AD8014AR-REEL7 [ADI]

400 MHz Low Power High Performance Amplifier; 400 MHz的低功耗高性能放大器
AD8014AR-REEL7
型号: AD8014AR-REEL7
厂家: ADI    ADI
描述:

400 MHz Low Power High Performance Amplifier
400 MHz的低功耗高性能放大器

运算放大器 放大器电路 光电二极管
文件: 总11页 (文件大小:1144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
400 MHz Low Power  
a
High Performance Amplifier  
AD8014  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Low Cost  
SOIC-8 (R)  
SOT-23-5 (RT)  
Low Power: 1.15 mA Max for 5 V Supply  
High Speed  
400 MHz, –3 dB Bandwidth (G = +1)  
4000 V/s Slew Rate  
AD8014  
NC  
–IN  
+IN  
NC  
1
2
3
4
8
7
6
5
+V  
V
5
4
1
2
3
S
OUT  
+V  
V
S
60 ns Overload Recovery  
–V  
S
OUT  
Fast Settling Time of 24 ns  
Drive Video Signals on 50 Lines  
Very Low Noise  
+IN  
–IN  
NC  
V  
S
AD8014  
3.5 nV/Hz and 5 pA/Hz  
NC = NO CONNECT  
5 nV/Hz Total Input Referred Noise @ G = +3 w/500 ⍀  
Feedback Resistor  
Operates on +4.5 V to +12 V Supplies  
Low Distortion –70 dB THD @ 5 MHz  
Low, Temperature-Stable DC Offset  
Available in SOIC-8 and SOT-23-5  
APPLICATIONS  
Photo-Diode Preamp  
Professional and Portable Cameras  
Hand Sets  
DVD/CD  
Handheld Instruments  
A-to-D Driver  
The AD8014 is a very high speed amplifier with 400 MHz,  
–3 dB bandwidth, 4000 V/µs slew rate, and 24 ns settling time.  
The AD8014 is a very stable and easy to use amplifier with fast  
overload recovery. The AD8014 has extremely low voltage and  
current noise, as well as low distortion, making it ideal for use  
in wide-band signal processing applications.  
Any Power-Sensitive High Speed System  
For a current feedback amplifier, the AD8014 has extremely  
low offset voltage and input bias specifications as well as low  
drift. The input bias current into either input is less than 15 µA  
at +25°C with a typical drift of less than 50 nA/°C over the  
industrial temperature range. The offset voltage is 5 mV max  
with a typical drift less than 10 µV/°C.  
PRODUCT DESCRIPTION  
The AD8014 is a revolutionary current feedback operational  
amplifier that attains new levels of combined bandwidth, power,  
output drive and distortion. Analog Devices, Inc. uses a propri-  
etary circuit architecture to enable the highest performance  
amplifier at the lowest power. Not only is it technically superior,  
but is low priced, for use in consumer electronics. This general  
purpose amplifier is ideal for a wide variety of applications  
including battery operated equipment.  
For a low power amplifier, the AD8014 has very good drive  
capability with the ability to drive 2 V p-p video signals on  
75 or 50 series terminated lines and still maintain more  
than 135 MHz, 3 dB bandwidth.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
www.analog.com  
© Analog Devices, Inc.,  
Fax:781/461-3113  
2010  
(@ TA = +25؇C, VS = ؎5 V, RL = 150 , RF = 1 k, Gain = +2, unless otherwise noted)  
AD8014–SPECIFICATIONS  
AD8014AR/RT  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth Small Signal  
G = +1, VO = 0.2 V p-p, RL = 1 kΩ  
G = –1, VO = 0.2 V p-p, RL = 1 kΩ  
VO = 2 V p-p  
VO = 2 V p-p, RF = 500 Ω  
VO = 2 V p-p, RF = 500 , RL = 50 Ω  
VO = 0.2 V p-p, RL = 1 kΩ  
VO = 2 V p-p, RL = 1 kΩ  
RL = 1 k, RF = 500 Ω  
RL = 1 kΩ  
G = –1, RL = 1 k, RF = 500 Ω  
G = –1, RL = 1 kΩ  
G = +1, VO = 2 V Step, RL = 1 kΩ  
2 V Step  
400  
120  
140  
170  
480  
160  
180  
210  
130  
12  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
V/µs  
V/µs  
ns  
–3 dB Bandwidth Large Signal  
0.1 dB Small Signal Bandwidth  
0.1 dB Large Signal Bandwidth  
Slew Rate, 25% to 75%, VO = 4 V Step  
20  
4600  
2800  
4000  
2500  
24  
Settling Time to 0.1%  
Rise and Fall Time 10% to 90%  
1.6  
ns  
G = –1, 2 V Step  
0 V to ±4 V Step at Input  
2.8  
60  
ns  
ns  
Overload Recovery to Within 100 mV  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 5 MHz, VO = 2 V p-p  
fC = 20 MHz, VO = 2 V p-p  
fC = 20 MHz, VO = 2 V p-p  
f = 10 kHz  
–68  
–51  
–45  
–48  
3.5  
dB  
dB  
dB  
dB  
nV/Hz  
pA/Hz  
%
SFDR  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
f = 10 kHz  
5
NTSC, G = +2, RF = 500 Ω  
NTSC, G = +2, RF = 500 , RL = 50 Ω  
NTSC, G = +2, RF = 500 Ω  
NTSC, G = +2, RF = 500 , RL = 50 Ω  
f = 10 MHz  
0.05  
0.46  
0.30  
0.60  
22  
%
Differential Phase Error  
Third Order Intercept  
Degree  
Degree  
dBm  
DC PERFORMANCE  
Input Offset Voltage  
2
2
5
6
mV  
mV  
TMIN–TMAX  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
10  
5
50  
5
µV/°C  
+Input or –Input  
15  
µA  
nA/°C  
±µA  
kΩ  
Open Loop Transresistance  
800  
1300  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
+Input  
+Input  
450  
2.3  
±4.1  
–57  
kΩ  
pF  
V
±3.8  
–52  
VCM = ±2.5 V  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 150 Ω  
RL = 1 kΩ  
VO = ±2.0 V  
±3.4  
±3.6  
40  
±3.8  
±4.0  
50  
70  
40  
V
V
mA  
mA  
pF  
Output Current  
Short Circuit Current  
Capacitive Load Drive for 30% Overshoot  
2 V p-p, RL = 1 k, RF = 500 Ω  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Power Supply Rejection Ratio  
±2.25 ±5  
1.15  
–58  
±6.0  
1.3  
V
mA  
dB  
±4 V to ±6 V  
–55  
Specifications subject to change without notice.  
–2–  
Rev. C  
AD8014  
(@ T = +25؇C, V = +5 V, R = 150 , R = 1 k, Gain = +2, unless otherwise noted)  
SPECIFICATIONS  
A
S
L
F
AD8014AR/RT  
Typ  
Parameter  
Conditions  
Min  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth Small Signal  
G = +1, VO = 0.2 V p-p, RL = 1 kΩ  
G = –1, VO = 0.2 V p-p, RL = 1 kΩ  
VO = 2 V p-p  
VO = 2 V p-p, RF = 500 Ω  
VO = 2 V p-p, RF = 500 , RL = 75 Ω  
VO = 0.2 V p-p, RL = 1 kΩ  
VO = 2 V p-p  
RL = 1 k, RF = 500 Ω  
RL = 1 kΩ  
G = –1, RL = 1 k, RF = 500 Ω  
G = –1, RL = 1 kΩ  
345  
100  
75  
430  
135  
100  
115  
100  
10  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
V/µs  
V/µs  
ns  
–3 dB Bandwidth Large Signal  
90  
0.1 dB Small Signal Bandwidth  
0.1 dB Large Signal Bandwidth  
Slew Rate, 25% to 75%, VO = 2 V Step  
20  
3900  
1100  
1800  
1100  
24  
Settling Time to 0.1%  
Rise and Fall Time 10% to 90%  
G = +1, VO = 2 V Step, RF = 1 kΩ  
2 V Step  
1.9  
ns  
G = –1, 2 V Step  
0 V to ±2 V Step at Input  
2.8  
60  
ns  
ns  
Overload Recovery to Within 100 mV  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 5 MHz, VO = 2 V p-p  
fC = 20 MHz, VO = 2 V p-p  
fC = 20 MHz, VO = 2 V p-p  
f = 10 kHz  
–70  
–51  
–45  
–47  
3.5  
dB  
dB  
dB  
dB  
nV/Hz  
pA/Hz  
%
SFDR  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
f = 10 kHz  
5
NTSC, G = +2, RF = 500 Ω  
NTSC, G = +2, RF = 500 , RL = 50 Ω  
NTSC, G = +2, RF = 500 Ω  
NTSC, G = +2, RF = 500 , RL = 50 Ω  
f = 10 MHz  
0.06  
0.05  
0.03  
0.30  
22  
%
Differential Phase Error  
Third Order Intercept  
Degree  
Degree  
dBm  
DC PERFORMANCE  
Input Offset Voltage  
2
2
5
6
mV  
mV  
TMIN–TMAX  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
10  
5
50  
5
µV/°C  
+Input or –Input  
15  
µA  
nA/°C  
±µA  
kΩ  
Open Loop Transresistance  
750  
1300  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
+Input  
+Input  
450  
2.3  
1.1 to 3.9  
kΩ  
pF  
V
Input Common-Mode Voltage Range  
1.2  
3.8  
Common-Mode Rejection Ratio  
VCM = 1.5 V to 3.5 V  
–52  
–57  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 150 to 2.5 V  
RL = 1 kto 2.5 V  
VO = 1.5 V to 3.5 V  
1.4  
1.2  
30  
1.1 to 3.9  
0.9 to 4.1  
50  
70  
55  
3.6  
3.8  
V
V
mA  
mA  
pF  
Output Current  
Short Circuit Current  
Capacitive Load Drive for 30% Overshoot  
2 V p-p, RL = 1 k, RF = 500 Ω  
POWER SUPPLY  
Operating Range  
Quiescent Current  
4.5  
5
1.0  
12  
1.15  
V
mA  
Power Supply Rejection Ratio  
4 V to 5.5 V  
–55  
–58  
dB  
Specifications subject to change without notice.  
–3–  
Rev. C  
AD8014  
ABSOLUTE MAXIMUM RATINGS1  
plastic. This is approximately +150°C. Even temporarily ex-  
ceeding this limit may cause a shift in parametric performance  
due to a change in the stresses exerted on the die by the pack-  
age. Exceeding a junction temperature of +175°C may result in  
device failure.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12.6 V  
Internal Power Dissipation2  
Small Outline Package (R) . . . . . . . . . . . . . . . . . . . . 0.75 W  
SOT-23-5 Package (RT) . . . . . . . . . . . . . . . . . . . . . . 0.5 W  
Input Voltage Common Mode . . . . . . . . . . . . . . . . . . . . . .±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . ±2.5 V  
Output Short Circuit Duration  
. . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Lead Temperature (Soldering 10 sec) . . . . . . . . . . . . .+300°C  
ESD (Human Body Model) . . . . . . . . . . . . . . . . . . . . +1500 V  
The output stage of the AD8014 is designed for large load cur-  
rent capability. As a result, shorting the output to ground or to  
power supply sources may result in a very large power dissipa-  
tion. To ensure proper operation it is necessary to observe the  
maximum power derating tables.  
Table I. Maximum Power Dissipation vs. Temperature  
Ambient Temp  
؇C  
Power Watts  
SOT-23-5  
Power Watts  
SOIC  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only, functional operation of the  
device at these or any other conditions above listed in the operational section of this  
specification is not implied. Exposure to Absolute Maximum Ratings for any  
extended periods may affect device reliability.  
–40  
–20  
0
+20  
+40  
+60  
+80  
+100  
0.79  
0.71  
0.63  
0.54  
0.46  
0.38  
0.29  
0.21  
1.19  
1.06  
0.94  
0.81  
0.69  
0.56  
0.44  
0.31  
2 Specification is for device in free air at 25°C.  
8-Lead SOIC Package θJA = 155°C/W.  
5-Lead SOT-23 Package θJA = 240°C/W.  
MAXIMUM POWER DISSIPATION  
The maximum power that can be safely dissipated by the AD8014  
is limited by the associated rise in junction temperature. The  
maximum safe junction temperature for plastic encapsulated  
devices is determined by the glass transition temperature of the  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8014 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
Rev. C  
Typical Performance CharacteristicsAD8014  
15  
12  
9
2.0  
G = +1  
V
= 200mV p-p  
1.0  
O
V
= 0.2V  
R
R
= 1k  
O
F
V
= ؎5V  
S
0
–1.0  
–2.0  
–3.0  
–4.0  
–5.0  
–6.0  
–7.0  
= 1k⍀  
L
V
= 0.5V  
O
6
3
V
= +5V  
S
0
V
= 1V  
O
–3  
–6  
–9  
–12  
V
= 2V  
= 4V  
O
V
V
= ؎5V  
O
S
G = –1  
R
= 1k⍀  
F
L
R
= 1k⍀  
–15  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 1. Frequency Response, G = +1, VS = ±5 V and +5 V  
Figure 4. Bandwidth vs. Output Level—Gain of –1, Dual  
Supply  
12  
9
12  
9
V
= 0.5V p-p  
V
= 1V p-p  
O
O
6
6
3
0
3
V
= ؎5V  
S
0
–3  
–6  
G = +2  
R
= 75⍀  
L
R
V
= 500⍀  
= 2V p-p  
F
O
V
= 2V p-p  
O
R
= 50⍀  
–3  
–6  
L
V
= +5V  
S
–9  
–12  
–15  
G = +2  
R
= 1k⍀  
F
L
–9  
V
= 3V p-p  
O
R
= 1k⍀  
–12  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 2. Frequency Response, G = +2, VO = 2 V p-p  
Figure 5. Bandwidth vs. Output Level—Single Supply,  
G = +2  
12  
9
2
1
V
= 0.5V p-p  
O
V
= 0.5V p-p  
O
0
–1  
–2  
–3  
–4  
–5  
6
3
V
= 1V p-p  
O
V
= 4V p-p  
O
0
–3  
–6  
V
O
= 2V p-p  
V
= 4V p-p  
O
V
= 2V p-p  
O
V
= +5V  
S
V
= ؎5V  
S
G = –1  
R
G = +2  
R
–6  
–7  
–8  
= 1k⍀  
F
L
= 1k⍀  
F
L
–9  
R
= 1k⍀  
R
= 1k⍀  
V
= 0.2V p-p  
O
–12  
10  
100  
FREQUENCY – MHz  
1
10  
100  
1000  
1000  
FREQUENCY – MHz  
Figure 6. Bandwidth vs. Output Level—Single Supply,  
Gain of –1  
Figure 3. Bandwidth vs. Output Voltage Level—  
Dual Supply, G = +2  
–5–  
Rev. C  
AD8014  
7.5  
6.2  
6.1  
R
= 300⍀  
7.0  
6.5  
6.0  
5.5  
F
V
= ؎5V  
S
6.0  
5.9  
5.8  
R
= 500⍀  
F
R
= 600⍀  
F
V = +5V  
S
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
R
= 750⍀  
F
5.0  
4.5  
R
= 1k⍀  
V
= ؎5V  
S
F
G = +2  
V = 2V p-p  
4.0  
3.5  
3.0  
G = +2  
= 2V p-p  
V
R
= 500⍀  
O
F
L
R
= 150⍀  
R
= 150⍀  
L
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 7. Bandwidth vs. Feedback Resistor—Dual Supply  
Figure 10. Gain Flatness—Large Signal  
7.5  
7.0  
6.5  
9
6
3
G = +1  
R
= 300⍀  
0
F
G = +2  
6.0  
–3  
R
= 500⍀  
F
–6  
5.5  
5.0  
G = +10  
R
= 750⍀  
F
–9  
V
= ±5V  
V
= +5V  
S
S
R
= 1k⍀  
F
R
R
V
= 1k⍀  
–12  
G = +2  
= 2V p-p  
F
V
= 1k⍀  
4.5  
4.0  
O
L
–15  
–18  
R
= 150⍀  
= 200mV p-p  
L
O
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 8. Bandwidth vs. Feedback Resistor—Single Supply  
Figure 11. Bandwidth vs. Gain—Dual Supply, RF = 1 k  
6.8  
9
G = +2  
6.7  
G = +1  
R
R
V
= 1k⍀  
6
3
F
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
= 1k⍀  
L
V
= ؎5V  
= 200mV p-p  
S
O
0
V
= +5V  
S
G = +2  
–3  
R
R
V
= 1k⍀  
F
= 1k⍀  
L
–6  
V
= +5V  
= 200mV p-p  
O
S
G = +10  
–9  
–12  
–15  
–18  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 9. Gain Flatness—Small Signal  
Figure 12. Bandwidth vs. Gain—Single Supply  
–6–  
Rev. C  
AD8014  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
140  
120  
100  
80  
0
–40  
V
= ؎5V  
S
G = +2  
R
PHASE  
–80  
= 1k⍀  
F
–PSRR  
–120  
–160  
–200  
–240  
+PSRR  
GAIN  
60  
40  
–80  
–90  
20  
0
1k  
–280  
1G  
10k  
100k  
1M  
10M  
100M  
–100  
0.01  
0.10  
1
10  
100  
1000  
FREQUENCY – Hz  
FREQUENCY – MHz  
Figure 16. Transimpedance Gain and Phase vs.  
Frequency  
Figure 13. PSRR vs. Frequency  
100  
10  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
V
= +5V  
S
1
V
= ±5V  
S
0.1  
0.01  
–65  
–70  
–75  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY – MHz  
0.1  
1
10  
FREQUENCY – MHz  
100  
1000  
Figure 17. Output Resistance vs. Frequency, VS = ±5 V  
and +5 V  
Figure 14. CMRR vs. Frequency  
–30  
3RD  
R
= 150⍀  
L
–50  
–70  
2ND  
= 150⍀  
R
2ND  
= 1k⍀  
L
R
L
3RD  
= 1k⍀  
R
L
DISTORTION BELOW  
NOISE FLOOR  
–90  
1
10  
FREQUENCY – MHz  
100  
Figure 18. Settling Time  
Figure 15. Distortion vs. Frequency; VS = ±5 V, G = +2  
–7–  
Rev. C  
AD8014  
Figure 21 shows the circuit that was used to imitate a photo-  
diode preamp. A photodiode for this application is basically a  
high impedance current source that is shunted by a small ca-  
pacitance. In this case, a high voltage pulse from a Picosecond  
Pulse Labs Generator that is ac-coupled through a 20 kresis-  
tor is used to simulate the high impedance current source of a  
photodiode. This circuit will convert the input voltage pulse into  
a small charge package that is converted back to a voltage by the  
AD8014 and the feedback resistor.  
In this case the feedback resistor chosen was 1.74 k, which is a  
compromise between maintaining bandwidth and providing  
sufficient gain in the preamp stage. The circuit preserves the  
pulse shape very well with very fast rise time and a minimum of  
overshoot as shown in Figure 22.  
Figure 19. Large Signal Step Response; VS = ±5 V,  
O = 4 V Step  
V
1.74k⍀  
+5V  
0.1F  
20k⍀  
INPUT  
49.9OUTPUT  
49.9⍀  
AD8014  
(10
؋
 PROBE)  
(NO LOAD)  
–5V  
Figure 21. AD8014 as a Photodiode Preamp  
TEK RUN: 2.0GS/s ET AVERAGE  
T[  
]
1
INPUT  
20V/  
DIV  
Figure 20. Large Signal Step Response; VS = +5 V,  
O = 2 V Step  
V
Note: On Figures 19 and 20 RF = 500 , RS = 50 and CL =  
20 pF.  
2
OUTPUT  
500mV/DIV  
CH1 20.0V CH2 500mV M 25.0ns CH4 380mV  
APPLICATIONS  
CD ROM and DVD Photodiode Preamp  
Figure 22. Pulse Response  
High speed Multi-X CD ROM and DVD drives require high  
frequency photodiode preamps for their read channels. To mini-  
mize the effects of the photodiode capacitance, the low imped-  
ance of the inverting input of a current feedback amplifier is  
advantageous. Good group delay characteristics will preserve the  
pulse response of these pulses. The AD8014, having many ad-  
vantages, can make an excellent low cost, low noise, low power,  
and high bandwidth photodiode preamp for these applications.  
–8–  
Rev. C  
AD8014  
Video Drivers  
DRIVING CAPACITIVE LOADS  
The AD8014 easily drives series terminated cables with video  
signals. Because the AD8014 has such good output drive you  
can parallel two or three cables driven from the same AD8014.  
Figure 23 shows the differential gain and phase driving one  
video cable. Figure 24 shows the differential gain and phase  
driving two video cables. Figure 25 shows the differential gain  
and phase driving three video cables.  
The AD8014 was designed primarily to drive nonreactive loads.  
If driving loads with a capacitive component is desired, best  
settling response is obtained by the addition of a small series  
resistance as shown in Figure 26. The accompanying graph  
shows the optimum value for RSERIES vs. Capacitive Load. It is  
worth noting that the frequency response of the circuit when  
driving large capacitive loads will be dominated by the passive  
roll-off of RSERIES and CL.  
0.00 0.02 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03  
0.10  
40  
30  
20  
10  
0.05  
0.00  
–0.05  
–0.10  
0.00 0.01 0.10 0.21 0.26 0.28 0.29 0.30 0.30 0.30 0.30  
0.60  
0.40  
0.20  
0.00  
–0.20  
–0.40  
–0.60  
1ST  
2ND 3RD 4TH 5TH  
6TH 7TH  
8TH 9TH 10TH 11TH  
Figure 23. Differential Gain and Phase RF = 500, ±5 V, RL =  
150 , Driving One Cable, G = +2  
0
5
10  
15  
20  
25  
C
– pF  
L
Figure 26. Driving Capacitive Load  
Choosing Feedback Resistors  
Changing the feedback resistor can change the performance of  
the AD8014 like any current feedback op amp. The table below  
illustrates common values of the feedback resistor and the per-  
formance which results.  
0.00 –0.02 0.03  
0.05 0.06 0.06 0.05 0.05 0.07 0.10 0.14  
0.30  
0.20  
0.10  
0.00  
–0.10  
–0.20  
–0.30  
0.00 0.07 0.24  
0.40 0.43 0.44 0.43 0.40 0.35 0.26 0.16  
0.60  
0.40  
Table II.  
0.20  
0.00  
–3 dB BW  
VO = ؎0.2 V  
RL = 1 k⍀  
–3 dB BW  
VO = ؎0.2 V  
RL = 150 ⍀  
–0.20  
–0.40  
–0.60  
Gain  
RF  
RG  
1ST 2ND 3RD  
4TH 5TH  
6TH 7TH 8TH 9TH 10TH 11TH  
+1  
+2  
+10  
–1  
1 kΩ  
1 kΩ  
1 kΩ  
1 kΩ  
1 kΩ  
1 kΩ  
2 kΩ  
750 Ω  
499 Ω  
Open  
1 kΩ  
111 Ω  
1 kΩ  
499 Ω  
100 Ω  
2 kΩ  
480  
280  
50  
160  
140  
45  
200*  
260*  
280*  
430  
260  
45  
150  
130  
40  
180*  
210*  
230*  
Figure 24. Differential Gain and Phase RF = 500, ±5 V, RL =  
75 , Driving Two Cables, G = +2  
0.00 0.44 0.52 0.54 0.52 0.52 0.50 0.48 0.47 0.44  
0.45  
–2  
0.80  
0.60  
0.40  
0.20  
0.00  
–0.20  
–10  
+2  
+2  
+2  
750 Ω  
499 Ω  
–0.40  
–0.60  
–0.80  
*VO = ±1 V.  
0.00 0.10 0.32 0.53 0.57 0.59 0.58 0.56 0.54 0.51  
0.48  
0.80  
0.60  
0.40  
0.20  
0.00  
–0.20  
–0.40  
–0.60  
–0.80  
1ST 2ND 3RD 4TH 5TH  
6TH 7TH 8TH 9TH 10TH 11TH  
Figure 25. Differential Gain and Phase RF = 500, ±5 V, RL =  
50 , Driving Three Cables, G = +2  
–9–  
Rev. C  
AD8014  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 27. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
3.00  
2.90  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.20  
BSC  
0.50 MAX  
0.35 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 28. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD8014AR  
AD8014AR -REEL7  
AD8014ARZ  
AD8014ARZ-REEL  
AD8014ARZ-REEL7  
AD8014ART-R2  
AD8014ART-REEL7  
AD8014ARTZ-R2  
AD8014ARTZ-REEL  
AD8014ARTZ-REEL7  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
Package Option  
R-8  
R-8  
R-8  
R-8  
R-8  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
Branding  
HAA  
HAA  
H09  
H09  
H09  
1 Z = RoHS Compliant Part.  
-10-  
Rev. C  
AD8014  
REVISION HISTORY  
Changes to Figure 22 ........................................................................8  
Updated Outline Dimensions........................................................10  
Changes to Ordering Guide...........................................................10  
©1998–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08930-0-4/10(C)  
Rev. C  
-11-  

相关型号:

AD8014ART

400 MHz Low Power High Performance Amplifier
ADI

AD8014ART-R2

400 MHz Low Power High Performance Amplifier
ADI

AD8014ART-REEL

Current-Feedback Operational Amplifier
ETC

AD8014ART-REEL7

400 MHz Low Power High Performance Amplifier
ADI

AD8014ARTZ-R2

400 MHz Low Power High Performance Amplifier
ADI

AD8014ARTZ-REEL

400 MHz Low Power High Performance Amplifier
ADI

AD8014ARTZ-REEL7

400 MHz Low Power High Performance Amplifier
ADI

AD8014ARZ

400 MHz Low Power High Performance Amplifier
ADI

AD8014ARZ-REEL

400 MHz Low Power High Performance Amplifier
ADI

AD8014ARZ-REEL7

400 MHz Low Power High Performance Amplifier
ADI

AD8015

Wideband/Differential Output Transimpedance Amplifier
ADI

AD8015ACHIPS

Wideband/Differential Output Transimpedance Amplifier
ADI