AD8031ART-REEL7 [ADI]

2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O Amplifiers; 2.7 V , 800微安, 80 MHz轨到轨输入/输出放大器
AD8031ART-REEL7
型号: AD8031ART-REEL7
厂家: ADI    ADI
描述:

2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O Amplifiers
2.7 V , 800微安, 80 MHz轨到轨输入/输出放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.7 V, 800 A, 80 MHz  
a
Rail-to-Rail I/O Amplifiers  
AD8031/AD8032  
FEATURES  
CONNECTION DIAGRAMS  
Low Power  
8-Lead Plastic DIP (N)  
and SOIC (R) Packages  
8-Lead Plastic DIP (N),  
SOIC (R) and SOIC (RM)  
Packages  
Supply Current 800 A/Amplifier  
Fully Specified at +2.7 V, +5 V and ؎5 V Supplies  
High Speed and Fast Settling on +5 V  
80 MHz –3 dB Bandwidth (G = +1)  
30 V/s Slew Rate  
125 ns Settling Time to 0.1%  
Rail-to-Rail Input and Output  
No Phase Reversal with Input 0.5 V Beyond Supplies  
Input CMVR Extends Beyond Rails by 200 mV  
Output Swing to Within 20 mV of Either Rail  
Low Distortion  
AD8031  
NC  
–IN  
+IN  
NC  
+V  
1
8
OUT1  
–IN1  
+IN1  
8
7
6
5
+V  
S
1
2
3
4
2
3
7
6
OUT2  
–IN2  
S
OUT  
NC  
–V  
S
5
–V  
S
+IN2  
4
AD8032  
NC = NO CONNECT  
5-Lead Plastic Surface Mount Package  
SOT-23-5 (RT-5)  
–62 dB @ 1 MHz, VO = 2 V p-p  
–86 dB @ 100 kHz, VO = 4.6 V p-p  
Output Current: 15 mA  
AD8031  
V
1
2
3
+V  
S
5
OUT  
High Grade Option  
–V  
S
VOS (max) = 1.5 mV  
APPLICATIONS  
4
–IN  
+IN  
(Not to Scale)  
High-Speed Battery-Operated Systems  
High Component Density Systems  
Portable Test Instruments  
A/D Buffer  
Active Filters  
High-Speed Set-and-Demand Amplifier  
to high-speed systems where component density requires lower  
power dissipation. The AD8031/AD8032 are available in 8-lead  
plastic DIP and SOIC packages and will operate over the indus-  
trial temperature range of –40°C to +85°C. The AD8031A is also  
available in the space-saving 5-lead SOT-23-5 package and the  
AD8032A is available in AN 8-lead µSOIC package.  
GENERAL DESCRIPTION  
The AD8031 (single) and AD8032 (dual) single supply voltage  
feedback amplifiers feature high-speed performance with 80 MHz  
of small signal bandwidth, 30 V/µs slew rate and 125 ns settling  
time. This performance is possible while consuming less than  
4.0 mW of power from a single +5 V supply. These features  
increase the operation time of high speed battery-powered  
systems without compromising dynamic performance.  
The products have true single supply capability with rail-to-rail  
input and output characteristics and are specified for +2.7 V,  
+5 V and ±5 V supplies. The input voltage range can extend to  
500 mV beyond each rail. The output voltage swings to within  
20 mV of each rail providing the maximum output dynamic range.  
2s/Div  
2s/Div  
Input VIN  
Output VOUT  
The AD8031/AD8032 also offer excellent signal quality for only  
800 µA of supply current per amplifier; THD is –62 dBc with a  
2 V p-p, 1 MHz output signal and –86 dBc for a 100 kHz, 4.6 V p-p  
signal on +5 V supply. The low distortion and fast settling time  
make them ideal as buffers to single supply, A-to-D converters.  
+5V  
V
OUT  
V
IN  
1.7pF  
1k⍀  
+2.5V  
Operating on supplies from +2.7 V to +12 V and dual supplies up to  
±6 V, the AD8031/AD8032 are ideal for a wide range of applications,  
from battery-operated systems with large bandwidth requirements  
Circuit Diagram  
Figure 1. Rail-to-Rail Performance at 100 kHz  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD8031/AD8032–SPECIFICATIONS  
(@ TA = +25؇C, VS = +2.7 V, RL = 1 kto +1.35 V, RF = 2.5 kunless otherwise noted)  
+2.7 V Supply  
AD8031A/AD8032A  
AD8031B/AD8032B  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
Slew Rate  
G = +1, VO < 0.4 V p-p  
G = –1, VO = 2 V Step  
G = –1, VO = 2 V Step, CL = 10 pF  
54  
25  
80  
30  
125  
54  
25  
80  
30  
125  
MHz  
V/µs  
ns  
Settling Time to 0.1%  
DISTORTION/NOISE PERFORMANCE  
Total Harmonic Distortion  
fC = 1 MHz, VO = 2 V p-p, G = +2  
fC = 100 kHz, VO = 2 V p-p, G = +2  
f = 1 kHz  
–62  
–86  
15  
2.4  
5
–62  
–86  
15  
2.4  
5
dBc  
dBc  
nV/Hz  
pA/Hz  
pA/Hz  
dB  
Input Voltage Noise  
Input Current Noise  
f = 100 kHz  
f = 1 kHz  
Crosstalk (AD8032 Only)  
DC PERFORMANCE  
f = 5 MHz  
–60  
–60  
VCC  
Input Offset Voltage  
VCM  
=
;
VOUT = 1.35 V  
±1  
±6  
±6  
±0.5  
±1.6  
±1.5 mV  
±2.5 mV  
2
TMIN to TMAX  
±10  
VCC  
Offset Drift  
VCM  
=
;
VOUT = 1.35 V  
10  
10  
µV/°C  
2
VCC  
Input Bias Current  
VCM  
=
;
VOUT = 1.35 V  
0.45  
2
0.45  
2
µA  
2
TMIN to TMAX  
2.2  
2.2  
µA  
Input Offset Current  
Open Loop Gain  
50  
80  
500  
50  
80  
500  
nA  
VCC  
VCM  
=
;
VOUT = 0.35 V to 2.35 V  
76  
74  
76  
74  
dB  
dB  
2
TMIN to TMAX  
INPUT CHARACTERISTICS  
Common-Mode Input Resistance  
Differential Input Resistance  
Input Capacitance  
40  
280  
1.6  
40  
280  
1.6  
MΩ  
kΩ  
pF  
Input Voltage Range  
–0.5 to  
+3.2  
–0.2 to  
+2.9  
64  
–0.5 to  
+3.2  
–0.2 to  
+2.9  
64  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Differential Input Voltage  
V
VCM = 0 V to 2.7 V  
VCM = 0 V to 1.55 V  
46  
58  
46  
58  
dB  
dB  
V
74  
74  
3.4  
3.4  
OUTPUT CHARACTERISTICS  
Output Voltage Swing Low  
Output Voltage Swing High  
Output Voltage Swing Low  
Output Voltage Swing High  
Output Current  
RL = 10 kΩ  
RL = 1 kΩ  
+0.05  
+2.6  
+0.15  
+2.55  
+0.02  
+2.68  
+0.08  
+2.6  
15  
21  
–34  
15  
+0.05  
+2.6  
+0.15  
+2.55  
+0.02  
+2.68  
+0.08  
+2.6  
15  
21  
–34  
15  
V
V
V
V
mA  
mA  
mA  
pF  
Short Circuit Current  
Sourcing  
Sinking  
G = +2 (See Figure 41)  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
+2.7  
75  
+12  
1250  
+2.7  
75  
+12  
1250 µA  
V
750  
86  
750  
86  
VS– = 0 V to –1 V or  
VS+ = +2.7 V to +3.7 V  
dB  
Specifications subject to change without notice.  
–2–  
REV. B  
AD8031/AD8032  
SPECIFICATIONS  
(@ TA = +25؇C, VS = +5 V, RL = 1 kto +2.5 V, RF = 2.5 kunless otherwise noted)  
+5 V Supply  
AD8031A/AD8032A  
AD8031B/AD8032B  
Min Typ Max  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
Slew Rate  
G = +1, VO < 0.4 V p-p  
G = –1, VO = 2 V Step  
G = –1, VO = 2 V Step, CL = 10 pF  
54  
27  
80  
32  
125  
54  
27  
80  
32  
125  
MHz  
V/µs  
ns  
Settling Time to 0.1%  
DISTORTION/NOISE PERFORMANCE  
Total Harmonic Distortion  
fC = 1 MHz, VO = 2 V p-p, G = +2  
fC = 100 kHz, VO = 2 V p-p, G = +2  
f = 1 kHz  
–62  
–86  
15  
2.4  
5
0.17  
0.11  
–60  
–62  
–86  
15  
2.4  
5
0.17  
0.11  
–60  
dBc  
dBc  
Input Voltage Noise  
Input Current Noise  
nV/Hz  
pA/Hz  
pA/Hz  
%
Degrees  
dB  
f = 100 kHz  
f = 1 kHz  
Differential Gain  
RL = 1 kΩ  
Differential Phase  
RL = 1 kΩ  
Crosstalk (AD8032 Only)  
f = 5 MHz  
DC PERFORMANCE  
VCC  
Input Offset Voltage  
VCM  
=
;
VOUT = 2.5 V  
±1  
±6  
±6  
±0.5  
±1.6  
±1.5 mV  
±2.5 mV  
2
TMIN to TMAX  
±10  
VCC  
Offset Drift  
VCM  
=
;
VOUT = 2.5 V  
5
5
µV/°C  
2
VCC  
Input Bias Current  
VCM  
=
;
VOUT = 2.5 V  
0.45  
1.2  
0.45  
1.2  
µA  
2
TMIN to TMAX  
2.0  
2.0  
µA  
Input Offset Current  
Open Loop Gain  
50  
82  
350  
50  
82  
250  
nA  
VCC  
VCM  
=
;
VOUT = 1.5 V to 3.5 V 76  
74  
76  
74  
dB  
dB  
2
TMIN to TMAX  
INPUT CHARACTERISTICS  
Common-Mode Input Resistance  
Differential Input Resistance  
Input Capacitance  
40  
280  
1.6  
40  
280  
1.6  
MΩ  
kΩ  
pF  
Input Voltage Range  
–0.5 to  
+5.5  
–0.2 to  
+5.2  
70  
–0.5 to  
+5.5  
–0.2 to  
+5.2  
70  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Differential Input Voltage  
V
VCM = 0 V to 5 V  
VCM = 0 V to 3.8 V  
56  
66  
56  
66  
dB  
dB  
V
80  
80  
3.4  
3.4  
OUTPUT CHARACTERISTICS  
Output Voltage Swing Low  
Output Voltage Swing High  
Output Voltage Swing Low  
Output Voltage Swing High  
Output Current  
RL = 10 kΩ  
RL = 1 kΩ  
+0.05  
+4.95  
+0.2  
+0.02  
+4.98  
+0.1  
+4.9  
15  
28  
–46  
15  
+0.05  
+4.95  
+0.2  
+0.02  
+4.98  
+0.1  
+4.9  
15  
28  
–46  
15  
V
V
V
V
mA  
mA  
mA  
pF  
+4.8  
+4.8  
Short Circuit Current  
Sourcing  
Sinking  
G = +2 (See Figure 41)  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
+2.7  
75  
+12  
1400  
+2.7  
75  
+12  
1400 µA  
V
800  
86  
800  
86  
VS– = 0 V to –1 V or  
VS+ = +5 V to +6 V  
dB  
Specifications subject to change without notice.  
REV. B  
–3–  
AD8031/AD8032–SPECIFICATIONS  
(@ T = +25؇C, V = ؎5 V, R = 1 kto 0 V, R = 2.5 kunless otherwise noted)  
؎5 V Supply  
A
S
L
F
AD8031A/AD8032A  
AD8031B/AD8032B  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
Slew Rate  
G = +1, VO < 0.4 V p-p  
G = –1, VO = 2 V Step  
G = –1, VO = 2 V Step, CL = 10 pF  
54  
30  
80  
35  
125  
54  
30  
80  
35  
125  
MHz  
V/µs  
ns  
Settling Time to 0.1%  
DISTORTION/NOISE PERFORMANCE  
Total Harmonic Distortion  
f
C = 1 MHz, VO = 2 V p-p, G = +2  
fC = 100 kHz, VO = 2 V p-p, G = +2  
f = 1 kHz  
–62  
–86  
15  
2.4  
5
0.15  
0.15  
–60  
–62  
–86  
15  
2.4  
5
0.15  
0.15  
–60  
dBc  
dBc  
Input Voltage Noise  
Input Current Noise  
nV/Hz  
pA/Hz  
pA/Hz  
%
Degrees  
dB  
f = 100 kHz  
f = 1 kHz  
RL = 1 kΩ  
RL = 1 kΩ  
Differential Gain  
Differential Phase  
Crosstalk (AD8032 Only)  
f = 5 MHz  
DC PERFORMANCE  
Input Offset Voltage  
VCM = 0 V; VOUT = 0 V  
TMIN to TMAX  
VCM = 0 V; VOUT = 0 V  
VCM = 0 V; VOUT = 0 V  
TMIN to TMAX  
±1  
±6  
5
±6  
±10  
±0.5  
±1.6  
5
±1.5 mV  
±2.5 mV  
µV/°C  
µA  
Offset Drift  
Input Bias Current  
0.45  
1.2  
2.0  
350  
0.45  
1.2  
2.0  
250  
µA  
nA  
dB  
dB  
Input Offset Current  
Open Loop Gain  
50  
80  
50  
80  
VCM = 0 V; VOUT = ±2 V  
TMIN to TMAX  
76  
74  
76  
74  
INPUT CHARACTERISTICS  
Common-Mode Input Resistance  
Differential Input Resistance  
Input Capacitance  
40  
280  
1.6  
40  
280  
1.6  
MΩ  
kΩ  
pF  
Input Voltage Range  
–5.5 to  
+5.5  
–5.2 to  
+5.2  
80  
–5.5 to  
+5.5  
–5.2 to  
+5.2  
80  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Differential/Input Voltage  
V
VCM = –5 V to +5 V  
VCM = –5 V to +3.5 V  
60  
66  
60  
66  
dB  
dB  
V
90  
90  
3.4  
3.4  
OUTPUT CHARACTERISTICS  
Output Voltage Swing Low  
Output Voltage Swing High  
Output Voltage Swing Low  
Output Voltage Swing High  
Output Current  
RL = 10 kΩ  
RL = 1 kΩ  
–4.94  
+4.94  
–4.7  
–4.98  
+4.98  
–4.85  
+4.75  
15  
35  
–50  
15  
–4.94  
+4.94  
–4.7  
–4.98  
+4.98  
–4.85  
+4.75  
15  
35  
–50  
15  
V
V
V
V
mA  
mA  
mA  
pF  
+4.7  
+4.7  
Short Circuit Current  
Sourcing  
Sinking  
G = +2 (See Figure 41)  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
±1.35  
±6  
±1.35  
±6  
V
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
900  
86  
1600  
900  
86  
1600 µA  
VS– = –5 V to –6 V or  
VS+ = +5 V to +6 V  
76  
76  
dB  
Specifications subject to change without notice.  
REV. B  
–4–  
AD8031/AD8032  
ABSOLUTE MAXIMUM RATINGS1  
temperature of the plastic, approximately +150°C. Exceeding  
this limit temporarily may cause a shift in parametric perfor-  
mance due to a change in the stresses exerted on the die by  
the package. Exceeding a junction temperature of +175°C for  
an extended period can result in device failure.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +12.6 V  
Internal Power Dissipation2  
Plastic DIP Package (N) . . . . . . . . . . . . . . . . . . . 1.3 Watts  
Small Outline Package (R) . . . . . . . . . . . . . . . . . . 0.8 Watts  
µSOIC (RM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 Watts  
SOT-23-5 (RT) . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 Watts  
Input Voltage (Common-Mode) . . . . . . . . . . . . . ±VS ± 0.5 V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±3.4 V  
Output Short Circuit Duration  
While the AD8031/AD8032 are internally short circuit pro-  
tected, this may not be sufficient to guarantee that the maxi-  
mum junction temperature (+150°C) is not exceeded under  
all conditions. To ensure proper operation, it is necessary to  
observe the maximum power derating curves shown in Figure 2.  
. . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range (N, R, RM, RT)  
2.0  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . +300°C  
8-LEAD PLASTIC  
DIP PACKAGE  
T = +150؇C  
J
NOTES  
1.5  
1.0  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for the device in free air:  
8-LEAD SOIC PACKAGE  
8-LEAD SOIC  
8-Lead Plastic DIP Package: θJA = 90°C/W.  
8-Lead SOIC Package: θJA = 155°C/W.  
8-Lead µSOIC Package: θJA = 200°C/W.  
5-Lead SOT-23-5 Package: θJA = 240°C/W.  
SOT-23-5  
0.5  
0
MAXIMUM POWER DISSIPATION  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
The maximum power that can be safely dissipated by the  
AD8031/AD8032 are limited by the associated rise in junction  
temperature. The maximum safe junction temperature for plas-  
tic encapsulated devices is determined by the glass transition  
AMBIENT TEMPERATURE – ؇C  
Figure 2. Maximum Power Dissipation vs. Temperature  
ORDERING GUIDE  
Temperature  
Range  
Package  
Descriptions  
Package  
Options  
Brand  
Code  
Model  
AD8031AN  
AD8031AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Plastic DIP  
8-Lead SOIC  
N-8  
SO-8  
SO-8  
SO-8  
RT-5  
RT-5  
N-8  
SO-8  
SO-8  
SO-8  
AD8031AR-REEL  
AD8031AR-REEL7  
AD8031ART-REEL  
AD8031ART-REEL7  
AD8031BN  
AD8031BR  
AD8031BR-REEL  
AD8031BR-REEL7  
13" Tape and Reel  
7" Tape and Reel  
13" Tape and Reel  
7" Tape and Reel  
8-Lead Plastic DIP  
8-Lead SOIC  
H0A  
H0A  
13" Tape and Reel  
7" Tape and Reel  
AD8032AN  
AD8032AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Plastic DIP  
8-Lead SOIC  
13" Tape and Reel  
7" Tape and Reel  
8-Lead µSOIC  
13" Tape and Reel  
7" Tape and Reel  
8-Lead Plastic DIP  
8-Lead SOIC  
13" Tape and Reel  
7" Tape and Reel  
N-8  
SO-8  
SO-8  
SO-8  
RM-8  
RM-8  
RM-8  
N-8  
SO-8  
SO-8  
SO-8  
AD8032AR-REEL  
AD8032AR-REEL7  
AD8032ARM  
AD8032ARM-REEL  
AD8032ARM-REEL7  
AD8032BN  
AD8032BR  
AD8032BR-REEL  
AD8032BR-REEL7  
H9A  
H9A  
H9A  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8031/AD8032 feature proprietary ESD protection circuitry, permanent damage  
may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–5–  
AD8031/AD8032–Typical Performance Characteristics  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
800  
600  
400  
200  
0
N = 250  
V
= +5V  
V
= +2.7V  
S
S
V
= +10V  
S
–200  
–400  
–600  
–800  
–5  
–4  
–3 –2  
–1  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
9
10  
V
– mV  
COMMON-MODE VOLTAGE – V  
OS  
Figure 3. Typical VOS Distribution @ VS = 5 V  
Figure 6. Input Bias Current vs. Common-Mode Voltage  
0
2.5  
2.3  
2.1  
V
= +5V  
S
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
V
= +5V  
S
1.9  
1.7  
1.5  
V
= ؎5V  
S
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE – ؇C  
COMMON-MODE VOLTAGE – V  
Figure 4. Input Offset Voltage vs. Temperature  
Figure 7. VOS vs. Common-Mode Voltage  
1
1000  
0.95  
؎I , V = ؎5V  
S
S
950  
900  
850  
800  
V
= +5V  
S
0.9  
0.85  
0.8  
+I , V = +5V  
S
S
0.75  
0.7  
750  
700  
650  
600  
0.65  
+I , V = +2.7V  
S
S
0.6  
0.55  
0.5  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
Figure 5. Input Bias Current vs. Temperature  
Figure 8. Supply Current vs. Temperature  
REV. B  
–6–  
AD8031/AD8032  
0
–0.5  
–1  
1.2  
1
V
= +2.7V  
CC  
V
CC  
V
= +10V  
CC  
V
OUT  
V
IN  
R
0.8  
0.6  
0.4  
LOAD  
V
= +5V  
CC  
V
EE  
V
CC  
2
V
CC  
V
= +5V  
–1.5  
CC  
V
OUT  
R
LOAD  
V
IN  
V
= +10V  
CC  
V
EE  
–2  
V
2
CC  
0.2  
0
V
= +2.7V  
CC  
–2.5  
100  
1k  
– Ohms  
10k  
1k  
– Ohms  
10k  
100  
R
R
LOAD  
LOAD  
Figure 9. +Output Saturation Voltage vs. RLOAD @ +85°C  
Figure 12. –Output Saturation Voltage vs. RLOAD @ +85°C  
0
1.2  
V
= +2.7V  
CC  
V
CC  
1
–0.5  
–1  
V
= +10V  
CC  
V
OUT  
LOAD  
V
IN  
R
0.8  
0.6  
0.4  
V
= +5V  
CC  
V
EE  
V
2
CC  
V
CC  
V
= +5V  
CC  
–1.5  
V
OUT  
R
LOAD  
V
IN  
V
= +10V  
CC  
V
EE  
–2  
V
2
CC  
0.2  
0
V
= +2.7V  
CC  
–2.5  
100  
1k  
– Ohms  
10k  
1k  
– Ohms  
10k  
100  
R
R
LOAD  
LOAD  
Figure 10. +Output Saturation Voltage vs. RLOAD @ +25°C  
Figure 13. –Output Saturation Voltage vs. RLOAD @ +25°C  
0
1.2  
V
= +2.7V  
CC  
V
CC  
1
–0.5  
–1  
V
= +10V  
CC  
V
OUT  
LOAD  
V
IN  
R
0.8  
0.6  
0.4  
V
= +5V  
V
CC  
EE  
V
2
CC  
V
CC  
V
= +5V  
–1.5  
CC  
V
OUT  
LOAD  
V
IN  
V
= +10V  
R
CC  
V
EE  
–2  
V
2
CC  
0.2  
0
V
= +2.7V  
CC  
–2.5  
100  
1k  
– Ohms  
10k  
1k  
– Ohms  
10k  
100  
R
R
LOAD  
LOAD  
Figure 11. +Output Saturation Voltage vs. RLOAD @ –40°C  
Figure 14. –Output Saturation Voltage vs. RLOAD @ –40°C  
REV. B  
–7–  
AD8031/AD8032–Typical Performance Characteristics  
110  
V
= +5V  
S
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
500mV  
1V  
–A  
OL  
100  
90  
10  
0
+A  
OL  
V
= +5V  
S
10  
–10  
0%  
500mV  
2.5  
–1.5  
0.5  
4.5  
6.5  
INPUT VOLTAGE – Volts  
0
2k  
4k  
R
6k  
– Ohms  
8k  
10k  
LOAD  
Figure 15. Open-Loop Gain (AOL) vs. RLOAD  
Figure 18. Differential Input Overvoltage I-V  
Characteristics  
86  
0.05  
0.00  
V
= +5V  
S
R
= 1k⍀  
L
84  
82  
80  
–0.05  
–0.10  
–A  
OL  
–0.15  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
+A  
OL  
0.10  
0.05  
0.00  
78  
76  
–0.05  
–0.10  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
TEMPERATURE – ؇C  
Figure 16. Open-Loop Gain (AOL) vs. Temperature  
Figure 19. Differential Gain and Phase @ VS = ±5 V;  
RL = 1 k  
110  
100  
V
= +5V  
S
R
= 10k⍀  
V
= +5V  
LOAD  
S
100  
90  
100  
10  
1
30  
10  
3
VOLTAGE NOISE  
R
= 1k⍀  
LOAD  
80  
70  
60  
50  
CURRENT NOISE  
0.1  
1
0.3  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
10  
100  
1k  
10k  
100k  
1M  
10M  
V
– V  
OUT  
FREQUENCY – Hz  
Figure 17. Open-Loop Gain (AOL) vs. VOUT  
Figure 20. Input Voltage Noise vs. Frequency  
REV. B  
–8–  
AD8031/AD8032  
5
V
= +5V  
40  
30  
S
4
3
G = +1  
= 1k⍀  
R
L
GAIN  
20  
10  
2
1
0
0
–10  
–20  
–90  
–1  
–2  
–3  
–4  
–5  
PHASE  
–135  
–180  
–225  
0.3  
1
10  
FREQUENCY – MHz  
100  
0.1  
1
10  
100  
FREQUENCY – MHz  
Figure 21. Unity Gain , –3 dB Bandwidth  
Figure 24. Open-Loop Frequency Response  
–20  
3
V
V
= +5V  
S
2
1
0
= –16dBm  
–30  
–40  
IN  
V
+85؇C  
CC  
2
G = +1, R = 2kTO  
L
–40؇C  
+25؇C  
1.3V p-p  
= +2.7V  
–50  
–60  
–1  
–2  
–3  
–4  
V
2.5V p-p  
= +2.7V  
S
V
V
S
S
2k⍀  
2V p-p  
= +2.7V  
V
OUT  
V
V
S
IN  
50⍀  
–70  
–80  
4.8V p-p  
= +5V  
V
S
–5  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – MHz  
FUNDAMENTAL FREQUENCY – Hz  
Figure 22. Closed-Loop Gain vs. Temperature  
Figure 25. Total Harmonic Distortion vs. Frequency; G = +1  
2
–20  
V
= +2.7V  
S
V
R
= +5V  
+ C  
L
S
1
0
R
+ C TO 1.35V  
L
L
G = +2  
= +5V  
–30  
–40  
–50  
–60  
L
V
S
V
TO 2.5V  
CC  
2
R
= 1kTO  
L
V
= ؎5V  
S
–1  
–2  
4.8V p-p  
1V p-p  
–3  
–4  
–5  
G = +1  
C
R
= 5pF  
L
L
–70  
–80  
–90  
= 1k⍀  
4.6V p-p  
–6  
–7  
4V p-p  
–8  
100k  
1M  
10M  
FREQUENCY – Hz  
100M  
1k  
10k  
100k  
1M  
10M  
FUNDAMENTAL FREQUENCY – Hz  
Figure 23. Closed-Loop Gain vs. Supply Voltage  
Figure 26. Total Harmonic Distortion vs. Frequency; G = +2  
REV. B  
–9–  
AD8031/AD8032–Typical Performance Characteristics  
10  
0
V
= ؎5V  
S
–20  
V
= +5V  
8
S
–40  
–60  
6
V
V
= +5V  
S
4
–80  
= +2.7V  
S
–100  
–120  
2
0
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 27. Large Signal Response  
Figure 30. PSRR vs. Frequency  
V
S
= +5V  
R
= 10kTO 2.5V  
= 6V p-p  
L
V
IN  
100  
50  
RB = 50⍀  
T
5.5  
G = +1  
4.5  
3.5  
2.5  
1.5  
10  
1
0.5  
RB  
T
–0.5  
V
0.1  
OUT  
RB = 0  
T
10s / Div  
0.1  
1
10  
100 200  
FREQUENCY – MHz  
Figure 31. Output Voltage  
Figure 28. ROUT vs. Frequency  
0
–20  
V
= +5V  
V
= +5V  
S
S
INPUT  
G = +1  
INPUT = 650mV  
BEYOND RAILS  
5.5  
4.5  
3.5  
2.5  
1.5  
–40  
–60  
0.5  
–0.5  
–80  
–100  
10s / Div  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
Figure 32. Output Voltage Phase Reversal Behavior  
Figure 29. CMRR vs. Frequency  
REV. B  
–10–  
AD8031/AD8032  
R
L
TO  
V
S
= +2.7V  
+2.5V  
R
L
= 1k⍀  
2.85  
G = –1  
2.35  
1.85  
1.35  
0.85  
R
1.35V  
TO  
L
0.35  
V
S
= +5V  
R
= 1k⍀  
L
R
L
TO GND  
R
L
TO GND  
G = –1  
0
10s / Div  
10s / Div  
Figure 33. Output Swing  
Figure 35. Output Swing  
G = +2  
G = +1  
R
R
C
= R = 2.5k⍀  
= 2k⍀  
= 5pF  
= +5V  
R
R
C
= 0  
F
L
L
S
G
F
L
L
S
= 2kTO 2.5V  
= 5pF TO 2.5V  
= +5V  
3.1  
2.56  
2.9  
2.7  
2.54  
2.52  
V
V
2.5  
2.3  
2.50  
2.48  
2.1  
1.9  
2.46  
2.44  
50ns/Div  
50ns /Div  
Figure 34. 1 V Step Response  
Figure 36. 100 mV Step Response  
–50  
–60  
–70  
–80  
V
V
= ؎2.5V  
S
= +10dBm  
IN  
–90  
–100  
2.5k2.5k⍀  
2.5k⍀  
2.5k⍀  
V
OUT  
V
IN  
1k⍀  
50⍀  
50⍀  
RECEIVER  
TRANSMITTER  
0.1  
1
10  
100 200  
FREQUENCY – MHz  
Figure 37. Crosstalk vs. Frequency  
REV. B  
–11–  
AD8031/AD8032  
THEORY OF OPERATION  
Switching to the NPN pair as the common-mode voltage is  
driven beyond 1 V within the positive supply allows the ampli-  
fier to provide useful operation for signals at either end of the  
supply voltage range and eliminates the possibility of phase  
reversal for input signals up to 500 mV beyond either power  
supply. Offset voltage will also change to reflect the offset of the  
input pair in control. The transition region is small, on the order  
of 180 mV. These sudden changes in the dc parameters of  
the input stage can produce glitches that will adversely affect  
distortion.  
The AD8031/AD8032 are single and dual versions of high  
speed, low power voltage feedback amplifiers featuring an inno-  
vative architecture that maximizes the dynamic range capability  
on the inputs and outputs. Linear input common-mode range  
exceeds either supply voltage by 200 mV, and the amplifiers  
show no phase reversal up to 500 mV beyond supply. The out-  
put swings to within 20 mV of either supply when driving a light  
load; 300 mV when driving up to 5 mA.  
Fabricated on Analog Devices’ XFCB, a 4 GHz dielectrically  
isolated fully complementary bipolar process, the amplifier  
provides an impressive 80 MHz bandwidth when used as a  
follower and 30 V/µs slew rate at only 800 µA supply current.  
Careful design allows the amplifier to operate with a supply  
voltage as low as 2.7 volts.  
Overdriving the Input Stage  
Sustained input differential voltages greater than 3.4 volts  
should be avoided as the input transistors may be damaged.  
Input clamp diodes are recommended if the possibility of this  
condition exists.  
Input Stage Operation  
The voltages at the collectors of the input pairs are set to 200 mV  
from the power supply rails. This allows the amplifier to remain  
in linear operation for input voltages up to 500 mV beyond the  
supply voltages. Driving the input common-mode voltage be-  
yond that point will forward bias the collector junction of the  
input transistor, resulting in phase reversal. Sustaining this  
condition for any length of time should be avoided as it is easy  
to exceed the maximum allowed input differential voltage when  
the amplifier is in phase reversal.  
A simplified schematic of the input stage appears in Figure 38.  
For common-mode voltages up to 1.1 volts within the positive  
supply, (0 V to 3.9 V on a single 5 V supply) tail current I2  
flows through the PNP differential pair, Q13 and Q17. Q5 is cut  
off; no bias current is routed to the parallel NPN differential  
pair Q2 and Q3. As the common-mode voltage is driven within  
1.1 V of the positive supply, Q5 turns on and routes the tail  
current away from the PNP pair and to the NPN pair. During  
this transition region, the amplifier’s input current will change  
magnitude and direction. Reusing the same tail current ensures  
that the input stage has the same transconductance (which deter-  
mines the amplifier’s gain and bandwidth) in both regions of  
operation.  
V
CC  
R1  
2k⍀  
I3  
25A  
R2  
2k⍀  
I2  
90A  
Q9  
1.1V  
R5  
50k⍀  
Q3  
V
Q2  
R9  
Q6  
Q10  
IN  
1
R6  
R7  
1
850850⍀  
Q8  
Q7  
Q5  
R8  
4
4
4
4
850850⍀  
V
Q13  
Q17  
I4  
25A  
IP  
OUTPUT STAGE,  
COMMON-MODE  
FEEDBACK  
Q14  
Q11  
1
1
Q15  
Q16  
R4  
2k⍀  
R3  
2k⍀  
I1  
5A  
Q18  
Q4  
V
EE  
Figure 38. Simplified Schematic of AD8031 Input Stage  
REV. B  
–12–  
AD8031/AD8032  
Output Overdrive Recovery  
Output Stage, Open-Loop Gain and Distortion vs. Clearance  
from Power Supply  
The AD8031 features a rail-to-rail output stage. The output  
transistors operate as common emitter amplifiers, providing the  
output drive current as well as a large portion of the amplifier’s  
open-loop gain.  
Output overdrive of an amplifier occurs when the amplifier  
attempts to drive the output voltage to a level outside its normal  
range. After the overdrive condition is removed, the amplifier  
must recover to normal operation in a reasonable amount of  
time. As shown in Figure 40, the AD8031/AD8032 recover  
within 100 ns from negative overdrive and within 80 ns from  
positive overdrive.  
I2  
25A  
I1  
25A  
Q51  
Q42  
Q47  
R
G
R
F
R
F
= R = 2k⍀  
G
DIFFERENTIAL  
DRIVE  
FROM  
INPUT STAGE  
V
Q37  
Q38  
OUT  
V
IN  
C9  
5pF  
R
L
Q68  
50⍀  
R29  
300⍀  
Q20  
Q27  
Q21  
V
OUT  
C5  
1.5pF  
Q43  
Q48  
Q49  
I4  
25A  
I5  
25A  
V
= ؎2.5V  
= ؎2.5V  
S
V
IN  
Q50  
Q44  
R
L
= +1kTO GND  
1V  
100ns  
Figure 39. Output Stage Simplified Schematic  
The output voltage limit depends on how much current the  
Figure 40. Overdrive Recovery  
Driving Capacitive Loads  
output transistors are required to source or sink. For applica-  
tions with very low drive requirements (a unity gain follower  
driving another amplifier input, for instance), the AD8031 typi-  
cally swings within 20 mV of either voltage supply. As the re-  
quired current load increases, the saturation output voltage will  
increase linearly as ILOAD × RC, where ILOAD is the required load  
current and RC is the output transistor collector resistance. For  
the AD8031, the collector resistances for both output transistors  
are typically 25 . As the current load exceeds the rated output  
current of 15 mA, the amount of base drive current required to  
drive the output transistor into saturation will reach its limit,  
and the amplifier’s output swing will rapidly decrease.  
Capacitive loads interact with an op amp’s output impedance to  
create an extra delay in the feedback path. This reduces circuit  
stability, and can cause unwanted ringing and oscillation. A  
given value of capacitance causes much less ringing when the  
amplifier is used with a higher noise gain.  
The capacitive load drive of the AD8031/AD8032 can be in-  
creased by adding a low valued resistor in series with the capaci-  
tive load. Introducing a series resistor tends to isolate the  
capacitive load from the feedback loop, thereby, diminishing its  
influence. Figure 41 shows the effects of a series resistor on  
capacitive drive for varying voltage gains. As the closed-loop  
gain is increased, the larger phase margin allows for larger ca-  
pacitive loads with less overshoot. Adding a series resistor at  
lower closed-loop gains accomplishes the same effect. For large  
capacitive loads, the frequency response of the amplifier will be  
dominated by the roll-off of the series resistor and capacitive  
load.  
The open-loop gain of the AD8031 decreases approximately  
linearly with load resistance and also depends on the output  
voltage. Open-loop gain stays constant to within 250 mV of the  
positive power supply, 150 mV of the negative power supply and  
then decreases as the output transistors are driven further into  
saturation.  
1000  
The distortion performance of the AD8031/AD8032 amplifiers  
differs from conventional amplifiers. Typically an amplifier’s  
distortion performance degrades as the output voltage ampli-  
tude increases.  
R
= 5⍀  
S
V
= +5V  
S
200mV STEP  
WITH 30% OVERSHOOT  
R
= 0⍀  
S
100  
10  
Used as a unity gain follower, the AD8031/AD8032 output will  
exhibit more distortion in the peak output voltage region around  
R
= 20⍀  
S
V
CC –0.7 V. This unusual distortion characteristic is caused by  
the input stage architecture and is discussed in detail in the  
section covering “Input Stage Operation.”  
R
= 20⍀  
S
R
F
R
G
V
R
OUT  
S
R
= 0, 5⍀  
S
C
L
1
0
1
2
3
4
5
CLOSED-LOOP GAIN – V/V  
Figure 41. Capacitive Load Drive vs. Closed-Loop Gain  
REV. B  
–13–  
AD8031/AD8032  
0
–10  
–20  
–30  
APPLICATIONS  
A 2 MHz Single Supply Biquad Bandpass Filter  
Figure 42 shows a circuit for a single supply biquad bandpass  
filter with a center frequency of 2 MHz. A 2.5 V bias level is  
easily created by connecting the noninverting inputs of all three  
op amps to a resistor divider consisting of two 1 kresistors  
connected between +5 V and ground. This bias point is also  
decoupled to ground with a 0.1 µF capacitor. The frequency  
response of the filter is shown in Figure 43.  
In order to maintain an accurate center frequency, it is essential  
that the op amp has sufficient loop gain at 2 MHz. This requires  
the choice of an op amp with a significantly higher unity gain  
crossover frequency. The unity gain crossover frequency of the  
AD8031/AD8032 is 40 MHz. Multiplying the open-loop gain by  
the feedback factors of the individual op amp circuits yields the  
loop gain for each gain stage. From the feedback networks of the  
individual op amp circuits, we can see that each op amp has a  
loop gain of at least 21 dB. This level is high enough to ensure  
that the center frequency of the filter is not affected by the op  
amp’s bandwidth. If, for example, an op amp with a gain band-  
width product of 10 MHz was chosen in this application, the  
resulting center frequency would shift by 20% to 1.6 MHz.  
–40  
–50  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 43. Frequency Response of 2 MHz Bandpass Filter  
High Performance Single Supply Line Driver  
Even though the AD8031/AD8032 swing close to both rails,  
the AD8031 has optimum distortion performance when the  
signal has a common-mode level half way between the supplies  
and when there is about 500 mV of headroom to each rail. If  
low distortion is required in single supply applications for sig-  
nals that swing close to ground, an emitter follower circuit can  
be used at the op amp output.  
R6  
1k⍀  
C1  
50pF  
+5V  
R2  
2k⍀  
R4  
2k⍀  
10F  
+5V  
0.1F  
+5V  
0.1F  
0.1F  
C2  
50pF  
R1  
3k⍀  
R3  
2k⍀  
7
3
V
IN  
V
IN  
6
R5  
2k⍀  
1k⍀  
2N3904  
49.9⍀  
2
AD8031  
AD8031  
4
1/2  
AD8032  
1/2  
AD8032  
49.9⍀  
200⍀  
2.49k⍀  
2.49k⍀  
V
OUT  
0.1F  
1k⍀  
49.9⍀  
V
OUT  
Figure 42. A 2 MHz Biquad Bandpass Filter Using AD8031/  
AD8032  
Figure 44. Low Distortion Line Driver for Single Supply  
Ground Referenced Signals  
REV. B  
–14–  
AD8031/AD8032  
Figure 44 shows the AD8031 configured as a single supply gain-  
of-2 line driver. With the output driving a back terminated 50 Ω  
line, the overall gain from VIN to VOUT is unity. In addition to  
minimizing reflections, the 50 back termination resistor pro-  
tects the transistor from damage if the cable is short circuited.  
The emitter follower, which is inside the feedback loop, ensures  
that the output voltage from the AD8031 stays about 700 mV  
above ground. Using this circuit, very low distortion is attain-  
able even when the output signal swings to within 50 mV of  
ground. The circuit was tested at 500 kHz and 2 MHz. Figures  
45 and 46 show the output signal swing and frequency spectrum  
at 500 kHz. At this frequency, the output signal (at VOUT),  
which has a peak-to-peak swing of 1.95 V (50 mV to 2 V), has a  
THD of –68 dB (SFDR = –77 dB).  
Figures 47 and 48 show the output signal swing and frequency  
spectrum at 2 MHz. As expected, there is some degradation in  
signal quality at the higher frequency. When the output signal  
has a peak-to-peak swing of 1.45 V (swinging from 50 mV to  
1.5 V), the THD is –55 dB (SFDR = –60 dB).  
This circuit could also be used to drive the analog input of a  
single supply high speed ADC whose input voltage range is  
referenced to ground (e.g., 0 V to 2 V or 0 V to 4 V). In this  
case, a back termination resistor is not necessary (assuming a  
short physical distance from transistor to ADC), so the emit-  
ter of the external transistor would be connected directly to the  
ADC input. The available output voltage swing of the circuit  
would, therefore be doubled.  
1.5V  
100  
90  
100  
90  
2V  
10  
0%  
10  
0%  
0.2V  
200ns  
50mV  
50mV  
0.5V  
1s  
Figure 45. Output Signal Swing of Low Distortion Line  
Driver at 500 kHz  
Figure 47. Output Signal Swing of Low Distortion Line  
Driver at 2 MHz  
+7dBm  
+9dBm  
START 0Hz  
STOP 20MHz  
STOP 5MHz  
START 0Hz  
Figure 48. THD of Low Distortion Line Driver at 2 MHz  
Figure 46. THD of Low Distortion Line Driver at 500 kHz  
REV. B  
–15–  
AD8031/AD8032  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic SOIC  
(SO-8)  
8-Lead Plastic DIP  
(N-8)  
0.1968 (5.00)  
0.1890 (4.80)  
0.39 (9.91)  
MAX  
8
5
4
8
1
5
4
0.25  
(6.35)  
0.31  
(7.87)  
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
1
0.30 (7.62)  
REF  
PIN 1  
0.035 ±0.01  
(0.89 ±0.25)  
PIN 1  
0.0098 (0.25)  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45°  
0.165 ±0.01  
(4.19 ±0.25)  
0.0040 (0.10)  
0.18 ±0.03  
(4.57 ±0.76)  
0.125 (3.18)  
MIN  
15°  
0°  
0.011 ±0.003  
(0.28 ±0.08)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.018 ±0.003 0.10  
(0.46 ±0.08) (2.54)  
BSC  
0.033  
(0.84)  
NOM  
SEATING  
PLANE  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
8-Lead SOIC  
5-Lead Plastic Surface Mount (SOT-23)  
(RT-5)  
(RM-8)  
0.122 (3.10)  
0.114 (2.90)  
0.1181 (3.00)  
0.1102 (2.80)  
5
4
8
1
5
1
4
3
0.1181 (3.00)  
0.1024 (2.60)  
0.0669 (1.70)  
0.0590 (1.50)  
0.199 (5.05)  
0.187 (4.75)  
0.122 (3.10)  
0.114 (2.90)  
2
PIN 1  
PIN 1  
0.0374 (0.95) BSC  
0.0256 (0.65) BSC  
0.0748 (1.90)  
BSC  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
0.0079 (0.20)  
0.0031 (0.08)  
0.0512 (1.30)  
0.0354 (0.90)  
0.0571 (1.45)  
0.0374 (0.95)  
0.043 (1.09)  
0.037 (0.94)  
0.006 (0.15)  
0.002 (0.05)  
33°  
27°  
10؇  
0؇  
0.018 (0.46)  
SEATING  
PLANE  
0.0197 (0.50)  
0.0138 (0.35)  
0.0059 (0.15)  
0.0019 (0.05)  
0.011 (0.28)  
0.003 (0.08)  
0.028 (0.71)  
0.016 (0.41)  
0.0217 (0.55)  
0.0138 (0.35)  
SEATING  
PLANE  
0.008 (0.20)  
REV. B  
–16–  

相关型号:

AD8031ARTZ-R2

2.7 V, 800 レA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031ARTZ-REEL

2.7 V, 800 レA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031ARTZ-REEL7

2.7 V, 800 レA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031ARZ

2.7 V, 800 レA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031ARZ-REEL

2.7 V, 800 レA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031ARZ-REEL7

2.7 V, 800 レA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031B

2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031BN

2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031BNZ

2.7 V, 800 レA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031BR

2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031BR-REEL

2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI

AD8031BR-REEL7

2.7 V, 800 uA, 80 MHz Rail-to-Rail I/O Amplifiers
ADI