AD8045ACPZ-R2 [ADI]

3 nV/Hz Ultralow Distortion, High Speed Op Amp; 3内华达州/ Hz的超低失真,高速运算放大器
AD8045ACPZ-R2
型号: AD8045ACPZ-R2
厂家: ADI    ADI
描述:

3 nV/Hz Ultralow Distortion, High Speed Op Amp
3内华达州/ Hz的超低失真,高速运算放大器

运算放大器 放大器电路
文件: 总24页 (文件大小:831K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 nV/√Hz Ultralow Distortion,  
High Speed Op Amp  
AD8045  
FEATURES  
Ultralow distortion  
SFDR  
−101 dBc @ 5 MHz  
APPLICATIONS  
Instrumentation  
IF and baseband amplifiers  
Active filters  
−90 dBc @ 20 MHz  
ADC drivers  
−63 dBc @ 70 MHz  
DAC buffers  
Third-order intercept  
43 dBm @ 10 MHz  
CONNECTION DIAGRAMS  
Low noise  
3 nV/√Hz  
3 pA/√Hz  
High speed  
1
2
3
4
8
7
6
5
NC  
FEEDBACK  
–IN  
+V  
S
OUTPUT  
NC  
+IN  
–V  
S
1 GHz, −3 dB bandwidth (G = +1)  
1350 V/µs slew rate  
7.5 ns settling time to 0.1%  
Standard and low distortion pinout  
Supply current: 15 mA  
Offset voltage: 1.0 mV max  
Wide supply voltage range: 3.3 V to 12 V  
Figure 1. 8-Lead AD8045 LFCSP (CP-8)  
1
2
3
4
8
7
6
5
FEEDBACK  
NC  
–IN  
+IN  
+V  
S
OUTPUT  
NC  
–V  
S
Figure 2. 8-Lead AD8045 SOIC/EP (RD-8)  
GENERAL DESCRIPTION  
The AD8045 amplifier is available in a 3 mm × 3 mm LFCSP  
and the standard 8-lead SOIC. Both packages feature an  
exposed paddle that provides a low thermal resistance path to  
the PCB. This enables more efficient heat transfer, and increases  
reliability. The AD8045 works over the extended industrial  
temperature range (−40°C to +125°C).  
The AD8045 is a unity gain stable voltage feedback amplifier  
with ultralow distortion, low noise, and high slew rate. With a  
spurious-free dynamic range of −90 dBc @ 20 MHz, the  
AD8045 is an ideal solution in a variety of applications,  
including ultrasound, ATE, active filters, and ADC drivers.  
ADI’s proprietary next generation XFCB process and innovative  
architecture enables such high performance amplifiers.  
–20  
G = +1  
V
V
R
= ±5V  
S
–30  
–40  
= 2V p-p  
The AD8045 features a low distortion pinout for the LFCSP,  
which improves second harmonic distortion and simplifies the  
layout of the circuit board.  
OUT  
= 1k  
= 100Ω  
L
S
R
–50  
–60  
The AD8045 has 1 GHz bandwidth, 1350 V/µs slew rate, and  
settles to 0.1% in 7.5 ns. With a wide supply voltage range (3.3 V  
to 12 V) and low offset voltage (200 µV), the AD8045 is an ideal  
candidate for systems that require high dynamic range, preci-  
sion, and high speed.  
–70  
–80  
HD3 LFCSP  
–90  
HD2 LFCSP  
–100  
–110  
–120  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 3. Harmonic Distortion vs. Frequency for Various Packages  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8045  
TABLE OF CONTENTS  
Specifications with 5 V Supply ..................................................... 3  
Applications..................................................................................... 19  
Low Distortion Pinout............................................................... 19  
High Speed ADC Driver ........................................................... 19  
90 MHz Active Low-Pass Filter (LPF)..................................... 20  
Printed Circuit Board Layout ....................................................... 22  
Signal Routing............................................................................. 22  
Power Supply Bypassing............................................................ 22  
Grounding................................................................................... 22  
Exposed Paddle........................................................................... 23  
Driving Capacitive Loads.......................................................... 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Specifications with +5 V Supply ..................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
Circuit Configurations................................................................... 16  
Wideband Operation ................................................................. 16  
Theory of Operation ...................................................................... 17  
Frequency Response................................................................... 17  
DC Errors .................................................................................... 17  
Output Noise............................................................................... 18  
REVISION HISTORY  
9/04—Data Sheet Changed from Rev. 0 to Rev. A  
Changes to Features......................................................................... 1  
Changes to Specifications............................................................... 4  
Changes to Figure 58.....................................................................15  
Changes to Figure 63.....................................................................17  
Changes to Frequency Response Section ...................................17  
Changes to Figure 64.....................................................................17  
Changes to DC Errors Section.....................................................17  
Changes to Figure 65.....................................................................17  
Changes to Figure 66.....................................................................18  
Changes to Output Noise Section ...............................................18  
Changes to Ordering Guide .........................................................24  
7/04—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
AD8045  
SPECIFICATIONS WITH 5 V SUPPLY  
TA = 25°C, G = +1, RS = 100 Ω, RL = 1 kΩ to ground, unless noted otherwise. Exposed paddle must be floating or connected to −VS.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VOUT = 0.2 V p-p  
G = +1, VOUT = 2 V p-p  
G = +2, VOUT = 0.2 V p-p  
G = +2, VOUT = 2 V p-p, RL = 150 Ω  
G = +1, VOUT = 4 V step  
G = +2, VOUT = 2 V step  
1000  
350  
400  
55  
1350  
7.5  
MHz  
300  
320  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
1000  
NOISE/HARMONIC PERFORMANCE  
Harmonic Distortion (dBc) HD2/HD3  
fC = 5 MHz, VOUT = 2 V p-p  
LFCSP  
SOIC  
−102/−101  
−106/−101  
dBc  
dBc  
fC = 20 MHz, VOUT = 2 V p-p  
LFCSP  
SOIC  
−98/−90  
−97/−90  
dBc  
dBc  
fC = 70 MHz, VOUT = 2 V p-p  
LFCSP  
SOIC  
f = 100 kHz  
f = 100 kHz  
−71/−71  
−60/−71  
3
3
0.01  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
%
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 150 Ω  
0.01  
Degrees  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
0.2  
8
2
8
0.2  
64  
1.0  
6.3  
1.3  
mV  
µV/°C  
µA  
nA/°C  
µA  
dB  
See Figure 54  
VOUT = −3 V to +3 V  
62  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time  
Output Voltage Swing  
Common-mode/differential  
Common-mode  
3.6/1.0  
1.3  
3.8  
MΩ  
pF  
V
VCM = 1 V  
−83  
−91  
dB  
VIN = 3 V, G = +2  
RL = 1 kΩ  
RL = 100 Ω  
8
ns  
V
V
mA  
mA  
pF  
−3.8 to +3.8  
−3.4 to +3.5  
−3.9 to +3.9  
−3.6 to +3.6  
70  
90/170  
18  
Output Current  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
Sinking/sourcing  
30% overshoot, G = +2  
Operating Range  
1.65  
5
6
V
Quiescent Current  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
16  
−68  
−73  
19  
mA  
dB  
dB  
+VS = +5 V to +6 V, −VS = −5 V  
+VS = +5 V, −VS = −5 V to −6 V  
−61  
−66  
Rev. A | Page 3 of 24  
 
AD8045  
SPECIFICATIONS WITH +5 V SUPPLY  
TA = 25°C, G = +1, RS = 100 Ω, RL = 1 kΩ to midsupply, unless otherwise noted. Exposed paddle must be floating or connected to −VS.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VOUT = 0.2 V p-p  
G = +1, VOUT = 2 V p-p  
G = +2, VOUT = 0.2 V p-p  
G = +2, VOUT = 2 V p-p, RL = 150 Ω  
G = +1, VOUT = 2 V step  
G = +2, VOUT = 2 V step  
900  
200  
395  
60  
1060  
10  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
160  
320  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
480  
NOISE/HARMONIC PERFORMANCE  
Harmonic Distortion (dBc) HD2/HD3  
fC = 5 MHz, VOUT = 2 V p-p  
LFCSP  
SOIC  
−89/−83  
−92/−83  
dBc  
dBc  
fC = 20 MHz, VOUT = 2 V p-p  
LFCSP  
SOIC  
−81/−70  
−83/−70  
dBc  
dBc  
fC = 70 MHz, VOUT = 2 V p-p  
LFCSP  
SOIC  
f = 100 kHz  
f = 100 kHz  
−57/−46  
−57/−46  
3
3
0.01  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
%
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 150 Ω  
0.01  
Degrees  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
0.5  
7
2
7
0.2  
63  
1.4  
6.6  
1.3  
mV  
µV/°C  
µA  
nA/°C  
µA  
dB  
See Figure 54  
VOUT = 2 V to 3 V  
61  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time  
Output Voltage Swing  
Common-mode/differential  
Common-mode  
3/0.9  
1.3  
1.2 to 3.8  
−94  
MΩ  
pF  
V
VCM = 2 V to 3 V  
−78  
dB  
VIN = −0.5 V to +3 V, G = +2  
RL = 1 kΩ  
RL = 100 Ω  
10  
ns  
V
V
mA  
mA  
pF  
2.2 to 3.7  
2.5 to 3.5  
1.1 to 4.0  
1.2 to 3.8  
55  
70/140  
15  
Output Current  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
Sinking/sourcing  
30% overshoot, G = +2  
Operating Range  
Quiescent Current  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
3.3  
5
15  
−67  
−73  
12  
18  
V
mA  
dB  
dB  
+VS = +5 V to +6 V, −VS = 0 V  
+VS = +5 V, −VS = 0 V to −1 V  
−65  
−70  
Rev. A | Page 4 of 24  
 
AD8045  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
The power dissipated in the package (PD) is the sum of the qui-  
escent power dissipation and the power dissipated in the die  
due to the AD8045 drive at the output. The quiescent power is  
the voltage between the supply pins (VS) times the quiescent  
current (IS).  
Parameter  
Rating  
Supply Voltage  
12.6 V  
Power Dissipation  
See Figure 4  
−VS − 0.7 V to +VS + 0.7 V  
±VS  
Common-Mode Input Voltage  
Differential Input Voltage  
Exposed Paddle Voltage  
Storage Temperature  
Operating Temperature Range  
PD = Quiescent Power + (Total Drive Power Load Power)  
−VS  
−65°C to +125°C  
−40°C to +125°C  
300°C  
2
VS VOUT  
VOUT  
RL  
PD =  
(
VS × IS  
)
+
×
2
RL  
Lead Temperature Range  
(Soldering 10 sec)  
RMS output voltages should be considered. If RL is referenced to  
VS, as in single-supply operation, the total drive power is VS ×  
IOUT. If the rms signal levels are indeterminate, consider the  
worst case, when VOUT = VS/4 for RL to midsupply.  
Junction Temperature  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
2
(
VS /4  
RL  
)
PD =  
(
VS ×IS +  
)
In single-supply operation with RL referenced to −VS, worst case  
is VOUT = VS/2.  
THERMAL RESISTANCE  
Airflow increases heat dissipation, effectively reducing θJA.  
Also, more metal directly in contact with the package leads and  
exposed paddle from metal traces, through holes, ground, and  
power planes reduce θJA.  
θJA is specified for the worst-case conditions, i.e., θJA is specified  
for device soldered in circuit board for surface-mount packages.  
Table 4. Thermal Resistance  
Package Type  
θJA  
80  
93  
θJC  
30  
35  
Unit  
°C/W  
°C/W  
SOIC  
LFCSP  
Figure 4 shows the maximum safe power dissipation in the  
package versus the ambient temperature for the exposed paddle  
SOIC (80°C/W) and LFCSP (93°C/W) package on a JEDEC  
standard 4-layer board. θJA values are approximations.  
Maximum Power Dissipation  
4.0  
3.5  
3.0  
2.5  
2.0  
The maximum safe power dissipation for the AD8045 is limited  
by the associated rise in junction temperature (TJ) on the die. At  
approximately 150°C, which is the glass transition temperature,  
the properties of the plastic change. Even temporarily exceeding  
this temperature limit may change the stresses that the package  
exerts on the die, permanently shifting the parametric perform-  
ance of the AD8045. Exceeding a junction temperature of  
175°C for an extended period of time can result in changes in  
silicon devices, potentially causing degradation or loss of  
functionality.  
1.5  
SOIC  
1.0  
LFCSP  
0.5  
0.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate  
on the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy elec-  
trostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation  
and loss of functionality.  
Rev. A | Page 5 of 24  
 
 
AD8045  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
AD8045  
NC  
8
7
6
5
1
2
3
4
FEEDBACK  
–IN  
8
7
6
5
1
2
3
4
+V  
NC  
+V  
S
S
BOTTOM  
VIEW  
(Not to Scale)  
OUTPUT  
NC  
FEEDBACK  
–IN  
OUTPUT  
+IN  
BOTTOM VIEW  
(Not to Scale)  
NC  
–V  
S
–V  
+IN  
S
NC = NO CONNECT  
NC = NO CONNECT  
Figure 5. SOIC Pin Configuration  
Figure 6 . 8-Lead LFCSP Pin Configuration  
Note: The exposed paddle must be connected to −VS or it must be electrically isolated (floating).  
Table 5. 8-Lead SOIC Pin Function Descriptions  
Table 6. 8-Lead LFCSP Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
Feedback Pin  
Inverting Input  
Noninverting Input  
Negative Supply  
NC  
Output  
Positive Supply  
NC  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
9
FEEDBACK  
−IN  
+IN  
−VS  
NC  
OUTPUT  
+VS  
NC  
1
2
3
4
5
6
7
8
9
NC  
FEEDBACK  
−IN  
+IN  
−VS  
NC  
OUTPUT  
+VS  
No Connect  
Feedback Pin  
Inverting Input  
Noninverting Input  
Negative Supply  
No Connect  
Output  
Positive Supply  
Must Be Connected to −VS or  
Electrically Isolated  
Exposed Paddle  
Must Be Connected to −VS or  
Electrically Isolated  
Exposed Paddle  
Rev. A | Page 6 of 24  
 
AD8045  
TYPICAL PERFORMANCE CHARACTERISTICS  
1
12  
11  
10  
9
V
R
= ±5V  
= 1k  
G = +2  
= ±5V  
S
V
L
S
18pF  
10pF  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
R
R
= 1kΩ  
= 499Ω  
L
F
G = +2  
G = –1  
8
7
G = +10  
6
5
5pF  
4
0pF  
3
2
1
0
10  
1
10  
100  
1000  
100  
FREQUENCY (MHz)  
1000  
FREQUENCY (MHz)  
Figure 7. Small Signal Frequency Response for Various Gains  
Figure 10. Small Signal Frequency Response for Various Capacitive Loads  
4
4
G = +1  
G = +1  
= ±5V  
R
= 1kΩ  
L
V
= ±5V  
V
S
3
2
3
2
S
R = 1kΩ  
R
= 100Ω  
L
S
R
= 500Ω  
L
1
1
0
0
R
= 100Ω  
L
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
–6  
–40°C  
+125°C  
+25°C  
10  
100  
FREQUENCY (MHz)  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
Figure 8. Small Signal Frequency Response for Various Loads  
Figure 11. Small Signal Frequency Response for Various Temperatures  
5
6.3  
G = +2  
G = +1  
V
R
R
= ±5V  
= 499Ω  
= 150Ω  
R
R
= 1kΩ  
= 100Ω  
S
L
S
4
3
F
L
V
= ±2.5V  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
S
2
V
= ±5V  
S
V
= 2V p-p  
OUT  
1
0
V
= 200mV p-p  
OUT  
–1  
–2  
–3  
–4  
–5  
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
FREQUENCY (MHz)  
100  
Figure 9. Small Signal Frequency Response for Various Supplies  
Figure 12. 0.1 dB Flatness vs. Frequency for Various Output Voltages  
Rev. A | Page 7 of 24  
 
AD8045  
2
1
70  
60  
50  
40  
30  
20  
10  
0
0
G = +1  
V
R
= ±5V  
= 1k  
S
R
= 1kΩ  
L
L
–45  
R
= 100Ω  
S
0
V
= 2V p-p  
OUT  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–90  
V
= ±5V  
S
–135  
–180  
–225  
–270  
–315  
–360  
V
= ±2.5V  
S
–10  
10  
–10  
0.01  
100  
FREQUENCY (MHz)  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 13. Large Signal Frequency Response for Various Supplies  
Figure 16. Open-Loop Gain and Phase vs. Frequency  
–20  
–30  
2
G = +1  
G = +1  
V
S
= ±5V  
V
V
= ±5V  
1
0
S
S
R
= 100Ω  
= 2V p-p  
= 2V p-p  
OUT  
V
R
R
= 1kΩ  
= 100Ω  
OUT  
L
S
–40  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
R
= 1kΩ  
–50  
L
–60  
–70  
R
= 100Ω  
L
–80  
HD3 SOIC AND LFCSP  
–90  
HD2 LFCSP  
HD2 SOIC  
–100  
–110  
–120  
0.1  
1
10  
FREQUENCY (MHz)  
100  
10  
100  
FREQUENCY (MHz)  
1000  
Figure 17. Harmonic Distortion vs. Frequency for Various Packages  
Figure 14. Large Signal Frequency Response for Various Loads  
2
–30  
G = +1  
G = +2  
V
V
= ±5V  
S
1
0
–40  
–50  
= 4V p-p  
OUT  
HD2 SOIC  
R
= 1kΩ  
L
HD2 LFCSP  
–1  
–2  
–60  
G = +10  
–70  
G = –1  
HD3 LFCSP AND SOIC  
–3  
–4  
–5  
–6  
–7  
–8  
–80  
–90  
–100  
–110  
–120  
V
R
R
V
= ±5V  
= 499Ω  
= 1kΩ  
S
F
L
= 2V p-p  
OUT  
1
10  
100  
1000  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15. Large Signal Frequency Response for Various Gains  
Figure 18. Harmonic Distortion vs. Frequency for Various Packages  
Rev. A | Page 8 of 24  
AD8045  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–30  
–40  
G = +2  
G = +1  
V
V
= ±5V  
V
V
= ±5V  
S
S
= 2V p-p  
= 2V p-p  
OUT  
OUT  
R
R
= 150Ω  
= 499Ω  
R
R
= 100Ω  
= 100Ω  
L
F
L
S
–50  
–60  
HD2 SOIC  
–70  
HD2 SOIC  
–80  
HD2 LFCSP  
–90  
HD2 LFCSP  
–100  
HD3 SOIC AND LFCSP  
100  
HD3 SOIC AND LFCSP  
100  
–110  
0.1  
1
10  
FREQUENCY (MHz)  
0.1  
1
10  
FREQUENCY (MHz)  
Figure 19. Harmonic Distortion vs. Frequency for Various Packages  
Figure 22. Harmonic Distortion vs. Frequency for Various Packages  
–40  
–20  
G = +10  
G = –1  
V
V
= ±5V  
S
V
V
= ±5V  
S
–30  
–40  
= 2V p-p  
= 2V p-p  
OUT  
–50  
–60  
OUT  
R
= 1kΩ  
L
R
= 1kΩ  
HD2 SOIC  
L
SOIC AND LFCSP  
–50  
HD2 LFCSP  
–70  
–60  
–70  
–80  
–80  
HD2  
–90  
–90  
HD3 SOIC AND LFCSP  
HD3  
–100  
–100  
–110  
–110  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 23. Harmonic Distortion vs. Frequency for Various Packages  
Figure 20. Harmonic Distortion vs. Frequency for Various Packages  
–30  
–50  
G = –1  
G = +1  
V
R
V
= ±5V  
= 150Ω  
S
V
= ±5V  
= 1kΩ  
= 100Ω  
S
–40  
–50  
L
R
R
–60  
–70  
L
S
= 2V p-p  
OUT  
f = 10MHz  
HD2 LFCSP  
HD3 SOIC AND LFCSP  
–60  
–80  
HD2 SOIC  
–70  
–90  
–80  
–100  
–110  
–120  
–90  
HD2 SOIC  
–100  
HD2 LFCSP  
HD3 SOIC AND LFCSP  
100  
–110  
0.1  
1
10  
FREQUENCY (MHz)  
0
1
2
3
4
5
6
7
8
OUTPUT AMPLITUDE (V p-p)  
Figure 21. Harmonic Distortion vs. Frequency for Various Packages  
Figure 24. Harmonic Distortion vs. Output Voltage for Various Packages  
Rev. A | Page 9 of 24  
AD8045  
–40  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
G = +1  
G = +1  
V
= ±5V  
V
V
= ±2.5  
S
S
R
R
= 150Ω  
= 100Ω  
= 2V p-p  
–50  
–60  
L
OUT  
R
R
= 1kΩ  
= 100Ω  
S
L
S
f = 10MHz  
HD2 LFCSP  
–70  
HD2 SOIC  
HD3 SOIC AND LFCSP  
–80  
–90  
HD2 LFCSP  
HD2 SOIC  
–100  
–110  
HD3 SOIC AND LFCSP  
0
1
2
3
4
5
6
7
8
1
10  
FREQUENCY (MHz)  
100  
OUTPUT AMPLITUDE (V p-p)  
Figure 25. Harmonic Distortion vs. Output Voltage for Various Packages  
Figure 28. Harmonic Distortion vs. Frequency for Various Packages  
–20  
–40  
G = –1  
G = +1  
V
R
= ±5V  
= 1kΩ  
V
V
R
= ±2.5V  
S
S
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–50  
–60  
= 2V p-p  
L
OUT  
f = 10MHz  
SOIC AND LFCSP  
= 100Ω  
= 100Ω  
L
S
R
–70  
–80  
HD3 SOIC AND LFCSP  
HD2  
–90  
HD3  
–100  
–110  
–120  
HD2 LFCSP  
HD2 SOIC  
1
10  
100  
0
1
2
3
4
5
6
7
8
FREQUENCY (MHz)  
OUTPUT VOLTAGE (V p-p)  
Figure 29. Harmonic Distortion vs. Frequency for Various Packages  
Figure 26. Harmonic Distortion vs. Output Voltage  
–20  
–40  
–50  
G = –1  
G = –1  
V
V
= ±2.5V  
S
V
= ±5V  
S
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 2V p-p  
OUT  
R
= 150Ω  
L
R
= 1kΩ  
L
f = 10MHz  
SOIC AND LFCSP  
–60  
–70  
HD2 SOIC  
HD2 LFCSP  
–80  
HD3  
–90  
HD3 SOIC AND LFCSP  
–100  
–110  
–120  
HD2  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0
1
2
3
4
5
6
7
8
OUTPUT VOLTAGE (V p-p)  
Figure 30. Harmonic Distortion vs. Frequency for Various Packages  
Figure 27. Harmonic Distortion vs. Output Voltage  
Rev. A | Page 10 of 24  
AD8045  
–40  
–50  
0.15  
0.10  
0.05  
0
R
R
= 100Ω  
= 150Ω  
G = +1  
= +5V  
S
L
V
S
G = +1  
= ±2.5  
R
R
= 1kΩ  
= 100Ω  
L
S
V
S
OR V = ±5V  
f = 10MHz  
S
–60  
HD3 SOIC AND LFCSP  
–70  
–80  
–0.05  
–0.10  
–0.15  
–90  
HD2 SOIC  
–100  
HD2 LFCSP  
–110  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
5
10  
15  
20  
25  
OUTPUT VOLTAGE (V p-p)  
TIME (ns)  
Figure 31. Harmonic Distortion vs. Output Voltage for Various Packages  
Figure 34. Small Signal Transient Response for Various Supplies and Loads  
–40  
0.15  
R
C
R
= 1kΩ  
= 10pF  
L
L
G = +1  
V
= +5V  
S
= 30Ω  
–50  
–60  
SNUB  
= ±5V  
R
R
= 150Ω  
= 100Ω  
L
0.10  
0.05  
0
V
S
S
G = +1  
f = 10MHz  
–70  
HD3 SOIC AND LFCSP  
–80  
–0.05  
–0.10  
–0.15  
R
30Ω  
SNUB  
–90  
C
R
L
1kΩ  
L
–100  
10pF  
HD2 SOIC  
HD2 LFCSP  
–110  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
0
5
10  
15  
20  
25  
OUTPUT VOLTAGE (V p-p)  
TIME (ns)  
Figure 32. Harmonic Distortion vs. Output Voltage for Various Packages  
Figure 35. Small Signal Transient Response for Various Supplies and Loads  
1600  
0.15  
POSITIVE SLEW RATE  
NEGATIVE SLEW RATE  
V
= ±2.5V  
G = +2  
R
V
= 1kΩ  
= ±5V  
S
L
S
1400  
1200  
1000  
800  
600  
400  
200  
0
R
= 1kΩ  
C
0.10  
0.05  
0
OR R = 150kΩ  
C
–0.05  
–0.10  
–0.15  
0
1
2
3
4
5
0
5
10  
15  
20  
25  
OUTPUT VOLTAGE STEP (V)  
TIME (ns)  
Figure 33. Slew Rate vs. Output Voltage  
Figure 36. Small Signal Transient Response for Various Loads  
Rev. A | Page 11 of 24  
AD8045  
0.20  
0.15  
0.10  
0.05  
0
3
2
V
R
= ±5V  
= 1kΩ  
S
18pF  
0pF  
L
G = +2  
1
0
–1  
–2  
–3  
–4  
–0.05  
–0.10  
0pF  
10pF  
18pF  
G = +2  
–0.15  
–0.20  
V
= ±5V  
S
R
= 1kΩ  
L
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
TIME (ns)  
TIME (ns)  
Figure 37. Small Signal Transient Response with Capacitive Load  
Figure 40. Large Signal Transient Response with Capacitive Load  
3
3
V
= ±5V  
S
R
= 100Ω  
S
G = +2  
2
1
2
1
LOAD = 1kOR 150Ω  
0
0
–1  
–2  
–3  
–1  
–2  
G = –1  
V
= ±5V  
S
R
= 1kΩ  
L
–3  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
TIME (ns)  
TIME (ns)  
Figure 38. Large Signal Transient Response for Various Loads  
Figure 41. Large Signal Transient Response, Inverting  
3
6
5
R
R
= 1kΩ  
G = +1  
V = ±5V  
S
f = 5MHz  
INPUT  
L
= 100Ω  
S
G = +1  
V
= ±5V  
2
1
4
S
3
OUTPUT  
2
V
= ±2.5V  
1
S
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
0
5
10  
15  
20  
25  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ns)  
TIME (ns)  
Figure 39. Large Signal Transient Response for Various Supplies  
Figure 42. Input Overdrive Recovery  
Rev. A | Page 12 of 24  
 
AD8045  
6
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
G = +2  
= ±5V  
f = 5MHz  
V
= ±5V  
S
2 × INPUT  
V
S
4
3
2
OUTPUT  
1
–PSR  
0
+PSR  
–1  
–2  
–3  
–4  
–5  
–6  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ns)  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 43. Output Overdrive Recovery  
Figure 46. Power Supply Rejection vs. Frequency  
100  
10  
1
–30  
V
R
= ±5V  
= 499Ω  
S
F
–40  
–50  
–60  
–70  
–80  
–90  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
0.1  
1
10  
100  
1000  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 44. Voltage Noise vs. Frequency  
Figure 47. Common-Mode Rejection vs. Frequency  
100k  
10k  
1000  
100  
10  
100  
V
= ±5V  
S
G = +1  
10  
1
100  
1
10  
100  
1000  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 48. Input Impedance vs. Frequency  
Figure 45. Current Noise vs. Frequency  
Rev. A | Page 13 of 24  
AD8045  
1000  
V
= ±5V  
S
G = +1  
= ±5V  
N = 450  
X = 50µV  
σ = 180µV  
100  
80  
60  
40  
20  
0
V
S
100  
10  
1
0.1  
0.01  
–900  
–600  
–300  
0
300  
600  
900  
1
10  
100  
1000  
V
(µV)  
OFFSET  
FREQUENCY (MHz)  
Figure 49. Output Impedance vs. Frequency  
Figure 52. VOS Distribution for VS = 5 V  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
V
= +5V  
S
G = +10  
N = 450  
X = 540µV  
σ = 195µV  
V
R
= ±5V  
= 1kΩ  
S
L
80  
60  
40  
20  
0
–300  
0
300  
600  
900  
1200  
1500  
5
10  
20  
30  
40  
V
(µV)  
OFFSET  
FREQUENCY (MHz)  
Figure 50. Third-Order Intercept vs. Frequency  
Figure 53. VOS Distribution for VS = +5 V  
500  
300  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.16  
–0.18  
–0.20  
GAIN  
G = +2  
= ±5V  
V
S
100  
V
= +5V  
S
–100  
–300  
–500  
–700  
–900  
–1100  
V
= ±5V  
S
PHASE  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
1
10  
TEMPERATURE (°C)  
NUMBER OF 150LOADS  
Figure 54. Offset Voltage vs. Temperature for Various Supplies  
Figure 51. Differential Gain and Phase vs. Number of 150 Ω Loads  
Rev. A | Page 14 of 24  
AD8045  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
–2.2  
–2.4  
–2.6  
–2.8  
–3.0  
1.5  
1.0  
+V – V  
S
OUT  
I
–, V = ±5V  
S
B
0.5  
I
+, V = ±5V  
S
V
= ±5V  
V = +5V  
S
B
S
0
I
–, V = 5V  
S
B
–0.5  
–1.0  
–1.5  
I
+, V = 5V  
S
B
–V – V  
S
OUT  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0.1  
1
LOAD (k)  
10  
TEMPERATURE (°C)  
Figure 55. Input Bias Current vs. Temperature for Various Supplies  
Figure 58. Output Saturation Voltage vs. Load for Various Supplies  
1.20  
4
3
2
1
0
R
= 1kΩ  
L
V
= ±5V  
S
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
–V + V  
S
OUT  
R
= 1kΩ  
L
V
= 5V  
–1  
–2  
–3  
–4  
S
+V – V  
S
OUT  
–V + V  
OUT  
+V – V  
S
S
OUT  
R
= 150Ω  
L
125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110  
–4  
–3  
–2  
–1  
0
1
2
3
4
TEMPERATURE (°C)  
V
(V)  
OUT  
Figure 56. Output Saturation Voltage vs. Temperature for Various Supplies  
Figure 59. Input Offset Voltage vs. Output Voltage for Various Loads  
17.0  
0.30  
G = +2  
V
V
R
R
= ±5V  
S
= 2V p-p  
OUT  
0.20  
0.10  
0
= 150Ω  
= 499Ω  
L
F
16.5  
V
= ±5V  
S
16.0  
15.5  
15.0  
14.5  
V
= 5V  
S
–0.10  
–0.20  
–0.30  
0
2.5  
5.0  
7.5 10.0 12.5 15.0 17.5 20.0 22.5  
TIME (ns)  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 60. Short Term 0.1% Settling Time  
Figure 57. Supply Current vs. Temperature for Various Supplies  
Rev. A | Page 15 of 24  
AD8045  
CIRCUIT CONFIGURATIONS  
WIDEBAND OPERATION  
R
F
Figure 61 and Figure 62 show the recommended circuit  
configurations for noninverting and inverting amplifiers. In  
unity gain (G = +1) applications, RS helps to reduce high  
frequency peaking. It is not needed for any other configurations.  
For more information on layout, see the Printed Circuit Board  
Layout section.  
10µF  
+V  
S
+
0.1µF  
R
G
V
IN  
R
SNUB  
V
AD8045  
OUT  
0.1µF  
The resistor at the output of the amplifier, labeled RSNUB, is used  
only when driving large capacitive loads. Using RSNUB improves  
stability and minimizes ringing at the output. For more infor-  
mation, see the Driving Capacitive Loads section.  
R = R ||R  
G
F
10µF  
+
–V  
S
R
F
Figure 62. Inverting Configuration  
10µF  
+V  
S
+
0.1µF  
R
G
R
SNUB  
V
AD8045  
OUT  
R
S
V
IN  
0.1µF  
10µF  
+
–V  
S
Figure 61. Noninverting Configuration  
Rev. A | Page 16 of 24  
 
 
 
AD8045  
THEORY OF OPERATION  
R
The AD8045 is a high speed voltage feedback amplifier fabri-  
cated on ADIs second generation eXtra Fast Complementary  
Bipolar (XFCB) process. An H-bridge input stage is used to  
attain a 1400 V/µs slew rate and low distortion in addition to a  
low 3 nV/√Hz input voltage noise. Supply current and offset  
voltage are laser trimmed for optimum performance.  
S
+V  
OUT  
V
IN  
R
F
R
G
FREQUENCY RESPONSE  
The AD8045s open-loop response over frequency can be  
approximated by the integrator response shown in Figure 63.  
Figure 64. Noninverting Configuration  
DC ERRORS  
V
V
OUT  
Figure 65 shows the dc error contributions. The total output  
error voltage is  
IN  
R +R  
RG  
R +R  
G
F
RG  
G
F
VOUT(ERROR)=I R  
+I R +V  
B−  
F
OS  
B+  
S
V
OS  
R
S
I
+
B
+V  
OUT  
fCROSSOVER  
fCROSSOVER = 400MHz  
V
/V  
=
OUT IN  
f
I
B
0
1
10  
100  
FREQUENCY (MHz)  
1000  
R
F
Figure 63. Open-Loop Response  
R
G
The closed-loop transfer function for the noninverting configu-  
ration is shown in Figure 64 and is written as  
Figure 65. Amplifier DC Errors  
The voltage error due to IB+ and IB− is minimized if RS = RF||RG.  
To include the effects of common-mode and power supply  
rejection, model VOS as  
2 π× fCROSSOVER ×(RG + RF )  
RF + RG s +2 π× fCROSSOVER ×RG  
VOUT  
VIN  
=
(
)
where:  
s is (2 πj)f.  
CROSSOVER is the frequency where the amplifiers open-loop gain  
VS VCM  
PSR CMR  
VOS =VOS  
+
+
nom  
where:  
f
equals 1 (0 dB).  
Vos is the offset voltage at nominal conditions.  
nom  
DC gain is therefore  
ΔVS is the change in the power supply voltage from nominal  
conditions.  
VOUT  
VIN  
(
RG + RF  
RG  
)
=
PSR is the power supply rejection.  
Closed-loop −3 dB bandwidth equals  
CMR is the common-mode rejection.  
VOUT  
VIN  
RG  
RG + RF  
)
= fCROSSOVER  
×
ΔVCM is the change in common-mode voltage from nominal  
conditions.  
(
The closed-loop bandwidth is inversely proportional to the  
noise gain of the op amp circuit, (RF + RG)/RG. This simple  
model can be used to predict the −3 dB bandwidth for noise  
gains above +2. The actual bandwidth of circuits with noise  
gains at or below +2 is higher due to the influence of other  
poles present in the real op amp.  
Rev. A | Page 17 of 24  
 
 
 
 
AD8045  
OUTPUT NOISE  
Ven ,  
, and  
are due to the amplifier. V , VR , and  
IN−  
RF  
G
IN+  
Figure 66 shows the contributors to the noise at the output of a  
noninverting configuration.  
VR are due to the feedback network resistors. RG and RF, and  
S
source resistor, RS. Total output voltage noise, VOUT _ EN , is the  
V
V
RS  
EN  
R
rms sum of all the contributions.  
S
I
+
EN  
+V  
OUT  
V
=
OUT _ EN  
I
EN  
2
2
2
2
2
(
G
×Ven  
)
+
(
IN + × R ×G  
)
+
(
IN × R ||R ×G  
)
+ 4kTR + 4kTR G + 4kTR G  
( ) ( )  
n n  
G S  
f
n
n
F
n
S
G
V
RF  
R
where:  
Gn is the noise gain  
F
R
G
R
+ R  
F
G
.
V
RG  
R
G
Figure 66. Amplifier DC Errors  
Ven is the op amp input voltage noise.  
IN is the op amp input current noise.  
Table 7 lists the expected output voltage noise spectral density  
for several gain configurations.  
Table 7. Noise and Bandwidth for Various Gains  
Output  
Noise  
(nV/√Hz)  
−3 dB  
Gain  
+1  
+2  
+5  
+10  
−1  
RF  
RG  
RS  
100  
0
0
0
Bandwidth1  
0
1 GHz  
3.3  
7.4  
16.4  
31  
499  
499  
499  
499  
499  
124  
56  
400 MHz  
90 MHz  
40 MHz  
300 MHz  
499  
N/A  
7.4  
1 RL = 1 kΩ.  
Rev. A | Page 18 of 24  
 
 
 
AD8045  
APPLICATIONS  
LOW DISTORTION PINOUT  
This dc-coupled differential driver is best suited for 5 V  
operation in which optimum distortion performance is required  
and the input signal is ground referenced.  
The AD8045 LFCSP package features Analog Devices new low  
distortion pinout. The new pinout provides two advantages  
over the traditional pinout. First, improved second harmonic  
distortion performance, which is accomplished by the physical  
separation of the noninverting input pin and the negative power  
supply pin. Second, the simplification of the layout due to the  
dedicated feedback pin and easy routing of the gain set resistor  
back to the inverting input pin. This allows a compact layout,  
which helps to minimize parasitics and increase stability.  
511Ω  
V
– V  
IN  
CML  
AD8045  
511Ω  
33Ω  
V
INA  
511Ω  
511Ω  
511Ω  
511Ω  
V
IN  
20pF  
AD9244  
V
+ V  
IN  
CML  
The traditional SOIC pinout has been slightly modified as well  
to incorporate a dedicated feedback pin. Pin 1, previously a no  
connect pin on the amplifier, is now a dedicated feedback pin. The  
new pinout reduces parasitics and simplifies the board layout.  
AD8045  
33Ω  
V
INB  
511Ω  
511Ω  
2.5kΩ  
0.1µF  
Existing applications that use the traditional SOIC pinout can  
take full advantage of the outstanding performance offered by  
the AD8045. An electrical insulator may be required if the SOIC  
rests on the ground plane or other metal trace. This is covered  
in more detail in the Exposed Paddle section of this data sheet.  
In existing designs, which have Pin 1 tied to ground or to  
another potential, simply lift Pin 1 of the AD8045 or remove the  
potential on the Pin 1 solder pad. The designer does not need to  
use the dedicated feedback pin to provide feedback for the  
AD8045. The output pin of the AD8045 can still be used to pro-  
vide feedback to the inverting input of the AD8045.  
100Ω  
1µF  
CML  
0.1µF  
OP27  
Figure 67. High Speed ADC Driver  
The outputs of the AD8045s are centered about the AD9244s  
common-mode range of 2.5 V. The common-mode reference  
voltage from the AD9244 is buffered and filtered via the OP27  
and fed to the noninverting resistor network used in the level  
shifting circuit.  
HIGH SPEED ADC DRIVER  
The spurious-free dynamic range (SFDR) performance is  
shown in Figure 68. Figure 69 shows a 50 MHz single-tone FFT  
performance.  
When used as an ADC driver, the AD8045 offers results compa-  
rable to transformers in distortion performance. Many ADC  
applications require that the analog input signal be dc-coupled  
and operate over a wide frequency range. Under these require-  
ments, operational amplifiers are very effective interfaces to  
ADCs. An op amp interface provides the ability to amplify and  
level shift the input signal to be compatible with the input range  
of the ADC. Unlike transformers, operational amplifiers can be  
operated over a wide frequency range down to and including dc.  
120  
100  
AD8045  
80  
60  
40  
20  
0
Figure 67 shows the AD8045 as a dc-coupled differential driver  
for the AD9244, a 14-bit 65 MSPS ADC. The two amplifiers are  
configured in noninverting and inverting modes. Both amplifi-  
ers are set with a noise gain of +2 to provide better bandwidth  
matching. The inverting amplifier is set for a gain of –1, while  
the noninverting is set for a gain of +2. The noninverting input  
is divided by 2 in order to normalize its output and make it  
equal to the inverting output.  
1
10  
100  
INPUT FREQUENCY (MHz)  
Figure 68. SFDR vs. Frequency  
Rev. A | Page 19 of 24  
 
 
 
AD8045  
0
A
= –1dBFS  
Setting the resistors and capacitors equal to each other greatly  
simplifies the design equations for the Sallen-Key filter. The  
corner frequency, or −3 dB frequency, can be described by the  
equation  
IN  
SNR = 69.9dBc  
SFDR = 65.3dBc  
–20  
–40  
1
fc =  
–60  
RC  
The quality factor, or Q, is shown in the equation  
–80  
1
Q =  
–100  
3 K  
–120  
0
The gain, or K, of the circuits are  
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
R3  
R4  
R8  
R7  
Figure 69. Single-Tone FFT, FIN = 50 MHz, Sample Rate = 65 MSPS  
Shown in the First Nyquist Zone  
First Stage K =  
+1, Second Stage K =  
+1  
Resistor values are kept low for minimal noise contribution,  
offset voltage, and optimal frequency response. Due to the low  
capacitance values used in the filter circuit, the PCB layout and  
minimization of parasitics is critical.A few picofarads can detune  
the filters corner frequency, fc. The capacitor values shown in  
Figure 73 actually incorporate some stray PCB capacitance.  
90 MHZ ACTIVE LOW-PASS FILTER (LPF)  
Active filters are used in many applications such as antialiasing  
filters and high frequency communication IF strips.  
With a 400 MHz gain bandwidth product and high slew rate,  
the AD8045 is an ideal candidate for active filters. Figure 70  
shows the frequency response of the 90 MHz LPF. In addition to  
the bandwidth requirements, the slew rate must be capable of  
supporting the full power bandwidth of the filter. In this case, a  
90 MHz bandwidth with a 2 V p-p output swing requires at least  
1200 V/µs. This performance is achievable only at 90 MHz  
because of the AD8045s wide bandwidth and high slew rate.  
Capacitor selection is critical for optimal filter performance.  
Capacitors with low temperature coefficients, such as NPO  
ceramic capacitors and silver mica, are good choices for filter  
elements.  
20  
10  
The circuit shown in Figure 73 is a 90 MHz, 4-pole, Sallen-Key,  
LPF. The filter comprises two identical cascaded Sallen-Key LPF  
sections, each with a fixed gain of G = +2. The net gain of the  
filter is equal to G = +4 or 12 dB. The actual gain shown in  
Figure 70 is only 6 dB. This is due to the output voltage being  
divided in half by the series matching termination resistor, RT,  
and the load resistor.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 70. 90 MHz Low-Pass Filter Response  
Rev. A | Page 20 of 24  
 
 
AD8045  
1
1
CH1 50.0mV  
M4.00ns  
A CH1  
0.00V  
CH1 500mV  
M4.00ns  
A CH1  
0.00V  
Figure 71. Small Signal Transient Response of 90 MHz LPF  
Figure 72. Large Signal Transient Response of 90 MHz LPF  
C1  
7.1pF  
10µF  
0.1µF  
C3  
7.1pF  
+5V  
U1  
10µF  
+5V  
U1  
R1  
249Ω  
R2  
249Ω  
0.1µF  
R6  
249Ω  
INPUT  
R
49.9Ω  
T
R
T
C2  
7.1pF  
10µF  
R5  
249Ω  
49.9Ω  
OUTPUT  
C4  
7.1pF  
10µF  
R9  
24.9Ω  
0.1µF  
0.1µF  
C5  
5pF  
–5V  
–5V  
R4  
R3  
499Ω  
499Ω  
R7  
499Ω  
R8  
499Ω  
Figure 73. 4-Pole, 90 MHz, Sallen-Key Low-Pass Filter  
Rev. A | Page 21 of 24  
AD8045  
PRINTED CIRCUIT BOARD LAYOUT  
Laying out the printed circuit board (PCB) is usually the last  
step in the design process and often proves to be one of the  
most critical. A brilliant design can be rendered useless because  
of a poor or sloppy layout. Since the AD8045 can operate into  
the RF frequency spectrum, high frequency board layout con-  
siderations must be taken into account. The PCB layout, signal  
routing, power supply bypassing, and grounding all must be  
addressed to ensure optimal performance.  
requirements. Additional smaller value capacitors help to  
provide a low impedance path for unwanted noise out to higher  
frequencies but are not always necessary.  
Placement of the capacitor returns (grounds), where the capaci-  
tors enter into the ground plane, is also important. Returning  
the capacitors grounds close to the amplifier load is critical for  
distortion performance. Keeping the capacitors distance short,  
but equal from the load, is optimal for performance.  
SIGNAL ROUTING  
In some cases, bypassing between the two supplies can help to  
improve PSRR and to maintain distortion performance in  
crowded or difficult layouts. It is brought to the designers  
attention here as another option to improve performance.  
The AD8045 LFCSP features the new low distortion pinout with  
a dedicated feedback pin and allows a compact layout. The  
dedicated feedback pin reduces the distance from the output to  
the inverting input, which greatly simplifies the routing of the  
feedback network.  
Minimizing the trace length and widening the trace from the  
capacitors to the amplifier reduce the trace inductance. A series  
inductance with the parallel capacitance can form a tank circuit,  
which can introduce high frequency ringing at the output. This  
additional inductance can also contribute to increased distor-  
tion due to high frequency compression at the output. The use  
of vias should be minimized in the direct path to the amplifier  
power supply pins since vias can introduce parasitic inductance,  
which can lead to instability. When required, use multiple large  
diameter vias because this lowers the equivalent parasitic  
inductance.  
When laying out the AD8045 as a unity gain amplifier, it is rec-  
ommended that a short, but wide, trace between the dedicated  
feedback pin and the inverting input to the amplifier be used to  
minimize stray parasitic inductance.  
To minimize parasitic inductances, ground planes should be  
used under high frequency signal traces. However, the ground  
plane should be removed from under the input and output pins  
to minimize the formation of parasitic capacitors, which  
degrades phase margin. Signals that are susceptible to noise  
pickup should be run on the internal layers of the PCB, which  
can provide maximum shielding.  
GROUNDING  
The use of ground and power planes is encouraged as a method  
of proving low impedance returns for power supply and signal  
currents. Ground and power planes can also help to reduce stray  
trace inductance and to provide a low thermal path for the  
amplifier. Ground and power planes should not be used under  
any of the pins of the AD8045. The mounting pads and the  
ground or power planes can form a parasitic capacitance at the  
amplifiers input. Stray capacitance on the inverting input and  
the feedback resistor form a pole, which degrades the phase  
margin, leading to instability. Excessive stray capacitance on the  
output also forms a pole, which degrades phase margin.  
POWER SUPPLY BYPASSING  
Power supply bypassing is a critical aspect of the PCB design  
process. For best performance, the AD8045 power supply pins  
need to be properly bypassed.  
A parallel connection of capacitors from each of the power  
supply pins to ground works best. Paralleling different values  
and sizes of capacitors helps to ensure that the power supply  
pins “see” a low ac impedance across a wide band of frequencies.  
This is important for minimizing the coupling of noise into the  
amplifier. Starting directly at the power supply pins, the smallest  
value and sized component should be placed on the same side  
of the board as the amplifier, and as close as possible to the  
amplifier, and connected to the ground plane. This process  
should be repeated for the next larger value capacitor. It is  
recommended for the AD8045 that a 0.1 µF ceramic 0508 case  
be used. The 0508 offers low series inductance and excellent  
high frequency performance. The 0.1 µF case provides low  
impedance at high frequencies. A 10 µF electrolytic capacitor  
should be placed in parallel with the 0.1 µF. The 10 µf capacitor  
provides low ac impedance at low frequencies. Smaller values  
of electrolytic capacitors may be used depending on the circuit  
Rev. A | Page 22 of 24  
 
AD8045  
EXPOSED PADDLE  
The AD8045 features an exposed paddle, which lowers the  
thermal resistance by 25% compared to a standard SOIC plastic  
package. The exposed paddle of the AD8045 is internally con-  
nected to the negative power supply pin. Therefore, when laying  
out the board, the exposed paddle must either be connected to  
the negative power supply or left floating (electrically isolated).  
Soldering the exposed paddle to the negative power supply metal  
ensures maximum thermal transfer. Figure 74 and Figure 75 show  
the proper layout for connecting the SOIC and LFCSP exposed  
paddle to the negative supply.  
THERMAL CONDUCTIVE INSULATOR  
Figure 76. SOIC with Thermal Conductive Pad Material  
The thermal pad provides high thermal conductivity but  
isolates the exposed paddle from ground or other potential. It is  
recommended, when possible, to solder the paddle to the nega-  
tive power supply plane or trace for maximum thermal transfer.  
Note that soldering the paddle to ground shorts the negative  
power supply to ground and can cause irreparable damage to  
the AD8045.  
DRIVING CAPACITIVE LOADS  
In general, high speed amplifiers have a difficult time driving  
capacitive loads. This is particularly true in low closed-loop  
gains, where the phase margin is the lowest. The difficulty arises  
because the load capacitance, CL, forms a pole with the output  
resistance, RO, of the amplifier. The pole can be described by the  
equation  
Figure 74. SOIC Exposed Paddle Layout  
The use of thermal vias or “heat pipes” can also be incorporated  
into the design of the mounting pad for the exposed paddle.  
These additional vias help to lower the overall theta junction to  
ambient (θJA). Using a heavier weight copper on the surface to  
which the amplifiers exposed paddle is soldered can greatly  
reduce the overall thermal resistance “seen” by the AD8045.  
1
fP  
=
ROCL  
If this pole occurs too close to the unity gain crossover point,  
the phase margin degrades. This is due to the additional phase  
loss associated with the pole.  
The AD8045 output can drive 18 pF of load capacitance directly,  
in a gain of +2 with 30% overshoot, as shown in Figure 37.  
Larger capacitance values can be driven but must use a snub-  
bing resistor (RSNUB) at the output of the amplifier, as shown in  
Figure 75. LFCSP Exposed Paddle Layout  
For existing designs that want to incorporate the AD8045,  
electrically isolating the exposed paddle is another option. If the  
exposed paddle is electrically isolated, the thermal dissipation is  
primarily through the leads, and the thermal resistance of the  
package now approaches 125°C/W, the standard SOIC θJA.  
However, a thermally conductive and electrically isolated pad  
material may be used. A thermally conductive spacer, such as  
the Bergquist Companys Sil-Pad, is an excellent solution to this  
problem. Figure 76 shows a typical implementation using  
thermal pad material.  
Figure 61 and Figure 62. Adding a small series resistor, RSNUB  
creates a zero that cancels the pole introduced by the load  
capacitance. Typical values for RSNUB can range from 25 Ω to  
,
50 Ω. The value is typically arrived at empirically and based on  
the circuit requirements.  
Rev. A | Page 23 of 24  
 
 
 
 
AD8045  
OUTLINE DIMENSIONS  
5.00 (0.197)  
4.90 (0.193)  
4.80 (0.189)  
BOTTOM VIEW  
(PINS UP)  
2.29 (0.092)  
4.00 (0.157)  
3.90 (0.154)  
3.80 (0.150)  
8
5
2.29 (0.092)  
6.20 (0.244)  
6.00 (0.236)  
5.80 (0.228)  
TOP VIEW  
1
4
1.27 (0.05)  
BSC  
0.50 (0.020)  
0.25 (0.010)  
× 45°  
1.75 (0.069)  
1.35 (0.053)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
1.27 (0.050)  
0.40 (0.016)  
0.51 (0.020)  
0.31 (0.012)  
0.25 (0.0098)  
0.17 (0.0068)  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 77. 8-Lead Standard Small Outline Package with Exposed Pad [SOIC_N_EP], Narrow Body (RD-8-1)—Dimensions shown in millimeters and (inches)  
0.50  
0.40  
0.30  
1
3.00  
BSC SQ  
0.60 MAX  
8
PIN 1  
INDICATOR  
0.45  
PIN 1  
INDICATOR  
1.90  
1.75  
1.60  
2.75  
BSC SQ  
TOP  
VIEW  
1.50  
REF  
EXPOSED  
PAD  
0.50  
BSC  
(BOTTOM VIEW)  
4
5
0.25  
MIN  
1.60  
1.45  
1.30  
0.80 MAX  
0.65TYP  
0.90  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
Figure 78. 8-Lead Lead Frame Chip Scale Package [LFCSP], 3 mm × 3 mm Body (CP-8-2)—Dimensions shown in millimeters  
ORDERING GUIDE  
Minimum  
Ordering Quantity  
Package  
Option  
Model  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
Branding  
AD8045ARD  
1
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
AD8045ARD-REEL  
AD8045ARD-REEL7  
AD8045ARDZ1  
AD8045ARDZ-REEL1  
AD8045ARDZ-REEL71  
AD8045ACP-R2  
AD8045ACP-REEL  
AD8045ACP-REEL7  
AD8045ACPZ-R21  
AD8045ACPZ-REEL1  
AD8045ACPZ-REEL71  
2,500  
1,000  
1
2,500  
1,000  
250  
5,000  
1,500  
250  
5,000  
1,500  
H8B  
H8B  
H8B  
H8B  
H8B  
H8B  
8-Lead LFCSP  
1 Z = Pb-free part.  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04814–0–9/04(A)  
Rev. A | Page 24 of 24  
 
 
 

相关型号:

AD8045ACPZ-REEL

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ACPZ-REEL7

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ARD

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ARD-REEL

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ARD-REEL7

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ARDZ

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ARDZ-REEL

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8045ARDZ-REEL7

3 nV/Hz Ultralow Distortion, High Speed Op Amp
ADI

AD8047

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8047-EB

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8047AN

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8047ANZ

250 MHz, General Purpose Voltage Feedback Op Amps
ADI