AD7986 [ADI]

1 nV/√Hz, Low Power; 1内华达州/ √Hz的低功耗
AD7986
型号: AD7986
厂家: ADI    ADI
描述:

1 nV/√Hz, Low Power
1内华达州/ √Hz的低功耗

文件: 总28页 (文件大小:624K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1 nV/√Hz, Low Power,  
Rail-to-Rail Output Amplifiers  
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Low wideband noise  
1 nV/√Hz  
2.8 pA/√Hz  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
DISABLE  
+V  
S
OUT  
NC  
Low 1/f noise: 2.4 nV/√Hz at 10 Hz  
Low distortion: −115 dBc at 100 kHz, VOUT = 2 V p-p  
Low power: 3 mA per amplifier  
Low input offset voltage: 0.5 mV maximum  
High speed  
−3 dB bandwidth: 230 MHz (G = +1)  
Slew rate: 120 V/μs  
Settling time to 0.1%: 45 ns  
Rail-to-rail output  
–V  
S
Figure 1. 8-Lead SOIC (ADA4897-1)  
8
7
6
5
4
3
2
1
0
V
= ±5V  
S
Wide supply range: 3 V to 10 V  
Disable feature (ADA4897-1/ADA4897-2)  
APPLICATIONS  
Low noise preamplifier  
Ultrasound amplifiers  
PLL loop filters  
High performance ADC drivers  
DAC buffers  
1
10  
100  
1k  
10k  
100k  
1M  
5M  
FREQUENCY (Hz)  
Figure 2. Voltage Noise vs. Frequency  
GENERAL DESCRIPTION  
The ADA4896-2/ADA4897-1/ADA4897-2 are unity-gain stable,  
low noise, rail-to-rail output, high speed voltage feedback amplifiers  
that have a quiescent current of 3 mA. With a 1/f noise of  
2.4 nV/√Hz at 10 Hz and a spurious-free dynamic range of −80 dBc  
at 2 MHz, the ADA4896-2/ADA4897-1/ADA4897-2 are ideal  
solutions in a variety of applications, including ultrasound, low  
noise preamplifiers, and drivers of high performance ADCs. The  
Analog Devices, Inc., proprietary next-generation SiGe bipolar  
process and innovative architecture enable such high performance  
amplifiers.  
Table 1. Other Low Noise Amplifiers  
VN (nV/√Hz)  
Supply  
Part No.  
AD797  
AD8021  
AD8099  
AD8045  
ADA4899-1  
At 1 kHz  
At 100 kHz BW (MHz) Voltage (V)  
0.9  
5
3
6
1.4  
0.9  
2.1  
0.95  
3
8
10 to 30  
5 to 24  
5 to 12  
3.3 to 12  
5 to 12  
10 to 32  
490  
510  
1000  
600  
65  
1
ADA4898-1/ 0.9  
ADA4898-2  
0.9  
The ADA4896-2/ADA4897-1/ADA4897-2 have 230 MHz  
bandwidth, 120 V/μs slew rate, and settle to 0.1% in 45 ns.  
With a wide supply voltage range of 3 V to 10 V, the ADA4896-2/  
ADA4897-1/ADA4897-2 are ideal candidates for systems that  
require high dynamic range, precision, low power, and high speed.  
Table 2. Complementary ADCs  
Part No.  
AD7944  
AD7985  
AD7986  
Bits  
Speed (MSPS)  
Power (mW)  
14  
16  
18  
2.5  
2.5  
2
15.5  
15.5  
15  
The ADA4896-2 is available in 8-lead LFCSP and 8-lead MSOP  
packages. The ADA4897-1 is available in 8-lead SOIC and 6-lead  
SOT-23 packages. The ADA4897-2 is available in a 10-lead MSOP  
package. The ADA4896-2/ADA4897-1/ADA4897-2 operate over  
the extended industrial temperature range of −40°C to +125°C.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 17  
Amplifier Description................................................................ 17  
Input Protection ......................................................................... 17  
Disable Operation ...................................................................... 17  
DC Errors .................................................................................... 18  
Bias Current Cancellation ......................................................... 18  
Noise Considerations................................................................. 19  
Capacitance Drive ...................................................................... 19  
Applications Information.............................................................. 20  
Typical Performance alues...................................................... 20  
Low Noise, Gain Selectable Amplifier..................................... 21  
Medical Ultrasound Applications ............................................ 22  
Layout Considerations............................................................... 24  
Outline Dimensions....................................................................... 2±  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
±± ꢀ Supply................................................................................... 3  
+± ꢀ Supply................................................................................... 4  
+3 ꢀ Supply................................................................................... 6  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
Maximum Power Dissipation ..................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 11  
REVISION HISTORY  
4/12—Rev. A to Rev. B  
Change to Figure 26; Moved Figure 26........................................ 13  
Changes to Figure 37...................................................................... 1±  
Changed 6-Lead Single SOT-23 (ADA4897-1) Thermal  
Reistance from 306°C/W to 1±0°C/W........................................... 8  
Changes to Figure 3.......................................................................... 8  
Changes to Amplifier Description Section, Disable Operation  
Section, Figure 44, and Figure 4±................................................. 17  
Added Bias Current Cancellation Section, Figure 47,  
10/11—Rev. 0 to Rev. A  
Added ADA4897-2 and 10-Lead MSOP .........................Universal  
Change to Table 1 ............................................................................. 1  
Changes to Table 3............................................................................ 3  
Changes to Table 4............................................................................ 4  
Changes to Table ±............................................................................ 6  
Changes to Table 7 and Figure 3..................................................... 8  
Changes to Figure 4, Table 8, and Table 9 ..................................... 9  
Added Figure 8 and Table 10; Renumbered Sequentially ......... 10  
Changed Summary Statement for Typical Performance  
Table 11, and Table 12.................................................................... 18  
Changes to Table 13 ....................................................................... 20  
Changes to Low Noise, Gain Selectable Amplifier Section  
and Figure ±2................................................................................... 21  
Deleted Figure ±1............................................................................ 22  
Changes to Power Supply Bypassing Section ............................. 24  
Moved Figure ±7............................................................................. 2±  
Moved Figure ±8............................................................................. 26  
Added Figure 60 ............................................................................. 27  
Changes to Ordering Guide.......................................................... 27  
Characteristics Section................................................................... 11  
Changes to Figure 18...................................................................... 12  
Change to Figure 20 ....................................................................... 12  
7/11—Revision 0: Initial Version  
Rev. B | Page 2 of 28  
 
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
SPECIFICATIONS  
±±5 5ꢀSUUPL5  
TA = 25°C, G = +1, RL = 1 kΩ to ground, unless otherwise noted.  
Table 3.  
Uarameter5Test5  
Conditions/Comments5  
Min5  
Typ5  
Max5  
Snit5  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VOUT = 0.02 V p-p  
G = +1, VOUT = 2 V p-p  
230  
30  
90  
7
120  
45  
90  
MHz  
MHz  
MHz  
MHz  
V/μs  
ns  
G = +2, VOUT = 0.02 V p-p  
G = +2, VOUT = 2 V p-p, RL = 100 Ω  
G = +2, VOUT = 6 V step  
G = +2, VOUT = 2 V step  
G = +2, VOUT = 2 V step  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
Settling Time to 0.01%  
NOISE/HARMONIC PERFORMANCE  
Harmonic Distortion (SFDR)  
ns  
VOUT = 2 V p-p  
fC = 100 kHz  
fC = 1 MHz  
fC = 2 MHz  
fC = 5 MHz  
f = 10 Hz  
f = 100 kHz  
f = 10 Hz  
f = 100 kHz  
−115  
−93  
−80  
−61  
2.4  
1
11  
2.8  
99  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
nV/√Hz  
pA/√Hz  
pA/√Hz  
nV p-p  
Input Voltage Noise  
Input Current Noise  
0.1 Hz to 10 Hz Noise  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
G = +101, RF = 1 kΩ, RG = 10 Ω  
−500  
−17  
−28  
0.2  
−11  
3
−0.02  
110  
+500  
−4  
μV  
μV/°C  
μA  
nA/°C  
μA  
dB  
−0.6  
100  
+0.6  
VOUT = −4 V to +4 V  
INPUT CHARACTERISTICS  
Input Resistance  
Common-Mode  
Differential  
10  
10  
MΩ  
kΩ  
Input Capacitance  
Common-Mode  
Differential  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
(CMRR)  
3
11  
pF  
pF  
V
−4.9 to +4.1  
−120  
VCM = −2 V to +2 V  
VIN = 5 V, G = +2  
−92  
dB  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time  
Output Voltage Swing  
Positive  
81  
ns  
RL = 1 kΩ  
RL = 100 Ω  
RL = 1 kΩ  
RL = 100 Ω  
SFDR = −45 dBc  
Sinking/sourcing  
30% overshoot, G = +2  
4.85  
4.5  
−4.85  
−4.5  
4.96  
4.73  
−4.97  
−4.84  
80  
V
V
V
V
mA  
mA  
pF  
Negative  
Output Current  
Short-Circuit Current  
Capacitive Load Drive  
135  
39  
Rev.B | Page 3 of 28  
 
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
Uarameter5Test5  
Conditions/Comments5  
Min5  
Typ5  
Max5  
Snit5  
POWER SUPPLY  
Operating Range  
Quiescent Current per Amplifier  
3 to 10  
3.0  
0.13  
V
mA  
mA  
2.8  
3.2  
0.25  
DISABLE = −5 V  
Power Supply Rejection Ratio (PSRR)  
Positive  
Negative  
+VS = 4 V to 6 V, −VS = −5 V  
+VS = 5 V, −VS = −4 V to −6 V  
−96  
−96  
−125  
−121  
dB  
dB  
DISABLE PIN (ADA4897-1/ADA4897-2)  
DISABLE Voltage  
Enabled  
Disabled  
>+VS − 0.5  
<+VS − 2  
V
V
Input Current  
Enabled  
DISABLE = +5 V  
DISABLE = −5 V  
−1.2  
−40  
μA  
μA  
Disabled  
Switching Speed  
Enabled  
Disabled  
0.25  
12  
μs  
μs  
+±5 5ꢀSUUPL5  
TA = 25°C, G = +1, RL = 1 kΩ to midsupply, unless otherwise noted.  
Table 4.  
Uarameter5Test5  
Conditions/Comments5  
Min5  
Typ5  
Max5  
Snit5  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VOUT = 0.02 V p-p  
G = +1, VOUT = 2 V p-p  
230  
30  
90  
7
100  
45  
95  
MHz  
MHz  
MHz  
MHz  
V/μs  
ns  
G = +2, VOUT = 0.02 V p-p  
G = +2, VOUT = 2 V p-p, RL = 100 Ω  
G = +2, VOUT = 3 V step  
G = +2, VOUT = 2 V step  
G = +2, VOUT = 2 V step  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
Settling Time to 0.01%  
NOISE/HARMONIC PERFORMANCE  
Harmonic Distortion (SFDR)  
ns  
VOUT = 2 V p-p  
fC = 100 kHz  
fC = 1 MHz  
fC = 2 MHz  
fC = 5 MHz  
f = 10 Hz  
f = 100 kHz  
f = 10 Hz  
f = 100 kHz  
−115  
−93  
−80  
−61  
2.4  
1
11  
2.8  
99  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
nV/√Hz  
pA/√Hz  
pA/√Hz  
nV p-p  
Input Voltage Noise  
Input Current Noise  
0.1 Hz to 10 Hz Noise  
DC PERFORMANCE  
G = +101, RF = 1 kΩ, RG = 10 Ω  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
−500  
−17  
−30  
0.2  
−11  
3
−0.02  
110  
+500  
−4  
μV  
μV/°C  
μA  
nA/°C  
μA  
dB  
−0.6  
97  
+0.6  
VOUT = 0.5 V to 4.5 V  
Rev.B | Page 4 of 28  
 
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
Uarameter5Test5  
Conditions/Comments5  
Min5  
Typ5  
Max5  
Snit5  
INPUT CHARACTERISTICS  
Input Resistance  
Common-Mode  
Differential  
10  
10  
MΩ  
kΩ  
Input Capacitance  
Common-Mode  
Differential  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
(CMRR)  
3
11  
0.1 to 4.1  
−118  
pF  
pF  
V
VCM = 1 V to 4 V  
−91  
dB  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time  
Output Voltage Swing  
Positive  
VIN = 0 V to 5 V, G = +2  
96  
ns  
RL = 1 kΩ  
RL = 100 Ω  
RL = 1 kΩ  
RL = 100 Ω  
SFDR = −45 dBc  
Sinking/sourcing  
30% overshoot, G = +2  
4.85  
4.8  
0.15  
0.2  
4.98  
4.88  
0.014  
0.08  
70  
V
V
V
V
mA  
mA  
pF  
Negative  
Output Current  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
125  
39  
Operating Range  
Quiescent Current per Amplifier  
3 to 10  
2.8  
0.05  
V
mA  
mA  
2.6  
2.9  
0.18  
DISABLE = 0 V  
Power Supply Rejection Ratio (PSRR)  
Positive  
Negative  
+VS = 4.5 V to 5.5 V, −VS = 0 V  
+VS = 5 V, −VS = −0.5 V to +0.5 V  
−96  
−96  
−123  
−121  
dB  
dB  
DISABLE PIN (ADA4897-1/ADA4897-2)  
DISABLE Voltage  
Enabled  
Disabled  
>+VS − 0.5  
<+VS − 2  
V
V
Input Current  
Enabled  
DISABLE = +5 V  
DISABLE = 0 V  
−1.2  
−20  
μA  
μA  
Disabled  
Switching Speed  
Enabled  
Disabled  
0.25  
12  
μs  
μs  
Rev.B | Page 5 of 28  
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
+35 5ꢀSUUPL5  
TA = 25°C, G = +1, RL = 1 kΩ to midsupply, unless otherwise noted.  
Table 5.  
Uarameter5Test5  
Conditions/Comments5  
Min5  
Typ5  
Max5  
Snit5  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VOUT = 0.02 V p-p  
G = −1, VOUT = 1 V p-p  
230  
45  
90  
7
85  
45  
96  
MHz  
MHz  
MHz  
MHz  
V/μs  
ns  
G = +2, VOUT = 0.02 V p-p  
G = +2, VOUT = 2 V p-p, RL = 100 Ω  
G = +2, VOUT = 1 V step  
G = +2, VOUT = 2 V step  
G = +2, VOUT = 2 V step  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
Settling Time to 0.01%  
NOISE/HARMONIC PERFORMANCE  
Harmonic Distortion (SFDR)  
ns  
fC = 100 kHz, VOUT = 2 V p-p, G = +2  
fC = 1 MHz, VOUT = 1 V p-p, G = −1  
fC = 2 MHz, VOUT = 1 V p-p, G = −1  
fC = 5 MHz, VOUT = 1 V p-p, G = −1  
f = 10 Hz  
f = 100 kHz  
f = 10 Hz  
f = 100 kHz  
G = +101, RF = 1 kΩ, RG = 10 Ω  
−105  
−84  
−77  
−60  
2.3  
1
11  
2.8  
99  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
nV/√Hz  
pA/√Hz  
pA/√Hz  
nV p-p  
Input Voltage Noise  
Input Current Noise  
0.1 Hz to 10 Hz Noise  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
−500  
−17  
−30  
0.2  
−11  
3
−0.02  
108  
+500  
−4  
μV  
μV/°C  
μA  
nA/°C  
μA  
dB  
−0.6  
95  
+0.6  
VOUT = 0.5 V to 2.5 V  
INPUT CHARACTERISTICS  
Input Resistance  
Common-Mode  
Differential  
10  
10  
MΩ  
kΩ  
Input Capacitance  
Common-Mode  
Differential  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
(CMRR)  
3
11  
0.1 to 2.1  
−124  
pF  
pF  
V
VCM = 1.1 V to 1.9 V  
−90  
dB  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time  
Output Voltage Swing  
Positive  
VIN = 0 V to 3 V, G = +2  
83  
ns  
RL = 1 kΩ  
RL = 100 Ω  
RL = 1 kΩ  
RL = 100 Ω  
SFDR = −45 dBc  
Sinking/sourcing  
30% overshoot, G = +2  
2.85  
2.8  
0.15  
0.2  
2.97  
2.92  
0.01  
0.05  
60  
V
V
V
V
mA  
mA  
pF  
Negative  
Output Current  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
120  
39  
Operating Range  
Quiescent Current per Amplifier  
3 to 10  
2.7  
0.035  
V
mA  
mA  
2.5  
2.9  
0.15  
DISABLE = 0 V  
Rev.B | Page 6 of 28  
 
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
Uarameter5Test5  
Conditions/Comments5  
Min5  
Typ5  
Max5  
Snit5  
Power Supply Rejection Ratio (PSRR)  
Positive  
Negative  
+VS = 2.7 V to 3.7 V, −VS = 0 V  
+VS = 3 V, −VS = −0.3 V to +0.7 V  
−96  
−96  
−121  
−120  
dB  
dB  
DISABLE PIN (ADA4897-1/ADA4897-2)  
DISABLE Voltage  
Enabled  
Disabled  
>+VS − 0.5  
<−VS + 2  
V
V
Input Current  
Enabled  
DISABLE = +3 V  
DISABLE = 0 V  
−1.2  
−15  
μA  
μA  
Disabled  
Switching Speed  
Enabled  
Disabled  
0.25  
12  
μs  
μs  
Rev.B | Page 7 of 28  
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
The quiescent power dissipation is the voltage between the supply  
pins ( VS) multiplied by the quiescent current (IS).  
Table 6.  
Parameter  
Rating  
PD = Quiescent Power + (Total Drive Power Load Power)  
Supply Voltage  
11 V  
Power Dissipation  
See Figure 3  
−VS − 0.7 V to +VS + 0.7 V  
0.7 V  
−65°C to +125°C  
−40°C to +125°C  
300°C  
2
VS VOUT  
VOUT  
RL  
PD  
VS IS  
Common-Mode Input Voltage  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering 10 sec)  
Junction Temperature  
2
RL  
RMS output voltages should be considered. If RL is referenced to  
−VS, as in single-supply operation, the total drive power is VS ×  
IOUT. If the rms signal levels are indeterminate, consider the worst  
case, when VOUT = VS/4 for RL to midsupply.  
150°C  
2
VS / 4  
RL  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
PD  
VS IS   
In single-supply operation with RL referenced to −VS, worst case  
is VOUT = VS/2.  
Airflow increases heat dissipation, effectively reducing θJA.  
Also, more metal directly in contact with the package leads  
and exposed paddle from metal traces, through holes, ground,  
and power planes reduces θJA.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, θJA is  
specified for a device soldered in a circuit board for surface-  
mount packages. Table 7 lists the θJA for the ADA4896-2/  
ADA4897-1/ADA4897-2.  
Figure 3 shows the maximum safe power dissipation in the  
package vs. the ambient temperature on a JEDEC standard  
4-layer board. θJA values are approximations.  
3.5  
T
= 150°C  
J
Table 7. Thermal Resistance  
Package Type  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
θJA  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
8-Lead Dual MSOP (ADA4896-2)  
8-Lead Dual LFCSP (ADA4896-2)  
8-Lead Single SOIC (ADA4897-1)  
6-Lead Single SOT-23 (ADA4897-1)  
10-Lead Dual MSOP (ADA4897-2)  
222  
61  
133  
150  
210  
8-LEAD LFCSP  
6-LEAD SOT-23  
10-LEAD MSOP  
8-LEAD SOIC  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation for the ADA4896-2/  
ADA4897-1/ADA4897-2 is limited by the associated rise in  
junction temperature (TJ) on the die. At approximately 150C,  
which is the glass transition temperature, the properties of the  
plastic change. Even temporarily exceeding this temperature  
limit may change the stresses that the package exerts on the  
die, permanently shifting the parametric performance of the  
ADA4896-2/ADA4897-1/ADA4897-2. Exceeding a junction  
temperature of 175C for an extended period of time can result  
in changes in silicon devices, potentially causing degradation or  
loss of functionality.  
8-LEAD MSOP  
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
ESD CAUTION  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
die due to the ADA4896-2/ADA4897-1/ADA4897-2 drive at  
the output.  
Rev. B | Page 8 of 28  
 
 
 
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
ADA4896-2  
OUT1 1  
–IN1 2  
+IN1 3  
8
7
6
5
+V  
S
OUT2  
–IN2  
+IN2  
ADA4896-2  
OUT1  
–IN1  
+IN1  
1
2
3
4
8
7
6
5
+V  
S
OUT2  
–IN2  
–V  
4
S
NOTES  
–V  
+IN2  
S
1. THE EXPOSED PAD CAN BE  
CONNECTED TO GND OR  
POWER PLANES, OR IT CAN  
BE LEFT FLOATING.  
TOP VIEW  
(Not to Scale)  
Figure 4. 8-Lead LFCSP Pin Configuration  
Figure 5. 8-Lead MSOP Pin Configuration  
Table 8. ADA4896-2 Pin Function Descriptions  
Uin5No.5  
Mnemonic5  
OUT1  
−IN1  
+IN1  
−VS  
+IN2  
−IN2  
OUT2  
+VS  
Description5  
1
2
3
4
5
6
7
8
Output 1.  
Inverting Input 1.  
Noninverting Input 1.  
Negative Supply.  
Noninverting Input 2.  
Inverting Input 2.  
Output 2.  
Positive Supply.  
EPAD  
Exposed Pad (LFCSP Only). The exposed pad can be connected to GND or power planes, or it can  
be left floating.  
NC  
–IN  
+IN  
1
2
3
8
7
6
5
DISABLE  
OUT  
1
2
3
6
5
4
+V  
S
+V  
S
OUT  
NC  
–V  
DISABLE  
–IN  
S
–V  
4
S
ADA4897-1  
+IN  
NC = NO CONNECT. DO NOT  
CONNECT TO THIS PIN.  
ADA4897-1  
Figure 6. 8-Lead SOIC Pin Configuration  
Figure 7. 6-Lead SOT-23 Pin Configuration  
Table 9. ADA4897-1 Pin Function Descriptions  
Uin5No.5  
ꢀOIC5  
ꢀOT-235 Mnemonic5Description5  
1, 5  
2
N/A  
4
NC  
−IN  
No Connect. Do not connect to these pins.  
Inverting Input.  
3
4
6
7
3
2
1
6
+IN  
−VS  
OUT  
+VS  
Noninverting Input.  
Negative Supply.  
Output.  
Positive Supply.  
8
5
DISABLE  
Disable.  
Rev.B | Page 9 of 28  
 
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
OUT1  
1
2
3
4
5
10 +V  
S
–IN1  
+IN1  
9
8
7
6
OUT2  
–IN2  
–V  
+IN2  
S
ADA4897-2  
DISABLE1  
DISABLE2  
Figure 8. 10-Lead MSOP Pin Configuration  
Table 10. ADA4897-2 Pin Function Descriptions  
Uin5No.5  
Mnemonic5  
Description5  
1
2
3
4
5
6
7
8
9
10  
OUT1  
−IN1  
+IN1  
−VS  
DISABLE1  
DISABLE2  
+IN2  
−IN2  
OUT2  
Output 1.  
Inverting Input 1.  
Noninverting Input 1.  
Negative Supply.  
Disable 1.  
Disable 2.  
Noninverting Input 2.  
Inverting Input 2.  
Output 2.  
+VS  
Positive Supply.  
Rev.B | Page 10 of 28  
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
RL = 1 kΩ, unless otherwise noted. When G = +1, RF = 0 Ω; otherwise, RF = 249 Ω.  
2
2
V
V
= +5V  
V = ±5V  
S
G = +1  
S
= 20mV p-p  
OUT  
G = +1  
1
1
20mV p-p  
0
0
G = –1 OR  
G = +2  
–1  
–2  
–3  
–4  
–5  
–6  
100mV p-p  
400mV p-p  
–1  
–2  
–3  
–4  
–5  
G = +10  
2V p-p  
0.1  
1
10  
FREQUENCY (MHz)  
100  
300  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
Figure 9. Small Signal Frequency Response vs. Gain  
Figure 12. Frequency Response for Various Output Voltages  
2
1
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
G = +1  
= 20mV p-p  
V
V
= +5V  
S
V
= +3V  
V
= +5V  
S
S
V
= 2V p-p  
OUT  
OUT  
G = +2  
R
= R = 249  
G
F
R
= 1kΩ  
L
R
= R = 100Ω  
G
F
0
V
= ±5V  
S
R
= R = 49.9Ω  
G
F
–1  
–2  
–3  
–4  
–5  
–0.1  
–0.2  
–0.3  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
0.1  
1
10  
50  
FREQUENCY (MHz)  
Figure 10. Small Signal Frequency Response vs. Supply Voltage  
Figure 13. 0.1 dB Bandwidth at Selected RF Values  
2
2
1
V
= +5V  
S
V
OUT  
= +5V  
S
–40°C  
G = –1  
G = +1  
G = +1  
= 20mV p-p  
V
= 2V p-p  
V
OUT  
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
+125°C  
+25°C  
G = +10  
100k  
1M  
10M  
100M  
1G  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (Hz)  
Figure 11. Small Signal Frequency Response vs. Temperature  
Figure 14. Large Signal Frequency Response vs. Gain  
Rev.B | Page 11 of 28  
 
 
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
–30  
4
V
V
= +5V  
OUT  
V
= +5V  
S
S
= 2V p-p  
G = +2  
C
= 39pF  
L
–40 G = +10  
R
V
= 100  
L
3
2
= 20mV p-p  
R
= 100, SECOND  
OUT  
L
–50  
–60  
–70  
–80  
–90  
1
0
C
= 20pF  
L
R
= 100, THIRD  
L
–1  
–2  
–3  
R
= 1k, THIRD  
L
C
= 0pF  
L
–100  
R
= 1k, SECOND  
L
–110  
0.1  
1
5
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 15. Small Signal Frequency Response vs. Capacitive Load  
Figure 18. Harmonic Distortion vs. Frequency, G = +10  
–50  
–50  
V
= ±5V  
V
V
= +5V  
S
S
G = +1  
= 1k  
= 2V p-p  
OUT  
R
G = +1  
–60  
–70  
–60  
–70  
L
R
= 100, SECOND  
L
–80  
–80  
R
= 100, THIRD  
L
8V p-p, THIRD  
8V p-p, SECOND  
–90  
–90  
2V p-p, SECOND  
2V p-p, THIRD  
R
= 1k, THIRD  
L
–100  
–110  
–120  
–100  
–110  
–120  
4V p-p, SECOND  
4V p-p, THIRD  
R
= 1k, SECOND  
L
1
5
0.1  
1
0.1  
5
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Harmonic Distortion vs. Frequency, G = +1  
Figure 19. Harmonic Distortion vs. Frequency for Various Output Voltages  
–40  
–50  
–50  
V
V
= +5V  
OUT  
G = +5  
G = +2  
L
S
V
= +5V,  
S
= 2V p-p  
R
= 1k  
SECOND  
–60  
–70  
R
= 100, SECOND  
L
V
= +5V,  
S
–60  
THIRD  
–80  
–70  
V
= +3V,  
S
–90  
SECOND  
V
= ±5V,  
S
SECOND  
–80  
–100  
–110  
–120  
–130  
R
= 100, THIRD  
L
–90  
V
= ±5V,  
THIRD  
S
R
= 1k, THIRD  
L
–100  
V
= +3V,  
THIRD  
S
R
= 1k, SECOND  
L
–110  
0.1  
1
5
0.1  
1
5
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 20. Harmonic Distortion vs. Frequency for Various Supplies  
Figure 17. Harmonic Distortion vs. Frequency, G = +5  
Rev.B | Page 12 of 28  
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
18  
16  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–80  
V
= ±5V  
S
100 UNITS  
σ = 309.2µV/°C  
–100  
–120  
–140  
–160  
–180  
–200  
PHASE  
GAIN  
6
4
–220  
–240  
2
–10  
–20  
10k  
0
–600  
–400  
–200  
0
200  
400  
600  
800  
1000  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
OFFSET VOLTAGE DRIFT DISTRIBUTION (nV/°C)  
Figure 21. Open-Loop Gain and Phase vs. Frequency  
Figure 24. Input Offset Voltage Drift Distribution  
8
7
6
5
4
3
2
1
0
G = +1  
OUT  
TIME = 100ns/DIV  
V
V
= +3V  
= +5V  
V
= ±5V  
S
S
S
V
= 20mV p-p  
10  
V
= ±5V  
S
0
–10  
1
10  
100  
1k  
10k  
100k  
1M  
5M  
FREQUENCY (Hz)  
Figure 22. Voltage Noise vs. Frequency  
Figure 25. Small Signal Transient Response for Various Supplies, G = +1  
100  
10  
1
V
V
= +3V  
= +5V  
G = +2  
= 20mV p-p  
S
S
V
= ±5V  
S
V
OUT  
TIME = 100ns/DIV  
10  
V
= ±5V  
S
0
–10  
1
10  
100  
1k  
10k  
100k  
1M  
5M  
FREQUENCY (Hz)  
Figure 23. Current Noise vs. Frequency  
Figure 26. Small Signal Transient Response for Various Supplies, G = +2  
Rev.B | Page 13 of 28  
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
3
2
V
= ±5V  
S
C
C
= 39pF  
= 20pF  
= 0pF  
V
= +5V  
L
2× V  
S
IN  
G = +2  
G = +2  
TIME = 100ns/DIV  
L
L
TIME = 100ns/DIV  
C
V
OUT  
10  
0
1
0
–1  
–2  
–3  
–10  
Figure 27. Small Signal Transient Response for Various Capacitive Loads  
Figure 30. Output Overdrive Recovery Time  
1.5  
250  
200  
150  
100  
50  
V
V
= ±5V  
S
V
= +5V  
S
= 2V p-p  
G = +2  
G = +1  
OUT  
G = +2  
TIME = 100ns/DIV  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
0
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
OVERLOAD DURATION (ns)  
Figure 28. Large Signal Transient Response, G = +1 and G = +2  
Figure 31. Average Output Overload Recovery Time vs. Overload Duration  
4
105.0  
V
V
= 3V p-p  
= +5V  
V
= +5V  
OUT  
S
G = +1  
S
102.5  
100.0  
97.5  
95.0  
92.5  
90.0  
87.5  
85.0  
82.5  
80.0  
V
TIME = 100ns/DIV  
3
2
IN  
G = +2  
RISING EDGE  
1
V
OUT  
FALLING EDGE  
0
–1  
–2  
–3  
–4  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 29. Input Overdrive Recovery Time  
Figure 32. Slew Rate vs. Temperature  
Rev.B | Page 14 of 28  
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
0.3  
100000  
10000  
1000  
100  
V
= +5V  
V = +5V  
S
G = +1  
P = –30dBm  
IN  
S
G = +2  
= 2V STEP  
V
R
OUT  
= 1kꢀ  
0.2  
L
PART DISABLED  
TIME = 10ns/DIV  
0.1  
0
10  
PART ENABLED  
–0.1  
–0.2  
–0.3  
1
0.1  
0.01  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
Figure 33. Settling Time to 0.1%  
Figure 36. Output Impedance vs. Frequency  
–26.0  
–28.5  
–31.0  
–33.5  
–20  
V
= +5V  
S
–30 ΔV  
= 2V p-p  
CM  
–40  
V
= ±5V  
S
–50  
V
= +5V  
S
–60  
–70  
V
= +3V  
S
–80  
–90  
–100  
–110  
–120  
–130  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 34. CMRR vs. Frequency  
Figure 37. Input Offset Voltage vs. Temperature for Various Supplies  
0
–10.50  
V
= +5V  
S
V
= ±5V  
–10  
–20  
S
ΔV = 2V p-p  
G = +1  
S
–30  
–10.75  
–11.00  
–11.25  
–11.50  
–40  
V
= +5V  
S
–50  
–PSRR  
–60  
–70  
+PSRR  
–80  
V
= +3V  
S
–90  
–100  
–110  
–120  
–130  
1k  
10k  
100k  
1M  
10M  
100M  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 35. PSRR vs. Frequency  
Figure 38. Input Bias Current vs. Temperature for Various Supplies  
Rev.B | Page 15 of 28  
 
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
3.2  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.875  
TIME = 2µs/DIV  
= +5V  
DISABLE PIN  
V
3.750  
3.625  
3.500  
3.375  
3.250  
3.125  
3.000  
2.875  
2.750  
2.625  
2.500  
2.375  
S
V
= ±5V  
S
G = +1  
= 1V  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
V
IN  
+25°C  
–40°C  
V
= +5V  
S
V
= +3V  
S
+125°C  
–0.5  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 39. Supply Current vs. Temperature for Various Supplies  
Figure 42. Turn-Off Time vs. Temperature (ADA4897-1 and ADA4897-2)  
–40  
–30  
V
= +5V  
V = +5V  
S
S
G = +2  
= 2V p-p  
G = +2  
–40  
–50  
–50  
–60  
V
R
= 100  
= 2V p-p  
OUT  
L
V
OUT  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–100  
–110  
–120  
–130  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 40. Crosstalk, OUT1 to OUT2 (ADA4896-2 and ADA4897-2)  
Figure 43. Forward Isolation vs. Frequency  
5.5  
3.875  
3.750  
3.625  
3.500  
3.375  
3.250  
3.125  
3.000  
2.875  
2.750  
2.625  
2.500  
2.375  
DISABLE PIN  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+125°C  
+25°C  
–40°C  
TIME = 200ns/DIV  
V
= +5V  
S
G = +1  
= 1V  
V
IN  
–0.5  
Figure 41. Turn-On Time vs. Temperature (ADA4897-1 and ADA4897-2)  
Rev.B | Page 16 of 28  
 
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
THEORY OF OPERATION  
The ESD clamps begin to conduct for input voltages that are  
more than 0.7 V above the positive supply and input voltages  
more than 0.7 V below the negative supply. If an overvoltage  
condition is expected, it is recommended that the input current  
be limited to less than 10 mA.  
AMPLIFIER DESCRIPTION  
The ADA4896-2/ADA4897-1/ADA4897-2 are 1 nV/√Hz input  
noise amplifiers that consume 3 mA from supplies ranging from  
3 V to 10 V. Fabricated on the Analog Devices SiGe bipolar process,  
the ADA4896-2/ADA4897-1/ADA4897-2 have a bandwidth in  
excess of 200 MHz. The amplifiers are unity-gain stable, and the  
input structure results in an extremely low input 1/f noise for a  
high speed amplifier.  
DISABLE OPERATION  
Figure 45 shows the ADA4897-1/ADA4897-2 power-down  
DISABLE  
circuitry. If the  
pin is left unconnected, the base of  
The rail-to-rail output stage is designed to drive the heavy feed-  
back load required to achieve an overall low output referred noise.  
To meet more demanding system requirements, the large signal  
bandwidth of the ADA4896-2/ADA4897-1/ADA4897-2 was  
increased beyond the typical fundamental limits of other low noise,  
unity-gain stable amplifiers. The maximum offset voltage of 500 μV  
and drift of 0.2 μV/°C make the ADA4896-2/ADA4897-1/  
ADA4897-2 excellent amplifier choices even when the low noise  
performance is not needed because there is minimal power  
penalty in achieving the low input noise or the high bandwidth.  
the input PNP transistor is pulled high through the internal  
pull-up resistor to the positive supply and the part is turned  
DISABLE  
on. Pulling the  
pin to ≥2 V below the positive supply  
turns the part off, reducing the supply current to approximately  
18 μA for a 5 V voltage supply.  
+V  
S
I
BIAS  
ESD  
ESD  
DISABLE  
TO  
AMPLIFIER  
BIAS  
INPUT PROTECTION  
The ADA4896-2/ADA4897-1/ADA4897-2 are fully protected  
from ESD events, withstanding human body model ESD events  
of 2.5 kV and charged-device model events of 1 kV with no mea-  
sured performance degradation. The precision input is protected  
with an ESD network between the power supplies and diode  
clamps across the input device pair, as shown in Figure 44.  
–V  
S
DISABLE  
Figure 45.  
Circuit  
+V  
S
DISABLE  
The  
Figure 45. Voltages beyond the power supplies cause these  
DISABLE  
pin is protected by ESD clamps, as shown in  
BIAS  
diodes to conduct. For protection of the  
pin, the  
ESD  
+IN  
ESD  
ESD  
ESD  
voltage to this pin should not exceed 0.7 V above the positive  
supply or 0.7 V below the negative supply. If an overvoltage  
condition is expected, it is recommended that the input current  
be limited with a series resistor to less than 10 mA.  
–IN  
–V  
S
When the amplifier is disabled, its output goes to a high  
impedance state. The output impedance decreases as frequency  
increases; this effect can be observed in Figure 36. In disable  
mode, a forward isolation of 50 dB can be achieved at 10 MHz.  
Figure 43 shows the forward isolation vs. frequency data.  
TO THE REST OF THE AMPLIFIER  
Figure 44. Input Stage and Protection Diodes  
For differential voltages above approximately 0.7 V, the diode  
clamps begin to conduct. Too much current can cause damage  
due to excessive heating. If large differential voltages must be  
sustained across the input terminals, it is recommended that the  
current through the input clamps be limited to less than 10 mA.  
Series input resistors that are sized appropriately for the expected  
differential overvoltage provide the needed protection.  
Rev.B | Page 17 of 28  
 
 
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
The output error due to the input currents can be estimated as  
DC5ERRORꢀ5  
Figure 46 shows a typical connection diagram and the major  
dc error sources.  
RF  
RG  
RF  
RG  
(5)  
× IB+  
VOUT = (RF|| RG ) × 1+  
× IBRS × 1 +  
ERROR  
R
F
BIAꢀ5CSRRENT5CANCEPPATION5  
– V  
+
+ V  
IN  
OS  
R
G
S
To cancel the output voltage error due to unmatched bias  
currents at the inputs, RBP and RBN can be used (see Figure 47).  
+ V  
OUT  
I
B
– V  
+
IP  
R
R
R
G
F
I
+
B
Figure 46. Typical Connection Diagram and DC Error Sources  
R
R
BN  
The ideal transfer function (all error sources set to 0 and  
infinite dc gain) can be written as  
R
S
BP  
RF  
RG  
RF  
RG  
(1)  
VOUT = 1 +  
× VIP  
× VIN  
Figure 47. Using RBP and RBN to Cancel Bias Current Error  
To compensate for the unmatched bias currents at the two  
inputs, set RBP and RBN as shown in Table 11.  
This equation reduces to the familiar forms for noninverting  
and inverting op amp gain expressions, as follows:  
Table 11. Setting RBN and RBP to Cancel Bias Current Errors  
For noninverting gain (VIN = 0 V)  
 alue5of5RF||RG5  
Greater Than RS  
Less Than RS  
 alue5of5RBU5(Ω)5  
 alue5of5RBN5(Ω)5  
RF  
RG  
RF||RG − RS  
0
0
(2)  
(3)  
VOUT = 1 +  
× VIP  
RS − RF||RG  
For inverting gain (VIP = 0 V)  
Table 12 shows sample values for RBP and RBN when RF||RG > RS  
and when RF||RG < RS.  
RF  
RG  
VOUT  
=
×VIN  
Table 12. Examples of RBN and RBP Settings  
Gain5R  
F5(Ω)5  
249  
249  
RG5(Ω)5  
R5(Ω)5  
RBU5(Ω)5  
74.5  
0
RBN5(Ω)5  
0
25.3  
The total output voltage error is the sum of errors due to the  
amplifier offset voltage and input currents. The output error  
due to the offset voltage can be estimated as  
+2  
+10  
249  
27.4  
50  
50  
VOUT  
=
ERROR  
(4)  
VCM  
CMRR  
VP VPNOM  
VOUT  
A
RF  
RG  
V
+
+
+
× 1 +  
OFFSETNOM  
PSRR  
where:  
VOFFSET  
is the offset voltage at the specified supply voltage,  
NOM  
which is measured with the input and output at midsupply.  
CM is the common-mode voltage.  
VP is the power supply voltage.  
PNOM is the specified power supply voltage.  
V
V
CMRR is the common-mode rejection ratio.  
PSRR is the power supply rejection ratio.  
A is the dc open-loop gain.  
Rev.B | Page 18 of 28  
 
 
 
 
 
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
500  
50  
5
NOISE CONSIDERATIONS  
Figure 48 illustrates the primary noise contributors for the  
typical gain configurations. The total rms output noise is  
the root-mean-square of all the contributions.  
vn _ R  
=
4kT × R  
R
F
F
F
AMPLIFIER AND  
RESISTOR NOISE  
ven  
R
vn _ R  
=
G
S
4kT × R  
G
G
+ vout_en –  
ien  
iep  
SOURCE  
RESISTANCE NOISE  
R
vn _ R  
=
4kT × R  
S
S
TOTAL  
AMPLIFIER NOISE  
Figure 48. Noise Sources in Typical Connection  
0.5  
50  
500  
5k  
50k  
The output noise spectral density can be calculated by  
SOURCE RESISTANCE ()  
Figure 49. RTI Noise vs. Source Resistance  
vout _en =  
2
2
CAPACITANCE DRIVE  
4kTRs + iep2 RS 2 + ven2  
]
+
4kTRG + ien2 RF  
RF  
RG  
RF  
RG  
2
4kTRF + 1+  
[
Capacitance at the output of an amplifier creates a delay within the  
feedback path that, if within the bandwidth of the loop, can create  
excessive ringing and oscillation. The ADA4896-2/ADA4897-1/  
ADA4897-2 show the most peaking at a gain of +2 (see Figure 9).  
(6)  
where:  
k is Boltzmann’s constant.  
T is the absolute temperature (degrees Kelvin).  
iep ien  
Placing a small snub resistor (RSNUB) in series with the amplifier  
output and the capacitive load mitigates the problem. Figure 50  
shows the effect of using a snub resistor (RSNUB) on reducing the  
peaking for the worst-case frequency response (gain of +2).  
Using RSNUB = 100 ꢀ eliminates the peaking entirely, with the  
trade-off that the closed-loop gain is reduced by 0.8 dB due to  
attenuation at the output. RSNUB can be adjusted from 0 ꢀ to  
100 ꢀ to maintain an acceptable level of peaking and closed-  
loop gain (see Figure 50).  
and  
density (pA/√Hz).  
ven  
represent the amplifier input current noise spectral  
is the amplifier input voltage noise spectral density (nV/√Hz).  
RS is the source resistance, as shown in Figure 48.  
RF and RG are the feedback network resistances, as shown in  
Figure 48.  
ven  
Source resistance noise, amplifier voltage noise ( ), and the  
voltage noise from the amplifier current noise ( × RS) are all  
subject to the noise gain term (1 + RF/RG). Note that with a  
1 nV/√Hz input voltage noise and 2.8 pA/√Hz input current  
noise, the noise contributions of the amplifier are relatively  
small for source resistances from approximately 50 Ω to 700 Ω.  
iep  
3
V
V
= +5V  
OUT  
S
= 200mV p-p  
2
1
G = +2  
R
= 0  
SNUB  
R
= 50Ω  
SNUB  
R
= 100Ω  
SNUB  
0
Figure 49 shows the total RTI noise due to the amplifier vs. the  
source resistance. In addition, the value of the feedback resistors  
used affects the noise. It is recommended that the value of the  
feedback resistors be maintained between 250 Ω and 1 kΩ to  
keep the total noise low.  
–1  
–2  
–3  
–4  
–5  
R
249Ω  
2
R
249Ω  
1
R
SNUB  
V
OUT  
ADA4896-2  
V
C
L
39pF  
R
IN  
L
1kΩ  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 50. Using a Snub Resistor to Reduce Peaking  
Due to Output Capacitive Load  
Rev.B | Page 19 of 28  
 
 
 
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
APPLICATIONS INFORMATION  
2
1
TLUICAP5UERFORMANCE5 APSEꢀ5  
V
V
R
R
= +5V  
S
= 200mV p-p  
OUT  
= 249  
= 1kꢀ  
To reduce design time and eliminate uncertainty, Table 13  
provides a reference for typical gains, component values, and  
performance parameters. The supply voltage used is 5 V. The band-  
width is obtained with a small signal output of 200 mV p-p, and  
the slew rate is obtained with a 2 V output step.  
F
L
G = +5  
G = +2  
0
–1  
–2  
–3  
–4  
–5  
–6  
G = +10  
G = +20  
G = +1  
Note that as the gain increases, the small signal bandwidth  
decreases, as is expected from the gain bandwidth product  
relationship. In addition, the phase margin improves with  
higher gains, and the amplifier becomes more stable. As a  
result, the peaking in the frequency response is reduced  
(see Figure 51).  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
Figure 51. Small Signal Frequency Response at Various Gains  
Table 13. Recommended Values and Typical Performance  
Total5Output5Noise5Including5  
Resistors5(n /√Hz)5  
Gain5R  
+1  
+2  
+5  
+10  
+20  
F5(Ω)5  
RG5(Ω)5  
N/A  
249  
61.9  
27.4  
13.0  
−35dB5BW5(MHz)5 ꢀlew5Rate,5tR/tF5( /μs)5 Ueaking5(dB)5  
0
92  
54  
30  
17  
9
78/158  
101/140  
119/137  
87/88  
0.8  
1.2  
0
0
0
1.0  
3.6  
6.8  
12.0  
21.1  
249  
249  
249  
249  
37/37  
Rev.B | Page 20 of 28  
 
 
 
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
POW5NOIꢀE,5GAIN5ꢀEPECTABPE5AMUPIFIER5  
USING S3B IS OPTIONAL  
R
F2  
225  
S3B  
D3 ADG633  
R
75ꢀ  
F1  
+5V  
8
6
5
+5V  
8
R
G1  
75ꢀ  
2
3
7
ADA4896-2  
S1B  
S2B  
S2A  
V
02  
V1  
V2  
R
L
D1  
D2  
1
ADA4896-2  
V
4
01  
S1A  
R
V
BALANCE  
IN  
–5V  
150ꢀ  
4
ADG633  
–5V  
Figure 52. Using the ADA4896-2 and the ADG633 to Construct a Low Noise, Gain Selectable Amplifier to Drive a Low Resistive Load  
A gain selectable amplifier makes processing a wide range of  
input signals possible. A traditional gain selectable amplifier  
uses switches in the feedback loops connecting to the inverting  
input. The switch resistances degrade the noise performance of  
the amplifier, as well as adding significant capacitance on the  
inverting input node. The noise and capacitance issues can be  
especially bothersome when working with low noise amplifiers.  
Also, the switch resistances contribute to nonlinear gain error,  
which is undesirable.  
to cancel out the varying offset. Placing a resistor equal to the  
difference between RF2 and RF1 in series with Switch S2A results  
in a more constant offset voltage.  
The following derivation shows that sampling at V1 yields the  
desired signal gain without gain error. RS denotes the switch  
resistance. V2 can be derived using the same method.  
R
F1 + RS1  
RG1  
V01 =VIN × 1 +  
(7)  
(8)  
Figure 52 presents an innovative switching technique used in  
the gain selectable amplifier such that the 1 nV/Hz noise per-  
formance of the ADA4896-2 is preserved while the nonlinear  
gain error is much reduced. With this technique, the user can  
also choose switches with minimal capacitance to optimize the  
bandwidth of the circuit.  
RF1 + RG1  
RF1 + RG1 + RS1  
V1 = V01  
×
Substituting Equation 1 into Equation 2, the following  
derivation is obtained.  
RF1  
RG1  
V1=VIN × 1 +  
In the circuit shown in Figure 52, the switches are implemented  
with the ADG633 and are configured such that either S1A and  
S2A are on, or S1B and S2B are on. In this example, when the  
S1A and S2A switches are on, the first stage amplifier gain is +4.  
When the S1B and S2B switches are on, the first stage amplifier  
gain is +2. The first set of switches of the ADG633 is placed on  
the output side of the feedback loop, and the second set of switches  
is used to sample at a point (V1 or V2) where switch resistances  
and nonlinear resistances do not matter. In this way, the gain  
error can be reduced while preserving the noise performance  
of the ADA4896-2.  
(9)  
Note that if V01 yields the desired signal gain without gain  
error, the buffered output V02 will also be free from gain  
error. Figure 53 shows the normalized frequency response of  
the circuit at V02.  
6
V
V
= ±5V  
IN  
S
= 100mV p-p  
= 1kꢀ  
3
0
R
L
–3  
G = +2  
G = +4  
–6  
–9  
Note that the input bias current of the output buffer can cause  
problems with the impedance of the S2A and S2B sampling  
switches. Both sampling switches are not only nonlinear with  
voltage but with temperature as well. If this is an issue, place the  
unused switch of the ADG633 (S3B) in the feedback path of the  
output buffer to balance the bias currents (see Figure 52).  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
In addition, the bias current of the input amplifier causes  
an offset at the output that varies based on the gain setting.  
Because the input amplifier and the output buffer are mono-  
lithic, the relative matching of their bias currents can be used  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
Figure 53. Frequency Response of V02/VIN  
Rev.B | Page 21 of 28  
 
 
 
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
MEDICAL ULTRASOUND APPLICATIONS  
BEAMFORMER  
CENTRAL CONTROL  
Tx BEAMFORMER  
AD9279  
HV  
Rx BEAMFORMER  
(B AND F MODES)  
MUX/  
T/R  
ADC  
LNA  
VGA  
DEMUX  
SWITCHES  
AAF  
TRANSDUCER  
ARRAY  
CW (ANALOG)  
BEAMFORMER  
IMAGE AND  
SPECTRAL  
DOPPLER  
PROCESSING  
MODE  
COLOR  
DOPPLER  
PROCESSING  
(F MODE)  
MOTION  
PROCESSING  
(B MODE)  
ADA4896-2/  
ADA4897-1/  
ADA4897-2  
AUDIO  
OUTPUT  
DISPLAY  
Figure 54. Simplified Ultrasound System Block Diagram  
Overview of the Ultrasound System  
The ultrasound system consists of two main operations: the  
time gain control (TGC) operation and the continuous wave  
(CW) Doppler operation. The AD9279 integrates the essential  
components of these two operations into a single IC. It contains  
eight channels of a variable gain amplifier (VGA) with a low  
noise preamplifier (LNA), an antialiasing filter (AAF), an  
analog-to-digital converter (ADC), and an I/Q demodulator  
with programmable phase rotation. For detailed information  
about how to use the AD9279 in an ultrasound system, see the  
AD9279 data sheet.  
Medical ultrasound systems are among the most sophisticated  
signal processing systems in widespread use today. By transmit-  
ting acoustic energy into the body and receiving and processing  
the returning reflections, ultrasound systems can generate images  
of internal organs and structures, map blood flow and tissue  
motion, and provide highly accurate blood velocity information.  
Figure 54 shows a simplified block diagram of an ultrasound  
system.  
Rev.B | Page 22 of 28  
 
 
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
ADA4896-2/ADA4897-1/ADA4897-2 in the Ultrasound System  
R
C
FILT  
FILT  
R
A
CWI+  
Φ
AD7982  
50  
1.5V  
1.5V  
2.5V  
2.5V  
ADA4896-2/  
ADA4897-1/  
ADA4897-2  
ADA4896-2/  
ADA4897-1/  
ADA4897-2  
LNA  
CHANNEL A  
I
18-BIT ADC  
CWI–  
Φ
50ꢀ  
4nF  
R
A
C
FILT  
R
R
FILT  
FILT  
C
FILT  
R
A
CWQ+  
AD7982  
50ꢀ  
Φ
1.5V  
1.5V  
2.5V  
2.5V  
ADA4896-2/  
ADA4897-1/  
ADA4897-2  
ADA4896-2/  
ADA4897-1/  
ADA4897-2  
18-BIT ADC  
Q
LNA  
CHANNEL H  
CWQ–  
50ꢀ  
4nF  
R
A
C
R
FILT  
Φ
FILT  
4
LO  
GENERATION  
AD9279  
Figure 55. Using the ADA4896-2/ADA4897-1/ADA4897-2 as Filters, I-to-V Converters, Current Summers, and ADC Drivers After the I/Q Outputs of the AD9279  
The ADA4896-2/ADA4897-1/ADA4897-2 are used in the CW  
Doppler path in the ultrasound application after the I/Q demod-  
ulators of the AD9279. Doppler signals can be typically between  
100 Hz to 100 kHz. The low noise floor and high dynamic range  
of the ADA4896-2/ADA4897-1/ADA4897-2 make them excellent  
choices for processing weak Doppler signals.  
The output-referred noise of the CW signal path depends on  
the LNA gain, the selection of the first stage summing amplifier,  
and the value of RFILT. To determine the output-referred noise, it  
is important to know the active low-pass filter (LPF) values RA,  
RFILT, and CFILT, as shown as Figure 55. Typical filter values for  
all eight channels of a single AD9279 are 100 Ω for RA, 500 Ω  
for RFILT, and 2.0 nF for CFILT; these values implement a 100 kHz,  
single-pole LPF.  
The rail-to-rail output and the high output current drive of  
the ADA4896-2/ADA4897-1/ADA4897-2 make them suitable  
candidates for the I-to-V converter, current summer, and ADC  
driver.  
The gain of the I-to-V converter can be increased by increasing  
the filter resistor, RFILT. To keep the corner frequency unchanged,  
decrease the filter capacitor, CFILT, by the same factor. The factor  
limiting the magnitude of the gain is the output swing and drive  
capability of the op amp selected for the I-to-V converter, in this  
example, the ADA4896-2/ADA4897-1/ADA4897-2. Because  
any amplifier has limited drive capability, a finite number of  
channels can be summed.  
Figure 55 shows an interconnection block diagram of all  
eight channels of the AD9279. Two stages of the ADA4896-2  
amplifiers are used. The first stage performs an I-to-V conver-  
sion and filters the high frequency content that results from  
the demodulation process. The second stage of the ADA4896-2  
amplifiers is used to sum the output currents of multiple AD9279  
devices, to provide gain, and to drive the AD7982 device, an  
18-bit SAR ADC.  
Rev.B | Page 23 of 28  
 
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
Paralleling different values and sizes of capacitors helps to ensure  
that the power supply pins are provided with a low ac impedance  
across a wide band of frequencies. This is important for minimiz-  
ing the coupling of noise into the amplifier—especially when the  
amplifier PSRR begins to roll off—because the bypass capacitors  
can help lessen the degradation in PSRR performance.  
PALOST5CONꢀIDERATIONꢀ5  
To ensure optimal performance, careful and deliberate attention  
must be paid to the board layout, signal routing, power supply  
bypassing, and grounding.  
Ground Plane  
It is important to avoid ground in the areas under and around the  
input and output of the ADA4896-2/ADA4897-1/ADA4897-2.  
Stray capacitance created between the ground plane and the  
input and output pads of a device is detrimental to high speed  
amplifier performance. Stray capacitance at the inverting input,  
along with the amplifier input capacitance, lowers the phase  
margin and can cause instability. Stray capacitance at the output  
creates a pole in the feedback loop, which can reduce phase margin  
and can cause the circuit to become unstable.  
The smallest value capacitor should be placed on the same side  
of the board as the amplifier and as close as possible to the amp-  
lifier power supply pins. The ground end of the capacitor should  
be connected directly to the ground plane.  
It is recommended that a 0.1 μF ceramic capacitor with a 0508  
case size be used. The 0508 case size offers low series inductance  
and excellent high frequency performance. A 10 μF electrolytic  
capacitor should be placed in parallel with the 0.1 μF capacitor.  
Depending on the circuit parameters, some enhancement to  
performance can be realized by adding additional capacitors.  
Each circuit is different and should be analyzed individually for  
optimal performance.  
Power Supply Bypassing  
Power supply bypassing is a critical aspect in the performance  
of the ADA4896-2/ADA4897-1/ADA4897-2. A parallel connec-  
tion of capacitors from each power supply pin to ground works  
best. Smaller value capacitor electrolytics offer better high  
frequency response, whereas larger value capacitor electrolytics  
offer better low frequency performance.  
Rev.B | Page 24 of 28  
 
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 56. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
2.44  
2.34  
2.24  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
8
5
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
0.50  
0.40  
0.30  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED  
Figure 57. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-11)  
Dimensions shown in millimeters  
Rev.B | Page 25 of 28  
 
ADA4896-2/ADA4897-1/ADA4897-2  
Data Sheet  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 58. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.00  
2.90  
2.80  
6
1
5
2
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
4°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.30 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AB  
Figure 59. 6-Lead Small Outline Transistor Package [SOT-23]  
(RJ-6)  
Dimensions shown in millimeters  
Rev.B | Page 26 of 28  
Data Sheet  
ADA4896-2/ADA4897-1/ADA4897-2  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 60. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING5GSIDE5  
Uackage5  
Option5  
Ordering5  
Quantity5Branding5  
Model1  
Temperature5Range5  
Uackage5Description5  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
Evaluation Board for the 8-Lead LFCSP  
Evaluation Board for the 8-Lead MSOP  
8-Lead SOIC_N  
ADA4896-2ARMZ  
ADA4896-2ARMZ-R7  
ADA4896-2ARMZ-RL  
ADA4896-2ACPZ-R2  
ADA4896-2ACPZ-R7  
ADA4896-2ACPZ-RL  
ADA4896-2ACP-EBZ  
ADA4896-2ARM-EBZ  
ADA4897-1ARZ  
ADA4897-1ARZ-R7  
ADA4897-1ARZ-RL  
ADA4897-1ARJZ-R2  
ADA4897-1ARJZ-R7  
ADA4897-1ARJZ-RL  
ADA4897-1AR-EBZ  
ADA4897-1ARJ-EBZ  
ADA4897-2ARMZ  
ADA4897-2ARMZ-R7  
ADA4897-2ARMZ-RL  
ADA4897-2ARM-EBZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
RM-8  
RM-8  
RM-8  
CP-8-11  
CP-8-11  
CP-8-11  
50  
H2P  
H2P  
H2P  
H2P  
H2P  
H2P  
1,000  
3,000  
250  
1,500  
5,000  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
R-8  
R-8  
R-8  
RJ-6  
RJ-6  
RJ-6  
98  
8-Lead SOIC_N  
8-Lead SOIC_N  
6-Lead SOT-23  
6-Lead SOT-23  
1,000  
2,500  
250  
3,000  
10,000  
H2K  
H2K  
H2K  
6-Lead SOT-23  
Evaluation Board for the 8-Lead SOIC_N  
Evaluation Board for the 6-Lead SOT-23  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
RM-10  
RM-10  
RM-10  
50  
1,000  
3,000  
H2N  
H2N  
H2N  
Evaluation Board for the 10-Lead MSOP  
1 Z = RoHS Compliant Part.  
Rev.B | Page 27 of 28  
 
ADA4896-2/ADA4897-1/ADA4897-2  
NOTES  
Data Sheet  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09447-0-4/12(B)  
Rev. B | Page 28 of 28  

相关型号:

AD7986BCPZ

18-Bit, 2 MSPS PulSAR 15 mW ADC in LFCSP (QFN)
ADI

AD7986BCPZ-RL7

18-Bit, 2 MSPS PulSAR 15 mW ADC in QFN
ADI

AD7988-1

16-Bit Lower Power
ADI

AD7988-1BCPZ-RL

16-Bit Lower Power
ADI

AD7988-1BCPZ-RL7

16-Bit Lower Power
ADI

AD7988-1BRMZ

16-Bit Lower Power
ADI

AD7988-1BRMZ-RL7

16-Bit Lower Power
ADI

AD7988-1_1208

16-Bit Lower Power PulSAR ADCs in MSOP/LFCSP (QFN)
ADI

AD7988-1_17

16-Bit Lower Power PulSAR ADCs in MSOP/LFCSP
ADI

AD7988-5

16-Bit Lower Power
ADI

AD7988-5BCPZ-RL

16-Bit Lower Power
ADI

AD7988-5BCPZ-RL7

16-Bit Lower Power
ADI