AD8007AKS-RL7 [ADI]

IC OP-AMP, 4000 uV OFFSET-MAX, PDSO5, SC-70, 5 PIN, Operational Amplifier;
AD8007AKS-RL7
型号: AD8007AKS-RL7
厂家: ADI    ADI
描述:

IC OP-AMP, 4000 uV OFFSET-MAX, PDSO5, SC-70, 5 PIN, Operational Amplifier

放大器 光电二极管
文件: 总21页 (文件大小:583K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Distortion,  
High Speed Amplifiers  
AD8007/AD8008  
FEATURES  
CONNECTION DIAGRAMS  
Extremely low distortion  
Second harmonic  
AD8007  
1
2
3
4
8
7
6
5
NC  
–IN  
+IN  
(Top View)  
NC  
+V  
S
−88 dBc @ 5 MHz  
V
−83 dBc @ 20 MHz (AD8007)  
−77 dBc @ 20 MHz (AD8008)  
Third harmonic  
OUT  
–V  
S
NC  
−101 dBc @ 5 MHz  
NC = NO CONNECT  
−92 dBc @ 20 MHz (AD8007)  
−98 dBc @ 20 MHz (AD8008)  
High speed  
650 MHz, −3 dB bandwidth (G = +1)  
1000 V/μs slew rate  
Figure 1. 8-Lead SOIC (R)  
AD8007  
V
5
+V  
S
OUT  
1
2
3
(Top View)  
–V  
S
Low noise  
4
+IN  
–IN  
2.7 nV/√Hz input voltage noise  
22.5 pA/√Hz input inverting current noise  
Low power: 9 mA/amplifier typical supply current  
Wide supply voltage range: 5 V to 12 V  
0.5 mV typical input offset voltage  
Small packaging: 8-lead SOIC, 8-lead MSOP, and 5-lead SC70  
Figure 2. 5-Lead SC70 (KS)  
AD8008  
(Top View)  
V
1
2
3
4
8
7
6
5
+V  
V
OUT1  
–IN1  
S
OUT2  
–IN2  
+IN2  
+IN1  
APPLICATIONS  
–V  
S
Instrumentation  
IF and baseband amplifiers  
Filters  
Figure 3. 8-Lead SOIC (R) and 8-Lead MSOP (RM)  
A/D drivers  
DAC buffers  
The AD8007 is available in a tiny SC70 package as well as a  
standard 8-lead SOIC. The dual AD8008 is available in both an  
8-lead SOIC and an 8-lead MSOP. These amplifiers are rated to  
work over the industrial temperature range of −40°C to +85°C.  
GENERAL DESCRIPTION  
The AD8007 (single) and AD8008 (dual) are high performance  
current feedback amplifiers with ultralow distortion and noise.  
Unlike other high performance amplifiers, the low price and  
low quiescent current allow these amplifiers to be used in a  
wide range of applications. Analog Devices, Inc., proprietary  
second-generation eXtra-Fast Complementary Bipolar (XFCB)  
process enables such high performance amplifiers with low power  
consumption.  
–30  
G = +2  
R
= 150  
= ±5V  
= 2V p-p  
L
S
–40  
–50  
V
V
OUT  
–60  
The AD8007/AD8008 have 650 MHz bandwidth, 2.7 nV/√Hz  
voltage noise, −83 dB SFDR at 20 MHz (AD8007), and −77 dBc  
SFDR at 20 MHz (AD8008).  
–70  
SECOND  
–80  
–90  
With the wide supply voltage range (5 V to 12 V) and wide  
bandwidth, the AD8007/AD8008 are designed to work in a  
variety of applications. The AD8007/AD8008 amplifiers have  
a low power supply current of 9 mA/amplifier.  
THIRD  
–100  
–110  
1
10  
FREQUENCY (MHz)  
100  
Figure 4. AD8007 Second and Third Harmonic Distortion vs. Frequency  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2002–2009 Analog Devices, Inc. All rights reserved.  
 
IMPORTANT LINKS for the AD8007_8008*  
Last content update 08/18/2013 06:08 pm  
PARAMETRIC SELECTION TABLES  
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE  
Analog Filter Wizard 2.0  
Find Similar Products By Operating Parameters  
High Speed Amplifiers Selection Table  
AD8007/AD8008 SPICE Macro-Model  
DOCUMENTATION  
DESIGN COLLABORATION COMMUNITY  
AN-692: Universal Precision Op Amp Evaluation Board  
AN-649: Using the Analog Devices Active Filter Design Tool  
MT-057: High Speed Current Feedback Op Amps  
MT-051: Current Feedback Op Amp Noise Considerations  
MT-034: Current Feedback (CFB) Op Amps  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
Follow us on Twitter: www.twitter.com/ADI_News  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
MT-059: Compensating for the Effects of Input Capacitance on VFB  
and CFB Op Amps Used in Current-to-Voltage Converters  
A Stress-Free Method for Choosing High-Speed Op Amps  
Current Feedback Amplifiers Part 1: Ask The Applications Engineer-22  
Current Feedback Amplifiers Part 2: Ask The Applications Engineer-23  
Two-Stage Current-Feedback Amplifier  
DESIGN SUPPORT  
Submit your support request here:  
Linear and Data Converters  
Embedded Processing and DSP  
FOR THE AD8007  
AN-358: Noise and Operational Amplifier Circuits  
Telephone our Customer Interaction Centers toll free:  
AN-356: User's Guide to Applying and Measuring Operational  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
Amplifier Specifications  
AN-257: Careful Design Tames High Speed Op Amps  
AN-253: Find Op Amp Noise with Spreadsheet  
India:  
Russia:  
1800-419-0108  
8-800-555-45-90  
UG-112: Universal Evaluation Board for Single, High Speed Op Amps  
Offered in SC-70 Packages  
Quality and Reliability  
Lead(Pb)-Free Data  
UG-101: Evaluation Board User Guide  
FOR THE AD8008  
UG-129: Evaluation Board User Guide  
UG-128: Universal Evaluation Board for Dual High Speed Op Amps in  
SOIC Packages  
SAMPLE & BUY  
AD8007  
AD8008  
View Price & Packaging  
Request Evaluation Board  
Request Samples Check Inventory & Purchase  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
View the Evaluation Boards and Kits page for the AD8007  
Find Local Distributors  
View the Evaluation Boards and Kits page for the AD8008  
Symbols and Footprints for the AD8007  
Symbols and Footprints for the AD8008  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
AD8007/AD8008  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 15  
Using the AD8007/AD8008...................................................... 15  
Layout Considerations............................................................... 16  
Layout And Grounding Considerations...................................... 17  
Grounding................................................................................... 17  
Input Capacitance ...................................................................... 17  
Output Capacitance ................................................................... 17  
Input-to-Output Coupling........................................................ 17  
External Components and Stability......................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Connection Diagrams...................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
VS = 5 V....................................................................................... 3  
VS = 5 V.......................................................................................... 4  
Absolute Maximum Ratings............................................................ 6  
Maximum Power Dissipation ......................................................... 6  
Output Short Circuit ........................................................................ 6  
ESD Caution.................................................................................. 6  
REVISION HISTORY  
11/09—Rev. D to Rev. E  
9/02—Rev. A to Rev. B  
Change to Output Capacitance Section....................................... 17  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 19  
Updated Outline Dimensions....................................................... 19  
8/02—Rev. 0 to Rev. A  
Added AD8008 ..................................................................Universal  
Added SOIC-8 (RN) and MSOP-8 (RM) ......................................1  
Changes to Features ..........................................................................1  
Changes to General Description ....................................................1  
Changes to Specifications ................................................................2  
Edits to Maximum Power Dissipation Section .............................4  
New Figure 2 .....................................................................................4  
Changes to Ordering Guide ............................................................5  
New TPCs 19 to 24 and TPCs 27, 29, 30, and 35..........................9  
Changes to Evaluation Board Section ......................................... 16  
MSOP-8 (RM) Added ................................................................... 19  
6/03—Rev. C to Rev. D  
Change to Layout Considerations Section.................................. 15  
Deleted Figure 7.............................................................................. 16  
Deleted Evaluation Board Section................................................ 16  
Updated Outline Dimensions....................................................... 16  
10/02—Rev. B to Rev. C  
Connection Diagrams Captions Updated .................................... 1  
Ordering Guide Updated ................................................................ 5  
Figure 5 Edited ............................................................................... 14  
Updated Outline Dimensions....................................................... 19  
Rev. E | Page 2 of 20  
 
AD8007/AD8008  
SPECIFICATIONS  
VS = 5 V  
TA = 25°C, RS = 200 Ω, RL = 150 Ω, RF = 499 Ω, Gain = +2, unless otherwise noted.  
Table 1.  
AD8007/AD8008  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.2 V p-p, RL = 1 kΩ  
G = +1, VO = 0.2 V p-p, RL = 150 Ω  
G = +2, VO = 0.2 V p-p, RL = 150 Ω  
G = +1, VO = 2 V p-p, RL = 1 kΩ  
VO = 0.2 V p-p, G = +2, RL = 150 Ω  
2.5 V input step, G = +2, RL = 1 kΩ  
G = +1, VO = 2 V step  
540  
250  
180  
200  
50  
650  
500  
230  
235  
90  
30  
1000  
18  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
V/μs  
ns  
ns  
Bandwidth for 0.1 dB Flatness  
Overdrive Recovery Time  
Slew Rate  
Settling Time to 0.1%  
Settling Time to 0.01%  
NOISE/HARMONIC PERFORMANCE  
Second Harmonic  
900  
G = +2, VO = 2 V step  
G = +2, VO = 2 V step  
35  
fC = 5 MHz, VO = 2 V p-p  
fC = 20 MHz, VO = 2 V p-p  
fC = 5 MHz, VO = 2 V p-p  
fC = 20 MHz, VO = 2 V p-p  
fC = 19.5 MHz to 20.5 MHz, RL = 1 kΩ, VO = 2 V p-p  
fC = 5 MHz, RL = 1 kΩ  
fC = 20 MHz, RL = 1 kΩ  
f = 5 MHz, G = +2  
f = 100 kHz  
−Input, f = 100 kHz  
+Input, f = 100 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 150 Ω  
−88  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dB  
−83/−77  
−101  
−92/−98  
−77  
43.0/42.5  
42.5  
−68  
2.7  
22.5  
2
Third Harmonic  
IMD  
Third-Order Intercept  
Crosstalk (AD8008)  
Input Voltage Noise  
Input Current Noise  
nV/√Hz  
pA/√Hz  
pA/√Hz  
%
Differential Gain Error  
Differential Phase Error  
0.015  
0.010  
Degree  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
0.5  
3
4
0.4  
16  
9
1.5  
0.8  
4
mV  
μV/°C  
μA  
+Input  
−Input  
+Input  
−Input  
VO = 2.5 V, RL = 1 kΩ  
RL = 150 Ω  
8
6
μA  
Input Bias Current Drift  
Transimpedance  
nA/°C  
nA/°C  
MΩ  
1.0  
0.4  
MΩ  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage  
Short-Circuit Current, Source  
Short-Circuit Current, Sink  
Capacitive Load Drive  
+Input  
+Input  
4
1
MΩ  
pF  
V
−3.9 to +3.9  
59  
VCM = 2.5 V  
56  
dB  
VCC − VOH, VOL − VEE, RL = 1 kΩ  
1.1  
130  
90  
8
1.2  
V
mA  
mA  
pF  
30% overshoot  
Rev. E | Page 3 of 20  
 
AD8007/AD8008  
AD8007/AD8008  
Typ  
Parameter  
Conditions  
Min  
Max Unit  
12  
POWER SUPPLY  
Operating Range  
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
+PSRR  
5
V
9
10.2 mA  
59  
59  
64  
65  
dB  
dB  
−PSRR  
VS = 5 V  
TA = 25°C, RS = 200 Ω, RL = 150 Ω, RF = 499 Ω, Gain = +2, unless otherwise noted.  
Table 2.  
AD8007/AD8008  
Unit  
Parameter  
Conditions  
Min Typ  
Max  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.2 V p-p, RL = 1 kΩ  
G = +1, VO = 0.2 V p-p, RL = 150 Ω  
G = +2, VO = 0.2 V p-p, RL = 150 Ω  
G = +1, VO = 1 V p-p, RL = 1 kΩ  
VO = 0.2 V p-p, G = +2, RL = 150 Ω  
2.5 V input step, G = +2, RL = 1 kΩ  
G = +1, VO = 2 V step  
520 580  
350 490  
190 260  
270 320  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
V/μs  
ns  
ns  
Bandwidth for 0.1 dB Flatness  
Overdrive Recovery Time  
Slew Rate  
Settling Time to 0.1%  
Settling Time to 0.01%  
NOISE/HARMONIC PERFORMANCE  
Second Harmonic  
72  
120  
30  
665 740  
G = +2, VO = 2 V step  
G = +2, VO = 2 V step  
18  
35  
fC = 5 MHz, VO = 1 V p-p  
fC = 20 MHz, VO = 1 V p-p  
fC = 5 MHz, VO = 1 V p-p  
fC = 20 MHz, VO = 1 V p-p  
fC = 19.5 MHz to 20.5 MHz, RL = 1 kΩ,  
VO = 1 V p-p  
−96/−95  
−83/−80  
−100  
−85/−88  
−89/−87  
dBc  
dBc  
dBc  
dBc  
dBc  
Third Harmonic  
IMD  
Third-Order Intercept  
fC = 5 MHz, RL = 1 kΩ  
fC = 20 MHz, RL = 1 kΩ  
Output-to-output, f = 5 MHz, G = +2  
f = 100 kHz  
−Input, f = 100 kHz  
+Input, f = 100 kHz  
43.0  
42.5/41.5  
−68  
2.7  
22.5  
2
dBm  
dBm  
dB  
nV/√Hz  
pA/√Hz  
pA/√Hz  
Crosstalk (AD8008)  
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
0.5  
3
4
0.7  
15  
8
1.3  
0.6  
4
mV  
μV/°C  
μA  
+Input  
−Input  
+Input  
−Input  
VO = 1.5 V to 3.5 V, RL = 1 kΩ  
RL = 150 Ω  
8
6
μA  
Input Bias Current Drift  
Transimpedance  
nA/°C  
nA/°C  
MΩ  
0.5  
0.4  
MΩ  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
+Input  
+Input  
4
1
MΩ  
pF  
V
1.1 to 3.9  
56  
VCM = 1.75 V to 3.25 V  
54  
dB  
Rev. E | Page 4 of 20  
 
AD8007/AD8008  
AD8007/AD8008  
Unit  
Parameter  
Conditions  
Min Typ  
Max  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage  
Short-Circuit Current, Source  
Short-Circuit Current, Sink  
Capacitive Load Drive  
POWER SUPPLY  
VCC − VOH, VOL − VEE, RL = 1 kΩ  
1.05  
70  
50  
8
1.15  
V
mA  
mA  
pF  
30% overshoot  
Operating Range  
5
12  
9
V
mA  
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
+PSRR  
8.1  
59  
59  
62  
63  
dB  
dB  
−PSRR  
Rev. E | Page 5 of 20  
AD8007/AD8008  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
RMS output voltages should be considered. If RL is referenced to  
VS, as in single-supply operation, then the total drive power is  
Parameter  
Rating  
VS × IOUT  
.
Supply Voltage  
12.6 V  
If the rms signal levels are indeterminate, then consider the  
worst case, when VOUT = VS/4 for RL to midsupply  
Power Dissipation  
See Figure 5  
VS  
Common-Mode Input Voltage  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
2
1.0 V  
V
4
S
See Figure 5  
−65°C to +125°C  
−40°C to +85°C  
300°C  
PD =(VS × IS ) +  
RL  
In single-supply operation, with RL referenced to VS, worst case is  
VOUT = VS/2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, more metal directly in contact with the package leads  
from metal traces, through-holes, ground, and power planes  
reduces the θJA. Care must be taken to minimize parasitic  
capacitances at the input leads of high speed op amps, see the  
Layout Considerations section.  
Figure 5 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the SOIC-8 (125°C/W),  
MSOP-8 (150°C/W), and SC70-5 (210°C/W) packages on a  
JEDEC standard 4-layer board. θJA values are approximations.  
2.0  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the AD8007/AD8008  
packages is limited by the associated rise in junction temperature  
(TJ) on the die. The plastic encapsulating the die locally reaches  
the junction temperature. At approximately 150°C, which is the  
glass transition temperature, the plastic changes its properties.  
Even temporarily exceeding this temperature limit can change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the AD8007/AD8008.  
Exceeding a junction temperature of 175°C for an extended  
time can result in changes in the silicon devices, potentially  
causing failure.  
1.5  
MSOP-8  
SOIC-8  
1.0  
SC70-5  
0.5  
The still-air thermal properties of the package and PCB (θJA),  
ambient temperature (TA), and the total power dissipated in the  
package (PD) determine the junction temperature of the die.  
The junction temperature can be calculated as  
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
TJ = TA + (PD × θJA)  
Figure 5. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). Assuming the load (RL ) is referenced to  
midsupply, the total drive power is VS/2 × IOUT, some of which is  
dissipated in the package and some in the load (VOUT × IOUT).  
The difference between the total drive power and the load  
power is the drive power dissipated in the package.  
OUTPUT SHORT CIRCUIT  
Shorting the output to ground or drawing excessive current for  
the AD8007/AD8008 will likely cause catastrophic failure.  
ESD CAUTION  
PD = Quiescent Power + (Total Drive Power Load Power)  
2
VOUT  
RL  
VS VOUT  
PD = (VS × IS ) +  
×
2
RL  
Rev. E | Page 6 of 20  
 
 
AD8007/AD8008  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, RL = 150 Ω, RS = 200 Ω, RF = 499 Ω, unless otherwise noted.  
3
2
6.4  
6.3  
G = +2  
G = +1  
1
0
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
G = +2  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
V
= +5V  
S
V
= ±5V  
S
G = +10  
G = –1  
5.4  
1
10  
100  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
FREQUENCY (MHz)  
Figure 6. Small Signal Frequency Response for Various Gains  
Figure 9. 0.1 dB Gain Flatness; VS = +5, VS = 5 V  
3
9
8
G = +1  
2
G = +2  
1
7
6
R
= 1k, V = ±5V  
S
L
R
= 1k, V = +5V  
S
L
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
5
R
V
= 150k,  
= +5V  
L
S
R
= 150k, V = ±5V  
S
L
4
3
R
= 150k, V = ±5V  
S
L
2
R
= 150k, V = 5V  
R
= 1k, V = ±5V  
L
S
1
L
S
0
–1  
10  
100  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. Small Signal Frequency Response for VS and RL  
Figure 10. Small Signal Frequency Response for VS and RL  
3
2
9
8
G = +2  
G = +1  
R
= R = 324Ω  
G
F
R
= 1kΩ  
L
1
0
7
R
= 200Ω  
S
R = R = 249Ω  
F G  
6
5
4
–1  
–2  
–3  
–4  
–5  
–6  
R
= 301Ω  
S
R
= R = 499Ω  
F
G
3
R
= 249Ω  
S
2
1
R
= R = 649Ω  
F
G
0
–7  
–1  
10  
100  
FREQUENCY (MHz)  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
Figure 8. Small Signal Frequency Response for Various RS Values  
Figure 11. Small Signal Frequency Response for Various Feedback Resistors,  
RF = RG  
Rev. E | Page 7 of 20  
 
 
 
 
AD8007/AD8008  
10M  
1M  
10  
90  
G = +2  
9
20pF  
20pF AND  
10SNUB  
30  
0
20pF AND  
20SNUB  
TRANSIMPEDANCE  
8
7
6
5
100k  
10k  
1k  
–30  
PHASE  
–90  
–150  
–180  
499Ω  
4
0pF  
499Ω  
R
3
SNUB  
–210  
100  
200Ω  
2
C
LOAD  
–270  
–330  
49.9Ω  
10  
1
1
0
1M  
1
10  
100  
1000  
10k  
100k  
10M  
100M  
1G 2G  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 12. Small Signal Frequency Response for  
Capacitive Load and Snub Resistor  
Figure 15. Transimpedance and Phase vs. Frequency  
3
9
8
V
V
= +5V, +85°C  
S
S
G = +1  
G = +2  
2
1
= ±5V, +85°C  
7
6
V
= +5V, +85°C  
S
0
V
= ±5V, +85°C  
S
–1  
5
V
= +5V, 40°C  
S
V
= +5V, 40°C  
S
–2  
4
V
= ±5V, 40°C  
S
–3  
–4  
–5  
3
V
= ±5V, 40°C  
S
2
1
–6  
–7  
0
–1  
10  
100  
FREQUENCY (MHz)  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
Figure 13. Small Signal Frequency Response over Temperature,  
VS = +5 V, VS = 5 V  
Figure 16. Small Signal Frequency Response over Temperature,  
VS = +5 V, VS = 5 V  
3
9
V
= 2V p-p  
G = +2  
OUT  
2
1
8
7
6
5
4
G = +2  
G = +1  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
G = +10  
G = –1  
R
= 150, V = ±5V, V = 2V p-p  
S O  
L
3
2
R
= 1k, V = ±5V, V = 2V p-p  
S O  
L
R
= 150, V = +5V, V = 1V p-p  
S O  
L
1
R
= 1k,V = +5V, V = 1V p-p  
L
S
O
0
–1  
1
10  
100  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 14. Large Signal Frequency Response for Various Gains  
Figure 17. Large Signal Frequency Response for VS and RL  
Rev. E | Page 8 of 20  
 
AD8007/AD8008  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
G = +2  
G = +1  
V
V
= 5V  
= 1V p-p  
S
V
V
= 5V  
= 1V p-p  
S
HD2, R = 150  
L
O
O
HD3, R = 150Ω  
L
HD2, R = 1kΩ  
–60  
L
HD2, R = 1kΩ  
L
–70  
–80  
HD2, R = 150Ω  
L
HD3, R = 1kΩ  
L
–90  
HD3, R = 150Ω  
L
–100  
–110  
HD3, R = 1kΩ  
L
–110  
1
10  
100  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 21. AD8007 Second and Third Harmonic Distortion vs. Frequency and RL  
Figure 18. AD8007 Second and Third Harmonic Distortion vs. Frequency and RL  
–40  
–40  
G = +2  
G = +1  
V
V
= ±5V  
= 2V p-p  
S
V
V
= ±5V  
= 2V p-p  
S
–50  
–60  
–50  
–60  
O
O
HD2, R = 1kΩ  
L
HD2, R = 150Ω  
–70  
L
–70  
HD2, R = 150Ω  
L
–80  
HD2, R = 1kΩ  
–80  
L
HD3, R = 150Ω  
L
–90  
HD3, R = 150Ω  
–90  
L
HD3, R = 1kΩ  
–100  
L
–100  
HD3, R = 1kΩ  
L
–110  
–110  
1
10  
100  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 22. AD8007 Second and Third Harmonic Distortion vs. Frequency and RL  
Figure 19. AD8007 Second and Third Harmonic Distortion vs. Frequency and RL  
–30  
–30  
G = +2  
V
V
R
= ±5V  
= 2V p-p  
= 150Ω  
S
V
= ±5V  
S
O
–40  
–50  
–40  
–50  
–60  
–70  
R
= 150  
L
L
HD3, V = 4V p-p  
O
HD2, G = +10  
HD2, V = 4V p-p  
O
–60  
–70  
–80  
HD3, G = +10  
HD2, V = 2V p-p  
O
–80  
HD3, G = +1  
HD2, G = +1  
–90  
–100  
–110  
–90  
–100  
–110  
HD3, V = 2V p-p  
O
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
Figure 20. AD8007 Second and Third Harmonic Distortion vs. Frequency and Gain  
Figure 23. AD8007 Second and Third Harmonic Distortion vs. Frequency and VO  
Rev. E | Page 9 of 20  
AD8007/AD8008  
VS = 5 V, RS = 200 Ω, RF = 499 Ω, RL = 150 Ω, @ 25°C, unless otherwise noted.  
–40  
–40  
–50  
G = 1  
G = 2  
V
V
= 5V  
= 1V p-p  
V
V
= 5V  
= 1V p-p  
S
S
–50  
–60  
O
O
–60  
–70  
HD2, R = 150Ω  
HD2, R = 150  
L
L
–70  
HD2, R = 1kΩ  
HD2, R = 1kΩ  
L
L
–80  
–80  
–90  
–90  
HD3, R = 1kΩ  
HD3, R = 1kΩ  
L
L
–100  
–110  
–100  
–110  
HD3, R = 150Ω  
HD3, R = 150Ω  
L
L
1
1
10  
100  
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 27. AD8008 Second and Third Harmonic Distortion vs. Frequency and RL  
Figure 24. AD8008 Second and Third Harmonic Distortion vs. Frequency and RL  
–40  
–40  
G = 2  
G = 1  
V
V
= ±5V  
= 2V p-p  
S
V
V
S
= 5V  
= 1V p-p  
–50  
–60  
–50  
–60  
O
O
HD2, R = 1kΩ  
L
–70  
–70  
HD2, R = 150Ω  
HD2, R = 150Ω  
L
L
–80  
–80  
HD2, R = 1kΩ  
L
–90  
–90  
HD3, R = 1kΩ  
L
–100  
–110  
–100  
–110  
HD3, R = 1kΩ  
HD3, R = 150Ω  
L
L
HD3, R = 150Ω  
L
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
Figure 28. AD8008 Second and Third Harmonic Distortion vs. Frequency and RL  
Figure 25. AD8008 Second and Third Harmonic Distortion vs. Frequency and RL  
–30  
–30  
G = 2  
V
V
R
= ±5V  
= 2V p-p  
= 150Ω  
S
R
V
= 150Ω  
= ±5V  
L
O
–40  
–50  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
S
L
HD2, G = 10  
–60  
HD2, V = 4V p-p  
O
–70  
HD2, V = 2V p-p  
O
–80  
HD2, G = 1  
–90  
HD3, V = 4V p-p  
O
–100  
–110  
HD3, G = 10  
HD3, V = 2V p-p  
O
HD3, G = 1  
–110  
1
1
10  
100  
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 26. AD8008 Second and Third Harmonic Distortion vs. Frequency and Gain  
Figure 29. AD8008 Second and Third Harmonic Distortion vs. Frequency and VO  
Rev. E | Page 10 of 20  
AD8007/AD8008  
–60  
–65  
–70  
–75  
–80  
G = +2  
G = +2  
HD3, R = 1kΩ  
HD3, R = 1kΩ  
L
V
F
= 5V  
= 20MHz  
L
V
F
= ±5V  
= 20MHz  
S
S
O
O
–65  
–70  
–75  
HD2, R = 1kΩ  
HD2, R = 150Ω  
L
L
–85  
–90  
HD3, R = 150Ω  
L
HD2, R = 1kΩ  
L
HD3, R = 150Ω  
–80  
–85  
–90  
L
–95  
–100  
–105  
–110  
HD2, R = 150Ω  
L
1.0  
1.5  
2.0  
2.5  
1
2
3
4
5
6
V
(V p-p)  
V
(V p-p)  
OUT  
OUT  
Figure 30. AD8007 Second and Third Harmonic Distortion vs. VOUT and RL  
Figure 33. AD8007 Second and Third Harmonic Distortion vs. VOUT and RL  
44  
44  
G = +2  
G = +2  
V
V
R
= ±5V  
= 2V p-p  
= 1kΩ  
V
V
R
= ±5V  
= 2V p-p  
= 1kΩ  
S
S
43  
42  
41  
40  
39  
43  
42  
O
O
L
L
41  
40  
39  
38  
38  
37  
37  
36  
35  
36  
35  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
FREQUENCY (MHz)  
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
FREQUENCY (MHz)  
Figure 31. AD8007 Third-Order Intercept vs. Frequency  
Figure 34. AD8008 Third-Order Intercept vs. Frequency  
–65  
–70  
–75  
–80  
–85  
–90  
–65  
–70  
G = +2  
HD2, R = 1k  
L
V
F
= 5V  
= 20MHz  
S
HD2, R = 150Ω  
O
L
HD2, R = 150Ω  
L
–75  
HD2, R = 1kΩ  
L
–80  
–85  
HD3, R = 150Ω  
L
HD3, R = 1kΩ  
L
–90  
HD3, R = 150Ω  
L
–95  
HD3, R = 1kΩ  
L
–100  
–105  
G = +2  
V
= 5V  
S
F
= 20MHz  
O
–110  
1.0  
1.5  
2.0  
2.5  
1
2
3
4
5
6
V
(V p-p)  
OUT  
V
(V p-p)  
OUT  
Figure 32. AD8008 Second and Third Harmonic Distortion vs. VOUT and RL  
Figure 35. AD8008 Second and Third Harmonic Distortion vs. VOUT and RL  
Rev. E | Page 11 of 20  
AD8007/AD8008  
VS = 5 V, RL = 150 Ω, RS = 200 Ω, RF = 499 Ω, unless otherwise noted.  
100  
1000  
100  
10  
INVERTING CURRENT NOISE 22.5pA/ Hz  
10  
2.7nV/ Hz  
NONINVERTING CURRENT NOISE 2.0pA/ Hz  
100 1k 10k 100k  
FREQUENCY (Hz)  
1
1
10  
100  
1k  
10k  
100k  
1M  
1G  
1G  
10  
1M  
10M  
FREQUENCY (Hz)  
Figure 36. Input Voltage Noise vs. Frequency  
Figure 39. Input Current Noise vs. Frequency  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1k  
G = +2  
R = 150Ω  
G = +2  
V
V
= ±5V  
= 1V p-p  
S
100  
10  
M
SIDE B DRIVEN  
1
SIDE A DRIVEN  
0.1  
0.01  
100k  
1M  
10M  
100M  
100k  
10M  
100M  
1G  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37. Output Impedance vs. Frequency  
Figure 40. AD8008 Crosstalk vs. Frequency (Output to Output)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
20  
10  
V
= ±5V, +5V  
S
0
–10  
–20  
–30  
+PSRR  
–40  
–50  
–60  
–70  
–80  
–PSRR  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 38. CMRR vs. Frequency  
Figure 41. PSRR vs. Frequency  
Rev. E | Page 12 of 20  
AD8007/AD8008  
G = +2  
R
R
= 150, V = +5V AND ±5V  
S
G = +1  
L
R
= 150, V = +5V AND ±5V  
S
L
= 150, V = +5V AND ±5V  
R = 1k, V = +5V AND ±5V  
L S  
L
S
50mV/DIV  
50mV/DIV  
20  
0
10  
20  
30  
TIME (ns)  
40  
50  
30  
TIME (ns)  
40  
50  
0
10  
Figure 45. Small Signal Transient Response for  
RL = 150 Ω, RL = 1 kΩ and VS = +5 V, VS = 5 V  
Figure 42. Small Signal Transient Response for  
RL = 150 Ω, RL = 1 kΩ and VS = +5 V, VS = 5 V  
G = –1  
G = +1  
R
= 150Ω  
L
INPUT  
R
= 1kΩ  
L
OUTPUT  
1V/DIV  
10  
1V/DIV  
0
20  
30  
40  
50  
0
10  
20  
TIME (ns)  
30  
40  
50  
TIME (ns)  
Figure 46. Large Signal Transient Response, G = −1, RL = 150 Ω  
Figure 43. Large Signal Transient Response for RL = 150 Ω, RL = 1 kΩ  
G = +2  
G = +2  
C
= 0pF  
C
C
C
= 0pF  
L
LOAD  
LOAD  
LOAD  
C
= 20pF  
L
C
= 20pF  
= 10pF  
= 20pF  
L
R
= 10Ω  
SNUB  
499  
499Ω  
200Ω  
RSNUB  
CLOAD  
+
49.9Ω  
50mV/DIV  
10  
1V/DIV  
10  
0
20  
30  
TIME (ns)  
40  
50  
0
20  
30  
40  
50  
TIME (ns)  
Figure 44. Large Signal Transient Response for  
CLOAD = 0 pF, CLOAD = 10 pF, and CLOAD = 20 pF  
Figure 47. Small Signal Transient Response, Effect of Series Snub Resistor  
when Driving Capacitive Load  
Rev. E | Page 13 of 20  
 
AD8007/AD8008  
4
3
G = +2  
G = +10  
V
V
= ±5V  
+V  
S
S
= ±0.75V  
IN  
R
= 1kΩ  
L
2
R
= 150Ω  
1
L
0
–1  
–2  
OUTPUT (2V/DIV)  
INPUT (1V/DIV)  
–V  
S
–3  
–4  
0
100  
200  
TIME (ns)  
300  
400  
500  
0
200  
400  
600  
800  
1000  
Figure 48. Output Overdrive Recovery, RL = 1 kΩ, 150 Ω, VIN  
=
2.5 V  
R
()  
L
Figure 50. VOUT Swing vs. RL, VS = 5 V, G = +10, VIN  
= 0.75 V  
0.5  
G = +2  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
18ns  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
TIME (ns)  
Figure 49. 0.1% Settling Time, 2 V Step  
Rev. E | Page 14 of 20  
AD8007/AD8008  
THEORY OF OPERATION  
USING THE AD8007/AD8008  
Supply Decoupling for Low Distortion  
The AD8007 (single) and AD8008 (dual) are current feedback  
amplifiers optimized for low distortion performance. A simplified  
conceptual diagram of the AD8007 is shown in Figure 51. It  
closely resembles a classic current feedback amplifier comprised  
of a complementary emitter-follower input stage, a pair of signal  
mirrors, and a diamond output stage. However, in the case of  
the AD8007/AD8008, several modifications were made to improve  
the distortion performance over that of a classic current feedback  
topology.  
Decoupling for low distortion performance requires careful  
consideration. The commonly adopted practice of returning the  
high frequency supply decoupling capacitors to physically separate  
(and possibly distant) grounds can lead to degraded even-order  
harmonic performance. This situation is shown in Figure 52 using  
the AD8007 as an example; however, it is not recommended. For a  
sinusoidal input, each decoupling capacitor returns to its ground a  
quasi-rectified current carrying high even-order harmonics.  
+V  
S
M1  
R
F
I
499Ω  
3
I
1
GND 1  
C 1  
Q5  
J
10µF  
0.1µF  
+V  
+V  
S
Q1  
IN–  
Q3  
+
D1  
D2  
S
R
499Ω  
I
G
HIGH-Z  
DO  
IN+  
I
DI  
OUT  
R
200Ω  
S
OUT  
AD8007  
Q2  
Q4  
–V  
S
IN  
C 2  
Q6  
J
–V  
S
I
2
10µF  
0.1µF  
I
4
+
M2  
–V  
S
GND 2  
R
F
Figure 52. High Frequency Capacitors Returned to Physically Separate  
Grounds (Not Recommended)  
R
G
The decoupling scheme shown in Figure 53 is recommended.  
In Figure 53, the two high frequency decoupling capacitors are  
first tied together at a common node and are then returned to  
the ground plane through a single connection. By first adding  
the two currents flowing through each high frequency decoupling  
capacitor, this ensures that the current returned into the ground  
plane is only at the fundamental frequency.  
Figure 51. Simplified Schematic of AD8007  
The signal mirrors were replaced with low distortion, high  
precision mirrors. In Figure 51, they are shown as M1 and M2.  
Their primary function from a distortion standpoint is to reduce  
the effect of highly nonlinear distortion caused by capacitances,  
CJ1 and CJ2. These capacitors represent the collector-to-base  
capacitances of the output devices of the mirrors.  
R
F
499Ω  
A voltage imbalance arises across the output stage, as measured  
from the high impedance node, high-Z, to the output node, OUT.  
This imbalance is a result of delivering high output currents and  
is the primary cause of output distortion. Circuitry is included  
to sense this output voltage imbalance and generate a compensating  
current, IDO. When injected into the circuit, IDO reduces the  
distortion that could be generated at the output stage. Similarly, the  
nonlinear voltage imbalance across the input stage (measured from  
the noninverting to the inverting input) is sensed, and a current,  
IDI, is injected to compensate for input-generated distortion.  
10µF  
+
+V  
S
R
499Ω  
G
0.1µF  
R
S
OUT  
AD8007  
200Ω  
IN  
0.1µF  
–V  
S
10µF  
+
The design and layout are strictly top-to-bottom symmetric to  
minimize the presence of even-order harmonics.  
Figure 53. High Frequency Capacitors Returned to Ground at a Single Point  
(Recommended)  
Rev. E | Page 15 of 20  
 
 
 
 
AD8007/AD8008  
Whenever physical layout considerations prevent the decoupling  
scheme shown in Figure 53, the user can connect one of the  
high frequency decoupling capacitors directly across the supplies  
and connect the other high frequency decoupling capacitor to  
ground (see Figure 54).  
LAYOUT CONSIDERATIONS  
The standard noninverting configuration with recommended  
power supply bypassing is shown in Figure 54. The 0.1 μF high  
frequency decoupling capacitors should be X7R or NPO chip  
components. Connect C2 from the +VS pin to the −VS pin.  
Connect C1 from the +VS pin to signal ground.  
R
F
499Ω  
The length of the high frequency bypass capacitor leads is critical.  
Parasitic inductance due to long leads works against the low  
impedance created by the bypass capacitor. The ground for the  
load impedance should be at the same physical location as the  
bypass capacitor grounds. For larger value capacitors, which are  
intended to be effective at lower frequencies, the current return  
path distance is less critical.  
10µF  
+
+V  
S
C1  
0.1µF  
R
499Ω  
G
R
S
OUT  
AD8007  
C2  
200Ω  
IN  
0.1µF  
–V  
S
10µF  
+
Figure 54. High Frequency Capacitors Connected Across the Supplies  
(Recommended)  
Rev. E | Page 16 of 20  
 
 
 
AD8007/AD8008  
LAYOUT AND GROUNDING CONSIDERATIONS  
GROUNDING  
EXTERNAL COMPONENTS AND STABILITY  
The AD8007/AD8008 are current feedback amplifiers and, to a  
first order, the feedback resistor determines the bandwidth and  
stability. The gain, load impedance, supply voltage, and input  
impedances also have an effect.  
A ground plane layer is important in densely packed printed  
circuit boards (PCB) to minimize parasitic inductances. However,  
an understanding of where the current flows in a circuit is critical  
to implementing effective high speed circuit design. The length  
of the current path is directly proportional to the magnitude of  
parasitic inductances and thus the high frequency impedance of  
the path. High speed currents in an inductive ground return  
create unwanted voltage noise. Broad ground plane areas reduce  
parasitic inductance.  
Figure 11 shows the effect of changing RF on the bandwidth and  
peaking for a gain of 2. Increasing RF reduces peaking but also  
reduces bandwidth. Figure 6 shows that for a given RF increasing  
the gain also reduces peaking and bandwidth. Table 4 shows the  
recommended RF and RG values that optimize bandwidth with  
minimal peaking.  
INPUT CAPACITANCE  
Along with bypassing and ground, high speed amplifiers can be  
sensitive to parasitic capacitance between the inputs and ground.  
Even 1 pF or 2 pF of capacitance reduces the input impedance at  
high frequencies, in turn increasing the gain of the amplifier, which  
causes peaking of the frequency response or even oscillations if  
severe enough. Place the external passive components that are  
connected to the input pins as close as possible to the inputs to  
avoid parasitic capacitance. The ground and power planes must  
be kept at a distance of at least 0.05 mm from the input pins on  
all layers of the board.  
Table 4. Recommended Component Values  
Gain  
RF (Ω)  
RG (Ω)  
RS (Ω)  
200  
200  
200  
200  
−1  
499  
499  
+1  
499  
Not applicable  
+2  
+5  
+10  
499  
499  
499  
499  
124  
54.9  
200  
The load resistor also affects bandwidth, as shown in Figure 7 and  
Figure 10. A comparison between Figure 7 and Figure 10 also  
demonstrates the effect of gain and supply voltage.  
OUTPUT CAPACITANCE  
When driving loads with a capacitive component, stability  
improves by using a series snub resistor, RSNUB, at the output.  
The frequency and pulse responses for various capacitive  
loads are illustrated in Figure 12 and Figure 47, respectively.  
To a lesser extent, parasitic capacitances on the output can cause  
peaking of the frequency response. The following two methods  
minimize its effect:  
Put a small value resistor in series with the output to isolate  
the load capacitance from the output stage of the amplifier  
(see Figure 12).  
Increase the phase margin by increasing the gain of the  
amplifier or by increasing the value of the feedback resistor.  
For noninverting configurations, a resistor in series with the  
input, RS, is needed to optimize stability for a gain of 1, as  
illustrated in Figure 8. For larger noninverting gains, the effect  
of a series resistor is reduced.  
INPUT-TO-OUTPUT COUPLING  
To minimize capacitive coupling, the input and output signal  
traces should not be parallel. When they are not parallel, they  
help reduce unwanted positive feedback.  
Rev. E | Page 17 of 20  
 
 
AD8007/AD8008  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 55. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 56. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. E | Page 18 of 20  
 
AD8007/AD8008  
2.20  
2.00  
1.80  
2.40  
2.10  
1.80  
5
1
4
3
1.35  
1.25  
1.15  
2
0.65 BSC  
1.10  
1.00  
0.90  
0.70  
0.40  
0.10  
0.80  
0.46  
0.36  
0.26  
0.22  
0.08  
SEATING  
PLANE  
0.10 MAX  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-203-AA  
Figure 57. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
Package Outline  
Branding  
HTA  
HTC  
HTC  
HTC  
AD8007AKS-R2  
AD8007AKSZ-R21  
AD8007AKSZ-REEL1  
AD8007AKSZ-REEL71  
AD8007AR  
AD8007AR-REEL  
AD8007AR-REEL7  
AD8007ARZ1  
AD8007ARZ-REEL1  
AD8007ARZ-REEL71  
AD8008AR  
AD8008AR-REEL7  
AD8008AR-REEL  
AD8008ARZ1  
AD8008ARZ-REEL71  
AD8008ARZ-REEL1  
AD8008ARM  
AD8008ARM-REEL  
AD8008ARM-REEL7  
AD8008ARMZ1  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
KS-5  
KS-5  
KS-5  
KS-5  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
H2B  
H2B  
H2B  
H2B#  
H2B#  
H2B#  
AD8008ARMZ-REEL1  
AD8008ARMZ-REEL71  
1 Z = RoHS Compliant Part, # denotes RoHS compliant part may be top or bottom marked.  
Rev. E | Page 19 of 20  
 
 
AD8007/AD8008  
NOTES  
©2002–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02866-0-11/09(E)  
Rev. E | Page 20 of 20  

相关型号:

AD8007AKSZ-R2

OP-AMP, 4000 uV OFFSET-MAX, PDSO5, ROHS COMPLIANT, MO-203AA, SC70-5
ROCHESTER

AD8007AKSZ-R2

Ultralow Distortion, High Speed Amplifiers
ADI

AD8007AKSZ-R21

Ultralow Distortion,High Speed Amplifiers
ADI

AD8007AKSZ-REEL

OP-AMP, 4000uV OFFSET-MAX, PDSO5, ROHS COMPLIANT, MO-203AA, SC70-5
ADI

AD8007AKSZ-REEL1

Ultralow Distortion,High Speed Amplifiers
ADI

AD8007AKSZ-REEL7

OP-AMP, 4000 uV OFFSET-MAX, PDSO5, ROHS COMPLIANT, MO-203AA, SC70-5
ROCHESTER

AD8007AKSZ-REEL7

Ultralow Distortion, High Speed Amplifiers
ADI

AD8007AKSZ-REEL71

Ultralow Distortion,High Speed Amplifiers
ADI

AD8007AR

Ultralow Distortion High Speed Amplifiers
ADI

AD8007AR

OP-AMP, 4000 uV OFFSET-MAX, PDSO8, MS-012AA, SOIC-8
ROCHESTER

AD8007AR-REEL

Ultralow Distortion High Speed Amplifiers
ADI

AD8007AR-REEL7

Ultralow Distortion High Speed Amplifiers
ADI