

AD7772KN

Analog-to-Digital Converter, 12-Bit
ETC

AD7772KP

Analog-to-Digital Converter, 12-Bit
ETC

AD7772LN

Analog-to-Digital Converter, 12-Bit
ETC

AD7772LP

Analog-to-Digital Converter, 12-Bit
ETC

AD7773

LC MOS COMPLETE EMBEDDED SERVO FRONT ENDS FOR HDD
ADI

AD7773JR

Servo Demodulator
ETC

AD7773JU

Servo Demodulator
ETC

AD7774KN

Signal Conditioner
ETC

AD7774KP

IC SPECIALTY ANALOG CIRCUIT, PQCC28, PLASTIC, LCC-28, Analog IC:Other
ADI

AD7775

LC MOS COMPLETE EMBEDDED SERVO FRONT ENDS FOR HDD
ADI