AD8030ARJ-R2 [ADI]

Low Power, High Speed Rail-to-Rail Input/Output Amplifier; 低功耗,高速轨到轨输入/输出放大器
AD8030ARJ-R2
型号: AD8030ARJ-R2
厂家: ADI    ADI
描述:

Low Power, High Speed Rail-to-Rail Input/Output Amplifier
低功耗,高速轨到轨输入/输出放大器

运算放大器 放大器电路 光电二极管
文件: 总20页 (文件大小:883K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, High Speed  
Rail-to-Rail Input/Output Amplifier  
AD8029/AD8030/AD8040  
CONNECTION DIAGRAMS  
FEATURES  
Low power  
1.3 mA supply current/amplifier  
High speed  
125 MHz, –3 dB bandwidth (G = +1)  
60 V/µs slew rate  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
DISABLE  
V
1
2
3
6
5
4
+V  
S
OUT  
+V  
V
S
OUT  
–V  
S
DISABLE  
–IN  
+
–V  
S
NC  
+IN  
NC = NO CONNECT  
80 ns settling time to 0.1%  
Rail-to-rail input and output  
No phase reversal, inputs 200 mV beyond rails  
Wide supply range: 2.7 V to 12 V  
Offset voltage: 6 mV max  
Low input bias current  
+0.7 µA to –1.5 µA  
Small packaging  
SOIC-8, SC70-6, SOT23-8, SOIC-14, TSSOP-14  
Figure 1. SOIC-8 (R)  
Figure 2. SC70-6 (KS)  
V
1
1
14  
V
OUT  
4
OUT  
–IN 1  
2
13 –IN 4  
12 +IN 4  
+IN 1  
3
4
5
6
7
+V  
S
11  
V
1
1
8
7
6
5
–V  
+V  
+V  
OUT  
S
S
+IN 2  
–IN 2  
10  
–IN 1  
+IN 1  
2
3
4
+IN 3  
2
OUT  
9
8
–IN 3  
–IN 2  
+IN 2  
APPLICATIONS  
Battery-powered instrumentation  
Filters  
–V  
S
V
2
V
3
OUT  
OUT  
Figure 3. SOIC-8(R) and  
SOT23-8 (RJ)  
Figure 4. SOIC-14 (R) and  
TSSOP-14 (RU)  
A-to-D drivers  
Buffering  
GENERAL DESCRIPTION  
The AD8029 (single), AD8030 (dual), and AD8040 (quad) are  
rail-to-rail input and output high speed amplifiers with a  
quiescent current of only 1.3 mA per amplifier. Despite their  
low power consumption, the amplifiers provide excellent  
performance with 125 MHz small signal bandwidth and  
60 V/µs slew rate. ADIs proprietary XFCB process enables high  
speed and high performance on low power.  
powered systems with large bandwidth requirements to high  
speed systems where component density requires lower power  
dissipation.  
The AD8029/AD8030 are the only low power, rail-to-rail input  
and output high speed amplifiers available in SOT23 and SC70  
micro packages. The amplifiers are rated over the extended  
industrial temperature range, –40°C to +125°C.  
This family of amplifiers exhibits true single-supply operation  
with rail-to-rail input and output performance for supply  
voltages ranging from 2.7 V to 12 V. The input voltage range  
extends 200 mV beyond each rail without phase reversal. The  
dynamic range of the output extends to within 40 mV of each  
rail.  
5.0  
INPUT  
4.5  
OUTPUT  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
The AD8029/AD8030/AD8040 provide excellent signal quality  
with minimal power dissipation. At G = +1, SFDR is –72 dBc at  
1 MHz and settling time to 0.1% is only 80 ns. Low distortion  
and fast settling performance make these amplifiers suitable  
drivers for single-supply A/D converters.  
1.0  
G = +1  
V
R
= +5V  
0.5  
0
S
The versatility of the AD8029/AD8030/AD8040 allows the user  
to operate the amplifiers on a wide range of supplies while  
consuming less than 6.5 mW of power. These features extend  
the operation time in applications ranging from battery-  
= 1kTIED TO MIDSUPPLY  
1µs/DIV  
L
TIME (µs)  
03679-A-010  
Figure 5. Rail-to-Rail Response  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD8029/AD8030/AD8040  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Specifications with ±± V Supply................................................. 3  
Specifications with +± V Supply................................................. 4  
Specifications with +3 V Supply................................................. ±  
Absolute Maximum Ratings............................................................ 6  
Maximum Power Dissipation ..................................................... 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 1±  
Input Stage................................................................................... 1±  
Output Stage................................................................................ 1±  
Applications..................................................................................... 16  
Wideband Operation ................................................................. 16  
Output Loading sensitivity........................................................ 16  
Disable Pin .................................................................................. 17  
Circuit Considerations .............................................................. 18  
Design Tools and Technical Support....................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide............................................................................... 20  
ESD Caution................................................................................ 20  
REVISION HISTORY  
Revision A  
11/03—Data Sheet Changed from Rev. 0 to Rev. A  
Change  
Page  
Added AD8040 part .......................................................Universal  
Change to Figure ± ....................................................................... 1  
Changes to Specifications............................................................ 3  
Changes to Figures 10–12............................................................ 7  
Change to Figure 14 ..................................................................... 8  
Changes to Figures 20 and 21 ..................................................... 9  
Inserted new Figure 36............................................................... 11  
Change to Figure 40 ................................................................... 12  
Inserted new Figure 41............................................................... 12  
Added Output Loading Sensitivity section............................. 16  
Changes to Table ±...................................................................... 17  
Changes to Power Supply Bypassing section .......................... 18  
Changes to Ordering Guide ...................................................... 20  
Rev. A | Page 2 of 20  
AD8029/AD8030/AD8040  
SPECIFICATIONS  
SPECIFICATIONS WITH 5 V SUPPLY  
Table 1. VS = 5 V @ TA = 25°C, G = +1, RL = 1 kΩ to ground, unless otherwise noted. All specifications are per amplifier.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
G = +1, VO = 2 V p-p  
G = +2, VO = 0.1 V p-p  
G = +1, VO = 2 V Step  
G = –1, VO = 2 V Step  
G = +2, VO = 2 V Step  
80  
14  
125  
19  
6
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
62  
63  
80  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Spurious Free Dynamic Range (SFDR)  
fC = 1 MHz, VO = 2 V p-p  
fC = 5 MHz, VO = 2 V p-p  
f = 100 kHz  
–74  
–56  
16.5  
1.1  
dBc  
dBc  
nV/√  
pA/√  
dB  
Input Voltage Noise  
Input Current Noise  
Hz  
Hz  
f = 100 kHz  
Crosstalk (AD8030/AD8040)  
DC PERFORMANCE  
f = 5 MHz, VIN = 2 V p-p  
–79  
Input Offset Voltage  
PNP Active, VCM = 0 V  
NPN Active, VCM = 4.5 V  
TMIN to TMAX  
1.6  
2
5
6
mV  
mV  
Input Offset Voltage Drift  
Input Bias Current1  
30  
0.7  
1
µV/°C  
µA  
NPN Active, VCM = 4.5 V  
TMIN to TMAX  
1.3  
µA  
PNP Active, VCM = 0 V  
TMIN to TMAX  
–1.7  
2
–2.8  
0.9  
µA  
µA  
Input Offset Current  
Open-Loop Gain  
0.1  
74  
µA  
Vo = 4.0 V  
65  
80  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
6
MΩ  
pF  
V
Input Capacitance  
2
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
–5.2 to +5.2  
90  
VCM = –4.5 V to +3 V, RL = 10 kΩ  
dB  
DISABLE  
PIN (AD8029)  
DISABLE  
–VS + 0.8  
–6.5  
V
Low Voltage  
Low Current  
High Voltage  
High Current  
DISABLE  
µA  
V
DISABLE  
DISABLE  
–VS + 1.2  
0.2  
µA  
ns  
Turn-Off Time  
DISABLE  
150  
50% of  
VIN = –1 V, G = –1  
DISABLE  
to <10% of Final VO,  
Turn-On Time  
85  
ns  
50% of  
VIN = –1 V, G = –1  
to <10% of Final VO,  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time  
(Rising/Falling Edge)  
VIN = +6 V to –6 V, G = –1  
RL = 1 kΩ  
55/45  
ns  
V
Output Voltage Swing  
–VS + 0.22  
–VS + 0.05  
+VS – 0.22  
+VS – 0.05  
RL = 10 kΩ  
V
Short-Circuit Current  
Off Isolation (AD8029)  
Capacitive Load Drive  
POWER SUPPLY  
Sinking and Sourcing  
170/160  
–55  
mA  
dB  
pF  
DISABLE  
= Low  
VIN = 0.1 V p-p, f = 1 MHz,  
30% Overshoot  
20  
Operating Range  
2.7  
73  
12  
V
Quiescent Current/Amplifier  
Quiescent Current (Disabled)  
Power Supply Rejection Ratio  
1.4  
150  
80  
1.5  
200  
mA  
µA  
dB  
DISABLE  
Vs 1 V  
= Low  
1 Plus, +, (or no sign) indicates current into pin; minus (–) indicates current out of pin.  
Rev. A | Page 3 of 20  
 
AD8029/AD8030/AD8040  
SPECIFICATIONS WITH +5 V SUPPLY  
Table 2. VS = 5 V @ TA = 25°C, G = +1, RL = 1 kΩ to midsupply, unless otherwise noted. All specifications are per amplifier.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
G = +1, VO = 2 V p-p  
G = +2, VO = 0.1 V p-p  
G = +1, VO = 2 V Step  
G = –1, VO = 2 V Step  
G = +2, VO = 2 V Step  
80  
13  
120  
18  
6
55  
60  
82  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Spurious Free Dynamic Range (SFDR)  
fC = 1 MHz, VO = 2 V p-p  
fC = 5 MHz, VO = 2 V p-p  
f = 100 kHz  
–73  
–55  
16.5  
1.1  
dBc  
dBc  
nV/√  
pA/√  
dB  
Input Voltage Noise  
Input Current Noise  
Hz  
Hz  
f = 100 kHz  
Crosstalk (AD8030/AD8040)  
DC PERFORMANCE  
f = 5 MHz, VIN = 2 V p-p  
-79  
Input Offset Voltage  
PNP Active, VCM = 2.5 V  
NPN Active, VCM = 4.5 V  
TMIN to TMAX  
NPN Active, VCM = 4.5 V  
TMIN to TMAX  
1.4  
1.8  
25  
0.8  
1
5
6
mV  
mV  
µV/°C  
µA  
Input Offset Voltage Drift  
Input Bias Current1  
1.2  
µA  
PNP Active, VCM = 2.5 V  
TMIN to TMAX  
–1.8  
2
0.1  
74  
–2.8  
0.9  
µA  
µA  
µA  
dB  
Input Offset Current  
Open-Loop Gain  
Vo = 1 V to 4 V  
65  
80  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
6
2
MΩ  
pF  
V
–0.2 to +5.2  
90  
VCM = 0.25 V to 2 V, RL = 10 kΩ  
dB  
DISABLE  
PIN (AD8029)  
DISABLE  
–VS + 0.8  
–6.5  
V
Low Voltage  
Low Current  
High Voltage  
High Current  
DISABLE  
µA  
V
DISABLE  
DISABLE  
–VS + 1.2  
0.2  
µA  
ns  
Turn-Off Time  
DISABLE  
155  
50% of  
VIN = –1 V, G = –1  
DISABLE  
to <10% of Final VO,  
Turn-On Time  
90  
ns  
50% of  
VIN = –1 V, G = –1  
to <10% of Final VO,  
OUTPUT CHARACTERISTICS  
Overdrive Recovery Time  
(Rising/Falling Edge)  
VIN = –1 V to +6 V, G = –1  
RL = 1 kΩ  
RL = 10 kΩ  
45/50  
ns  
V
V
Output Voltage Swing  
–VS + 0.17  
–VS + 0.04  
+VS – 0.17  
+VS – 0.04  
Short-Circuit Current  
Off Isolation (AD8029)  
Capacitive Load Drive  
POWER SUPPLY  
Sinking and Sourcing  
Vin = 0.1 V p-p, f = 1 MHz,  
30% Overshoot  
95/60  
–55  
15  
mA  
dB  
pF  
DISABLE  
= Low  
Operating Range  
2.7  
73  
12  
1.5  
200  
V
Quiescent Current/Amplifier  
Quiescent Current (Disabled)  
Power Supply Rejection Ratio  
1.3  
140  
80  
mA  
µA  
dB  
DISABLE  
VS 1 V  
= Low  
1 Plus, +, (or no sign) indicates current into pin; minus (–) indicates current out of pin.  
Rev. A | Page 4 of 20  
 
AD8029/AD8030/AD8040  
SPECIFICATIONS WITH +3 V SUPPLY  
Table 3. VS = +3 V @ TA = 25°C, G = +1, RL = 1 kΩ to midsupply, unless otherwise noted. All specifications are per amplifier.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
G = +1, VO = 2 V p-p  
G = +2, VO = 0.1 V p-p  
G = +1, VO = 2 V Step  
G = –1, VO = 2 V Step  
G = +2, VO = 2 V Step  
80  
13  
112  
18  
6
55  
57  
110  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Spurious Free Dynamic Range (SFDR)  
fC = 1 MHz, VO = 2 V p-p  
fC = 5 MHz, VO = 2 V p-p  
f = 100 kHz  
–72  
–60  
16.5  
1.1  
dBc  
dBc  
nV/√  
pA/√  
dB  
Input Voltage Noise  
Input Current Noise  
Hz  
Hz  
f = 100 kHz  
Crosstalk (AD8030/AD8040)  
DC PERFORMANCE  
f = 5 MHz, VIN = 2 V p-p  
-80  
Input Offset Voltage  
PNP Active, VCM = 1.5 V  
NPN Active, VCM = 2.5 V  
TMIN to TMAX  
NPN Active, VCM = 2.5 V  
TMIN to TMAX  
1.1  
1.6  
24  
0.7  
1
–1.5  
1.6  
0.1  
73  
5
6
mV  
mV  
µV/°C  
µA  
µA  
µA  
µA  
µA  
dB  
Input Offset Voltage Drift  
Input Bias Current1  
1.2  
Input Bias Current1  
PNP Active, VCM = 1.5 V  
TMIN to TMAX  
–2.5  
0.9  
Input Offset Current  
Open-Loop Gain  
Vo = 0.5 V to 2.5 V  
64  
78  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
6
2
MΩ  
pF  
V
–0.2 to +3.2  
88  
VCM = 0.25 V to 1.25 V, RL = 10 kΩ  
dB  
DISABLE  
PIN (AD8029)  
DISABLE  
–VS + 0.8  
–6.5  
V
Low Voltage  
Low Current  
High Voltage  
High Current  
DISABLE  
µA  
V
DISABLE  
DISABLE  
–VS + 1.2  
0.2  
µA  
ns  
Turn-Off Time  
DISABLE  
165  
50% of  
VIN = –1 V, G = –1  
DISABLE  
to <10% of Final VO,  
Turn-On Time  
95  
ns  
50% of  
VIN = –1 V, G = –1  
to <10% of Final VO,  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time  
(Rising/Falling Edge)  
VIN = –1 V to +4 V, G = –1  
RL = 1 kΩ  
RL = 10 kΩ  
75/100  
ns  
V
V
Output Voltage Swing  
–VS + 0.09  
–VS + 0.04  
+VS – 0.09  
+VS – 0.04  
Short-Circuit Current  
Off Isolation (AD8029)  
Capacitive Load Drive  
POWER SUPPLY  
Sinking and Sourcing  
VIN = 0.1 V p-p, f = 1 MHz,  
30% Overshoot  
80/40  
–55  
10  
mA  
dB  
pF  
DISABLE  
= Low  
Operating Range  
2.7  
70  
12  
1.4  
200  
V
Quiescent Current/Amplifier  
Quiescent Current (Disabled)  
Power Supply Rejection Ratio  
1.3  
145  
76  
mA  
µA  
dB  
DISABLE  
VS 1 V  
= Low  
1 Plus, +, (or no sign) indicates current into pin; minus (–) indicates current out of pin.  
Rev. A | Page 5 of 20  
 
AD8029/AD8030/AD8040  
ABSOLUTE MAXIMUM RATINGS  
Table 4. AD8029/AD8030/AD8040 Stress Ratings  
PD = Quiescent Power + (Total Drive Power Load Power)  
Parameter  
Rating  
Supply Voltage  
Power Dissipation  
12.6 V  
2
VS VOUT  
VOUT  
RL  
See Figure 6  
VS 0.5 V  
1.8 V  
–65°C to +125°C  
–40°C to +125°C  
300°C  
PD  
=
(
VS × IS  
)
+
×
2
RL  
Common-Mode Input Voltage  
Differential Input Voltage  
Storage Temperature  
Operating Temperature Range  
Lead Temperature Range  
(Soldering 10 sec)  
RMS output voltages should be considered. If RL is referenced to  
VS–, as in single-supply operation, then the total drive power is  
VS × IOUT  
.
If the rms signal levels are indeterminate, consider the worst  
Junction Temperature  
150°C  
case, when VOUT = VS/4 for RL to midsupply:  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
2
(
VS/4  
RL  
)
PD  
=
(
VS × IS +  
)
In single-supply operation with RL referenced to VS–, worst case  
is VOUT = VS/2.  
Airflow will increase heat dissipation, effectively reducing θJA.  
Also, more metal directly in contact with the package leads  
from metal traces, through holes, ground, and power planes will  
reduce the θJA. Care must be taken to minimize parasitic capaci-  
tances at the input leads of high speed op amps, as discussed in  
the PCB Layout section.  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the AD8029/AD8030/  
AD8040 package is limited by the associated rise in junction  
temperature (TJ) on the die. The plastic encapsulating the die  
locally reaches the junction temperature. At approximately  
150°C, which is the glass transition temperature, the plastic  
changes its properties. Even temporarily exceeding this  
temperature limit may change the stresses that the package  
exerts on the die, permanently shifting the parametric  
performance of the AD8029/AD8030/AD8040. Exceeding a  
junction temperature of 175°C for an extended period can  
result in changes in silicon devices, potentially causing failure.  
Figure 6 shows the maximum safe power dissipation in the  
package versus the ambient temperature for the SOIC-8  
(125°C/W), SOT23-8 (160°C/W), SOIC-14 (90°C/W),  
TSSOP-14 (120°C/W), and SC70-6 (208°C/W) packages on a  
JEDEC standard 4-layer board. θJA values are approximations.  
2.5  
The still-air thermal properties of the package and PCB (θJA),  
ambient temperature (TA), and the total power dissipated in the  
package (PD) determine the junction temperature of the die. The  
junction temperature can be calculated as  
2.0  
SOIC-14  
1.5  
TSSOP-14  
TJ = TA + (PD × θJA)  
SOIC-8  
1.0  
SOT-23-8  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). Assuming the load (RL) is referenced to  
midsupply, the total drive power is VS/2 × IOUT, some of which is  
dissipated in the package and some in the load (VOUT × IOUT).  
The difference between the total drive power and the load  
power is the drive power dissipated in the package.  
SC70-6  
0.5  
0
–40302010  
0
10 20 30 40 50 60 70 80 90 100 110120  
AMBIENT TEMPERATURE (°C)  
Figure 6. Maximum Power Dissipation  
Output Short Circuit  
Shorting the output to ground or drawing excessive current  
from the AD8029/AD8030/AD8040 could cause catastrophic  
failure.  
Rev. A | Page 6 of 20  
 
 
AD8029/AD8030/AD8040  
TYPICAL PERFORMANCE CHARACTERISTICS  
Default Conditions: VS = 5 V (TA = 25°C, RL = 1 kΩ tied to midsupply, unless otherwise noted.)  
1
0
0.2  
R
= 1k  
F
DASHED LINES: V  
SOLID LINES: V  
= 2V p-p  
OUT  
G = –1  
= 0.1V p-p  
R
= R = 1k  
0.1  
OUT  
F
G
–1  
–2  
0
G = +10  
–3  
R
= 9k, R = 1kΩ  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
F
G
–4  
G = +1  
–5  
G = +1  
G = +2  
= R = 1kΩ  
–6  
R
= 0Ω  
R
F
F
G
–7  
–8  
G = +2  
–9  
–10  
–11  
–12  
–13  
–14  
V
= 0.1V p-p  
O
0.1  
1
10  
100  
1000  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
03679-0-004  
03679-A-011  
Figure 7. Small Signal Frequency Response for Various Gains  
Figure 10. 0.1 dB Flatness Frequency Response  
1
1
0
G = +1  
= 0.1V p-p  
+3V  
G = +2  
V
O
V
= 0.1V p-p  
O
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
R
= 1kΩ  
F
±5V  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
±5V  
+5V  
+5V  
+3V  
1
10  
100  
1000  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
03679-0-005  
03679-A-012  
Figure 8. Small Signal Frequency Response for Various Supplies  
Figure 11. Small Signal Frequency Response for Various Supplies  
1
1
G = +1  
G = +2  
V = 2V p-p  
O
R
= 1kΩ  
F
V
= 2V p-p  
O
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
±5V  
V
= ±5  
S
+3V  
V
= +5  
S
V
= +3  
S
+5V  
1
10  
FREQUENCY (MHz)  
100  
1
10  
100  
FREQUENCY (MHz)  
03679-0-006  
03679-A-013  
Figure 9. Large Signal Frequency Response for Various Supplies  
Figure 12. Large Signal Frequency Response for Various Supplies  
Rev. A | Page 7 of 20  
 
AD8029/AD8030/AD8040  
6
2
1
G = +1  
5
G = +1  
V = 0.1V p-p  
O
V
= V – 0.2V  
S+  
ICM  
V
= 0.1V p-p  
O
20pF  
10pF  
4
3
V
= 0V  
ICM  
0
2
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
5pF  
1
V
= V + 0.2V  
S–  
ICM  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
0pF  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
03679-0-010  
03679-0-013  
Figure 13. Small Signal Frequency Response for Various CLOAD  
Figure 16. Small Signal Frequency Response for Various  
Input Common-Mode Voltages  
1
2
G = +2  
G = +1  
= 0.1V p-p  
+125°C  
+85°C  
+25°C  
R
= 1kΩ  
F
V
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
O
1
0
–40°C  
–1  
–2  
–3  
–4  
–5  
–6  
2V p-p  
1V p-p  
0.1V p-p  
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
03679-A-014  
03679-0-014  
Figure 14. Frequency Response for Various Output Amplitudes  
Figure 17. Small Signal Frequency Response vs. Temperature  
80  
225  
180  
135  
90  
1
G = +1  
V
= 2V p-p  
70  
60  
50  
40  
30  
20  
10  
0
O
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
+125°C  
+25°C  
+85°C  
–40°C  
45  
–10  
–20  
0
1G  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (Hz)  
03679-0-054  
03679-0-015  
Figure 15. Open-Loop Gain and Phase vs. Frequency  
Figure 18. Large Signal Frequency Response vs. Temperature  
Rev. A | Page 8 of 20  
AD8029/AD8030/AD8040  
–40  
–50  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
–105  
G = +1  
= 2V p-p  
SECOND HARMONIC: SOLID LINE  
G = +1  
= 2V p-p  
V
V
OUT  
OUT  
R
= 1kΩ  
L
THIRD HARMONIC: DASHED LINE  
SECOND HARMONIC: SOLID LINE  
THIRD HARMONIC: DASHED LINE  
–60  
–70  
R
= 1k  
L
V
= +3V  
S
–80  
–90  
V
= +5V  
R
= 5kΩ  
S
L
V
= ±5V  
S
–100  
–110  
R
= 2kΩ  
L
0.01  
0.1  
FREQUENCY (MHz)  
1
10  
0.01  
0.1  
FREQUENCY (MHz)  
1
10  
03679-0-016  
03679-0-075  
Figure 19. Harmonic Distortion vs. Frequency and Supply Voltage  
Figure 22. Harmonic Distortion vs. Frequency and Load  
–40  
–40  
G = +2  
FREQ = 1MHz  
G = +1  
= 2V p-p  
FREQ = 1MHz  
V
OUT  
R
= 1k  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
F
–50  
–60  
V
= +5V  
V = +10V  
S
S
V
= +3V  
V = +5V  
S
S
V
= +3V  
S
–70  
–80  
–90  
SECOND HARMONIC: SOLID LINE  
THIRD HARMONIC: DASHED LINE  
SECOND HARMONIC: SOLID LINE  
THIRD HARMONIC: DASHED LINE  
–100  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
7.5  
8.5  
9.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT AMPLITUDE (V p-p)  
03679-A-015  
INPUT COMMON-MODE VOLTAGE (V)  
03679-0-020  
Figure 23. Harmonic Distortion vs. Input Common Mode Voltage  
Figure 20. Harmonic Distortion vs. Output Amplitude  
1000  
100  
10  
1
–30  
–40  
V
V
R
R
= +5V  
S
= 2.0V p-p  
OUT  
= 1kΩ  
= 1kΩ  
L
F
–50  
G = +2  
G = –1  
100  
10  
1
–60  
–70  
VOLTAGE NOISE  
CURRENT NOISE  
–80  
–90  
G = +1  
–100  
–110  
SECOND HARMONIC: SOLID LINE  
THIRD HARMONIC: DASHED LINE  
0.1  
10M  
10  
100  
1k  
10k  
100k  
1M  
0.01  
0.1  
FREQUENCY (MHz)  
1
10  
FREQUENCY (Hz)  
03679-0-069  
03679-A-016  
Figure 24. Voltage and Current Noise vs. Frequency  
Figure 21. Harmonic Distortion vs. Frequency and Gain  
Rev. A | Page 9 of 20  
AD8029/AD8030/AD8040  
100  
100  
75  
G = +1  
= ±2.5V  
G = +1  
C
C
= 20pF  
= 10pF  
L
L
V
V
= ±2.5V  
S
S
75  
50  
C
= 5pF  
L
50  
25  
25  
0
0
–25  
–50  
–75  
–100  
–25  
–50  
–75  
–100  
25mV/DIV  
20ns/DIV  
25mV/DIV  
20ns/DIV  
TIME (ns)  
03679-0-025  
TIME (ns)  
03679-0-022  
Figure 28. Small Signal Transient Response with Capacitive Load  
Figure 25. Small Signal Transient Response  
5.0  
2.5  
2.0  
G = +1  
= ±2.5V  
INPUT  
4V p-p  
2V p-p  
4.5  
V
S
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
OUTPUT  
G = +1  
= +5V  
V
0.5  
0
S
R
= 1kTIED TO MIDSUPPLY  
1µs/DIV  
L
0.5V/DIV  
25ns/DIV  
TIME (Seconds)  
03679-0-059  
TIME (ns)  
Figure 29. Rail-to-Rail Response, G = +1  
Figure 26. Large Signal Transient Response  
4
3
4
3
G = +1  
INPUT  
G = –1 (R = 1k)  
INPUT  
F
R
V
= 1kΩ  
= ±2.5V  
L
R
V
= 1kΩ  
L
S
S
= ±2.5V  
2
2
OUTPUT  
OUTPUT  
1
1
0
0
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
1V/DIV  
200ns/DIV  
1V/DIV  
200ns/DIV  
TIME (ns)  
03679-0-027  
03679-0-024  
TIME (ns)  
Figure 30. Input Overdrive Recovery  
Figure 27. Output Overdrive Recovery  
Rev. A | Page 10 of 20  
AD8029/AD8030/AD8040  
V
(250mV/DIV)  
G = +2  
= ±2.5V  
IN  
G = +2  
V
S
V
(500mV/DIV)  
OUT  
+1V  
+0.1%  
–0.1%  
+0.1%  
–0.1%  
V
– 2V (0.1%/DIV)  
IN  
OUT  
V
– 2V (0.1%/DIV)  
IN  
OUT  
V
(500mV/DIV)  
OUT  
–1V  
500ns/DIV  
20ns/DIV  
03679-0-062  
03679-0-063  
Figure 31. Long-Term Settling Time  
Figure 34.0.1% Short-Term Settling Time  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
+PSRR  
–PSRR  
–100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
03679-0-078  
03679-0-033  
Figure 32. Common-Mode Rejection Ratio vs. Frequency  
Figure 35. PSRR vs. Frequency  
–20  
–30  
–40  
G = +1  
= 1k  
V
IN  
DRIVE AMP  
R
L
50  
DISABLE = LOW  
= 0.1V p-p  
–30  
–40  
–50  
–60  
–70  
–80  
1kΩ  
V
–50  
IN  
–60  
LISTEN AMP  
V
OUT  
–70  
1kΩ  
–80  
V
OUT  
CROSSTALK = 20log  
(
)
AD8030  
(AMP 2 DRIVE  
AMP 1 LISTEN)  
V
IN  
–90  
–100  
–110  
–120  
–130  
AD8040  
(AMP 4 DRIVE  
AMP 1 LISTEN)  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1.0  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
03679-0-055  
Figure 36. AD8030/AD8040 Crosstalk vs. Frequency  
Figure 33. AD8029 Off-Isolation vs. Frequency  
Rev. A | Page 11 of 20  
AD8029/AD8030/AD8040  
2.5  
2.0  
4
3
R
= 1kTO  
L
MIDSUPPLY  
G = +1  
V
= +5V  
V
= +3V  
V = +10V  
S
S
S
V
= +3V  
V
= +5V  
V = +10V  
S
1.5  
1.0  
S
S
2
1
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–1  
–2  
–3  
–4  
–1  
0
1
2
3
4
5
6
7
8
9
10 11  
–1  
0
1
2
3
4
5
6
7
8
9
10 11  
INPUT COMMON-MODE VOLTAGE (V)  
INPUT COMMON-MODE VOLTAGE (V)  
03679-0-074  
03679-A-017  
Figure 37. Input Bias Current vs. Input Common-Mode Voltage  
Figure 40. Input Offset Voltage vs. Input Common-Mode Voltage  
–1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4
3
2
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
NPN ACTIVE  
V
= ±5V  
S
1
0
V
= ±5  
V
= +5  
V = +3  
S
S
S
V
= +5V  
S
–1  
–2  
–3  
–4  
V
= +3V  
S
PNP ACTIVE  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
03679-0-073  
Figure 38. Input Bias Current vs. Temperature  
Figure 41. Input Offset Voltage vs. Temperature  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
120  
COUNT = 1088  
MEAN = 0.44mV  
STDEV = 1.05mV  
100  
80  
60  
40  
20  
0
V
= +5V  
S
V
= ±5V  
S
V
= +3V  
S
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE (mV)  
03679-0-067  
03679-0-064  
Figure 39 Quiescent Supply Current vs. Temperature  
Figure 42. Input Offset Voltage Distribution  
Rev. A | Page 12 of 20  
AD8029/AD8030/AD8040  
1M  
100k  
10k  
1k  
1000  
100  
10  
G = +1  
DISABLE = LOW  
100  
10  
1
1
100k  
0.1  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
03679-0-060  
03679-0-061  
Figure 45. Output Impedance vs. Frequency, Enabled  
Figure 43. AD8029 Output Impedance vs. Frequency, Disabled  
2.0  
1.5  
0.5  
LOAD RESISTANCE TIED  
TO MIDSUPPLY  
V
=
±2.5V  
S
0.4  
0.3  
0.2  
1.0  
V
– V  
S
OL  
OH  
0.5  
0.1  
0
R
= 10kΩ  
L
0
V
= +3V  
V
= +5V  
V = ±5V  
S
S
S
R
= 1kΩ  
L
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
V
– V  
S
–2.5 –2.0 –1.5 –1.0 –0.5 –0  
0.5  
1.0  
1.5  
2.0  
2.5  
100  
1000  
10000  
OUTPUT VOLTAGE (V)  
LOAD RESISTANCE ()  
03679-0-072  
03679-0-041  
Figure 46. Input Error Voltage vs. Output Voltage  
Figure 44. Output Saturation Voltage vs. Load Resistance  
170  
150  
130  
110  
90  
V
= ±5V  
S
V
V
= +5V  
= +3V  
S
S
70  
50  
R
= 1kTIED TO MIDSUPPLY  
L
SOLID LINE: V – VOH  
S+  
DASHED LINE: VOL – V  
S–  
30  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
03679-0-066  
Figure 42. Output Saturation Voltage vs. Temperature  
Rev. A | Page 13 of 20  
AD8029/AD8030/AD8040  
1.5  
1
0
DISABLE (–0.5V TO –2V)  
V
= +3V, +5V, +10V  
S
1.0  
0.5  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
R
R
R
= 100  
= 1kΩ  
L
L
L
OUTPUT DISABLED  
0
= 10kΩ  
–0.5  
–1.0  
–1.5  
V
= ±2.5V  
S
G = –1 (R = 1k)  
F
0
50  
100  
150  
200  
250  
300  
350  
0
0.8  
1
1.2  
2
3
TIME (ns)  
DISABLE PIN VOLTAGE (V)  
03679-A-020  
03679-A-022  
DISABLE  
Figure 47. AD8029  
Turn-Off Timing  
DISABLE  
DISABLE  
Pin Voltage  
Figure 49. AD8029  
Pin Current vs.  
1.5  
1.0  
DISABLE (–2V TO –0.5V)  
OUTPUT ENABLED  
0.5  
0
R
= 100Ω  
= 1kΩ  
= 10kΩ  
L
L
L
–0.5  
–1.0  
–1.5  
R
R
V
= ±2.5V  
S
G = –1 (R = 1k)  
F
0
50  
100  
150  
200  
250  
300  
350  
TIME (ns)  
03679-A-021  
DISABLE  
Figure 48. AD8029  
Turn-On Timing  
Rev. A | Page 14 of 20  
AD8029/AD8030/AD8040  
THEORY OF OPERATION  
+V  
S
R
TH  
I
TAIL  
SPD  
+V –1.2V  
S
DISABLE  
Q
9
OUTPUT  
BUFFER  
R
R
R
R
1
2
3 4  
I
TO DISABLE  
CIRCUITRY  
TH  
–V  
S
Q
10  
AD8029 ONLY  
IN–  
M
TOP  
Q
1
C
MT  
Q
2
Q
Q
6
5
V
OUT  
C
MB  
Q
Q
Q
3
7
8
IN+  
Q
4
M
BOT  
R
R
R
R
Q
5
6
7 8  
11  
OUT  
IN  
COM  
–V  
S
03679-0-051  
Figure 50. Simplified Schematic  
The AD8029 (single), AD8030 (dual), and AD8040 (quad) are  
rail-to-rail input and output amplifiers fabricated using Analog  
Devices’ XFCB process. The XFCB process enables the AD8029/  
AD8030/AD8040 to operate on 2.7 V to 12 V supplies with a  
120 MHz bandwidth and a 60 V/µs slew rate. A simplified sche-  
matic of the AD8029/AD8030/AD8040 is shown in Figure 50.  
OUTPUT STAGE  
The currents derived from the PNP and NPN input differential  
pairs are injected into the current mirrors MBOT and MTOP, thus  
establishing a common-mode signal voltage at the input of the  
output buffer.  
The output buffer performs three functions:  
INPUT STAGE  
1. It buffers and applies the desired signal voltage to the  
output devices, Q10 and Q11.  
For input common-mode voltages less than a set threshold  
(1.2 V below VCC), the resistor degenerated PNP differential pair  
(comprising Q1 toQ4) carries the entire ITAIL current, allowing  
the input voltage to go 200 mV below –VS. Conversely, input  
common-mode voltages exceeding the same threshold cause  
ITAIL to be routed away from the PNP differential pair and into  
the NPN differential pair through transistor Q9. Under this  
condition, the input common-mode voltage is allowed to rise  
200 mV above +VS while still maintaining linear amplifier  
behavior. The transition between these two modes of operation  
leads to a sudden, temporary shift in input stage transconduc-  
tance, gm, and dc parameters (such as the input offset voltage  
VOS), which in turn adversely affect the distortion performance.  
The SPD block shortens the duration of this transition, thus  
improving the distortion performance. As shown in Figure 50,  
the input differential pair is protected by a pair of two series  
diodes, connected in anti-parallel, which clamp the differential  
input voltage to approximately 1.5 V.  
2. It senses the common-mode current level in the output  
devices.  
3. It regulates the output common-mode current by  
establishing a common-mode feedback loop.  
The output devices Q10 and Q11 work in a common-emitter  
configuration, and are Miller-compensated by internal  
capacitors, CMT and CMB  
.
The output voltage compliance is set by the output devices’  
collector resistance RC (about 25 Ω), and by the required load  
current IL. For instance, a light equivalent load (5 kΩ) allows the  
output voltage to swing to within 40 mV of either rail, while  
heavier loads cause this figure to deteriorate as RC × IL.  
Rev. A | Page 15 of 20  
 
 
AD8029/AD8030/AD8040  
APPLICATIONS  
WIDEBAND OPERATION  
R
F
For example, if using the values shown in Table 5 for a gain of 2,  
with resistor values of 2.5 kΩ, the effective load at the output is  
1.67 kΩ. For inverting configurations, only the feedback resistor  
RF is in parallel with the output load. If the load is greater than  
that specified in the data sheet, the amplifier can introduce  
nonlinearities in its open-loop response, which increases  
distortion. Figure 53 and Figure 54 illustrate effective output  
loading and distortion performance. Increasing the resistance of  
the feedback network can reduce the current consumption, but  
has other implications.  
C2  
10µF  
+V  
S
C1  
0.1µF  
R
G
V
AD8029  
OUT  
R1  
V
+
IN  
DISABLE  
C4  
0.1µF  
C3  
R1 = R ||R  
10µF  
F
G
–40  
V
V
= 5V  
S
= 2.0V p-p  
OUT  
–V  
03679-0-052  
S
–50  
–60  
SECOND HARMONIC – SOLID LINES  
THIRD HARMONIC – DOTTED LINES  
Figure 51. Wideband Non-inverting Gain Configuration  
R
F
–70  
R
= 1k  
L
C2  
10µF  
+V  
S
–80  
–90  
C1  
0.1µF  
R
= 5kΩ  
L
–100  
–110  
–120  
R
G
R
= 2.5kΩ  
V
L
IN  
V
AD8029  
OUT  
+
DISABLE  
R1 = R ||R  
C4  
0.1µF  
F
G
0.01  
0.1  
1.0  
10  
FREQUENCY (MHz)  
R1  
C3  
10µF  
Figure 53. Gain of 1 Distortion  
–40  
–50  
V
V
= 5V  
–V  
03679-0-053  
S
S
= 2.0V p-p  
OUT  
SECOND HARMONIC – SOLID LINES  
THIRD HARMONIC – DOTTED LINES  
Figure 52. Wideband Inverting Gain Configuration  
–60  
R
= R = 1kΩ  
F
L
OUTPUT LOADING SENSITIVITY  
–70  
To achieve maximum performance and low power dissipation,  
the designer needs to consider the loading at the output of  
AD8029/AD8030/AD8040. Table 5 shows the effects of output  
loading and performance.  
–80  
R
= R = 5kΩ  
L
F
–90  
–100  
–110  
–120  
R
= R = 2.5kΩ  
F
L
When operating at unity gain, the effective load at the amplifier  
output is the resistance (RL) being driven by the amplifier. For  
gains other than 1, in noninverting configurations, the feedback  
network represents an additional current load at the amplifier  
output. The feedback network (RF + RG) is in parallel with RL,  
which lowers the effective resistance at the output of the  
amplifier. The lower effective resistance causes the amplifier to  
supply more current at the output. Lower values of feedback  
resistance increase the current draw, thus increasing the  
amplifiers power dissipation.  
0.01  
0.1  
1.0  
10  
FREQUENCY (MHz)  
Figure 54. Gain of 2 Distortion  
Rev. A | Page 16 of 20  
 
 
 
AD8029/AD8030/AD8040  
Table 5. Effect of Load on Performance  
Noninverting  
Gain  
RF  
(kΩ)  
RG  
(kΩ)  
RLOAD  
(kΩ)  
–3 dB SS BW  
(MHz)  
Peaking  
(dB)  
HD2 at 1 MHz,  
2 V p-p (dB)  
HD3 at 1 MHz,  
2 V p-p (dB)  
Output Noise  
(nV/√Hz)  
1
1
1
2
2
2
–1  
–1  
–1  
0
0
0
1
2.5  
5
1
2.5  
5
N/A  
N/A  
N/A  
1
2.5  
5
1
2.5  
5
1
2
5
1
2.5  
5
1
2.5  
5
120  
130  
139  
36  
44.5  
43  
40  
40  
34  
0.02  
0.6  
1
0
0.2  
2
0.01  
0.05  
1
–80  
–84  
–87.5  
–72  
–79  
–84  
–68  
–74  
–78  
–72  
–83  
–92.5  
–60  
–72.5  
–86  
–57  
–68  
–80  
16.5  
16.5  
16.5  
33.5  
34.4  
36  
33.6  
34  
36  
The feedback resistance (RF || RG) combines with the input  
capacitance to form a pole in the amplifiers loop response. This  
can cause peaking and ringing in the amplifiers response if the  
RC time constant is too low. Figure 55 illustrates this effect.  
Peaking can be reduced by adding a small capacitor (1 pF–4 pF)  
across the feedback resistor. The best way to find the optimal  
value of capacitor is to empirically try it in your circuit. Another  
factor of higher resistance values is the impact it has on noise  
performance. Higher resistor values generate more noise. Each  
application is unique and therefore a balance must be reached  
between distortion, peaking, and noise performance. Table 5  
outlines the trade-offs that different loads have on distortion,  
peaking, and noise performance. In gains of 1, 2, and 10,  
equivalent loads of 1 kΩ, 2 kΩ, and 5 kΩ are shown.  
DISABLE PIN  
The AD8029 disable pin allows the amplifier to be shut down  
for power conservation or multiplexing applications. When in  
the disable mode, the amplifier draws only 150 µA of quiescent  
current. The disable pin control voltage is referenced to the  
negative supply. The amplifier enters power-down mode any  
time the disable pin is tied to the most negative supply or within  
0.8 V of the negative supply. If left open, the amplifier will  
operate normally. For switching levels, refer to Table 6.  
Table 6. Disable Pin Control Voltage  
Supply Voltage  
Disable Pin  
Voltage  
+3 V  
+5 V  
±5 V  
Low  
(Disabled)  
High  
(Enabled)  
0 V to <0.8 V  
1.2 V to 3 V  
0 V to <0.8 V  
1.2 V to 5 V  
–5 V to <–4 .2 V  
–3.8 V to +5 V  
With increasing load resistance, the distortion and –3 dB  
bandwidth improve, while the noise and peaking degrade  
slightly.  
2
V
V
= 5V  
S
R
= R = 5k  
F
L
= 0.1V p-p  
OUT  
R
= 1kΩ  
1
0
L
R
= 2.5kΩ  
L
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
R
= R = 2.5kΩ  
L
F
R
= 5kΩ  
L
R
= R = 1kΩ  
L
F
G = +1  
G = +2  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 55. Frequency Response for Various Feedback/Load Resistances  
Rev. A | Page 17 of 20  
 
 
 
 
AD8029/AD8030/AD8040  
CIRCUIT CONSIDERATIONS  
PCB Layout  
Power Supply Bypassing  
High speed op amps require careful attention to PCB layout to  
achieve optimum performance. Particular care must be  
exercised to minimize lead lengths of the bypass capacitors.  
Excess lead inductance can influence the frequency response  
and even cause high frequency oscillations. Using a multilayer  
board with an internal ground plane can help reduce ground  
noise and enable a more compact layout.  
Power supply pins are actually inputs to the op amp. Care must  
be taken to provide the op amp with a clean, low noise dc  
voltage source.  
Power supply bypassing is employed to provide a low imped-  
ance path to ground for noise and undesired signals at all  
frequencies. This cannot be achieved with a single capacitor  
type; but with a variety of capacitors in parallel the bandwidth  
of power supply bypassing can be greatly extended. The bypass  
capacitors have two functions:  
To achieve the shortest possible trace length at the inverting  
input, the feedback resistor, RF, should be located the shortest  
distance from the output pin to the input pin. The return node  
of the resistor RG should be situated as close as possible to the  
return node of the negative supply bypass capacitor.  
1. Provide a low impedance path for noise and undesired  
signals from the supply pins to ground.  
2. Provide local stored charge for fast switching conditions  
and minimize the voltage drop at the supply pins during  
transients. This is typically achieved with large electrolytic  
capacitors.  
On multilayer boards, all layers beneath the op amp should be  
cleared of metal to avoid creating parasitic capacitive elements.  
This is especially true at the summing junction, i.e., the inver-  
ting input, –IN. Extra capacitance at the summing junction can  
cause increased peaking in the frequency response and lower  
phase margin.  
Good quality ceramic chip capacitors should be used and  
always kept as close as possible to the amplifier package. A  
parallel combination of a 0.1 µF ceramic and a 10 µF electrolytic  
covers a wide range of rejection for unwanted noise. The 10 µF  
capacitor is less critical for high frequency bypassing and, in  
most cases, one per supply line is sufficient. The values of  
capacitors are circuit-dependant and should be determined by  
the system’s requirements.  
Grounding  
To minimize parasitic inductances and ground loops in high  
speed, densely populated boards, a ground plane layer is critical.  
Understanding where the current flows in a circuit is critical in  
the implementation of high speed circuit design. The length of  
the current path is directly proportional to the magnitude of the  
parasitic inductances and thus the high frequency impedance of  
the path. Fast current changes in an inductive ground return  
will create unwanted noise and ringing.  
DESIGN TOOLS AND TECHNICAL SUPPORT  
Analog Devices is committed to the design process by providing  
technical support and online design tools. ADI offers technical  
support via free evaluation boards, sample ICs, Spice models,  
interactive evaluation tools, application notes, phone and email  
support—all available at www.analog.com.  
The length of the high frequency bypass capacitor pads and  
traces is critical. A parasitic inductance in the bypass grounding  
works against the low impedance created by the bypass  
capacitor. Because load currents flow from supplies as well as  
from ground, the load should be placed at the same physical  
location as the bypass capacitor ground. For large values of  
capacitors, which are intended to be effective at lower  
frequencies, the current return path length is less critical.  
Rev. A | Page 18 of 20  
 
AD8029/AD8030/AD8040  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8.75 (0.3445)  
8.55 (0.3366)  
8
1
5
4
14  
1
8
7
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0039)  
0.25 (0.0098)  
8°  
0.10 (0.0040)  
0.51 (0.0201)  
0.31 (0.0122)  
0°  
SEATING  
PLANE  
8°  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 56. 8-Lead Standard Small Outline Package, Narrow Body [SOIC] (R-8)  
Dimensions shown in millimeters and (inches)  
Figure 59. 14-Lead Standard Small Outline Package [SOIC] (R-14)  
Dimensions shown in millimeters and (inches)  
2.00 BSC  
5.10  
5.00  
4.90  
6
5
2
4
3
2.10 BSC  
1.25 BSC  
14  
8
7
1
4.50  
4.40  
4.30  
PIN 1  
1.30 BSC  
6.40  
BSC  
0.65 BSC  
1.00  
0.90  
0.70  
1
1.10 MAX  
PIN 1  
0.22  
0.08  
0.65  
BSC  
1.05  
1.00  
0.80  
0.46  
0.36  
0.26  
8°  
4°  
0°  
0.30  
0.15  
0.20  
0.09  
1.20  
MAX  
0.10 MAX  
SEATING  
PLANE  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.10 COPLANARITY  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-203AB  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
Figure 57. 6-Lead Plastic Surface-Mount Package [SC70] (KS-6)  
Dimensions shown in millimeters  
Figure 60. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14)  
Dimensions shown in millimeters  
2.90 BSC  
8
1
7
2
6
3
5
4
1.60 BSC  
PIN 1  
2.80 BSC  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
0.60  
0.45  
0.30  
8°  
4°  
0°  
0.38  
0.22  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178BA  
Figure 58. 8-Lead Small Outline Transistor Package [SOT23] (RJ-8)  
Dimensions shown in millimeters  
Rev. A | Page 19 of 20  
 
AD8029/AD8030/AD8040  
ORDERING GUIDE  
Model  
Minimum Ordering Quantity  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
6-Lead SC70  
6-Lead SC70  
6-Lead SC70  
8-Lead SOIC  
8-Lead SOIC  
Package Option  
R-8  
R-8  
R-8  
KS-6  
KS-6  
KS-6  
R-8  
R-8  
R-8  
RJ-8  
RJ-8  
RJ-8  
R-14  
R-14  
R-14  
Branding  
AD8029AR  
1
AD8029AR-REEL  
AD8029AR-REEL7  
AD8029AKS-R2  
AD8029AKS-REEL  
AD8029AKS-REEL7  
AD8030AR  
2,500  
1,000  
250  
10,000  
3,000  
1
H6B  
H6B  
H6B  
AD8030AR-REEL  
AD8030AR-REEL7  
AD8030ARJ-R2  
AD8030ARJ-REEL  
AD8030ARJ-REEL7  
AD8040AR  
2,500  
1,000  
250  
10,000  
3,000  
1
8-Lead SOIC  
8-Lead SOT23-8  
8-Lead SOT23-8  
8-Lead SOT23-8  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
H7B  
H7B  
H7B  
AD8040AR-REEL  
AD8040AR-REEL7  
AD8040ARU  
2500  
1000  
1
RU-14  
RU-14  
RU-14  
AD8040ARU-REEL  
AD8040ARU-REEL7  
2500  
1000  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
this product features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
© 2003 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03679–0–11/03(A)  
Rev. A | Page 20 of 20  
 

相关型号:

AD8030ARJ-REEL

Low Power, High Speed Rail-to-Rail Input/Output Amplifier
ADI

AD8030ARJ-REEL7

Low Power, High Speed Rail-to-Rail Input/Output Amplifier
ADI

AD8030ARJZ-R2

Low Power, High Speed Rail-to-Rail Input/Output Amplifier
ADI

AD8030ARJZ-REEL

Low Power, High Speed Rail-to-Rail Input/Output Amplifier
ADI

AD8030ARJZ-REEL7

Low Power, High Speed Rail-to-Rail Input/Output Amplifier
ADI

AD8030ARZ

Low Power, High Speed Rail-to-Rail Input/Output Amplifier
ADI

AD8030ARZ-REEL

Low Power, High Speed Rail-to-Rail Input/Output Amplifier
ADI

AD8030ARZ-REEL7

Low Power, High Speed Rail-to-Rail Input/Output Amplifier
ADI

AD8031

2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031A

2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031AH

Microcontroller, 8-Bit, 8051 CPU, 12MHz, CMOS, CDIP40
INTEL

AD8031AN

2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI