AD8004ANZ [ADI]

Quad 3000 V/mu s, 35 mW Current Feedback Amplifier; 四核3000 V /亩? S, 35毫瓦电流反馈放大器
AD8004ANZ
型号: AD8004ANZ
厂家: ADI    ADI
描述:

Quad 3000 V/mu s, 35 mW Current Feedback Amplifier
四核3000 V /亩? S, 35毫瓦电流反馈放大器

放大器 光电二极管
文件: 总17页 (文件大小:648K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad 3000 V/s, 35 mW  
Current Feedback Amplifier  
a
AD8004  
FEATURES  
CONNECTION DIAGRAM  
High Speed  
250 MHz –3 dB Bandwidth (G = +1)  
3000 V/s Slew Rate  
PDIP (N), CERDIP (Q), and  
SOIC (R) Packages  
21 ns Settling Time to 0.1%  
1.8 ns Rise Time for 2 V Step  
Low Power  
3.5 mA/Amp Power Supply Current (35 mW/Amp)  
Single Supply Operation  
Fully Specified for +5 V Supply  
Good Video Specifications (RL = 150 , G = +2)  
Gain Flatness 0.1 dB to 30 MHz  
0.04% Differential Gain Error  
0.10Differential Phase Error  
Low Distortion  
OUTPUT  
–IN  
1
2
3
4
5
6
7
14  
13  
12  
OUTPUT  
–IN  
1
4
+IN  
+IN  
AD8004  
TOP VIEW)  
+V  
11 –V  
S
S
(
+IN  
+IN  
–IN  
10  
9
–IN  
2
3
OUTPUT  
OUTPUT  
8
30 MHz while offering differential gain and phase error of  
0.04% and 0.10. This makes the AD8004 suitable for video  
electronics such as cameras and video switchers.  
–78 dBc THD at 5 MHz  
–61 dBc THD at 20 MHz  
High Output Current of 50 mA  
Available in a 14-Lead PDIP, SOIC, and CERDIP  
The AD8004 offers low power of 3.5 mA/amplifier and can run  
on a single +4 V to +12 V power supply, while being capable of  
delivering up to 50 mA of load current. All this is offered in a  
small 14-lead DIP or 14-lead SOIC package. These features  
make this amplifier ideal for portable and battery powered appli-  
cations where size and power are critical.  
APPLICATIONS  
Image Scanners  
Active Filters  
Video Switchers  
Special Effects  
The outstanding bandwidth of 250 MHz along with 3000 V/ms  
of slew rate make the AD8004 useful in many general-purpose,  
high speed applications where dual power supplies of up to ±6 V  
and single supplies from 4 V to 12 V are needed. The AD8004  
is available in the industrial temperature range of –40C to +85C  
in the N and R packages, and in the military temperature range  
of –55C to +125C in the Q package.  
GENERAL DESCRIPTION  
The AD8004 is a quad, low power, high speed amplifier designed  
to operate on single or dual supplies. It utilizes a current feed-  
back architecture and features high slew rate of 3000 V/ms  
making the AD8004 ideal for handling large amplitude pulses.  
Additionally, the AD8004 provides gain flatness of 0.1 dB to  
0.04  
0.03  
0.02  
0.01  
0.00  
–0.01  
–0.02  
–0.03  
–0.04  
1
0
G = +2  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
V
= 50mV rms  
= 100ꢁ  
= 1.10kꢁ  
80 IRE  
IN  
R
R
R
V
= 150ꢁ  
= 5V  
= 1.21kꢁ  
L
L
S
5V  
S
F
+5V  
S
R
R PACKAGE  
F
0.1  
0
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
–0.02  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
5V  
S
+5V  
S
80 IRE  
R
V
= 150ꢁ  
= 5V  
= 1.21kꢁ  
L
S
R
F
–0.04  
100  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
1
10  
40  
500  
FREQUENCY – MHz  
Figure 2. Differential Gain/Differential Phase  
Figure 1. Frequency Response and Flatness, G = +2  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
IMPORTANT LINKS for the AD8004*  
Last content update 08/18/2013 01:36 am  
PARAMETRIC SELECTION TABLES  
DESIGN COLLABORATION COMMUNITY  
Find Similar Products By Operating Parameters  
High Speed Amplifiers Selection Table  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
Follow us on Twitter: www.twitter.com/ADI_News  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
DOCUMENTATION  
AN-692: Universal Precision Op Amp Evaluation Board  
AN-649: Using the Analog Devices Active Filter Design Tool  
AN-356: User's Guide to Applying and Measuring Operational  
Amplifier Specifications  
MT-057: High Speed Current Feedback Op Amps  
MT-051: Current Feedback Op Amp Noise Considerations  
MT-034: Current Feedback (CFB) Op Amps  
DESIGN SUPPORT  
Submit your support request here:  
Linear and Data Converters  
Embedded Processing and DSP  
MT-059: Compensating for the Effects of Input Capacitance on VFB  
and CFB Op Amps Used in Current-to-Voltage Converters  
Telephone our Customer Interaction Centers toll free:  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
1800-419-0108  
8-800-555-45-90  
A Stress-Free Method for Choosing High-Speed Op Amps  
UG-111: Universal Evaluation Board for Quad, High Speed Op Amps  
Offered in 14-Lead SOIC Packages  
India:  
Russia:  
ADI Warns Against Misuse of COTS Integrated Circuits  
Current Feedback Amplifiers Part 1: Ask The Applications Engineer-22  
Current Feedback Amplifiers Part 2: Ask The Applications Engineer-23  
Two-Stage Current-Feedback Amplifier  
Quality and Reliability  
Lead(Pb)-Free Data  
Space Qualified Parts List  
SAMPLE & BUY  
AD8004  
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE  
View Price & Packaging  
Request Evaluation Board  
Analog Filter Wizard 2.0  
Request Samples Check Inventory & Purchase  
AD8004A SPICE Macro-Model  
Find Local Distributors  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
View the Evaluation Boards and Kits page for documentation and  
purchasing  
Symbols and Footprints  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
(@ T = +25C, V = 5 V, R = 100 , unless otherwise noted.)  
AD8004–SPECIFICATIONS  
A
S
L
AD8004A  
AD8004S  
Parameter  
Conditions  
Min Typ Max Min Typ Max Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth, N Package  
G = +2, RF = 698 Ω  
G = +1, RF = 806 Ω  
G = +2  
G = +2, VO = 4 V Step  
G = –2, VO = 4 V Step  
G = +2, VO = 2 V Step  
G = +2, VO = 2 V Step  
185  
250  
30  
3000  
2000  
21  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
30  
3000  
2000  
21  
Settling Time to 0.1%  
Rise and Fall Time (10% to 90%)  
1.8  
1.8  
ns  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
Crosstalk, R Package, Worst Case  
Crosstalk, N Package, Worst Case  
Input Voltage Noise  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = +2, RL = 1 kΩ  
f = 5 MHz, G = +2, RL = 1 kΩ  
f = 10 kHz  
–78  
–69  
–64  
1.5  
38  
38  
0.04  
0.10  
0.01  
0.04  
–78  
dBc  
dB  
dB  
nV/Hz  
pA/Hz  
pA/Hz  
%
Degree  
%
1.5  
38  
38  
0.04  
0.10  
0.01  
0.04  
Input Current Noise  
f = 10 kHz, +In  
–In  
Differential Gain Error  
Differential Phase Error  
Differential Gain Error  
Differential Phase Error  
NTSC, G = +2, RL = 150 , RF = 1.21 kΩ  
NTSC, G = +2, RL = 150 , RF = 1.21 kΩ  
NTSC, G = +2, RL = 1 k, RF = 1.21 kΩ  
NTSC, G = +2, RL = 1 k, RF = 1.21 kΩ  
Degree  
DC PERFORMANCE  
Input Offset Voltage  
1.0 3.5  
1.0 3.5  
mV  
T
MIN to TMAX  
1.5  
15  
35  
5
1.5  
15  
35  
6
mV  
µV/°C  
90 µA  
Offset Drift  
–Input Bias Current  
90  
TMIN to TMAX  
110  
110  
120  
120 µA  
110 µA  
130 µA  
kΩ  
+Input Bias Current  
40  
40  
TMIN to TMAX  
VO = 2.5 V  
TMIN to TMAX  
Open-Loop Transresistance  
170 290  
220  
170 290  
220  
kΩ  
INPUT CHARACTERISTICS  
Input Resistance  
+Input  
–Input  
+Input  
2
2
MΩ  
50  
1.5  
3.2  
50  
1.5  
3.2  
Input Capacitance  
pF  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Offset Voltage  
–Input Current  
+Input Current  
VCM  
VCM  
VCM  
=
=
=
2.5 V  
2.5 V, TMIN to TMAX  
2.5 V, TMIN to TMAX  
52  
58  
1
12  
52  
58  
1
12  
dB  
µA/V  
µA/V  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Current  
RL = 150 Ω  
3.9  
50  
100 180  
3.9  
50  
100 180  
V
mA  
mA  
Short Circuit Current  
POWER SUPPLY  
Operating Range  
Total Quiescent Current  
2.0  
14  
16  
6.0  
17  
20  
2.0  
14  
16  
6.0  
17  
23  
V
mA  
mA  
dB  
µA/V  
µA/V  
TMIN to TMAX  
Power Supply Rejection Ratio  
–Input Current  
+Input Current  
VS = 2 V  
56  
62  
0.5  
4
56  
62  
0.5  
4
TMIN to TMAX  
TMIN to TMAX  
Specifications subject to change without notice.  
–2–  
REV. C  
AD8004  
SPECIFICATIONS (@ TA = +25C, VS = +5 V, RL = 100 , unless otherwise noted.)  
AD8004A  
AD8004S  
Typ  
Parameter  
Conditions  
Min  
Typ  
Max Min  
Max Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth, N Package  
G = +2, RF = 698  
G = +1, RF = 806 Ω  
G = +2  
G = +2, VO = 2 V Step  
G = +2, VO = 2 V Step  
150  
200  
30  
1100  
24  
MHz  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
Rise and Fall Time (10%  
to 90%)  
30  
1100  
24  
G = +2, VO = 2 V Step  
2.3  
2.3  
ns  
NOISE/HARMONIC  
PERFORMANCE  
Total Harmonic Distortion  
Crosstalk, R Package,  
Worst Case  
Crosstalk, N Package,  
Worst Case  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = +2, RL = 1 kΩ  
–65  
–69  
–65  
dBc  
dB  
f = 5 MHz, G = +2, RL = 1 kΩ  
f = 10 kHz  
f = 10 kHz, +In  
–64  
1.5  
38  
dB  
Input Voltage Noise  
Input Current Noise  
1.5  
38  
38  
0.06  
0.25  
0.01  
0.08  
nV/Hz  
pA/Hz  
pA/Hz  
%
Degree  
%
–In  
38  
Differential Gain Error  
Differential Phase Error  
Differential Gain Error  
Differential Phase Error  
NTSC, G = +2, RL = 150 , RF = 1.21 kΩ  
NTSC, G = +2, RL = 150 , RF = 1.21 kΩ  
NTSC, G = +2, RL = 1 k, RF = 1.21 kΩ  
NTSC, G = +2, RL = 1 k, RF = 1.21 kΩ  
0.06  
0.25  
0.01  
0.08  
Degree  
DC PERFORMANCE  
Input Offset Voltage  
1.0  
1
2.5  
3
1.0  
1
2.5  
4
mV  
mV  
TMIN to TMAX  
Offset Drift  
–Input Bias Current  
15  
20  
15  
20  
µV/°C  
80 µA  
80  
TMIN to TMAX  
MIN to TMAX  
VO = +1.5 V to +3.5 V  
TMIN to TMAX  
100  
100  
115  
140  
110 µA  
100 µA  
125 µA  
kΩ  
+Input Bias Current  
35  
35  
T
Open Loop Transresistance  
140  
230  
170  
230  
170  
kΩ  
INPUT CHARACTERISTICS  
Input Resistance  
+Input  
–Input  
+Input  
2
50  
1.5  
2
50  
1.5  
MΩ  
Input Capacitance  
Input Common-Mode  
Voltage Range  
pF  
3.2  
3.2  
V
Common-Mode Rejection Ratio  
Offset Voltage  
–Input Current  
VCM = +1 V to +3 V  
VCM = +1 V to +3 V, TMIN to TMAX  
VCM = +1 V to +3 V, TMIN to TMAX  
52  
57  
2
15  
52  
57  
2
15  
dB  
µA/V  
µA/V  
+Input Current  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Current  
RL = 150 Ω  
0.9 to 4.1  
50  
95  
0.9 to 4.1  
50  
95  
V
mA  
mA  
Short Circuit Current  
POWER SUPPLY  
Operating Range  
Total Quiescent Current  
0, +4  
56  
+12 0, +4  
14  
+12  
14  
17.5 mA  
V
mA  
13  
14.5  
62  
1
13  
14.5  
62  
1
T
MIN to TMAX  
VS = +1 V, VCM = +2.5 V  
MIN to TMAX  
TMIN to TMAX  
15.5  
Power Supply Rejection Ratio  
–Input Current  
+Input Current  
56  
dB  
µA/V  
µA/V  
T
6
6
Specifications subject to change without notice.  
REV. C  
–3–  
AD8004  
ABSOLUTE MAXIMUM RATINGS1  
MAXIMUM POWER DISSIPATION  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 V  
Internal Power Dissipation . . . . . . . . . . . . . . . . . . . . . Note 2  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . 2.5 V  
Output Short Circuit Duration  
. . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range (N, Q, R) . . . . –65°C to +125°C  
Operating Temperature Range  
The maximum power that can be safely dissipated by the  
AD8004 is limited by the associated rise in junction temperature.  
The maximum safe junction temperature for plastic encapsu-  
lated devices is determined by the glass transition temperature  
of the plastic, approximately +150°C. Exceeding this limit  
temporarily may cause a shift in parametric performance due to  
a change in the stresses exerted on the die by the package.  
Exceeding a junction temperature of +175°C for an extended  
period can result in device failure.  
A Grade . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
S Grade . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . +300°C  
While the AD8004 is internally short circuit protected, this may  
not be sufficient to guarantee that the maximum junction tem-  
perature is not exceeded under all conditions. To ensure proper  
operation, it is necessary to observe the maximum power ratings.  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
14-Lead PDIP Package: θJA = 90°C/W, θJC = 30°C/W  
14-Lead SOIC Package: θJA = 140°C/W, θJC = 30°C/W  
14-Lead CERDIP Package: θJA = 110°C/W, θJC = 30°C/W  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD8004AN  
AD8004AR-14  
40°C to +85°C 14-Lead PDIP  
40°C to +85°C 14-Lead SOIC  
N-14  
R-14  
AD8004AR-14-REEL 40°C to +85°C 13" Tape and Reel R-14  
AD8004AR-14-REEL7 40°C to +85°C 7" Tape and Reel  
R-14  
AD8004SQ  
55°C to +125°C 14-Lead CERDIP  
Q-14  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8004 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
SCOPE  
INPUT  
SCOPE  
INPUT  
249ꢂ  
604ꢂ  
50ꢂ  
499ꢂ  
50ꢂ  
604ꢂ  
V
IN  
50ꢂ  
50ꢂ  
61.9ꢂ  
V
IN  
+V  
–V  
+V  
–V  
S
S
50ꢂ  
0.1F  
0.1F  
0.1F  
0.1F  
10F  
10F  
10F  
10F  
S
S
Figure 4. Test Circuit; Gain = –2  
Figure 3. Test Circuit; Gain = –2  
–4–  
REV. C  
Typical Performance CharacteristicsAD8004  
TPC 1.* 100 mV Step Response; G = +2, VS = 2.5 V or 5 V  
TPC 4.* 100 mV Step Response; G = –2, VS = 2.5 V or 5 V  
TPC 2.* Step Response; G = +2, VS = 5 V  
TPC 5.* Step Response; G = –2, VS = 5 V  
2
1
1
G = +1,  
= 698ꢂ  
G = –1  
R
F
0
V
= 5V  
= 499ꢂ  
= 50mV rms  
= 100ꢂ  
–1  
–2  
–3  
–4  
–5  
–6  
S
0
R
V
G = –2  
F
R
= 100ꢂ  
= 50mV (G = +1, +2)  
= 5mV (G = +10)  
L
–1  
–2  
IN  
V
V
IN  
IN  
R
L
N PACKAGE  
G = +2,  
G = –10  
R
= 604ꢂ  
–3  
–4  
–5  
–6  
–7  
–8  
F
G = +10,  
= 499ꢂ  
R
–7  
–8  
–9  
F
1
10  
40  
100  
500  
1
10  
40  
100  
500  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 3. Frequency Response; G = +1, +2, +10; VS = 5 V  
TPC 6. Frequency Response; G = –1, –2, –10  
*VS  
=
2.5 V operation is identical to VS = +5 V single-supply operation.  
REV. C  
–5–  
AD8004  
9
3
0
1V rms  
6
3
–3  
1V rms  
0
–6  
–9  
–3  
–6  
–9  
–12  
–12  
–15  
–18  
G = +2  
G = +2  
V
= 5V  
V
= +5V  
–15  
–18  
–21  
S
S
–21  
–24  
R
= 604ꢂ  
R
= 604ꢂ  
F
F
–27  
1
10  
40  
100  
500  
1
10  
40  
100  
500  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 10. Large Signal Frequency Response; VS = +5.0 V,  
TPC 7. Large Signal Frequency Response; VS = 5.0 V,  
G = +2, RF = 604  
G = +2, RF = 604 Ω  
–40  
–40  
3RD  
= 150ꢂ  
G = +2  
O
R
G = +2  
O
L
V
= 2V p-p  
2ND  
= 150ꢂ  
V
= 2V p-p  
–50  
–60  
–70  
–50  
–60  
R
= 698ꢂ  
R
F
L
3RD  
= 150ꢂ  
R
= 698ꢂ  
F
R
L
3RD  
L
2ND  
= 150ꢂ  
R
= 1kꢂ  
R
L
–70  
–80  
–90  
–80  
2ND  
= 1kꢂ  
R
2ND  
L
R
= 1kꢂ  
–90  
L
3RD  
= 1kꢂ  
R
L
–100  
–100  
1
10  
20  
1
10  
20  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 11. Distortion vs. Frequency; VS = +5 V  
TPC 8. Distortion vs. Frequency; VS = 5 V  
–10  
1
5V  
604ꢂ  
154ꢂ  
S
–15  
–20  
604ꢂ  
154ꢂ  
0
50ꢂ  
V
IN  
G = +2  
V
OUT  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
V
R
R
= 50mV rms  
= 100ꢂ  
= 1.10kꢂ  
IN  
L
57.6ꢂ  
+5V  
5V  
–25  
–30  
S
S
F
+5V  
S
R PACKAGE  
0.1  
0
–35  
–40  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
+5V  
5V  
S
S
–45  
+5V  
S
–50  
–55  
–60  
5V  
S
1
10  
40  
100  
500  
0.03  
0.1  
1
10  
100  
500  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 12. CMRR vs. Frequency; VS = 5 V or +5 V,  
IN = 200 mV rms, Other Sides Are Equal, RTO  
TPC 9. Frequency Response and Flatness, G = +2  
V
–6–  
REV. C  
AD8004  
100  
10  
1
1000  
500  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
G = +2  
5V OR 2.5V  
S
S
R
= 1kꢂ  
F
100mV rms ON TOP  
OF dc BIAS  
300  
200  
+PSRR  
–PSRR  
100  
70  
+ OR – INPUT  
CURRENT NOISE  
50  
40  
30  
20  
VOLTAGE NOISE  
10  
1M  
10  
100  
1k  
10k  
100k  
10k  
100k  
1M  
10M  
100M  
500M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 13. Noise vs. Frequency, VS = +5 V or 5 VS  
TPC 16. PSRR vs. Frequency  
–20  
–30  
G = +2  
= 1.10kꢂ  
R
100  
F
5V  
S
–40  
R
= 50ꢂ  
V
= 200mV rms  
BT  
IN  
G = +2  
= 698ꢂ  
POWER = 0dBm  
5V OR +5V  
S
INPUT TO SIDE 1  
= 1kꢂ  
R PACKAGE  
S
OUTPUT =  
SIDE 2  
–50  
R
R
F
L1  
10  
1
–60  
OUTPUT =  
SIDE 4  
(224mV rms)  
R
= 0  
–70  
BT  
+5V  
S
–80  
OUTPUT =  
SIDE 3  
–90  
0.1  
5V  
S
–100  
–110  
–120  
0.01  
0.03  
0.03  
0.1  
1
100  
500  
0.1  
1
10  
100  
500  
10  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 14. Output Impedance vs. Frequency  
TPC 17. Crosstalk (Output to Output) vs. Frequency  
110  
60  
50  
40  
30  
20  
10  
0
0
100  
GAIN  
GAIN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
–50  
–100  
–150  
–200  
PHASE  
PHASE  
–180  
V
V
= –40dBm  
= 5V  
–240  
–360  
IN  
S
–10  
0.03  
0.1  
1
10  
100  
500  
100k  
1M  
10M  
FREQUENCY – Hz  
100M  
1G  
FREQUENCY – MHz  
TPC 15. Open-Loop Voltage Gain and Phase  
TPC 18. Open-Loop Transimpedance Gain  
REV. C  
–7–  
AD8004  
9
8
G = +2  
= 1.21kꢂ  
R
5V  
F
S
7
6
5
4
3
2
+5V  
S
1
0
10  
100  
1000  
10000  
LOAD RESISTANCE – ꢂ  
TPC 22. Output Voltage Swing vs. Load  
TPC 19. Short-Term Settling Time  
10  
9
G = +2  
F
R
= 1.21kꢂ  
8
f = 100kHz  
R
= 1kꢂ  
L
7
6
5
4
R
= 100ꢂ  
L
3
2
1
0
3
4
5
6
7
8
9
10  
11  
12  
TOTAL SUPPLY VOLTAGE – V  
TPC 23. Output Swing vs. Supply  
TPC 20. Long-Term Settling Time  
0.03  
0.02  
0.04  
0.03  
0.02  
0.01  
0.00  
–0.01  
–0.02  
–0.03  
80 IRE  
R
= 1kꢂ  
L
S
F
V
= 5V  
= 1.21kꢂ  
0.01  
R
80 IRE  
0.00  
R
V
= 150ꢂ  
= 5V  
L
–0.01  
S
R
= 1.21kꢂ  
F
–0.02  
–0.03  
–0.04  
1ST  
2ND  
3
RD  
4
TH  
5TH  
6TH  
7TH  
8TH  
9TH 10TH 11TH  
1ST  
2ND  
3RD  
4TH  
5TH  
6TH  
7TH  
8
TH  
9TH 10TH 11TH  
0.04  
0.03  
0.02  
0.01  
0.00  
–0.01  
–0.02  
–0.03  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
–0.02  
80 IRE  
R
= 150ꢂ  
= 5V  
L
80 IRE  
V
R
= 1kꢂ  
S
L
V
= 5V  
R
= 1.21kꢂ  
S
F
R
= 1.21kꢂ  
F
–0.04  
–0.04  
1ST  
2ND  
3RD  
4TH  
5TH  
6TH  
7TH  
8TH  
9TH 10TH 11TH  
1ST  
2ND  
3RD  
4TH  
5TH  
6TH  
7TH  
8TH  
9TH 10TH 11TH  
TPC 21. Differential Gain/Differential Phase  
TPC 24. Differential Gain/Phase, RL = 1 kΩ  
–8–  
REV. C  
AD8004  
THEORY OF OPERATION  
The more exact relationships that take into account open-loop  
gain errors are:  
The AD8004 is a member of a new family of high speed current-  
feedback (CF) amplifiers offering new levels of bandwidth,  
distortion, and signal-swing capability vs. power. Its wide dynamic  
range capabilities are due to both a complementary high speed  
bipolar process and a new design architecture. The AD8004 is  
basically a two stage (Figure 30) rather than the conventional  
one stage design. Both stages feature the current-on-demand  
property associated with current feedback amplifiers. This  
gives an unprecedented ratio of quiescent current to dynamic  
performance. The important properties of slew rate and full  
power bandwidth benefit from this performance. In addition  
the second gain stage buffers the effects of load impedance,  
significantly reducing distortion.  
G
1G  
AO(s) TO(s)  
AV  
=
RF  
for inverting (G is negative)  
1+  
+
G
AV =  
RF  
G
for noninverting (G is positive)  
1+  
+
AO(s) TO(s)  
In these equations the open-loop voltage gain (AO(s)) is common  
to both voltage and current-feedback amplifiers and is the ratio  
of output voltage to differential input voltage. The open-loop  
transimpedance gain (TO(s)) is the ratio of output voltage to  
inverting input current and is applicable to current-feedback  
amplifiers. The open-loop voltage gain and open-loop transim-  
pedance gain (TO(s)) of the AD8004 are plotted vs. frequency  
in TPCs 15 and 18. These plots and the basic relationships can  
be used to predict the first order performance of the AD8004 over  
frequency. At low closed-loop gains the term (RF/TO(s)) dominates  
the frequency response characteristics. This gives the result that  
bandwidth is constant with gain, a familiar property of current  
feedback amplifiers.  
A full discussion of this new amplifier architecture is available on  
the data sheet for the AD8011. This discussion only covers the  
basic principles of operation.  
DC AND AC CHARACTERISTICS  
As with traditional op amp circuits the dc closed-loop gain is  
defined as:  
RF  
RN  
AV = G = 1+  
noninverting operation  
inverting operation  
An RF of 1 khas been chosen as the nominal value to give  
optimum frequency response with acceptable peaking at gains of  
+2/–1. As can be seen from the above relationships, at higher  
closed-loop gains reducing RF has the effect of increasing closed-  
loop bandwidth. Table I gives optimum values for RF and RG  
for a variety of gains.  
RF  
RN  
AV = G = −  
A1  
IPN  
IQ1  
C
D
IPP  
A2  
C
1
P
Q3  
C 2  
P
ICQ + IO  
V
Q1  
Q2  
V
V
N
P
O
´
Z
I
A3  
V
O
R
C
L
L
Z2  
R
F
IE  
R
G
Q4  
IQ1  
A2  
C
C
1
P
IPN  
INP  
A1  
AD8004  
D
Figure 5. Simplified Block Diagram  
REV. C  
–9–  
AD8004  
DRIVING CAPACITIVE LOADS  
region of the summing junction will cause some bandwidth  
extension and/or increased peaking. In noninverting gains, the  
effect of extra capacitance on summing junctions is far more  
pronounced than with inverting gains. Figure 9 shows an example  
of this. Note that only 1 pF of added junction capacitance causes  
about a 70% bandwidth extension and additional peaking on a  
gain = +2. For an inverting gain = –2, 5 pF of additional summing  
junction capacitance caused a small 10% bandwidth extension.  
The AD8004 was designed primarily to drive nonreactive loads.  
If driving loads with a capacitive component is desired, best  
settling response is obtained by the addition of a small series  
resistance as shown in Figure 6. The accompanying graph shows  
the optimum value for RSERIES vs. capacitive load. It is worth  
noting that the frequency response of the circuit when driving  
large capacitive loads will be dominated by the passive roll-off of  
RSERIES and CL.  
Extra output capacitive loading also causes bandwidth exten-  
sions and peaking. The effect is more pronounced with less  
resistive loading from the next stage. Figure 10 shows the effect  
of direct output capacitive loads for gains of +2 and –2. For both  
gains CLOAD was set to 10 pF or 0 pF (no extra capacitive loading).  
For each of the four traces in Figure 10 the resistive loads were  
100 . Figure 11 also shows capacitive loading effects with a  
lighter output resistive load. Note that even though bandwidth  
is extended 2¥, the flatness dramatically suffers.  
1k  
R
SERIES  
1k⍀  
AD8004  
R
1k⍀  
L
C
L
Figure 6. Driving Capacitive Load  
2
40  
30  
20  
10  
R
= 698  
F
1
0
G = +1  
G = +2  
R
= 1.1k⍀  
F
R
= 909⍀  
F
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
1
0
R
= 604⍀  
F
–1  
–2  
–3  
–4  
–5  
V
V
R
= 50mV rms  
= ؎5V  
IN  
R
= 1.10k⍀  
F
S
= 100⍀  
R PACKAGE  
L
R
= 845⍀  
F
100  
1
10  
FREQUENCY – MHz  
40  
500  
0
5
10  
15  
20  
25  
C
L
– pF  
Figure 8. RFEEDBACK vs. Frequency Response, G = +1/+2  
Figure 7. Recommended RSERIES vs. Capacitive Load for  
£ 30 ns Settling to 0.1%  
2
OPTIMIZING FLATNESS  
G = +2  
G = –2  
C
= 1pF  
C
J
0
The fine scale gain flatness and –3 dB bandwidth is affected by  
RFEEDBACK selection as is normal of current feedback amplifiers.  
With the exception of gain = +1, the AD8004 can be adjusted  
for either maximal flatness with modest closed-loop bandwidth  
or for mildly peaked-up frequency response with much more  
bandwidth. Figure 8 shows the effect of three evenly spaced RF  
changes upon gain = +1 and gain = +2. Table I shows the  
recommended component values for achieving maximally flat  
frequency response as well as a faster slightly peaked-up fre-  
quency response.  
= 0  
2
0
–2  
J
–4  
–6  
–2  
V
R
= 50mV rms  
IN  
–4  
= 100  
–8  
L
؎5V  
C
= 5.1pF  
S
J
–6  
–10  
–12  
–14  
–8  
C
= 0  
J
–10  
–12  
–14  
Printed circuit board parasitics and device lead frame parasitics  
also control fine scale gain flatness. The AD8004R package,  
because of its small lead frame, offers superior parasitics relative  
to the N package. In the printed circuit board environment,  
parasitics such as extra capacitance caused by two parallel and  
vertical flat conductors on opposite PC board sides in the  
1
10  
40  
100  
500  
FREQUENCY – MHz  
Figure 9. Frequency Response vs. Added Summing  
Junction Capacitance  
REV. C  
–10–  
AD8004  
2
0
through R2. This current flows toward the summing junction  
and requires that the output be 2 V higher than the summing  
junction or at 3.6 V.  
G = +2, R = 1.10kꢂ  
F
C
= 10pF  
L
2
0
–2  
–4  
–6  
–8  
–10  
–12  
C
= 0  
L
G = –2, R = 698ꢂ  
F
When the input is at 1 V, there is 1.2 mA flowing into the sum-  
ming junction through R3 and 1.2 mA flowing out through R1.  
These currents balance and leave no current to flow through  
R2. Thus the output is at the same potential as the inverting  
input or 1.6 V.  
–2  
C
= 10pF  
L
–4  
V
= 50mV  
IN  
–6  
5V  
S
R
= 100ꢂ  
L
C
= 0  
The input of the AD876 has a series MOSFET switch that turns  
on and off at the sampling rate. This MOSFET is connected to  
a hold capacitor internal to the device. The on impedance of the  
MOSFET is about 50 , while the hold capacitor is about 5 pF.  
L
–8  
–14  
–10  
–12  
–14  
In a worst case condition, the input voltage to the AD876 will  
change by a full-scale value (2 V) in one sampling cycle. When  
the input MOSFET turns on, the output of the op amp will be  
connected to the charged hold capacitor through the series  
resistance of the MOSFET. Without any other series resistance,  
the instantaneous current that flows would be 40 mA. This  
would cause settling problems for the op amp.  
1
10  
40  
100  
500  
FREQUENCY – MHz  
Figure 10. Frequency Response vs. Capacitive Loading,  
RL = 100 Output  
2
C
= 10pF  
L
0
–2  
The series 100 resistor limits the current that flows instanta-  
neously after the MOSFET turns on to about 13 mA. This  
resistor cannot be made too large or the high frequency perfor-  
mance will be affected.  
G = +2  
= 1kꢂ  
R
L
5V  
S
–4  
V
= 50mV rms  
IN  
C
= 0  
R
= 1.2kꢂ  
L
F
–6  
The sampling MOSFET of the AD876 is closed for only half of  
each cycle or for 25 ns. Approximately seven time constants are  
required for settling to 10 bits. The series 100 resistor along  
with the 50 on resistance and the hold capacitor, create a  
750 ps time constant. These values leave a comfortable margin  
for settling. Obtaining the same results with the op amp A/D  
combination as compared to driving with a signal generator  
indicates that the op amp is settling fast enough.  
–8  
–10  
–12  
–14  
1
10  
40  
100  
500  
FREQUENCY – MHz  
Overall the AD8004 provides adequate buffering for the AD876  
A/D converter without introducing distortion greater than that  
of the A/D converter by itself.  
Figure 11. Flatness with 10 pF Capacitive Load  
DRIVING A SINGLE-SUPPLY A/D CONVERTER  
New CMOS A/D converters are placing greater demands on the  
amplifiers that drive them. Higher resolutions, faster conversion  
rates, and input switching irregularities require superior settling  
characteristics. In addition, these devices run off a single +5 V  
supply and consume little power, so good single-supply operation  
with low power consumption is very important. The AD8004 is  
well positioned for driving this new class of A/D converters.  
+5V  
R3  
R2  
1kꢂ  
1.65kꢂ  
0.1F  
10F  
3.6V  
0.1F  
+3.6V  
REFT  
R1  
499kꢂ  
V
IN  
1V  
0V  
100ꢂ  
1/4  
AD8004  
50ꢂ  
Figure 12 shows a circuit that uses an AD8004 to drive an  
AD876, a single supply, 10-bit, 20 MSPS A/D converter that  
requires only 140 mW. Using the AD8004 for level shifting and  
driving, the A/D exhibits no degradation in performance com-  
pared to when it is driven from a signal generator.  
AD876  
3.6V  
1.6V  
REFB  
+1.6V  
0.1F  
1.6V  
Figure 12. AD8004 Driving the AD876  
The analog input of the AD876 spans 2 V centered at about  
2.6 V. The resistor network and bias voltages provide the level  
shifting and gain required to convert the 0 V to 1 V input signal  
to a 3.6 V to 1.6 V range that the AD876 wants to see.  
LAYOUT CONSIDERATIONS  
The specified high speed performance of the AD8004 requires  
careful attention to board layout and component selection.  
Table I shows the recommended component values for the  
AD8004 and Figures 14–16 show the layout for the AD8004  
evaluation boards (14-lead DIP and SOIC). Proper RF design  
techniques and low parasitic component selection are mandatory.  
Biasing the noninverting input of the AD8004 at 1.6 V dc forces  
the inverting input to be at 1.6 V dc for linear operation of the  
amplifier. When the input is at 0 V, there is 3.2 mA flowing out  
of the summing junction via R1 (1.6 V/499 ). R3 has a current  
of 1.2 mA flowing into the summing junction (3.6 V – 1.6 V)/  
1.65 k. The difference of these two currents (2 mA) must flow  
REV. C  
–11–  
AD8004  
The PCB should have a ground plane covering all unused portions  
of the component side of the board to provide a low impedance  
ground path. The ground plane should be removed from the  
area near the input pins to reduce stray capacitance.  
R
R
R
, 50ꢂ  
F
G
BT  
V
V
OUT  
IN  
R
T
1/4  
+V  
S
C1  
C3  
Chip capacitors should be used for supply bypassing (see  
Figure 13). One end should be connected to the ground plane and  
the other within 1/8" of each power pin. An additional (4.7 µF to  
10 µF) tantalum electrolytic capacitor should be connected in  
parallel.  
0.1F  
10F  
C4  
10F  
C2  
0.1F  
–V  
S
INVERTING CONFIGURATION  
R
F
R
R
BT  
, 50ꢂ  
G
The feedback resistor should be located close to the inverting  
input pin in order to keep the stray capacitance at this node to a  
minimum. Capacitance greater than 1 pF at the inverting input  
will significantly affect high speed performance when operating  
at low noninverting gains. An example of extra inverting input  
capacitance can be seen on the plot of Figure 10.  
V
OUT  
1/4  
V
+V  
IN  
S
C1  
C3  
R
T
0.1F  
10F  
C2  
0.1F  
C4  
10F  
–V  
S
Stripline design techniques should be used for long signal traces  
(greater than about 1"). These should be designed with the  
proper system characteristic impedance and be properly termi-  
nated at each end.  
NONINVERTING CONFIGURATION  
Figure 13. Inverting and Noninverting Configurations  
Table I. Recommended Component Values1 and Typical Bandwidths  
Alternate  
–2  
Alternate  
–1  
Alternate  
+1  
Alternate  
+2  
Gain  
–10  
–2  
–1  
+1  
+2  
+10  
AD8004 (DIP)  
PACKAGE TYPE  
RF ()  
RG ()  
RT2 ()  
499  
49.9  
None  
698  
348  
57.6  
499  
249  
61.9  
649  
649  
53.6  
499  
499  
54.9  
1.21 k  
50  
806  
50  
1.10 k  
1.10 k  
50  
698  
698  
50  
499  
54.9  
50  
Small Signal BW  
@
5 VS (MHz)  
155  
125  
180  
135  
190  
150  
250  
115  
185  
135  
Peaking @ 5 VS  
0.1 dB Flatness  
< 0.3 dB  
None  
0.3 dB  
None  
0.3 dB  
1.3 dB  
1.7 dB  
< 0.14 dB  
0.4 dB  
< 0.3 dB  
@
5 VS (MHz)  
25  
30  
35  
95  
Small Signal BW  
@ +5 VS (MHz)  
135  
105  
155  
120  
160  
130  
200  
150  
120  
AD8004 (SOIC)  
PACKAGE TYPE  
RF ()  
RG ()  
RT2 ()  
499  
49.9  
None  
698  
348  
57.6  
499  
249  
61.9  
750  
750  
53.6  
499  
499  
54.9  
1.10 k  
50  
698  
50  
1.10 k  
1.10 k  
50  
604  
604  
50  
499  
54.9  
50  
Small Signal BW  
@
5 VS (MHz)  
155  
130  
190  
125  
195  
150  
225  
110  
175  
135  
Peaking @ 5 VS  
0.1 dB Flatness  
< 0.7 dB  
< 0.1 dB  
0.5 dB  
None  
0.4 dB  
1.3 dB  
1.8 dB  
< 0.1 dB  
0.5 dB  
< 0.2 dB  
@
5 VS (MHz)  
35  
25  
30  
95  
Small Signal BW  
@ +5 VS (MHz)  
135  
115  
175  
110  
165  
130  
195  
155  
120  
NOTES  
1Resistor values listed are standard 1% tolerance.  
2RT chosen for 50 characteristic input impedance.  
–12–  
REV. C  
AD8004  
Figure 14. Evaluation Board Silkscreen (Top)  
REV. C  
–13–  
AD8004  
Figure 15 Evaluation Board Layout (Top Side)  
Figure 16. Evaluation Board Layout (Bottom Side, Looking Through the Board)  
–14–  
REV. C  
AD8004  
OUTLINE DIMENSIONS  
14-Lead Plastic Dual In-Line Package [PDIP]  
(N-14)  
14-Lead Standard Small Outline Package [SOIC]  
(R-14)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in millimeters and (inches)  
0.685 (17.40)  
0.665 (16.89)  
0.645 (16.38)  
8.75 (0.3445)  
8.55 (0.3366)  
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.99)  
14  
1
8
7
14  
1
8
7
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
0.100 (2.54)  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45ꢀ  
0.25 (0.0098)  
0.10 (0.0039)  
0.015 (0.38)  
MIN  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
8ꢀ  
0ꢀ  
0.180 (4.57)  
MAX  
0.51 (0.0201)  
0.33 (0.0130)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.19 (0.0075)  
COPLANARITY  
0.10  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
SEATING  
PLANE  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
0.022 (0.56) 0.060 (1.52)  
0.018 (0.46) 0.050 (1.27)  
0.014 (0.36) 0.045 (1.14)  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-095-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
14-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-14)  
Dimensions shown in inches and (millimeters)  
0.098 (2.49) MAX  
0.005 (0.13) MIN  
14  
8
0.310 (7.87)  
PIN 1  
0.220 (5.59)  
1
7
0.320 (8.13)  
0.290 (7.37)  
0.100 (2.54) BSC  
0.785 (19.94) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
SEATING  
PLANE  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
0.023 (0.58)  
0.014 (0.36)  
0.070 (1.78)  
0.030 (0.76)  
15  
0
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. C  
–15–  
AD8004  
Revision History  
Location  
Page  
3/03—Data Sheet changed from REV. B to REV. C.  
Updated format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Added CERDIP (Q) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Added text to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edited MAXIMUM POWER DISSIPATION section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Deleted Figure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edited Y axis of TPC 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Edited OPTIMIZING FLATNESS section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Edits to Figure 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Changes to Table I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
REV. C  
–16–  

相关型号:

AD8004AR

Quad 3000 V/s, 35 mW Current Feedback Amplifier
ADI

AD8004AR-14

Quad 3000 V/us, 35 mW Current Feedback Amplifier
ADI

AD8004AR-14

VIDEO AMPLIFIER, PDSO14, SOIC-14
ROCHESTER

AD8004AR-14-REEL

Quad 3000 V/us, 35 mW Current Feedback Amplifier
ADI

AD8004AR-14-REEL7

Quad 3000 V/us, 35 mW Current Feedback Amplifier
ADI

AD8004AR-14-REEL7

QUAD OP-AMP, 5000 uV OFFSET-MAX, PDSO14, PLASTIC, SOIC-14
ROCHESTER

AD8004AR-EBZ

Current Feedback Amplifier
ADI

AD8004ARZ-14

3000 V/&#181;S, 35mW Current Feedback Quad Amplifier
ADI

AD8004ARZ-14

QUAD OP-AMP, 5000 uV OFFSET-MAX, PDSO14, ROHS COMPLIANT, SOIC-14
ROCHESTER

AD8004ARZ-14-REEL7

3000 V/&#181;S, 35mW Current Feedback Quad Amplifier
ADI

AD8004SQ

Quad 3000 V/Я, 35 mW Current Feedback Amplifier
ADI

AD8004_03

Quad 3000 V/Я, 35 mW Current Feedback Amplifier
ADI