AD8021ARMZ-REEL [ADI]

Low Noise, High Speed Amplifier for 16-Bit Systems; 低噪声,高速放大器,用于16位系统
AD8021ARMZ-REEL
型号: AD8021ARMZ-REEL
厂家: ADI    ADI
描述:

Low Noise, High Speed Amplifier for 16-Bit Systems
低噪声,高速放大器,用于16位系统

放大器
文件: 总28页 (文件大小:594K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, High Speed Amplifier  
for 16-Bit Systems  
AD8021  
CONNECTION DIAGRAM  
FEATURES  
Low noise  
AD8021  
LOGIC  
REFERENCE  
1
2
3
4
8
7
6
5
DISABLE  
2.1 nV/√Hz input voltage noise  
2.1 pA/√Hz input current noise  
Custom compensation  
Constant bandwidth from G = −1 to G = −10  
High speed  
+V  
S
–IN  
V
+IN  
OUT  
–V  
S
C
COMP  
200 MHz (G = −1)  
Figure 1. SOIC-8 (R-8) and MSOP-8 (RM-8)  
190 MHz (G = −10)  
Low power  
34 mW or 6.7 mA typical for 5 V supply  
Output disable feature, 1.3 mA  
Low distortion  
−93 dBc second harmonic, fC = 1 MHz  
−108 dBc third harmonic, fC = 1 MHz  
DC precision  
1 mV maximum input offset voltage  
0.5 μV/°C input offset voltage drift  
Wide supply range, 5 V to 24 V  
Low price  
The AD8021 allows the user to choose the gain bandwidth  
product that best suits the application. With a single capacitor,  
the user can compensate the AD8021 for the desired gain with  
little trade-off in bandwidth. The AD8021 is a well-behaved  
amplifier that settles to 0.01% in 23 ns for a 1 V step. It has a fast  
overload recovery of ±0 ns.  
The AD8021 is stable over temperature with low input offset  
voltage drift and input bias current drift, 0.± μV/°C and 10 nA/°C,  
respectively. The AD8021 is also capable of driving a 7± Ω line  
with ±3 V video signals.  
Small packaging  
Available in SOIC-8 and MSOP-8  
The AD8021 is both technically superior and priced considerably  
less than comparable amps drawing much higher quiescent  
current. The AD8021 is a high speed, general-purpose amplifier,  
ideal for a wide variety of gain configurations and can be used  
throughout a signal processing chain and in control loops. The  
AD8021 is available in both standard 8-lead SOIC and MSOP  
packages in the industrial temperature range of −40°C to +8±°C.  
APPLICATIONS  
ADC preamps and drivers  
Instrumentation preamps  
Active filters  
Portable instrumentation  
Line receivers  
Precision instruments  
Ultrasound signal processing  
High gain circuits  
24  
V
= 50mV p-p  
OUT  
21  
18  
15  
12  
9
G = –10, R = 1kΩ, R = 100Ω,  
F
G
R
= 100Ω, C = 0pF  
C
IN  
GENERAL DESCRIPTION  
G = –5, R = 1kΩ, R = 200Ω,  
The AD8021 is an exceptionally high performance, high speed  
voltage feedback amplifier that can be used in 16-bit resolution  
systems. It is designed to have both low voltage and low current  
noise (2.1 nV/√Hz typical and 2.1 pA/√Hz typical) while operating  
at the lowest quiescent supply current (7 mA @ ±± V) among  
todays high speed, low noise op amps. The AD8021 operates  
over a wide range of supply voltages from ±2.2± V to ±12 V, as  
well as from single ± V supplies, making it ideal for high speed,  
low power instruments. An output disable pin allows further  
reduction of the quiescent supply current to 1.3 mA.  
F
G
R
= 66.5Ω, C = 1.5pF  
C
IN  
6
G = –2, R = 499Ω, R = 249Ω,  
F
G
R
= 63.4Ω, C = 4pF  
C
3
IN  
0
G = –1, R = 499Ω, R = 499Ω,  
F
G
R
= 56.2Ω, C = 7pF  
–3  
–6  
IN  
C
0.1M  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
Figure 2. Small Signal Frequency Response  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD8021  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications..................................................................................... 19  
Using the Disable Feature.......................................................... 20  
Theory of Operation ...................................................................... 21  
PCB Layout Considerations...................................................... 21  
Driving 16-Bit ADCs ................................................................. 22  
Differential Driver...................................................................... 22  
Using the AD8021 in Active Filters ......................................... 23  
Driving Capacitive Loads.......................................................... 23  
Outline Dimensions....................................................................... 2±  
Ordering Guide .......................................................................... 2±  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Connection Diagram ....................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Maximum Power Dissipation ..................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Test Circuits................................................................................. 17  
REVISION HISTORY  
5/06—Rev. E to Rev. F  
7/03—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Changes to General Description .................................................... 1  
Changes to Figure 3.......................................................................... 7  
Changes to Figure 60...................................................................... 19  
Changes to Table 9.......................................................................... 23  
Deleted All References to Evaluation Board...................Universal  
Replaced Figure 2 ..............................................................................±  
Updated Outline Dimensions....................................................... 20  
2/03—Rev. A to Rev. B  
Edits to Evaluation Board Applications....................................... 20  
Edits to Figure 17 ........................................................................... 20  
3/05—Rev. D to Rev. E  
Updated Format..................................................................Universal  
Change to Figure 19 ....................................................................... 11  
Change to Figure 2± ....................................................................... 12  
Change to Table 7 and Table 8 ...................................................... 22  
Change to Driving 16-Bit ADCs Section .................................... 22  
6/02—Rev. 0 to Rev. A  
Edits to Specifications.......................................................................2  
10/03—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Rev. F | Page 2 of 28  
 
AD8021  
SPECIFICATIONS  
VS = ±± V, @ TA = 2±°C, RL = 1 kΩ, gain = +2, unless otherwise noted.  
Table 1.  
AD8021AR/AD8021ARM  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, CC = 10 pF, VO = 0.05 V p-p  
G = +2, CC = 7 pF, VO = 0.05 V p-p  
G = +5, CC = 2 pF, VO = 0.05 V p-p  
G = +10, CC = 0 pF, VO = 0.05 V p-p  
G = +1, CC = 10 pF  
G = +2, CC = 7 pF  
G = +5, CC = 2 pF  
G = +10, CC = 0 pF  
VO = 1 V step, RL = 500 Ω  
2.5 V input step, G = +2  
355  
160  
150  
110  
95  
120  
250  
380  
490  
205  
185  
150  
120  
150  
300  
420  
23  
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
V/μs  
V/μs  
ns  
Slew Rate, 1 V Step  
Settling Time to 0.01%  
Overload Recovery (50%)  
50  
ns  
DISTORTION/NOISE PERFORMANCE  
f = 1 MHz  
HD2  
HD3  
VO = 2 V p-p  
VO = 2 V p-p  
−93  
−108  
dBc  
dBc  
f = 5 MHz  
HD2  
HD3  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
VO = 2 V p-p  
VO = 2 V p-p  
f = 50 kHz  
f = 50 kHz  
NTSC, RL = 150 Ω  
NTSC, RL = 150 Ω  
−70  
−80  
2.1  
2.1  
0.03  
0.04  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
%
2.6  
Degrees  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
Open-Loop Gain  
0.4  
0.5  
7.5  
10  
0.1  
86  
1.0  
mV  
μV/°C  
μA  
nA/°C  
μA  
dB  
TMIN to TMAX  
+Input or −input  
10.5  
0.5  
82  
INPUT CHARACTERISTICS  
Input Resistance  
10  
1
MΩ  
pF  
V
Common-Mode Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
−4.1 to +4.6  
−98  
VCM = 4 V  
−86  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
−3.5 to +3.2 −3.8 to +3.4  
V
Linear Output Current  
Short-Circuit Current  
Capacitive Load Drive for 30% Overshoot  
60  
75  
15/120  
mA  
mA  
pF  
VO = 50 mV p-p/1 V p-p  
DISABLE CHARACTERISTICS  
Off Isolation  
Turn-On Time  
Turn-Off Time  
DISABLE Voltage—Off/On  
Enabled Leakage Current  
f = 10 MHz  
VO = 0 V to 2 V, 50% logic to 50% output  
VO = 0 V to 2 V, 50% logic to 50% output  
−40  
45  
50  
1.75/1.90  
70  
2
dB  
ns  
ns  
V
μA  
μA  
V
DISABLE − VLOGIC REFERENCE  
LOGIC REFERENCE = 0.4 V  
DISABLE = 4.0 V  
Rev. F | Page 3 of 28  
 
 
AD8021  
AD8021AR/AD8021ARM  
Parameter  
Conditions  
Min  
Typ  
30  
33  
Max  
Unit  
μA  
μA  
Disabled Leakage Current  
LOGIC REFERENCE = 0.4 V  
DISABLE = 0.4 V  
POWER SUPPLY  
Operating Range  
Quiescent Current  
2.25  
5
7.0  
1.3  
−95  
−95  
12.0  
7.7  
1.6  
V
Output enabled  
Output disabled  
VCC = 4 V to 6 V, VEE = −5 V  
VCC = 5 V, VEE = −6 V to −4 V  
mA  
mA  
dB  
dB  
+Power Supply Rejection Ratio  
−Power Supply Rejection Ratio  
−86  
−86  
VS = ±12 V, @ TA = 2±°C, RL = 1 kΩ, gain = +2, unless otherwise noted.  
Table 2.  
AD8021AR/AD8021ARM  
Typ  
Parameter  
Conditions  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, CC = 10 pF, VO = 0.05 V p-p  
G = +2, CC = 7 pF, VO = 0.05 V p-p  
G = +5, CC = 2 pF, VO = 0.05 V p-p  
G = +10, CC = 0 pF, VO = 0.05 V p-p  
G = +1, CC = 10 pF  
G = +2, CC = 7 pF  
G = +5, CC = 2 pF  
G = +10, CC = 0 pF  
VO = 1 V step, RL = 500 Ω  
6 V input step, G = +2  
520  
175  
170  
125  
105  
140  
265  
400  
560  
220  
200  
165  
130  
170  
340  
460  
21  
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
V/μs  
V/μs  
ns  
Slew Rate, 1 V Step  
Settling Time to 0.01%  
Overload Recovery (50%)  
DISTORTION/NOISE PERFORMANCE  
f = 1 MHz  
90  
ns  
HD2  
HD3  
VO = 2 V p-p  
VO = 2 V p-p  
−95  
−116  
dBc  
dBc  
f = 5 MHz  
HD2  
HD3  
VO = 2 V p-p  
VO = 2 V p-p  
f = 50 kHz  
f = 50 kHz  
NTSC, RL = 150 Ω  
NTSC, RL = 150 Ω  
−71  
−83  
2.1  
2.1  
0.03  
0.04  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
%
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
Open-Loop Gain  
2.6  
Degrees  
0.4  
0.2  
8
10  
0.1  
88  
1.0  
mV  
μV/°C  
μA  
nA/°C  
μA  
dB  
TMIN to TMAX  
+Input or −input  
11.3  
0.5  
84  
INPUT CHARACTERISTICS  
Input Resistance  
Common-Mode Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
10  
1
MΩ  
pF  
V
−11.1 to +11.6  
−96  
VCM = 10 V  
−86  
dB  
Rev. F | Page 4 of 28  
AD8021  
AD8021AR/AD8021ARM  
Typ  
Parameter  
Conditions  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Linear Output Current  
Short-Circuit Current  
Capacitive Load Drive for 30% Overshoot  
DISABLE CHARACTERISTICS  
Off Isolation  
Turn-On Time  
Turn-Off Time  
DISABLE Voltage—Off/On  
Enabled Leakage Current  
−10.2 to +9.8 −10.6 to +10.2  
V
70  
115  
15/120  
mA  
mA  
pF  
VO = 50 mV p-p/1 V p-p  
f = 10 MHz  
VO = 0 V to 2 V, 50% logic to 50% output  
VO = 0 V to 2 V, 50% logic to 50% output  
−40  
45  
50  
1.80/1.95  
dB  
ns  
ns  
V
V
DISABLE − VLOGIC REFERENCE  
LOGIC REFERENCE = 0.4 V  
DISABLE = 4.0 V  
70  
2
μA  
μA  
μA  
μA  
Disabled Leakage Current  
LOGIC REFERENCE = 0.4 V  
DISABLE = 0.4 V  
30  
33  
POWER SUPPLY  
Operating Range  
Quiescent Current  
2.25  
5
7.8  
1.7  
−96  
−100  
12.0  
8.6  
2.0  
V
Output enabled  
Output disabled  
VCC = 11 V to 13 V, VEE = −12 V  
VCC = 12 V, VEE = −13 V to −11 V  
mA  
mA  
dB  
dB  
+Power Supply Rejection Ratio  
−Power Supply Rejection Ratio  
−86  
−86  
VS = ± V, @ TA = 2±°C, RL = 1 kΩ, gain = +2, unless otherwise noted.  
Table 3.  
AD8021AR/AD8021ARM  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, CC = 10 pF, VO = 0.05 V p-p  
G = +2, CC = 7 pF, VO = 0.05 V p-p  
G = +5, CC = 2 pF, VO = 0.05 V p-p  
G = +10, CC = 0 pF, VO = 0.05 V p-p  
G = +1, CC = 10 pF  
G = +2, CC = 7 pF  
G = +5, CC = 2 pF  
G = +10, CC = 0 pF  
VO = 1 V step, RL = 500 Ω  
0 V to 2.5 V input step, G = +2  
270  
155  
135  
95  
305  
190  
165  
130  
110  
140  
280  
390  
28  
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
V/μs  
V/μs  
ns  
Slew Rate, 1 V Step  
80  
110  
210  
290  
Settling Time to 0.01%  
Overload Recovery (50%)  
40  
ns  
DISTORTION/NOISE PERFORMANCE  
f = 1 MHz  
HD2  
HD3  
VO = 2 V p-p  
VO = 2 V p-p  
−84  
−91  
dBc  
dBc  
f = 5 MHz  
HD2  
HD3  
VO = 2 V p-p  
VO = 2 V p-p  
f = 50 kHz  
f = 50 kHz  
−68  
−81  
2.1  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
Input Voltage Noise  
Input Current Noise  
2.6  
2.1  
Rev. F | Page 5 of 28  
AD8021  
AD8021AR/AD8021ARM  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
Open-Loop Gain  
0.4  
0.8  
7.5  
10  
0.1  
76  
1.0  
mV  
μV/°C  
μA  
nA/°C  
μA  
dB  
TMIN to TMAX  
+Input or −input  
10.3  
0.5  
72  
INPUT CHARACTERISTICS  
Input Resistance  
10  
1
0.9 to 4.6  
−98  
MΩ  
pF  
V
Common-Mode Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Linear Output Current  
Short-Circuit Current  
Capacitive Load Drive for 30% Overshoot  
DISABLE CHARACTERISTICS  
Off Isolation  
1.5 V to 3.5 V  
−84  
dB  
1.25 to 3.38 1.10 to 3.60  
V
30  
50  
10/120  
mA  
mA  
pF  
VO = 50 mV p-p/1 V p-p  
f = 10 MHz  
VO = 0 V to 1 V, 50% logic to 50% output  
VO = 0 V to 1 V, 50% logic to 50% output  
−40  
45  
50  
1.55/1.70  
dB  
ns  
ns  
V
Turn-On Time  
Turn-Off Time  
DISABLE Voltage—Off/On  
Enabled Leakage Current  
V
DISABLE − VLOGIC REFERENCE  
LOGIC REFERENCE = 0.4 V  
DISABLE = 4.0 V  
70  
2
μA  
μA  
μA  
μA  
Disabled Leakage Current  
LOGIC REFERENCE = 0.4 V  
DISABLE = 0.4 V  
30  
33  
POWER SUPPLY  
Operating Range  
Quiescent Current  
2.25  
5
6.7  
1.2  
−82  
−84  
12.0  
7.5  
1.5  
V
Output enabled  
Output disabled  
VCC = 4.5 V to 5.5 V, VEE = 0 V  
VCC = 5 V, VEE = −0.5 V to +0.5 V  
mA  
mA  
dB  
dB  
+Power Supply Rejection Ratio  
−Power Supply Rejection Ratio  
−74  
−76  
Rev. F | Page 6 of 28  
AD8021  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
MAXIMUM POWER DISSIPATION  
Rating  
The maximum power that can be safely dissipated by the  
AD8021 is limited by the associated rise in junction tempera-  
ture. The maximum safe junction temperature for plastic  
encapsulated devices is determined by the glass transition  
temperature of the plastic, approximately 1±0°C. Temporarily  
exceeding this limit can cause a shift in parametric performance  
due to a change in the stresses exerted on the die by the package.  
Exceeding a junction temperature of 17±°C for an extended  
period can result in device failure.  
Supply Voltage  
Power Dissipation  
26.4 V  
Observed power  
derating curves  
VS 1 V  
0.8 V  
10 mA  
Observed power  
derating curves  
−65°C to +125°C  
−40°C to +85°C  
300°C  
Input Voltage (Common Mode)  
Differential Input Voltage1  
Differential Input Current  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
While the AD8021 is internally short-circuit protected, this can  
not be sufficient to guarantee that the maximum junction tem-  
perature (1±0°C) is not exceeded under all conditions. To ensure  
proper operation, it is necessary to observe the maximum  
power derating curves.  
1 The AD8021 inputs are protected by diodes. Current-limiting resistors are  
not used to preserve the low noise. If a differential input exceeds 0.8 V, the  
input current should be limited to 10 mA.  
2.0  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
1.5  
8-LEAD SOIC  
1.0  
8-LEAD MSOP  
0.5  
0.01  
–55 –45 –35 –25 –15 –5  
5 15 25 35 45 55 65 75 85  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Temperature1  
1 Specification is for device in free air: 8-lead SOIC: θJA = 125°C/W; 8-lead  
MSOP: θJA = 145°C/W.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. F | Page 7 of 28  
 
AD8021  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8021  
LOGIC  
REFERENCE  
1
2
3
4
8
7
6
5
DISABLE  
+V  
S
–IN  
V
+IN  
OUT  
–V  
S
C
COMP  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
LOGIC REFERENCE  
−IN  
+IN  
−VS  
CCOMP  
VOUT  
+VS  
Reference for Pin 81 Voltage Level. Connect to logic low supply.  
Inverting Input.  
Noninverting Input.  
Negative Supply Voltage.  
Compensation Capacitor. Tie to −VS. (See the Applications section for value.)  
Output.  
Positive Supply Voltage.  
Disable, Active Low.  
DISABLE  
1 When Pin 8 (  
) is higher than Pin 1 (LOGIC REFERENCE) by approximately 2 V or more, the part is enabled. When Pin 8 is brought down to within about 1.5 V of  
DISABLE  
Pin 1, the part is disabled. (See the Specifications tables for exact disable and enable voltage levels.) If the disable feature is not going to be used, Pin 8 can be tied to  
+VS or a logic high source, and Pin 1 can be tied to ground or logic low. Alternatively, if Pin 1 and Pin 8 are not connected, the part is in an enabled state.  
Rev. F | Page 8 of 28  
 
AD8021  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 2±°C, VS = ±± V, RL = 1 kΩ, G = +2, RF = RG = 499 Ω, RS = 49.9 Ω, RO = 976 Ω, RD = ±3.6 Ω, CC = 7 pF, CL = 0, CF = 0, VOUT = 2 V p-p,  
frequency = 1 MHz, unless otherwise noted.  
24  
21  
18  
15  
12  
9
9
G = +2  
V
= ±2.5V  
S
G = +10, R = 1k, R = 110, C = 0pF  
F
G
C
8
V
= ±5V  
S
7
G = +5, R = 1k, R = 249, C = 2pF  
F
G
C
6
5
4
G = +2, R = R = 499, C = 7pF  
F
G
C
V
= ±12V  
S
6
3
3
2
G = +1, R = 75, C = 10pF  
F
C
V
= ±2.5V  
100M  
S
0
1
–3  
–6  
0
–1  
1M  
10M  
1G  
0.1M  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5. Small Signal Frequency Response vs. Frequency and Gain,  
VOUT = 50 mV p-p, Noninverting (See Figure 48)  
Figure 8. Small Signal Frequency Response vs. Frequency and Supply,  
OUT = 50 mV p-p, Noninverting (See Figure 48)  
V
3
2
24  
21  
G = –1  
V
= ±2.5V  
S
V
= ±5V  
S
G = –10, R = 1kΩ, R = 100Ω,  
F
G
1
18  
15  
12  
9
R
= 100Ω, C = 0pF  
C
IN  
0
G = –5, R = 1kΩ, R = 200Ω,  
F
G
–1  
–2  
–3  
–4  
–5  
–6  
–7  
V
= ±12V  
S
R
= 66.5Ω, C = 1.5pF  
C
IN  
6
G = –2, R = 499Ω, R = 249Ω,  
F
G
3
R
= 63.4Ω, C = 4pF  
C
IN  
0
G = –1, R = 499Ω, R = 499Ω,  
F
G
V
= ±2.5V  
S
–3  
–6  
R
= 56.2Ω, C = 7pF  
IN  
C
1M  
10M  
100M  
1G  
0.1M  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
Figure 6. Small Signal Frequency Response vs. Frequency and  
Gain, VOUT = 50 mV p-p Inverting (See Figure 48)  
Figure 9. Small Signal Frequency Response vs. Frequency and Supply,  
VOUT = 50 mV p-p, Inverting (See Figure 50)  
9
9
G = +2  
C
= 5pF  
G = +2  
C
8
8
7
7
V
= 0.1V AND 50mV p-p  
OUT  
C
= 7pF  
C
6
5
6
5
C
= 9pF  
C
4
4
V
= 4V p-p  
OUT  
3
3
2
2
V
= 1V p-p  
OUT  
1
1
C
= 7pF  
C
0
0
C
= 9pF  
C
–1  
–1  
1M  
10M  
100M  
1G  
0.1M  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
Figure 7. Small Signal Frequency Response vs. Frequency and  
Compensation Capacitor, VOUT = 50 mV p-p (See Figure 48)  
Figure 10. Frequency Response vs. Frequency and VOUT, Noninverting  
(See Figure 48)  
Rev. F | Page 9 of 28  
 
 
AD8021  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
G = +2  
= R  
R
= 1k  
G = +2  
F
R
F
G
R
= 499Ω  
F
R
= 250Ω  
F
R
= 150Ω  
F
R
= 1k  
L
R
= 100Ω  
L
R
= 75Ω  
F
R
= 1kAND C = 2.2pF  
F
F
0.1M  
1M  
10M  
100M  
1G  
0.1M  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
Figure 11. Large Signal Frequency Response vs. Frequency and  
Load, Noninverting (See Figure 49)  
Figure 14. Small Signal Frequency Response vs. Frequency and RF,  
Noninverting, VOUT = 50 mV p-p (See Figure 48)  
9
15  
+85°C  
G = +2  
G = +2  
12  
8
7
6
5
4
3
2
1
0
+25°C  
9
6
3
–40°C  
V
=
OUT  
50mV p-p  
R
= 49.9  
S
+85°C  
0
–3  
V
=
OUT  
2V p-p  
R
= 100Ω  
–6  
S
+25°C  
–9  
R
= 249Ω  
S
–12  
–15  
–40°C  
–1  
1M  
10M  
100M  
1G  
0.1M  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FREQUENCY (Hz)  
Figure 12. Frequency Response vs. Frequency, Temperature, and  
VOUT, Noninverting (See Figure 48)  
Figure 15. Small Signal Frequency Response vs. Frequency and RS,  
Noninverting, VOUT = 50 mV p-p (See Figure 48)  
18  
100  
50pF  
G = +2  
15  
12  
9
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30pF  
20pF  
10pF  
180  
135  
90  
6
3
0pF  
0
45  
–3  
–6  
–9  
–12  
0
–45  
–90  
–135  
100M  
10M  
FREQUENCY (Hz)  
1M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 13. Small Signal Frequency Response vs.  
Frequency and Capacitive Load, Noninverting, VOUT = 50 mV p-p  
(See Figure 49 and Figure 71)  
Figure 16. Open-Loop Gain and Phase vs. Frequency, RG = 100 Ω,  
RF = 1 kΩ, RO = 976 Ω, RD = 53.6 Ω, CC = 0 pF (See Figure 50)  
Rev. F | Page 10 of 28  
 
 
AD8021  
6.4  
6.2  
6.0  
5.8  
5.6  
5.4  
–20  
–30  
G = +2  
V
= ±2.5V  
S
–40  
f1  
f2  
–50  
P
Δf = 0.2MHz  
OUT  
–60  
976Ω  
–70  
V
= ±5V  
53.6Ω  
50Ω  
S
V
= ±12V  
S
–80  
–90  
–100  
–110  
–120  
1M  
10M  
FREQUENCY (Hz)  
100M  
9.5  
9.7  
10.0  
FREQUENCY (MHz)  
10.3  
10.5  
Figure 17. 0.1 dB Flatness vs. Frequency and Supply, VOUT = 1 V p-p,  
RL = 150 Ω, Noninverting (See Figure 49)  
Figure 20. Intermodulation Distortion vs. Frequency  
50  
45  
40  
35  
30  
25  
20  
–20  
–30  
–40  
–50  
–60  
SECOND  
V
= ±5V  
S
–70  
R
= 100Ω  
L
–80  
R
= 1kΩ  
L
V
= ±2.5V  
S
–90  
–100  
–110  
–120  
–130  
THIRD  
0
5
10  
FREQUENCY (MHz)  
15  
20  
0.1M  
1M  
FREQUENCY (Hz)  
10M  
20M  
Figure 18. Second and Third Harmonic Distortion vs. Frequency and RL  
Figure 21. Third-Order Intercept vs. Frequency and Supply Voltage  
–30  
–40  
–50  
–60  
–50  
–60  
–70  
SECOND  
–70  
–80  
THIRD  
= ±2.5V  
–80  
–90  
R
= 100Ω  
SECOND  
L
V
S
THIRD  
–90  
SECOND  
SECOND  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
V
= ±5V  
S
R
= 1kΩ  
L
V
= ±12V  
S
SECOND  
THIRD  
THIRD  
100k  
1M  
FREQUENCY (Hz)  
10M  
20M  
1
2
3
V
4
5
6
(V p-p)  
OUT  
Figure 19. Second and Third Harmonic Distortion vs. Frequency and VS  
Figure 22. Second and Third Harmonic Distortion vs. VOUT and RL  
Rev. F | Page 11 of 28  
 
 
AD8021  
–50  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
–3.1  
–3.2  
–3.3  
–3.4  
–3.5  
–3.6  
–3.7  
–3.8  
–60  
SECOND  
POSITIVE OUTPUT  
–70  
fC = 5MHz  
–80  
THIRD  
SECOND  
–90  
fC = 1MHz  
–100  
–110  
–120  
NEGATIVE OUTPUT  
1600  
THIRD  
2
0
400  
800  
LOAD (  
1200  
2000  
1
3
V
4
5
6
(V p-p)  
Ω)  
OUT  
Figure 23. Second and Third Harmonic Distortion vs. VOUT and  
Fundamental Frequency (fC), G = +2  
Figure 26. DC Output Voltages vs. Load (See Figure 48)  
–40  
120  
100  
80  
–50  
V
= ±12V  
= ±5.0V  
fC = 5MHz  
S
–60  
–70  
SECOND  
V
S
THIRD  
60  
40  
20  
0
–80  
V
= ±2.5V  
S
SECOND  
fC = 1MHz  
–90  
THIRD  
2
–100  
–110  
1
3
V
4
5
6
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
(V p-p)  
OUT  
TEMPERATURE (°C)  
Figure 24. Second and Third Harmonic Distortion vs. VOUT and  
Fundamental Frequency (fC), G = +10  
Figure 27. Short-Circuit Current to Ground vs. Temperature  
–70  
50  
G = 2  
40  
fC = 1MHz  
R
= 1kΩ  
L
R
= 1kΩ, 150Ω  
R
= R  
L
F
G
–80  
–90  
30  
20  
10  
G = +2  
SECOND  
THIRD  
600  
–100  
–110  
–120  
–10  
–20  
–30  
–40  
–50  
0
200  
400  
800  
1000  
0
40  
80  
120  
TIME (ns)  
160  
200  
FEEDBACK RESISTANCE (Ω)  
Figure 25. Second and Third Harmonic Distortion vs. Feedback Resistor (RF)  
Figure 28. Small Signal Transient Response vs.  
RL, VO = 50 mV p-p, Noninverting (See Figure 49)  
Rev. F | Page 12 of 28  
AD8021  
V
G = 2  
= 4V p-p  
O
V
G = 2  
= 2V p-p  
O
2.0  
1.0  
2.0  
1.0  
R
= 1kΩ  
L
R
= 150Ω  
V
= ±2.5V  
L
S
–1.0  
–2.0  
–1.0  
–2.0  
V
= ±5V  
S
120  
TIME (ns)  
160  
200  
0
40  
80  
120  
160  
200  
0
40  
80  
TIME (ns)  
Figure 32. Large Signal Transient Response vs. VS (See Figure 48)  
Figure 29. Large Signal Transient Response vs. RL, Noninverting  
(See Figure 49)  
5
V
= ±3V  
IN  
G = +2  
V
= 4V p-p  
O
G = –1  
4
3
2
1
V
= 1V/DIV  
= 2V/DIV  
V
, R = 1kΩ  
IN  
OUT  
L
V
OUT  
V
IN  
R
= 150Ω  
L
–1  
–2  
–3  
–4  
–5  
V
OUT  
V
IN  
100  
0
200  
300  
400  
500  
0
50  
100  
150  
200  
250  
TIME (ns)  
TIME (ns)  
Figure 33. Overdrive Recovery vs. RL (See Figure 49)  
Figure 30. Large Signal Transient Response, Inverting (See Figure 50)  
C
= 50pF  
V = 4V p-p  
O
G = 2  
L
G = 2  
2.0  
1.0  
C
= 10pF, 0pF  
L
+0.01%  
–0.01%  
25ns  
–1.0  
–2.0  
VERT = 0.2mV/DIV  
HOR = 5ns/DIV  
0
40  
80  
120  
160  
200  
TIME (ns)  
Figure 34. 0.01% Settling Time, 2 V Step  
Figure 31. Large Signal Transient Response vs. CL (See Figure 48)  
Rev. F | Page 13 of 28  
AD8021  
100  
100  
80  
60  
40  
PULSE WIDTH = 120ns  
PULSE WIDTH = 300µs  
20  
0
10  
–20  
–40  
–60  
–80  
–100  
5V  
0V  
t1  
1
10  
0
4
8
12  
16  
20  
24  
28  
32  
100  
1k  
10k  
100k  
1M  
10M  
TIME (µs)  
FREQUENCY (Hz)  
Figure 35. Long-Term Settling, 0 V to 5 V, VS = 12 V, G = +13  
Figure 38. Input Current Noise vs. Frequency  
50  
0.48  
0.44  
0.40  
0.36  
0.32  
0.28  
0.24  
G = +1  
40  
30  
20  
10  
–10  
–20  
–30  
–40  
–50  
–50  
–25  
0
25  
50  
75  
100  
0
40  
80  
120  
TIME (ns)  
160  
200  
TEMPERATURE (°C)  
Figure 36. Small Signal Transient Response, VO = 50 mV p-p, G = +1  
(See Figure 48)  
Figure 39. VOS vs. Temperature  
100  
8.4  
8.0  
7.6  
7.2  
6.8  
6.4  
6.0  
10  
2.1nV/Hz  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
Figure 37. Input Voltage Noise vs. Frequency  
Figure 40. Input Bias Current vs. Temperature  
Rev. F | Page 14 of 28  
AD8021  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–90  
–110  
–120  
–100  
10k  
100k  
1M  
10M  
100M  
0.1M  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 41. CMRR vs. Frequency (See Figure 51)  
Figure 44. Input-to-Output Isolation, Chip Disabled (See Figure 54)  
300  
100  
30  
300k  
100k  
30k  
10k  
3k  
10  
3
1
1k  
0.3  
0.1  
0.03  
0.01  
0.003  
300  
100  
30  
10  
3
10k  
10k  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 42. Output Impedance vs. Frequency, Chip Enabled  
(See Figure 52)  
Figure 45. Output Impedance vs. Frequency, Chip Disabled  
(See Figure 55)  
0
DISABLE  
4V  
2V  
–10  
–PSRR  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
OUTPUT  
V
= ±2.5V  
+PSRR  
= ±12V  
S
2V  
1V  
V
S
tEN = 45ns  
tDIS = 50ns  
V
= ±5V  
S
0
100  
200  
300  
TIME (ns)  
400  
500  
10k  
100k  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
Figure 43. Enable (tEN)/Disable (tDIS) Time vs. VOUT (See Figure 53)  
Figure 46. PSRR vs. Frequency and Supply Voltage  
(See Figure 56 and Figure 57)  
Rev. F | Page 15 of 28  
AD8021  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
Figure 47. Quiescent Supply Current vs. Temperature  
Rev. F | Page 16 of 28  
AD8021  
TEST CIRCUITS  
+V  
C
S
AD8021  
+V  
S
50Ω CABLE  
HP8753D  
R
S
50Ω CABLE  
R
NETWORK  
ANALYZER  
O
50Ω  
5
R
C
100Ω  
IN  
5
50Ω  
R
D
49.9Ω  
C
C
–V  
S
R
C
7pF  
F
R
G
–V  
S
R
499Ω  
G
R
F
F
499Ω  
Figure 48. Noninverting Gain  
Figure 52. Output Impedance, Chip Enabled  
FET  
PROBE  
AD8021  
+V  
+V  
S
S
50Ω CABLE  
49.9Ω  
R
S
50Ω  
1
49.9Ω  
976Ω  
1.0V  
5
LOGIC REF  
DISABLE  
C
L
R
IN  
49.9Ω  
8
53.6Ω  
R
5
L
C
C
C
C
4V  
49.9Ω  
–V  
S
7pF  
R
–V  
S
F
R
G
499Ω  
499Ω  
C
F
Figure 49. Noninverting Gain and FET Probe  
Figure 53. Enable/Disable  
+V  
S
HP8753D  
50Ω CABLE  
R
NETWORK  
ANALYZER  
O
49.9Ω  
5
R
D
50Ω  
50Ω  
C
50Ω CABLE  
–V  
C
S
50Ω CABLE  
+V  
S
R
50Ω  
R
F
G
R
IN  
49.9Ω  
49.9Ω  
49.9Ω  
AD8021  
FET  
PROBE  
1
8
LOGIC REF  
DISABLE  
Figure 50. Inverting Gain  
1kΩ  
5
C
7pF  
C
–V  
HP8753D  
S
NETWORK  
ANALYZER  
499Ω  
499Ω  
Figure 54. Input-to-Output Isolation, Chip Disabled  
50Ω  
50Ω  
AD8021  
49.9Ω  
+V  
S
AD8021  
1
HP8753D  
499Ω  
+V  
NETWORK  
ANALYZER  
S
8
499Ω  
5
C
C
100Ω  
50Ω  
5
7pF  
–V  
S
C
C
7pF  
499Ω  
499Ω  
55.6Ω  
–V  
S
Figure 55. Output Impedance, Chip Disabled  
Figure 51. CMRR  
Rev. F | Page 17 of 28  
 
 
 
 
 
 
 
AD8021  
BIAS  
BNC  
BIAS  
BNC  
HP8753D  
NETWORK  
ANALYZER  
HP8753D  
NETWORK  
ANALYZER  
50Ω  
50Ω  
50Ω  
+V  
50Ω  
–V  
S
S
50Ω CABLE  
50Ω CABLE  
+V  
S
49.9Ω, 5W  
976Ω  
+V  
S
249Ω  
5
976Ω  
53.6Ω  
249Ω  
5
53.6Ω  
C
7pF  
C
–V  
S
C
7pF  
C
49.9Ω  
5W  
–V  
S
499Ω  
499Ω  
499Ω  
499Ω  
Figure 56. Positive PSRR  
Figure 57. Negative PSRR  
Rev. F | Page 18 of 28  
 
AD8021  
APPLICATIONS  
degraded to about 20 MHz and the phase margin increases to  
90° (Arrow B). However, by reducing CC to 0 pF, the bandwidth  
and phase margin return to about 200 MHz and 60° (Arrow C),  
respectively. In addition, the slew rate is dramatically increased,  
as it roughly varies with the inverse of CC.  
The typical voltage feedback op amp is frequency stabilized  
with a fixed internal capacitor, CINTERNAL, using dominant pole  
compensation. To a first-order approximation, voltage feedback  
op amps have a fixed gain bandwidth product. For example, if  
its −3 dB bandwidth is 200 MHz for a gain of G = +1; at a gain  
of G = +10, its bandwidth is only about 20 MHz. The AD8021 is  
a voltage feedback op amp with a minimal CINTERNAL of about  
1.± pF. By adding an external compensation capacitor, CC, the  
user can circumvent the fixed gain bandwidth limitation of  
other voltage feedback op amps.  
10  
9
8
7
6
Unlike the typical op amp with fixed compensation, the  
AD8021 allows the user to:  
5
4
3
Maximize the amplifier bandwidth for closed-loop gains  
between 1 and 10, avoiding the usual loss of bandwidth  
and slew rate.  
2
1
0
Optimize the trade-off between bandwidth and phase  
margin for a particular application.  
1
2
3
4
5
6
7
8
9
10  
11  
NOISE GAIN (V/V)  
Figure 59. Suggested Compensation Capacitance vs. Gain for  
Maintaining 1 dB Peaking  
Match bandwidth in gain blocks with different noise gains,  
such as when designing differential amplifiers (as shown in  
Figure 6±).  
Table 6 and Figure ±9 provide recommended values of com-  
pensation capacitance at various gains and the corresponding  
slew rate, bandwidth, and noise. Note that the value of the  
compensation capacitor depends on the circuit noise gain, not  
the voltage gain. As shown in Figure 60, the noise gain, GN, of  
an op amp gain block is equal to its noninverting voltage gain,  
regardless of whether it is actually used for inverting or nonin-  
verting gain. Thus,  
110  
100  
180  
135  
90  
45  
0
90  
86  
80  
(A)  
(C)  
(B)  
C
= 0pF  
C
70  
60  
50  
40  
30  
20  
10  
0
C
= 10pF  
C
Noninverting GN = RF/RG + 1  
Inverting GN = RF/RG + 1  
(C)  
R
R
F
G
249  
1kΩ  
R
S
3
(B)  
+
1
2
3
(A)  
6
+
–10  
1k  
AD8021  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
6
5
FREQUENCY (Hz)  
AD8021  
2
R
1kΩ  
F
–V  
S
Figure 58. Simplified Diagram of Open-Loop Gain and Phase Response  
5
G = –4  
–V  
S
G
= +5  
C
N
COMP  
Figure ±8 is the AD8021 gain and phase plot that has been  
simplified for instructional purposes. Arrow A in Figure ±8  
shows a bandwidth of about 200 MHz and a phase margin at  
about 60° when the desired closed-loop gain is G = +1 and  
the value chosen for the external compensation capacitor is  
CC = 10 pF. If the gain is changed to G = +10 and CC is fixed at  
10 pF, then (as expected for a typical op amp) the bandwidth is  
R
G
249Ω  
G = G = +5  
N
C
COMP  
NONINVERTING  
INVERTING  
Figure 60. The Noise Gain of Both is 5  
Rev. F | Page 19 of 28  
 
 
 
 
 
AD8021  
CF = CL = 0, RL = 1 kΩ, RIN = 49.9 Ω (see Figure 49).  
Table 6. Recommended Component Values  
Noise Gain  
−3 dB  
Output Noise  
Output Noise  
(Noninverting  
Gain)  
SS BW (AD8021 Only)  
(AD8021 with Resistors)  
(nV/√Hz)  
RS (Ω) RF (Ω) RG (Ω) CCOMP (pF)  
Slew Rate (V/μs)  
(MHz)  
490  
205  
185  
150  
42  
(nV/√Hz)  
2.1  
4.3  
10.7  
21.2  
1
2
5
10  
20  
100  
75  
75  
NA  
10  
7
120  
150  
300  
420  
200  
34  
2.8  
8.2  
15.5  
27.9  
52.7  
264.1  
49.9  
49.9  
49.9  
49.9  
49.9  
499  
1 k  
1 k  
1 k  
1 k  
499  
249  
110  
52.3  
10  
2
0
0
0
42.2  
6
211.1  
With the AD8021, a variety of trade-offs can be made to fine-  
tune its dynamic performance. Sometimes more bandwidth  
or slew rate is needed at a particular gain. Reducing the  
compensation capacitance, as illustrated in Figure 7, increases  
the bandwidth and peaking due to a decrease in phase margin.  
On the other hand, if more stability is needed, increasing the  
compensation capacitor decreases the bandwidth while  
increasing the phase margin.  
Additionally, any resistance in series with the source creates a  
pole with the input capacitance (as well as dampen high  
frequency resonance due to package and board inductance  
and capacitance), the effect of which is shown in Figure 1±.  
It must also be noted that increasing resistor values increases  
the overall noise of the amplifier and that reducing the feedback  
resistor value increases the load on the output stage, thus  
increasing distortion (see Figure 22).  
As with all high speed amplifiers, parasitic capacitance and  
inductance around the amplifier can affect its dynamic  
USING THE DISABLE FEATURE  
DISABLE  
) is higher than Pin 1 (LOGIC  
response. Often, the input capacitance (due to the op amp itself,  
as well as the PC board) has a significant effect. The feedback  
resistance, together with the input capacitance, can contribute  
to a loss of phase margin, thereby affecting the high frequency  
response, as shown in Figure 14. A capacitor (CF) in parallel  
with the feedback resistor can compensate for this phase loss.  
When Pin 8 (  
REFERENCE) by approximately 2 V or more, the part is  
enabled. When Pin 8 is brought down to within about 1.± V  
of Pin 1, the part is disabled. See Table 1 for exact disable and  
enable voltage levels. If the disable feature is not used, Pin 8 can  
be tied to VS or a logic high source, and Pin 1 can be tied to  
ground or logic low. Alternatively, if Pin 1 and Pin 8 are not  
connected, the part is in an enabled state.  
Rev. F | Page 20 of 28  
 
 
AD8021  
THEORY OF OPERATION  
The AD8021 is fabricated on the second generation of Analog  
Devices proprietary High Voltage eXtra-Fast Complementary  
Bipolar (XFCB) process, which enables the construction of PNP  
and NPN transistors with similar fTs in the 3 GHz region. The  
transistors are dielectrically isolated from the substrate (and  
each other), eliminating the parasitic and latch-up problems  
caused by junction isolation. It also reduces nonlinear capaci-  
tance (a source of distortion) and allows a higher transistor, fT,  
for a given quiescent current. The supply current is trimmed,  
which results in less part-to-part variation of bandwidth, slew  
rate, distortion, and settling time.  
PCB LAYOUT CONSIDERATIONS  
As with all high speed op amps, achieving optimum performance  
from the AD8021 requires careful attention to PC board layout.  
Particular care must be exercised to minimize lead lengths  
between the ground leads of the bypass capacitors and between  
the compensation capacitor and the negative supply. Otherwise,  
lead inductance can influence the frequency response and even  
cause high frequency oscillations. Use of a multilayer printed  
circuit board, with an internal ground plane, reduces ground  
noise and enables a compact component arrangement.  
Due to the relatively high impedance of Pin ± and low values of  
the compensation capacitor, a guard ring is recommended. The  
guard ring is simply a PC trace that encircles Pin ± and is  
connected to the output, Pin 6, which is at the same potential as  
Pin ±. This serves two functions. It shields Pin ± from any local  
circuit noise generated by surrounding circuitry. It also  
minimizes stray capacitance, which would tend to otherwise  
reduce the bandwidth. An example of a guard ring layout is  
shown in Figure 62.  
As shown in Figure 61, the AD8021 input stage consists of an  
NPN differential pair in which each transistor operates at a  
0.8 mA collector current. This allows the input devices a high  
transconductance; thus, the AD8021 has a low input noise of  
2.1 nV/√Hz @ ±0 kHz. The input stage drives a folded cascode  
that consists of a pair of PNP transistors. The folded cascode  
and current mirror provide a differential-to-single-ended  
conversion of signal current. This current then drives the high  
impedance node (Pin ±), where the CC external capacitor is  
connected. The output stage preserves this high impedance with  
a current gain of ±000, so that the AD8021 can maintain a high  
open-loop gain even when driving heavy loads.  
Also shown in Figure 62, the compensation capacitor is located  
immediately adjacent to the edge of the AD8021 package, spanning  
Pin 4 and Pin ±. This capacitor must be a high quality surface-  
mount COG or NPO ceramic. The use of leaded capacitors is  
not recommended. The high frequency bypass capacitor(s)  
should be located immediately adjacent to the supplies,  
Pin 4 and Pin 7.  
Two internal diode clamps across the inputs (Pin 2 and Pin 3)  
protect the input transistors from large voltages that could  
otherwise cause emitter-base breakdown, which would result in  
degradation of offset voltage and input bias current.  
To achieve the shortest possible lead length at the inverting  
input, the feedback resistor RF is located beneath the board and  
spans the distance from the output, Pin 6, to inverting input  
Pin 2. The return node of Resistor RG should be situated as close  
as possible to the return node of the negative supply bypass  
capacitor connected to Pin 4.  
+V  
S
OUTPUT  
+IN  
–IN  
(TOP VIEW)  
BYPASS  
CAPACITOR  
LOGIC REFERENCE  
1
2
3
4
8
7
6
5
DISABLE  
C
1.5pF  
INTERNAL  
+V  
–IN  
+IN  
S
–V  
S
V
OUT  
GROUND  
PLANE  
C
COMP  
C
C
–V  
S
C
COMP  
Figure 61. Simplified Schematic  
METAL  
BYPASS  
CAPACITOR  
COMPENSATION  
CAPACITOR  
GROUND  
PLANE  
Figure 62. Recommended Location of  
Critical Components and Guard Ring  
Rev. F | Page 21 of 28  
 
 
 
AD8021  
Table 8. Summary of ADC Driver Performance  
(fC = 100 kHz, VOUT = 20 V p-p)  
DRIVING 16-BIT ADCs  
Low noise and adjustable compensation make the AD8021  
especially suitable as a buffer/driver for high resolution ADCs.  
Parameter  
Measurement  
Unit  
dBc  
dBc  
dBc  
dBc  
Second Harmonic Distortion  
−92.6  
As seen in Figure 19, the harmonic distortion is better than 90 dBc  
at frequencies between 100 kHz and 1 MHz. This is an  
Third Harmonic Distortion  
THD  
SFDR  
−86.4  
−84.4  
+5.4  
advantage for complex waveforms that contain high frequency  
information, because the phase and gain integrity of the sampled  
waveform can be preserved throughout the conversion process.  
The increase in loop gain results in improved output regulation  
and lower noise when the converter input changes state during  
a sample. This advantage is particularly apparent when using  
16-bit high resolution ADCs with high sampling rates.  
DIFFERENTIAL DRIVER  
The AD8021 is uniquely suited as a low noise differential driver  
for many ADCs, balanced lines, and other applications requiring  
differential drive. If pairs of internally compensated op amps are  
configured as inverter and follower, the noise gain of the inverter  
is higher than that of the follower section, resulting in an  
imbalance in the frequency response (see Figure 66).  
Figure 63 shows a typical ADC driver configuration. The  
AD8021 is in an inverting gain of −7.±, fC is 6± kHz, and its  
output voltage is 10 V p-p. The results are listed in Table 7.  
A better solution takes advantage of the external compensation  
feature of the AD8021. By reducing the CCOMP value of the  
inverter, its bandwidth can be increased to match that of the  
follower, avoiding compromises in gain bandwidth and phase  
delay. The inverting and noninverting bandwidths can be  
closely matched using the compensation feature, thus  
minimizing distortion.  
+12V  
+5V  
3
+
6
IN  
HI  
590Ω  
AD8021  
5
2
C
C
10pF  
AD7665  
570kSPS  
R
200Ω  
R
1.5kΩ  
G
F
–12V  
Figure 6± illustrates an inverter-follower driver circuit operating  
at a gain of 2, using individually compensated AD8021s. The  
values of feedback and load resistors were selected to provide a  
total load of less than 1 kΩ, and the equivalent resistances seen  
at each op amp’s inputs were matched to minimize offset voltage  
and drift. Figure 67 is a plot of the resulting ac responses of  
driver halves.  
50Ω  
IN  
HI  
56pF  
Figure 63. Inverting ADC Driver, Gain = −7.5, fC = 65 kHz  
Table 7. Summary of ADC Driver Performance (fC = 65 kHz,  
OUT = 10 V p-p)  
V
Parameter  
Measurement  
−101.3  
−109.5  
−100.0  
+100.3  
Unit  
dBc  
dBc  
dBc  
dBc  
249Ω  
G = +2  
3
+
V
IN  
49.9Ω  
Second Harmonic Distortion  
Third Harmonic Distortion  
THD  
SFDR  
6
AD8021  
5
2
–V  
S
7pF  
499Ω  
499Ω  
V
OUT1  
Figure 64 shows another ADC driver connection. The circuit  
was tested with a noninverting gain of 10.1 and an output  
voltage of approximately 20 V p-p for optimum resolution and  
noise performance. No filtering was used. An FFT was  
performed using Analog Devices evaluation software for the  
AD766± 16-bit converter. The results are listed in Table 8.  
1kΩ  
232Ω  
G = –2  
3
2
+
6
V
AD8021  
OUT2  
5
1kΩ  
–V  
S
5pF  
332Ω  
664Ω  
+12V  
+5V  
Figure 65. Differential Amplifier  
50Ω  
3
+
50Ω  
6
IN  
HI  
AD8021  
50Ω  
5
F
2
C
C
AD7665  
570kSPS  
R
750Ω  
–12V  
ADC  
R
G
82.5Ω  
OPTIONAL C  
F
IN  
LO  
Figure 64. Noninverting ADC Driver, Gain = 10, fC = 100 kHz  
Rev. F | Page 22 of 28  
 
 
 
 
 
 
AD8021  
12  
9
C1  
+V  
S
AD8021  
R1  
R2  
C2  
3
2
V
IN  
6
6
5
V
OUT  
3
0
G = –2  
G = +2  
C
C
–V  
S
–3  
–6  
–9  
–12  
–15  
–18  
R
F
R
G
Figure 68. Schematic of a Second-Order, Low-Pass Active Filter  
Table 9. Typical Component Values for Second-Order, Low-  
Pass Active Filter of Figure 68  
Gain R1  
(Ω)  
R2  
(Ω)  
RF  
(Ω)  
RG  
(Ω)  
C1  
(nF)  
C2  
(nF)  
CC  
(pF)  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
2
5
71.5  
44.2  
215  
365  
499  
365  
499  
90.9  
10  
10  
10  
10  
7
2
Figure 66. AC Response of Two Identically Compensated High Speed Op  
Amps Configured for a Gain of +2 and a Gain of −2  
12  
9
50  
40  
30  
6
3
G = ±2  
20  
G = 5  
0
–3  
10  
0
G = 2  
–6  
–10  
–20  
–30  
–40  
–50  
–9  
–12  
–15  
–18  
100k  
1M  
10M  
100M  
1G  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 67. AC Response of Two Dissimilarly Compensated AD8021 Op Amps  
(Figure 66) Configured for a Gain of +2 and a Gain of −2,  
(Note the Close Gain Match)  
Figure 69. Frequency Response of the Filter Circuit of Figure 68  
for Two Different Gains  
DRIVING CAPACITIVE LOADS  
USING THE AD8021 IN ACTIVE FILTERS  
When the AD8021 drives a capacitive load, the high frequency  
response can show excessive peaking before it rolls off. Two  
techniques can be used to improve stability at high frequency  
and reduce peaking. The first technique is to increase the  
compensation capacitor, CC, which reduces the peaking while  
maintaining gain flatness at low frequencies. The second  
technique is to add a resistor, RSNUB, in series between the output  
pin of the AD8021 and the capacitive load, CL. Figure 70 shows  
the response of the AD8021 when both CC and RSNUB are used to  
reduce peaking. For a given CL, Figure 71 can be used to  
determine the value of RSNUB that maintains 2 dB of peaking in  
the frequency response. Note, however, that using RSNUB attenuates  
the low frequency output by a factor of RLOAD/(RSNUB + RLOAD).  
The low noise and high gain bandwidth of the AD8021 make it  
an excellent choice in active filter circuits. Most active filter  
literature provides resistor and capacitor values for various  
filters but neglects the effect of the op amps finite bandwidth on  
filter performance; ideal filter response with infinite loop gain is  
implied. Unfortunately, real filters do not behave in this manner.  
Instead, they exhibit finite limits of attenuation, depending on  
the gain bandwidth of the active device. Good low-pass filter  
performance requires an op amp with high gain bandwidth for  
attenuation at high frequencies, and low noise and high dc gain  
for low frequency, pass-band performance.  
Figure 68 shows the schematic of a 2-pole, low-pass active filter  
and lists typical component values for filters having a Bessel-  
type response with a gain of 2 and a gain of ±. Figure 69 is a  
network analyzer plot of this filters performance.  
Rev. F | Page 23 of 28  
 
 
 
 
 
AD8021  
18  
20  
18  
16  
14  
12  
10  
8
FET  
PROBE  
+V  
S
16  
C
R
= 7pF;  
= 0  
C
R
SNUB  
5
6
Ω
49.9  
Ω
SNUB  
14  
49.9  
Ω
R
L
33pF  
C
R
= 8pF;  
C
1kΩ  
12  
10  
–V  
= 0  
Ω
S
SNUB  
C
C
499Ω  
499  
Ω
8
6
4
2
0
6
4
C
R
= 8pF;  
C
2
= 17.4Ω  
SNUB  
0
0.1  
1.0  
10  
FREQUENCY (MHz)  
100  
1000  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
CAPACITIVE LOAD (pF)  
Figure 70. Peaking vs. RSNUB and CC for CL = 33 pF  
Figure 71. Relationship of RSNUB vs. CL for 2 dB Peaking at a Gain of +2  
Rev. F | Page 24 of 28  
 
AD8021  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 72. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 73. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8021AR  
Temperature Range  
Package Description  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
Package Option  
Branding  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
AD8021AR-REEL  
AD8021AR-REEL7  
AD8021ARZ1  
AD8021ARZ-REEL1  
AD8021ARZ-REEL71  
AD8021ARM  
AD8021ARM-REEL  
AD8021ARM-REEL7  
AD8021ARMZ1  
AD8021ARMZ-REEL1  
AD8021ARMZ-REEL71  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
HNA  
HNA  
HNA  
HNA#  
HNA#  
HNA#  
1Z = Pb-free part, # denotes lead-free product may be top or bottom marked.  
Rev. F | Page 25 of 28  
 
 
AD8021  
NOTES  
Rev. F | Page 26 of 28  
AD8021  
NOTES  
Rev. F | Page 27 of 28  
AD8021  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C01888-0-5/06(F)  
Rev. F | Page 28 of 28  

相关型号:

AD8021ARMZ-REEL7

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARZ

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARZ-REEL

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARZ-REEL7

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021_06

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8022

Dual High-Speed Low-Noise Op Amps
ADI

AD80220BBCZ

Dual-Channel, 14-Bit CCD Signal Processor and Precision Timing Core
ADI

AD8022AR

Dual High-Speed Low-Noise Op Amps
ADI

AD8022AR-EVAL

Dual High-Speed Low-Noise Op Amps
ADI

AD8022AR-REEL

Dual High Speed, Low Noise Op Amp
ADI

AD8022AR-REEL7

Dual High Speed, Low Noise Op Amp
ADI

AD8022ARM

Dual High-Speed Low-Noise Op Amps
ADI