AD790JRZ-REEL7 [ADI]

Fast, Precision Comparator;
AD790JRZ-REEL7
型号: AD790JRZ-REEL7
厂家: ADI    ADI
描述:

Fast, Precision Comparator

放大器 光电二极管
文件: 总11页 (文件大小:357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Fast, Precision  
Comparator  
a
AD790  
CONNECTION DIAGRAMS  
FEATURES  
8-Pin Plastic Mini-DIP (N)  
and Cerdip (Q) Packages  
45 ns max Propagation Delay  
Single 5 V or Dual ؎15 V Supply Operation  
CMOS or TTL Compatible Output  
250 V max Input Offset Voltage  
500 V max Input Hysteresis Voltage  
15 V max Differential Input Voltage  
Onboard Latch  
60 mW Power Dissipation  
Available in 8-Pin Plastic and Hermetic Cerdip  
Packages  
+V  
S
1
2
8
7
V
LOGIC  
AD790  
+IN  
–IN  
OUTPUT  
+
3
4
6
5
GROUND  
LATCH  
–V  
S
Available in Tape and Reel in Accordance with  
EIA-481A Standard  
8-Pin SOIC (R) Package  
APPLICATIONS  
Zero-Crossing Detectors  
Overvoltage Detectors  
Pulse-Width Modulators  
Precision Rectifiers  
Discrete A/D Converters  
Delta-Sigma Modulator A/Ds  
GROUND  
LATCH  
1
2
3
4
OUTPUT  
8
7
AD790  
V
LOGIC  
–V  
S
6
5
+V  
S
–IN  
+IN  
PRODUCT DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD790 is a fast (45 ns), precise voltage comparator, with a  
number of features that make it exceptionally versatile and easy  
to use. The AD790 may operate from either a single 5 V supply  
or a dual 15 V supply. In the single-supply mode, the AD790’s  
inputs may be referred to ground, a feature not found in other  
comparators. In the dual-supply mode it has the unique ability  
of handling a maximum differential voltage of 15 V across its in-  
put terminals, easing their interfacing to large amplitude and  
dynamic signals.  
1. The AD790’s combination of speed, precision, versatility  
and low cost makes it suitable as a general purpose compara-  
tor in analog signal processing and data acquisition systems.  
2. Built-in hysteresis and a low-glitch output stage minimize the  
chance of unwanted oscillations, making the AD790 easier to  
use than standard open-loop comparators.  
3. The hysteresis combined with a wide input voltage range  
enables the AD790 to respond to both slow, low level (e.g.,  
10 mV) signals and fast, large amplitude (e.g., 10 V) signals.  
This device is fabricated using Analog Devices’ Complementary  
Bipolar (CB) process—which gives the AD790’s combination  
of fast response time and outstanding input voltage resolution  
(1 mV max). To preserve its speed and accuracy, the AD790  
incorporates a “low glitch” output stage that does not exhibit  
the large current spikes normally found in TTL or CMOS output  
stages. Its controlled switching reduces power supply disturbances  
that can feed back to the input and cause undesired oscillations.  
The AD790 also has a latching function which makes it suitable  
for applications requiring synchronous operation.  
4. A wide variety of supply voltages is acceptable for operation  
of the AD790, ranging from single 5 V to dual +5 V/–12 V,  
5 V, or +5 V/ 15 V supplies.  
5. The AD790’s power dissipation is the lowest of any compara-  
tor in its speed range.  
6. The AD790’s output swing is symmetric between VLOGIC  
and ground, thus providing a predictable output under a  
wide range of input and output conditions.  
The AD790 is available in five performance grades. The  
AD790J and the AD790K are rated over the commercial tem-  
perature range of 0°C to 70°C. The AD790A and AD790B are  
rated over the industrial temperature range of –40°C to +85°C.  
The AD790S is rated over the military temperature range of  
–55°C to +125°C.  
E
REV.  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
www.analog.com  
2014  
© Analog Devices, Inc.,  
781/461-3113  
Fax:  
AD790* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD790 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Application Notes  
AN-25: Applying the OP06 Op Amp As a High Precision  
Comparator  
DISCUSSIONS  
View all AD790 EngineerZone Discussions.  
AN-352: High Speed Comparators Provide Many Useful  
Circuit Functions When Used Correctly  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AD790: Fast, Precision Comparator Data Sheet  
REFERENCE DESIGNS  
CN0123  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
REFERENCE MATERIALS  
Product Selection Guide  
DOCUMENT FEEDBACK  
Comparators Product Brochure 2007  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD790–SPECIFICATIONS  
(Operation @ 25؇C and +VS = 15 V, –VS = –15 V, VLOGIC = 5 V unless otherwise noted.)  
DUAL SUPPLY  
AD790J/A  
Min Typ  
AD790K/B  
Min Typ Max  
AD790S  
Min Typ  
Parameter  
Conditions  
Max  
Max  
Unit  
RESPONSE CHARACTERISTIC 100 mV Step  
Propagation Delay, tPD  
5 mV Overdrive  
TMIN to TMAX  
40  
45  
45/50  
40  
45  
45/50  
40  
45  
60  
ns  
ns  
OUTPUT CHARACTERISTICS  
Output HIGH Voltage, VOH  
1.6 mA Source  
6.4 mA Source  
TMIN to TMAX  
1.6 mA Sink  
4.65  
4.45  
4.65  
4.45  
4.65  
4.45  
4.3  
4.3/4.3  
4.3  
4.3  
4.3  
4.3  
V
V
V
V
V
Output LOW Voltage, VOL  
0.35  
0.35  
0.35  
6.4 mA Sink  
TMIN to TMAX  
0.44 0.5  
0.5/0.5  
0.44 0.5  
0.44 0.5  
0.5  
0.5  
INPUT CHARACTERISTICS  
Offset Voltage1  
0.2  
1.0  
0.05 0.25  
0.2  
1.0  
1.5  
0.65  
5
mV  
mV  
mV  
µA  
TMIN to TMAX  
TMIN to TMAX  
Either Input  
TMIN to TMAX  
1.5  
0.6  
5
0.5  
Hysteresis2  
Bias Current  
0.3  
0.4  
2.5  
0.3  
0.4  
1.8  
0.5  
3.5  
4.5  
0.3  
0.4  
2.5  
6.5  
7
µA  
Offset Current  
0.04 0.25  
0.02 0.15  
0.04 0.25  
µA  
µA  
TMIN to TMAX  
0.3  
0.2  
0.4  
Power Supply  
Rejection Ratio DC  
VS 20%  
TMIN to TMAX  
80  
76  
90  
88  
88  
85  
100  
93  
80  
76  
90  
85  
dB  
dB  
Input Voltage Range  
Differential Voltage  
Common Mode  
Common Mode  
Rejection Ratio  
VS 15 V  
؎VS  
+VS–2 V –VS  
؎VS  
+VS–2 V –VS  
؎VS  
+VS–2 V V  
V
–VS  
80  
–10 V<VCM  
<+10 V  
TMIN to TMAX  
95  
88  
85  
105  
80  
76  
95  
dB  
76  
90  
100  
88  
dB  
Input Impedance  
20ʈ2  
20ʈ2  
20ʈ2  
MʈpF  
LATCH CHARACTERISTICS  
Latch Hold Time, tH  
Latch Setup Time, tS  
LOW Input Level, VIL  
HIGH Input Level, VIH  
Latch Input Current  
25  
5
35  
10  
0.8  
1.6  
5
25  
5
35  
10  
0.8  
1.6  
3.5  
5
25  
5
35  
10  
0.8  
ns  
ns  
V
V
µA  
µA  
TMIN to TMAX  
TMIN to TMA X  
1.6  
2.3  
2.3  
2.3  
5
8
TMIN to TMAX  
7
SUPPLY CHARACTERISTICS  
Diff Supply Voltage3  
VLOGIC = 5 V  
TMIN to TMAX  
TMIN to TMAX  
4.5  
4.0  
33  
7
4.5  
4.0  
33  
7
4.7  
4.2  
33  
7
V
V
Logic Supply  
Quiescent Current  
+VS  
–VS  
VLOGIC  
+VS = 15 V  
–VS = –15 V  
VLOGIC = 5 V  
8
4
2
10  
5
3.3  
242  
8
4
2
10  
5
3.3  
242  
8
4
2
10  
5
3.3  
242  
mA  
mA  
mA  
mW  
Power Dissipation  
TEMPERATURE RANGE  
Rated Performance  
TMIN to TMAX  
0 to 70/–40 to +85  
0 to 70/–40 to +85  
–55 to +125  
°C  
NOTES  
1Defined as the average of the input voltages at the low to high and high to low transition points. Refer to Figure 6.  
2Defined as half the magnitude between the input voltages at the low to high and high to low transition points. Refer to Figure 6.  
3+VS must be no lower than (VLOGIC –0.5 V) in any supply operating conditions, except during power up.  
All min and max specifications are guaranteed. Specifications shown in boldface are tested on all production units at final test.  
Specifications subject to change without notice.  
E
–2–  
REV.  
AD790  
(Operation @ 25؇C and +VS = VLOGIC = 5 V, –VS = 0 V unless otherwise noted.)1  
SINGLE SUPPLY  
AD790J/A  
Min Typ  
AD790K/B  
Min Typ Max  
AD790S  
Min Typ  
Parameter  
Conditions  
Max  
Max  
Unit  
RESPONSE CHARACTERISTIC 100 mV Step  
Propagation Delay, tPD  
5 mV Overdrive  
TMIN to TMAX  
45  
50  
50/60  
45  
50  
50/60  
45  
50  
65  
ns  
ns  
OUTPUT CHARACTERISTICS  
Output HIGH Voltage, VOH  
1.6 mA Source  
6.4 mA Source  
TMIN to TMAX  
1.6 mA Sink  
4.65  
4.45  
4.65  
4.45  
4.65  
4.45  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
V
V
V
V
V
Output LOW Voltage, VOL  
0.35  
0.35  
0.35  
6.4 mA Sink  
TMIN to TMAX  
0.44 0.5  
0.44 0.5  
0.44 0.5  
0.5  
0.5  
0.5  
INPUT CHARACTERISTICS  
Offset Voltage2  
0.45 1.5  
0.35 0.6  
0.45 1.5  
mV  
mV  
mV  
µA  
TMIN to TMAX  
TMIN to TMAX  
Either Input  
TMIN to TMAX  
2.0  
0.85  
2.0  
Hysteresis3  
Bias Current  
0.3  
0.5  
2.7  
0.75  
5
7
0.3  
0.5  
2.0  
0.65  
3.5  
5
0.3  
0.7  
2.7  
1.0  
5
8
µA  
Offset Current  
0.04 0.25  
0.02 0.15  
0.04 0.25  
µA  
µA  
TMIN to TMAX  
0.3  
0.2  
0.4  
Power Supply  
Rejection Ratio DC  
4.5 VVS5.5 V  
TMIN to TMAX  
80  
90  
86  
82  
100  
93  
80  
76  
90  
85  
dB  
dB  
76/76 88  
Input Voltage Range  
Differential Voltage  
Common Mode  
؎VS  
+VS–2 V  
؎VS  
+VS–2 V  
؎VS  
20ʈ2  
V
0
0
0
+VS–2 V V  
Input Impedance  
20ʈ2  
20ʈ2  
MʈpF  
LATCH CHARACTERISTICS  
Latch Hold Time, tH  
Latch Setup Time, tS  
LOW Input Level, VIL  
HIGH Input Level, VIH  
Latch Input Current  
25  
5
35  
10  
0.8  
25  
5
35  
10  
0.8  
25  
5
35  
10  
0.8  
ns  
ns  
V
V
µA  
µA  
TMIN to TMAX  
TMIN to TMAX  
1.6  
4.5  
1.6  
4.5  
1.6  
4.7  
2.3  
10  
5
7
2.3  
10  
3.5  
5
2.3  
10  
5
8
TMIN to TMAX  
TMIN to TMAX  
SUPPLY CHARACTERISTICS  
Supply Voltage4  
Quiescent Current  
7
12  
60  
7
12  
60  
7
12  
60  
V
mA  
mW  
Power Dissipation  
TEMPERATURE RANGE  
Rated Performance  
TMIN to TMAX  
0 to 70/–40 to +85  
0 to 70/–40 to +85  
–55 to +125  
°C  
NOTES  
1Pin 1 tied to Pin 8, and Pin 4 tied to Pin 6.  
2Defined as the average of the input voltages at the low to high and high to low transition points. Refer to Figure 6.  
3Defined as half the magnitude between the input voltages at the low to high and high to low transition points. Refer to Figure 6.  
4–VS must not be connected above ground.  
All min and max specifications are guaranteed. Specifications shown in boldface are tested on all production units at final test.  
Specifications subject to change without notice.  
E
REV.  
–3–  
AD790  
ABSOLUTE MAXIMUM RATINGS1, 2  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . . 500 mW  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . 16.5 V  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range  
(N, R) . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
(Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . 300°C  
Logic Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
NOTES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause perma-  
nent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Thermal characteristics: plastic N-8 package: θJA = 90°C/watt; ceramic Q-8  
package: θJA = 110°C/watt, θJC = 30°C/watt. SOIC (R-8) package: θJA = 160°C  
watt; θJC = 42°C/watt.  
+
15V  
LATCH  
(OPTIONAL)  
+ 5V  
LATCH  
(OPTIONAL)  
0.1µF  
5V  
+
0.1µF  
0.1µF  
510  
510  
1
1
8
2
3
+IN  
–IN  
8
5
+IN  
–IN  
2
3
OUTPUT  
7
5
AD790  
OUTPUT  
7
AD790  
6
6
4
4
0.1µF  
15V  
Figure 2. Basic Single Supply  
Configuration (N, Q Package Pinout)  
Figure 1. Basic Dual Supply  
Configuration (N, Q Package Pinout)  
+15V  
1
0.1µF  
+5V  
0.1µF  
1k  
–100mV  
8
2
3
TEK  
5
7904  
SCOPE  
7
AD790  
25Ω  
130Ω  
0.1µF  
6
4
MPS  
571  
–1.3V  
–1.7V  
0.1µF  
PULSE  
GENERATOR  
–15V  
HP2835  
HP8112  
50Ω  
400Ω  
650Ω  
10kΩ  
5V  
VOLTAGE  
–5mV  
SOURCE  
–5V  
10Ω  
Figure 3. Response Time Test Circuit (N, Q Package Pinout)  
E
REV.  
–4–  
Typical Performace Characteristics–AD790  
TPC 3. Propagation Delay vs.  
TPC 2. Propagation Delay vs.  
Fanout (LSTTL and CMOS)  
Load Capacitance  
TPC 1. Propagation Delay vs.  
Overdrive  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TEMP = +25°C  
0
2
4
6
8
10  
I
– mA  
SINK  
TPC 6. Output Low Voltage vs.  
Sink Current  
TPC 5. Propagation Delay vs.  
Temperature  
TPC 4. Propagation Delay vs.  
Source Resistance  
t
H
5.0  
4.9  
0
INPUT  
4.8  
TEMP = +25°C  
4.7  
t
S
4.6  
4.5  
V
IH  
LATCH  
V
IL  
4.4  
4.3  
t
PD  
V
V
OH  
4.2  
OUTPUT  
0
2
4
6
8
10  
OL  
I
– mA  
SOURCE  
TPC 7. Output High Voltage vs.  
Source Current  
TPC 8. Total Supply Current vs.  
Temperature  
t
t
= SETUP TIME  
= HOLD TIME  
S
H
t
= COMPARATOR RESPONSE TIME  
PD  
Figure 4. Latch Timing  
E
REV.  
–5–  
AD790  
CIRCUIT DESCRIPTION  
VOUT  
The AD790 possesses the overall characteristics of a standard  
monolithic comparator: differential inputs, high gain and a logic  
output. However, its function is implemented with an architec-  
ture which offers several advantages over previous comparator  
designs. Specifically, the output stage alleviates some of the limi-  
tations of classic “TTL” comparators and provides a symmetric  
output. A simplified representation of the AD790 circuitry is  
shown in Figure 5.  
VH  
VH  
VOH  
VOL  
+
IN  
0
VOS  
VLOGIC  
VH = HYSTERESIS VOLTAGE  
VOS = INPUT OFFSET VOLTAGE  
+
+
IN  
2
3
A1  
Q1  
VOUT  
7
GND  
+
IN  
+
OUTPUT  
Av  
Figure 6. Hysteresis Definitions (N, Q Package Pinout)  
IN  
hysteresis range. This built-in hysteresis allows the AD790 to  
avoid oscillation when an input signal slowly crosses the ground  
level.  
+
Q2  
GND  
A2  
SUPPLY VOLTAGE CONNECTIONS  
GAIN STAGE  
OUTPUT STAGE  
The AD790 may be operated from either single or dual supply  
voltages. Internally, the VLOGIC circuitry and the analog front-  
end of the AD790 are connected to separate supply pins. If dual  
supplies are used, any combination of voltages in which +VS ≥  
Figure 5. AD790 Block Diagram  
The output stage takes the amplified differential input signal and  
converts it to a single-ended logic output. The output swing is  
defined by the pull-up PNP and the pull-down NPN. These pro-  
duce inherent rail-to-rail output levels, compatible with CMOS  
logic, as well as TTL, without the need for clamping to internal  
bias levels. Furthermore, the pull-up and pull-down levels are  
symmetric about the center of the supply range and are refer-  
enced off the VLOGIC supply and ground. The output stage has  
nearly symmetric dynamic drive capability, yielding equal rise  
and fall times into subsequent logic gates.  
VLOGIC – 0.5 V and –VS 0 may be chosen. For single supply  
operation (i.e., +VS = VLOGIC), the supply voltage can be oper-  
ated between 4.5 V and 7 V. Figure 7 shows some other examples  
of typical supply connections possible with the AD790.  
BYPASSING AND GROUNDING  
Although the AD790 is designed to be stable and free from  
oscillations, it is important to properly bypass and ground the  
power supplies. Ceramic 0.1 µF capacitors are recommended  
and should be connected directly at the AD790’s supply pins.  
These capacitors provide transient currents to the device during  
comparator switching. The AD790 has three supply voltage  
pins, +VS, –VS and VLOGIC. It is important to have a common  
ground lead on the board for the supply grounds and the GND  
pin of the AD790 to provide the proper return path for the  
supply current.  
Unlike classic TTL or CMOS output stages, the AD790 circuit  
does not exhibit large current spikes due to unwanted current  
flow between the output transistors. The AD790 output stage  
has a controlled switching scheme in which amplifiers A1 and  
A2 drive the output transistors in a manner designed to reduce  
the current flow between Q1 and Q2. This also helps minimize  
the disturbances feeding back to the input which can cause  
troublesome oscillations.  
LATCH OPERATION  
The AD790 has a latch function for retaining input information  
at the output. The comparator decision is “latched” and the  
output state is held when Pin 5 is brought low. As long as Pin 5  
is kept low, the output remains in the high or low state, and  
does not respond to changing inputs. Proper capture of the  
input signal requires that the timing relationships shown in  
Figure 4 are followed. Pin 5 should be driven with CMOS or  
TTL logic levels.  
The output high and low levels are well controlled values defined  
by VLOGIC (5 V), ground and the transistor equivalent Schottky  
clamps and are compatible with TTL and CMOS logic require-  
ments. The fanout of the output stage is shown in TPC 3 for  
standard LSTTL or HCMOS gates. Output drive behavior vs.  
capacitive load is shown in TPC 2.  
HYSTERESIS  
The AD790 uses internal feedback to develop hysteresis about  
the input reference voltage. Figure 6 shows how the input offset  
voltage and hysteresis terms are defined. Input offset voltage  
(VOS) is the difference between the center of the hysteresis  
range and the ground level. This can be either positive or nega-  
tive. The hysteresis voltage (VH) is one-half the width of the  
The output of the AD790 will respond to the input when Pin 5  
is at a high logic level. When not in use, Pin 5 should be connected  
to the positive logic supply. When using dual supplies, it is rec-  
ommended that a 510 resistor be placed in series with Pin 5  
and the driving logic gate to limit input currents during powerup.  
E
REV.  
–6–  
Applying the AD790  
+
+
5V  
5V  
8
The minus supply current is proportional to absolute tempera-  
ture and compensates for the change in the sense resistance  
with temperature. The width and length of the PC board trace  
determine the resistance of the trace and consequently the trip  
current level.  
+
12V  
1
0.1µF  
0.1µF  
0.1µF  
+IN  
1
510Ω  
8
+IN  
–IN  
2
3
5
2
3
OUT  
7
AD790  
5
OUT  
6
AD790  
7
6
4
–IN  
4
I
LIMIT = 10 mV/RSENSE  
0.1µF  
RSENSE = rho (trace length/trace width)  
rho = resistance of a unit square of trace  
15V  
+VS = +12V, –VS = 0V  
LOGIC = +5V  
+
5V  
8
+VS = +5V, –VS = –15V  
VLOGIC = +5V  
V
0.1µF  
1
+IN  
2
3
+V  
S
5
OUT  
7
AD790  
6
–IN  
4
L
O
0.1µF  
5V  
1
+
0.1µF  
A
D
5V  
+VS = +5V, –VS = –5V, VLOGIC = +5V  
510Ω  
PC BOARD  
TRACE  
8
Figure 7. Typical Power Supply Connections  
(N, Q Package Pinout)  
2
3
5
OUTPUT  
7
AD790  
6
Window Comparator for Overvoltage Detection  
The wide differential input range of the AD790 makes it suitable  
for monitoring large amplitude signals. The simple overvoltage  
detection circuit shown in Figure 8 illustrates direct connection  
of the input signal to the high impedance inputs of the comparator  
without the need for special clamp diodes to limit the differen-  
tial  
4
R
SENSE  
2.7  
10mV/100mA  
input voltage across the inputs.  
+5V  
0.1µF  
0.1µF  
+15V  
1
Figure 9. Ground Referred Overload Detector Circuit  
(N, Q Package Pinout)  
Precision Full-Wave Rectifier  
510Ω  
8
SIGN 1 = HIGH  
0 = LOW  
The high speed and precision of the AD790 make it suitable  
for use in the wide dynamic range full-wave rectifier shown in  
Figure 10. This circuit is capable of rectifying low level signals  
as small as a few mV or as high as 10 V. Input resolution, propaga-  
tion delay and op amp settling will ultimately limit the maximum  
input frequency for a given accuracy level. Total comparator  
plus switch delay is approximately 100 ns, which limits the  
maximum input frequency to 1 MHz for clean rectification.  
+7.5V  
3
2
5
7
AD790  
6
4
OVERRANGE = 1  
7432  
–15V  
0.1µF  
V
IN  
+15V  
+5V  
0.1µF  
10k  
0.1µF  
1
+15V  
7
510Ω  
0.1µF  
8
3
2
5
10kΩ  
7
AD790  
2
3
6
–7.5V  
V
6
IN  
AD711  
V
20k  
OUT  
4
+15V  
1
4
0.1µF  
0.1µF  
0.1µF  
+5V  
8
–15V  
0.1µF  
–15V  
510Ω  
FET SWITCHES THE GAIN  
FROM +1 TO –1  
3
2
5
Figure 8. Overvoltage Detector  
(N, Q Package Pinout)  
7
AD790  
NMOS  
FET  
6
4
(R  
< 20 )  
ON  
Single Supply Ground Referred Overload Detector  
The AD790 is useful as an overload detector for sensitive loads  
that must be powered from a single supply. A simple ground  
referenced overload detector is shown in Figure 8. The com-  
parator senses a voltage across a PC board trace and compares  
that to a reference (trip) voltage established by the comparator’s  
minus supply current through a 2.7 resistor. This sets up a  
10 mV reference level that is compared to the sense voltage.  
–15V  
0.1µF  
Figure 10. Precision Full-Wave Rectifier  
(N, Q Package Pinout)  
E
REV.  
–7–  
AD790  
Bipolar to CMOS/TTL  
+ 5V  
5V  
It is sometimes desirable to translate a bipolar signal (e.g.,  
5 V) coming from a communications cable or another section  
of the system to CMOS/TTL logic levels; such an application is  
referred to as a line receiver. Previously, the interface to the  
bipolar signal required either a dual ( ) power supply or a refer-  
ence voltage level about which the line receiver would switch.  
The AD790 may be used in a simple circuit to provide a unique  
capability: the ability to receive a bipolar signal while powered  
from a single 5 V supply. Other comparators cannot perform  
this task. Figure 11 shows a 1 kresistor in series with the input  
signal which is then clamped by a Schottky diode, holding the  
input of the comparator at 0.4 V below ground. Although the  
comparator is specified for a common mode range down to –VS,  
(in this case ground) it is permissible to bring one of the inputs  
a few hundred mV below ground. The comparator switches  
around this level and produces a CMOS/TTL compatible swing.  
The circuit will operate to switching frequencies of 20 MHz.  
4.7V  
0.3V  
BIPOLAR  
SIGNAL  
INPUT  
400*  
1
1k  
8
2
3
TTL  
LEVEL  
OUTPUT  
5
6
7
STANDARD  
SCHOTTKY  
DIODE  
4
GND  
*A RESISTOR UP TO 10kMAYBE USED TO  
REDUCE THE SOURCE AND SINK CURRENT OF  
THE DRIVER. HOWEVER, THIS WILL SLIGHTLY  
LOWER THE MAXIMUM USABLE CLOCK RATE.  
Figure 11. A Bipolar to CMOS TTL Line Receiver (N, Q  
Package Pinout)  
E
REV.  
–8–  
AD790  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 12. 8-Lead Plastic Dual In-Line Package [PDIP] Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
0.005 (0.13)  
MIN  
0.055 (1.40)  
MAX  
8
5
0.310 (7.87)  
0.220 (5.59)  
1
4
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150 (3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 13. 8-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-8)  
Dimensions shown in inches and (millimeters)  
Rev. E | Page 9  
AD790  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 14. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
AD790JN  
AD790JNZ  
AD790JR  
AD790JR-REEL  
AD790JR-REEL7  
AD790JRZ  
AD790JRZ-REEL  
AD790JRZ-REEL7  
AD790AQ  
Temperature Range  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
Package Description  
8-Lead PDIP  
8-Lead PDIP  
Package Option  
N-8  
N-8  
R-8  
8-Lead SOIC_N  
8-Lead SOIC Reel  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC Reel  
8-Lead SOIC Reel  
8-Lead CERDIP  
8-Lead CERDIP  
R-8  
R-8  
−40°C to +85°C  
−55°C to +125°C  
Q-8  
Q-8  
AD790SQ  
1 Z = RoHS Compliant Part.  
REVISION HISTORY  
11/14—Rev. D to Rev. E  
Updated Outline Dimensions......................................................... 9  
Changes to Ordering Guide .......................................................... 10  
5/02—Rev. C to Rev. D  
Edits to SOIC (R-8) Package ........................................................... 9  
03/02Rev. B to Rev. C  
Edits to Features................................................................................ 1  
Edits to Product Description .......................................................... 1  
Deleted Metalization Photograph .................................................. 4  
Edits to Ordering Guide .................................................................. 4  
©2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00844-0-11/14(E)  
Rev. E | Page 10  

相关型号:

AD790KN

Fast, Precision Comparator
ADI

AD790S

Fast, Precision Comparator
ADI

AD790SQ

Fast, Precision Comparator
ADI

AD790SQ/883

IC COMPARATOR, 1500 uV OFFSET-MAX, CDIP8, HERMETIC SEALED, CERDIP-8, Comparator
ADI

AD790SQ/883B

Fast, Precision Comparator
ADI

AD790_02

Fast, Precision Comparator
ADI

AD7910

250 kSPS, 10-/12-Bit ADCs in 6-Lead SC70
ADI

AD7910AKS

IC 1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO6, PLASTIC, MO-203AB, SC-70, 6 PIN, Analog to Digital Converter
ADI

AD7910AKS-500RL7

250 kSPS, 10-/12-Bit ADCs in 6-Lead SC70
ADI

AD7910AKS-REEL

250 kSPS, 10-/12-Bit ADCs in 6-Lead SC70
ADI

AD7910AKS-REEL7

250 kSPS, 10-/12-Bit ADCs in 6-Lead SC70
ADI

AD7910AKSZ-500RL7

250 kSPS, 10-/12-Bit ADCs in 6-Lead SC70
ADI