AD8047ARZ [ADI]

250 MHz, General Purpose Voltage Feedback Op Amps; 250兆赫,通用电压反馈运算放大器
AD8047ARZ
型号: AD8047ARZ
厂家: ADI    ADI
描述:

250 MHz, General Purpose Voltage Feedback Op Amps
250兆赫,通用电压反馈运算放大器

运算放大器 光电二极管
文件: 总17页 (文件大小:516K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
250 MHz, General Purpose  
Voltage Feedback Op Amps  
AD8047/AD8048  
FEATURES  
Wide Bandwidth  
Small Signal  
FUNCTIONAL BLOCK DIAGRAM  
AD8047, G = +1  
250 MHz  
AD8048, G = +2  
260 MHz  
160 MHz  
8-Pin Plastic PDIP (N)  
and SOIC (R) Packages  
Large Signal (2 V p-p) 130 MHz  
5.8 mA Typical Supply Current  
Low Distortion, (SFDR) Low Noise  
–66 dBc Typ @ 5 MHz  
–54 dBc Typ @ 20 MHz  
5.2 nV/Hz (AD8047), 3.8 nV/Hz (AD8048) Noise  
Drives 50 pF Capacitive Load  
AD8047/  
AD8048  
8
7
6
5
1
2
3
4
NC  
–INPUT  
+INPUT  
NC  
+V  
S
OUTPUT  
NC  
–V  
S
(TOP VIEW)  
High Speed  
NC = NO CONNECT  
Slew Rate 750 V/s (AD8047), 1000 V/s (AD8048)  
Settling 30 ns to 0.01%, 2 V Step  
3 V to 6 V Supply Operation  
APPLICATIONS  
Low Power ADC Input Driver  
Differential Amplifiers  
IF/RF Amplifiers  
Pulse Amplifiers  
Professional Video  
DAC Current to Voltage Conversion  
Baseband and Video Communications  
Pin Diode Receivers  
The AD8047 and AD8048’s low distortion and cap load drive  
make the AD8047/AD8048 ideal for buffering high speed ADCs.  
They are suitable for 12-bit/10 MSPS or 8-bit/60 MSPS ADCs.  
Additionally, the balanced high impedance inputs of the voltage  
feedback architecture allow maximum flexibility when designing  
active filters.  
The AD8047 and AD8048 are offered in industrial (–40°C to  
+85°C) temperature ranges and are available in 8-lead PDIP  
and SOIC packages.  
Active Filters/Integrators  
PRODUCT DESCRIPTION  
The AD8047 and AD8048 are very high speed and wide band-  
width amplifiers. The AD8047 is unity gain stable. The AD8048 is  
stable at gains of two or greater. The AD8047 and AD8048,  
which utilize a voltage feedback architecture, meet the require-  
ments of many applications that previously depended on current  
feedback amplifiers.  
A proprietary circuit has produced an amplifier that combines  
many of the best characteristics of both current feedback and  
voltage feedback amplifiers. For the power (6.6 mA max), the  
AD8047 and AD8048 exhibit fast and accurate pulse response  
(30 ns to 0.01%) as well as extremely wide small signal and large  
signal bandwidth and low distortion. The AD8047 achieves  
–54 dBc distortion at 20 MHz, 250 MHz small signal, and  
130 MHz large signal bandwidths.  
1V  
5ns  
Figure 1. AD8047 Large Signal Transient Response,  
VO = 4 V p-p, G = +1  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
IMPORTANT LINKS for the AD8047_8048*  
Last content update 08/19/2013 04:41 pm  
PARAMETRIC SELECTION TABLES  
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE  
dBm/dBu/dBv Calculator  
Find Similar Products By Operating Parameters  
High Speed Amplifiers Selection Table  
Analog Filter Wizard 2.0  
Power Dissipation vs Die Temp  
ADIsimOpAmp™  
OpAmp Stability  
DOCUMENTATION  
AN-649: Using the Analog Devices Active Filter Design Tool  
AD8047 SPICE Macro-Model  
AN-581: Biasing and Decoupling Op Amps in Single Supply  
Applications  
AN-402: Replacing Output Clamping Op Amps with Input Clamping  
Amps  
DESIGN COLLABORATION COMMUNITY  
AN-417: Fast Rail-to-Rail Operational Amplifiers Ease Design  
Constraints in Low Voltage High Speed Systems  
MT-060: Choosing Between Voltage Feedback and Current Feedback  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
Op Amps  
MT-059: Compensating for the Effects of Input Capacitance on VFB  
and CFB Op Amps Used in Current-to-Voltage Converters  
Follow us on Twitter: www.twitter.com/ADI_News  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
MT-058: Effects of Feedback Capacitance on VFB and CFB Op Amps  
MT-056: High Speed Voltage Feedback Op Amps  
MT-053: Op Amp Distortion: HD, THD, THD + N, IMD, SFDR, MTPR  
MT-052: Op Amp Noise Figure: Don’t Be Mislead  
DESIGN SUPPORT  
Submit your support request here:  
Linear and Data Converters  
Embedded Processing and DSP  
MT-050: Op Amp Total Output Noise Calculations for Second-Order  
System  
MT-049: Op Amp Total Output Noise Calculations for Single-Pole  
System  
Telephone our Customer Interaction Centers toll free:  
MT-048: Op Amp Noise Relationships: 1/f Noise, RMS Noise, and  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
Equivalent Noise Bandwidth  
MT-047: Op Amp Noise  
India:  
Russia:  
1800-419-0108  
8-800-555-45-90  
MT-033: Voltage Feedback Op Amp Gain and Bandwidth  
MT-032: Ideal Voltage Feedback (VFB) Op Amp  
A Stress-Free Method for Choosing High-Speed Op Amps  
UG-101: Evaluation Board User Guide  
Quality and Reliability  
Lead(Pb)-Free Data  
Choosing High-Speed Signal Processing Components for Ultrasound  
Systems  
FOR THE AD8047  
SAMPLE & BUY  
AD8047  
AN-214: Ground Rules for High Speed Circuits  
AD8048  
View Price & Packaging  
Request Evaluation Board  
Request Samples  
Check Inventory & Purchase  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
View the Evaluation Boards and Kits page for the AD8047  
View the Evaluation Boards and Kits page for the AD8048  
Symbols and Footprints for the AD8047  
Find Local Distributors  
Symbols and Footprints for the AD8048  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
AD8047/AD8048–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (VS = 5 V, RLOAD = 100 , AV = 1 (AD8047), AV = 2 (AD8048), unless otherwise noted.)  
AD8047A  
AD8048A  
Parameter  
Conditions  
Min Typ Max Min Typ Max Unit  
DYNAMIC PERFORMANCE  
Bandwidth (–3 dB)  
Small Signal  
VOUT 0.4 V p-p  
VOUT = 2 V p-p  
170  
100  
250  
130  
180 260  
135 160  
MHz  
MHz  
Large Signal1  
Bandwidth for 0.1 dB Flatness  
VOUT = 300 mV p-p  
AD8047, RF = 0 ;  
AD8048, RF = 200 Ω  
VOUT = 4 V Step  
VOUT = 0.5 V Step  
VOUT = 4 V Step  
35  
50  
740 1000  
1.2  
MHz  
V/µs  
ns  
Slew Rate, Average +/–  
Rise/Fall Time  
475  
750  
1.1  
4.3  
3.2  
ns  
Settling Time  
To 0.1%  
To 0.01%  
VOUT = 2 V Step  
VOUT = 2 V Step  
13  
30  
13  
30  
ns  
ns  
HARMONIC/NOISE PERFORMANCE  
Second Harmonic Distortion  
2 V p-p; 20 MHz  
RL = 1 kΩ  
–54  
–64  
–60  
–61  
5.2  
–48  
–60  
–56  
–65  
3.8  
dBc  
dBc  
dBc  
dBc  
nV/Hz  
pA/Hz  
Third Harmonic Distortion  
2 V p-p; 20 MHz  
RL = 1 kΩ  
Input Voltage Noise  
Input Current Noise  
Average Equivalent Integrated  
Input Noise Voltage  
Differential Gain Error (3.58 MHz)  
Differential Phase Error (3.58 MHz)  
f = 100 kHz  
f = 100 kHz  
1.0  
1.0  
0.1 MHz to 10 MHz  
RL = 150 , G = +2  
RL = 150 , G = +2  
16  
0.02  
0.03  
11  
0.01  
0.02  
µV rms  
%
Degree  
DC PERFORMANCE2, RL = 150 Ω  
Input Offset Voltage3  
1
3
4
1
3
4
mV  
mV  
µV/°C  
µA  
TMIN to TMAX  
Offset Voltage Drift  
Input Bias Current  
5
1
5
1
3.5  
6.5  
2
3.5  
6.5  
2
TMIN to TMAX  
TMIN to TMAX  
µA  
Input Offset Current  
0.5  
0.5  
µA  
3
3
µA  
Common-Mode Rejection Ratio  
Open-Loop Gain  
VCM  
VOUT  
=
=
2.5 V  
2.5 V  
74  
58  
54  
80  
62  
74  
65  
56  
80  
68  
dB  
dB  
dB  
TMIN to TMAX  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
500  
1.5  
3.4  
500  
1.5  
3.4  
kΩ  
pF  
V
Input Common-Mode Voltage Range  
OUTPUT CHARACTERISTICS  
Output Voltage Range, RL = 150 Ω  
Output Current  
Output Resistance  
Short-Circuit Current  
2.8  
3.0  
50  
0.2  
2.8  
3.0  
50  
0.2  
V
mA  
mA  
130  
130  
POWER SUPPLY  
Operating Range  
Quiescent Current  
3.0  
5.0 6.0  
5.8 6.6  
7.5  
3.0  
5.0 6.0  
5.9 6.6  
7.5  
V
mA  
mA  
dB  
TMIN to TMAX  
Power Supply Rejection Ratio  
72  
78  
72  
78  
NOTES  
1See Absolute Maximum Ratings and Theory of Operation sections.  
2Measured at AV = 50.  
3Measured with respect to the inverting input.  
Specifications subject to change without notice.  
–2–  
REV. A  
AD8047/AD8048  
MAXIMUM POWER DISSIPATION  
ABSOLUTE MAXIMUM RATINGS1  
Supply Voltage, (+VS) – (–VS) . . . . . . . . . . . . . . . . . . . . 12.6 V  
Voltage Swing × Bandwidth Product  
AD8047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 V-MHz  
AD8048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 V-MHz  
Internal Power Dissipation2  
Plastic Package (N) . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 W  
Small Outline Package (R) . . . . . . . . . . . . . . . . . . . . . 0.9 W  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . VS  
The maximum power that can be safely dissipated by these devices  
is limited by the associated rise in junction temperature. The  
maximum safe junction temperature for plastic encapsulated  
devices is determined by the glass transition temperature of the  
plastic, approximately 150°C. Exceeding this limit temporarily  
may cause a shift in parametric performance due to a change in  
the stresses exerted on the die by the package. Exceeding a  
junction temperature of 175°C for an extended period can  
result in device failure.  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . .  
1.2 V  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C  
Operating Temperature Range (A Grade) . . . –40°C to +85°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . . 300°C  
While the AD8047 and AD8048 are internally short circuit  
protected, this may not be sufficient to guarantee that the maxi-  
mum junction temperature (150°C) is not exceeded under all  
conditions. To ensure proper operation, it is necessary to observe  
the maximum power derating curves.  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 Specification is for device in free air: 8-Lead PDIP Package, JA = 90°C/W; 8-Lead  
SOIC Package, JA = 140°C/W  
2.0  
T
= +150C  
J
8-PIN PDIP PACKAGE  
1.5  
1.0  
0.5  
METALLIZATION PHOTOS  
Dimensions shown in inches and (mm)  
Connect Substrate to –VS.  
AD8047  
8-PIN SOIC PACKAGE  
+V  
S
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
C)  
AMBIENT TEMPERATURE (  
0.045  
(1.14)  
Figure 2. Plot of Maximum Power Dissipation vs.  
Temperature  
V
OUT  
–IN  
ORDERING GUIDE  
–V  
S
+IN  
0.044  
(1.13)  
Temperature  
Range  
Package  
Description  
Package  
Option*  
Model  
AD8048  
AD8047AN  
AD8047AR  
AD8047AR-REEL  
AD8047AR-REEL7 –40°C to +85°C SOIC  
AD8048AN  
AD8048AR  
AD8048AR-REEL  
AD8048AR-REEL7 –40°C to +85°C SOIC  
–40°C to +85°C PDIP  
–40°C to +85°C SOIC  
–40°C to +85°C SOIC  
N-8  
R-8  
R-8  
R-8  
N-8  
R-8  
R-8  
R-8  
+V  
S
–40°C to +85°C PDIP  
–40°C to +85°C SOIC  
–40°C to +85°C SOIC  
0.045  
(1.14)  
V
OUT  
*N = PDIP, R= SOIC  
–IN  
–V  
S
+IN  
0.044  
(1.13)  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD8047/AD8048 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
REV. A  
–3–  
AD8047/AD8048–Typical Performance Characteristics  
R
F
PULSE  
10F  
0.1F  
10F  
0.1F  
+V  
+V  
7
S
S
GENERATOR  
T
/T = 500ps  
F
R
PULSE  
R
T
IN  
7
GENERATOR  
2
3
2
3
V
IN  
T
V
/T = 500ps  
V
V
AD8047  
4
6
AD8047  
4
6
R
F
OUT  
OUT  
R = 100ꢂ  
L
R
= 66.5ꢂ  
0.1F  
0.1F  
R
= 100ꢂ  
IN  
L
R
= 49.9ꢂ  
100ꢂ  
T
10F  
10F  
–V  
S
–V  
S
TPC 1. AD8047 Noninverting Configuration, G = +1  
TPC 4. AD8047 Inverting Configuration, G = –1  
1V  
5ns  
1V  
5ns  
TPC 2. AD8047 Large Signal Transient Response;  
VO = 4 V p-p, G = +1  
TPC 5. AD8047 Large Signal Transient Response;  
VO = 4 V p-p, G = –1, RF = RIN = 200  
100mV  
100mV  
5ns  
5ns  
TPC 3. AD8047 Small Signal Transient Response;  
VO = 400 mV p-p, G = +1  
TPC 6. AD8047 Small Signal Transient Response;  
VO = 400 mV p-p, G = –1, RF = RIN = 200 Ω  
–4–  
REV. A  
AD8047/AD8048  
R
F
R
F
PULSE  
10F  
PULSE  
+V  
7
10F  
0.1F  
S
+V  
7
GENERATOR  
S
GENERATOR  
T
R
/T = 500ps  
F
T
/T = 500ps  
F
0.1F  
R
R
IN  
R
T
IN  
2
3
V
2
3
IN  
V
OUT  
V
AD8048  
4
AD8048  
4
6
6
OUT  
R
= 66.5ꢂ  
0.1F  
10F  
0.1F  
V
IN  
R
R
= 100ꢂ  
L
R
L
= 100ꢂ  
R
= 100ꢂ  
= 49.9ꢂ  
S
10F  
T
–V  
S
–V  
S
TPC 7. AD8048 Noninverting Configuration, G = +2  
TPC 10. AD8048 Inverting Configuration, G= –1  
1V  
1V  
5ns  
5ns  
TPC 8. AD8048 Large Signal Transient Response;  
TPC 11. AD8048 Large Signal Transient Response;  
VO = 4 V p-p, G = +2, RF = RIN = 200 Ω  
VO = 4 V p-p, G = –1, RF = RIN = 200 Ω  
100mV  
100mV  
5ns  
5ns  
TPC 9. AD8048 Small Signal Transient Response;  
TPC 12. AD8048 Small Signal Transient Response;  
VO = 400 mV p-p, G = +2, RF = RIN = 200 Ω  
VO = 400 mV p-p, G = –1, RF = RIN = 200 Ω  
REV. A  
–5–  
AD8047/AD8048  
1
1
0
0
–1  
R
R
R
V
= 100ꢂ  
–1  
–2  
–3  
–4  
–5  
–6  
L
F
F
= 0FOR DIP  
= 66.5FOR SOIC  
= 2V p-p  
R
R
R
V
= 100ꢂ  
L
F
F
–2  
–3  
–4  
–5  
–6  
= 0FOR DIP  
= 66.5FOR SOIC  
= 300mV p-p  
OUT  
OUT  
–7  
–8  
–9  
–7  
–8  
–9  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 13. AD8047 Small Signal Frequency Response,  
G = +1  
TPC 16. AD8047 Large Signal Frequency Response,  
G = +1  
0.1  
0
1
0
R
R
R
V
= 100ꢂ  
R
R
V
= 100ꢂ  
–1  
–2  
–3  
–4  
–5  
–6  
–0.1  
–0.2  
–0.3  
–0.4  
L
F
F
L
F
= 0FOR DIP  
= 66.5FOR SOIC  
= 300mV p-p  
= R = 200ꢂ  
F
= 300mV p-p  
OUT  
OUT  
–0.5  
–0.6  
–7  
–8  
–9  
–0.7  
–0.8  
–0.9  
1M  
10M  
100M  
FREQUENCY (Hz)  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
TPC 14. AD8047 0.1 dB Flatness, G = +1  
TPC 17. AD8047 Small Signal Frequency Response,  
G = –1  
100  
70  
60  
–20  
R
V
= 1kꢂ  
80  
L
–30  
= 2V p-p  
OUT  
PHASE  
MARGIN  
60  
40  
20  
0
50  
40  
–40  
–50  
–60  
–70  
–80  
–90  
30  
GAIN  
20  
SECOND HARMONIC  
–20  
–40  
10  
0
THIRD HARMONIC  
R
= 100ꢂ  
L
–60  
–80  
–10  
–20  
–30  
–100  
–110  
–120  
–100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 15. AD8047 Open-Loop Gain and Phase Margin  
vs. Frequency  
TPC 18. AD8047 Harmonic Distortion vs. Frequency,  
G = +1  
–6–  
REV. A  
AD8047/AD8048  
0.5  
–20  
–30  
R
V
= 100ꢂ  
R
R
V
= 100ꢂ  
= 0ꢂ  
L
0.4  
0.3  
L
F
= 2V p-p  
OUT  
= 2V STEP  
–40  
–50  
–60  
–70  
–80  
–90  
OUT  
0.2  
0.1  
0.0  
SECOND HARMONIC  
–0.1  
–0.2  
–0.3  
THIRD HARMONIC  
–100  
–110  
–120  
–0.4  
–0.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
SETTLING TIME (ns)  
TPC 22. AD8047 Short-Term Settling Time, G = +1  
TPC 19. AD8047 Harmonic Distortion vs. Frequency,  
G = +1  
–25  
0.25  
f = 200MHz  
–30  
R
R
V
= 100ꢂ  
= 0ꢂ  
0.20  
0.15  
L
F
R
R
= 1kꢂ  
L
F
= 0FOR SOIC  
= 2V STEP  
OUT  
–35  
–40  
–45  
–50  
–55  
0.10  
0.05  
0.00  
THIRD HARMONIC  
–0.05  
–0.10  
–0.15  
SECOND HARMONIC  
–60  
–65  
–0.20  
–0.25  
0
2
4
6
8
10  
12  
14  
16  
18  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
SETTLING TIME (s)  
OUTPUT SWING (V p-p)  
TPC 20. AD8047 Harmonic Distortion vs. Output  
Swing, G = +1  
TPC 23. AD8047 Long-Term Settling Time, G = +1  
0.04  
0.02  
17  
15  
13  
11  
9
0.00  
–0.02  
–0.04  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
0.04  
0.02  
7
0.00  
5
–0.02  
–0.04  
3
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TPC 21. AD8047 Differential Gain and Phase Error,  
TPC 24. AD8047 Noise vs. Frequency  
G = +2, RL = 150 , RF = 200 , RIN = 200 Ω  
REV. A  
–7–  
AD8047/AD8048  
7
6
5
7
6
R
R
V
= 100ꢂ  
5
R
R
V
= 100ꢂ  
L
F
L
F
= R = 200ꢂ  
IN  
= R = 200ꢂ  
IN  
= 300mV p-p  
4
3
= 2V p-p  
4
3
OUT  
OUT  
2
1
0
2
1
0
–1  
–2  
–3  
–1  
–2  
–3  
1M  
10M  
100M  
FREQUENCY (Hz)  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
TPC 25. AD8048 Small Signal Frequency Response,  
G = +2  
TPC 28. AD8048 Large Signal Frequency Response,  
G = +2  
6.5  
6.4  
1
0
R
R
V
= 100ꢂ  
L
F
= R = 200ꢂ  
6.3  
IN  
–1  
R
R
V
= 100ꢂ  
L
F
= 300mV p-p  
= R = 200ꢂ  
OUT  
IN  
= 300mV p-p  
6.2  
6.1  
–2  
–3  
OUT  
6.0  
5.9  
5.8  
–4  
–5  
–6  
5.7  
5.6  
5.5  
–7  
–8  
–9  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
FREQUENCY (Hz)  
1G  
FREQUENCY (Hz)  
TPC 26. AD8048 0.1 dB Flatness, G = +2  
TPC 29. AD8048 Small Signal Frequency Response,  
G = –1  
100  
–20  
–30  
90  
80  
70  
80  
60  
40  
20  
R
V
= 1kꢂ  
L
= 2V p-p  
–40  
–50  
–60  
–70  
–80  
–90  
OUT  
PHASE  
60  
50  
40  
30  
0
SECOND HARMONIC  
–20  
–40  
–60  
–80  
R
= 100ꢂ  
L
20  
10  
0
THIRD HARMONIC  
–100  
–110  
–120  
–100  
–120  
–10  
–20  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 30. AD8048 Harmonic Distortion vs. Frequency,  
G = +2  
TPC 27. AD8048 Open-Loop Gain and Phase Margin  
vs. Frequency  
–8–  
REV. A  
AD8047/AD8048  
–20  
–30  
0.5  
R
V
= 100ꢂ  
L
0.4  
0.3  
= 2V p-p  
R
R
V
= 100ꢂ  
= 200ꢂ  
OUT  
L
F
–40  
–50  
–60  
–70  
–80  
–90  
= 2V STEP  
OUT  
0.2  
0.1  
0.0  
SECOND HARMONIC  
–0.1  
–0.2  
–0.3  
THIRD HARMONIC  
–100  
–110  
–120  
–0.4  
–0.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
SETTLING TIME (ns)  
TPC 31. AD8048 Harmonic Distortion vs. Frequency,  
G = +2  
TPC 34. AD8048 Short-Term Settling Time, G = +2  
–15  
0.25  
0.20  
–20  
f = 20MHz  
R
R
V
= 100ꢂ  
= 200ꢂ  
L
F
R
R
= 1kꢂ  
= 200ꢂ  
–25  
–30  
L
F
0.15  
0.10  
THIRD HARMONIC  
= 2V STEP  
OUT  
–35  
–40  
–45  
–50  
–55  
–60  
0.05  
0.0  
–0.05  
–0.10  
–0.15  
SECOND HARMONIC  
–0.20  
–0.25  
–65  
–70  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
0
2
4
6
8
10  
12  
14  
16  
18  
SETTLING TIME (s)  
OUTPUT SWING (V p-p)  
TPC 32. AD8048 Harmonic Distortion vs. Output  
Swing, G = +2  
TPC 35. AD8048 Long-Term Settling Time 2 V  
Step, G = +2  
17  
0.04  
0.02  
15  
13  
11  
9
0.00  
–0.02  
–0.04  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
0.04  
0.02  
7
0.00  
5
–0.02  
–0.04  
3
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TPC 33. AD8048 Differential Gain and Phase Error,  
TPC 36. AD8048 Noise vs. Frequency  
G = +2, RL = 150 , RF = 200 , RIN = 200 Ω  
REV. A  
–9–  
AD8047/AD8048  
100  
90  
100  
V  
= 1V  
CM  
= 100ꢂ  
V  
= 1V  
CM  
= 100ꢂ  
90  
R
L
R
L
80  
70  
80  
70  
60  
50  
40  
60  
50  
40  
30  
20  
30  
20  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 37. AD8047 CMRR vs. Frequency  
TPC 40. AD8048 CMRR vs. Frequency  
100  
100  
10  
1
10  
1
0.1  
0.1  
0.01  
0.01  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 38. AD8047 Output Resistance vs. Frequency,  
G = +1  
TPC 41. AD8048 Output Resistance vs. Frequency,  
G = +2  
90  
80  
90  
80  
–PSRR  
+PSRR  
70  
60  
50  
40  
30  
20  
10  
0
70  
+PSRR  
60  
PSRR  
50  
40  
30  
20  
10  
0
10k  
100k  
1M  
10M  
100M  
1G  
3k  
10k  
100k  
1M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 39. AD8047 PSRR vs. Frequency  
TPC 42. AD8048 PSRR vs. Frequency,  
G = +2  
–10–  
REV. A  
AD8047/AD8048  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
83.0  
R
= 1kꢂ  
+V  
OUT  
L
82.0  
81.0  
AD8047  
AD8048  
–V  
OUT  
80.0  
79.0  
78.0  
+V  
OUT  
R
L
= 150ꢂ  
–V  
OUT  
+V  
OUT  
77.0  
76.0  
R
= 50ꢂ  
2.5  
2.3  
L
–V  
OUT  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
C)  
100 120 140  
JUNCTION TEMPERATURE (C)  
JUNCTION TEMPERATURE (  
TPC 43. AD8047/AD8048 Output Swing vs. Temperature  
TPC 46. AD8047/AD8048 CMRR vs. Temperature  
8.0  
2600  
2400  
AD8048  
7.5  
AD8047  
AD8048  
6V  
2200  
7.0  
2000  
1800  
1600  
6V  
6.5  
AD8048  
6.0  
AD8047  
5V  
5.5  
1400  
5V  
AD8047  
5.0  
1200  
1000  
4.5  
–60 –40 –20  
0
20  
40  
60  
80  
C)  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
C)  
100 120 140  
JUNCTION TEMPERATURE (  
JUNCTION TEMPERATURE (  
TPC 44. AD8047/AD8048 Open-Loop Gain vs.  
Temperature  
TPC 47. AD8047/AD8048 Supply Current vs.  
Temperature  
900  
800  
94  
92  
90  
+PSRR  
700  
AD8048  
88  
AD8048  
600  
86  
AD8047  
500  
AD8048  
–PSRR  
84  
400  
300  
200  
100  
82  
+PSRR  
AD8047  
AD8047  
80  
78  
76  
–PSRR  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
C)  
100 120 140  
JUNCTION TEMPERATURE (C)  
JUNCTION TEMPERATURE (  
TPC 45. AD8047/AD8048 PSRR vs. Temperature  
TPC 48. AD8047/AD8048 Input Offset Voltage vs.  
Temperature  
REV. A  
–11–  
AD8047/AD8048  
THEORY OF OPERATION  
General  
For general voltage gain applications, the amplifier bandwidth  
can be closely estimated as  
The AD8047 and AD8048 are wide bandwidth, voltage feed-  
back amplifiers. Since their open-loop frequency response follows  
the conventional 6 dB/octave roll-off, their gain bandwidth  
product is basically constant. Increasing their closed-loop gain  
results in a corresponding decrease in small signal bandwidth.  
This can be observed by noting the bandwidth specification  
between the AD8047 (gain of 1) and AD8048 (gain of 2).  
ωO  
f3 dB  
R   
F   
2π 1+  
R
G   
This estimation loses accuracy for gains of +2/–1 or lower due  
to the amplifier’s damping factor. For these low gain cases, the  
bandwidth will actually extend beyond the calculated value (see  
Closed-Loop BW plots, TPCs 13 and 25).  
Feedback Resistor Choice  
The value of the feedback resistor is critical for optimum perfor-  
mance on the AD8047 and AD8048. For maximum flatness at a  
gain of 2, RF and RG should be set to 200 for the AD8048.  
When the AD8047 is configured as a unity gain follower, RF  
should be set to 0 (no feedback resistor should be used) for  
the plastic DIP and 66.5 for the SOIC.  
As a general rule, capacitor CF will not be required if  
NG  
(RFRG )× CI ≤  
4 ωO  
where NG is the Noise Gain (1 + RF/RG) of the circuit. For  
most voltage gain applications, this should be the case.  
R
F
10F  
+V  
R
R
S
F
+
G = 1  
G
7
C
F
V
3
2
0.1F  
IN  
AD8047/  
AD8048  
V
R
6
OUT  
TERM  
0.1F  
V
AD8047  
4
OUT  
C
I
I
I
R
G
10F  
–V  
S
R
F
Figure 5. Transimpedance Configuration  
Pulse Response  
Figure 3. Noninverting Operation  
10F  
Unlike a traditional voltage feedback amplifier, where the slew  
speed is dictated by its front end dc quiescent current and gain  
bandwidth product, the AD8047 and AD8048 provide on  
demand current that increases proportionally to the input step  
signal amplitude. This results in slew rates (1000 V/µs) compa-  
rable to wideband current feedback designs. This, combined  
with relatively low input noise current (1.0 pA/Hz), gives the  
AD8047 and AD8048 the best attributes of both voltage and  
current feedback amplifiers.  
+V  
S
R
F
7
G =  
3
2
0.1F  
6
R
G
AD8047/  
AD8048  
V
OUT  
0.1F  
4
R
G
V
IN  
R
TERM  
10F  
–V  
S
R
F
Large Signal Performance  
Figure 4. Inverting Operation  
The outstanding large signal operation of the AD8047 and  
AD8048 is due to a unique, proprietary design architecture.  
In order to maintain this level of performance, the maximum  
180 V-MHz product must be observed (e.g., @ 100 MHz,  
VO 1.8 V p-p) on the AD8047 and the 250 V-MHz product  
must be observed on the AD8048.  
When the AD8047 is used in the transimpedance (I to V) mode,  
such as in photodiode detection, the values of RF and diode  
capacitance (CI) are usually known. Generally, the value of RF  
selected will be in the krange, and a shunt capacitor (CF)  
across RF will be required to maintain good amplifier stability.  
The value of CF required to maintain optimal flatness (<1 dB  
Power Supply Bypassing  
peaking) and settling time can be estimated as  
1/2  
Adequate power supply bypassing can be critical when optimiz-  
ing the performance of a high frequency circuit. Inductance in  
the power supply leads can form resonant circuits that produce  
peaking in the amplifier’s response. In addition, if large current  
transients must be delivered to the load, then bypass capacitors  
(typically greater than 1 µF) will be required to provide the best  
settling time and lowest distortion. A parallel combination of at  
least 4.7 µF, and between 0.1 µF and 0.01 µF, is recommended.  
Some brands of electrolytic capacitors will require a small series  
damping resistor 4.7 for optimum results.  
2
2
CF (2 ωOCI RF 1)/ωO RF  
[
]
where O is equal to the unity gain bandwidth product of  
the amplifier in rad/sec, and CI is the equivalent total input  
capacitance at the inverting input. Typically, O = 800 × 106 rad/sec  
(see Open-Loop Frequency Response curve, TPC 15).  
As an example, choosing RF = 10 kand CI = 5 pF requires  
CF to be 1.1 pF (Note: CI includes both source and parasitic  
circuit capacitance). The bandwidth of the amplifier can be  
estimated using the CF calculated as  
Driving Capacitive Loads  
The AD8047/AD8048 have excellent cap load drive capability  
for high speed op amps, as shown in Figures 7 and 9. However,  
when driving cap loads greater than 25 pF, the best frequency  
response is obtained by the addition of a small series resistance.  
1. 6  
2πRF CF  
f3 dB  
–12–  
REV. A  
AD8047/AD8048  
It is worth noting that the frequency response of the circuit  
when driving large capacitive loads will be dominated by the  
passive roll-off of RSERIES and CL.  
margin (65°), low noise current (1.0 pA/Hz), and slew rate  
(1000 V/µs) give higher performance capabilities to these appli-  
cations over previous voltage feedback designs.  
With a settling time of 30 ns to 0.01% and 13 ns to 0.1%, the  
devices are an excellent choice for DAC I/V conversion. The  
same characteristics along with low harmonic distortion make  
them a good choice for ADC buffering/amplification. With  
superb linearity at relatively high signal frequencies, the AD8047  
and AD8048 are ideal drivers for ADCs up to 12 bits.  
R
F
R
SERIES  
AD8047  
R
L
1kꢂ  
C
L
Operation as a Video Line Driver  
The AD8047 and AD8048 have been designed to offer out-  
standing performance as video line drivers. The important  
specifications of differential gain (0.01%) and differential phase  
(0.02°) meet the most exacting HDTV demands for driving  
video loads.  
Figure 6. Driving Capacitive Loads  
200ꢂ  
200ꢂ  
10F  
0.1F  
+V  
S
7
75ꢂ  
CABLE  
2
3
75ꢂ  
AD8047/  
AD8048  
75ꢂ  
CABLE  
V
6
OUT  
0.1F  
V
75ꢂ  
IN  
4
500mV  
5ns  
75ꢂ  
10F  
–V  
S
Figure 7. AD8047 Large Signal Transient Response;  
VO = 2 V p-p, G = +1, RF = 0 , RSERIES = 0 , CL = 27 pF  
Figure 10. Video Line Driver  
Active Filters  
R
F
The wide bandwidth and low distortion of the AD8047 and  
AD8048 are ideal for the realization of higher bandwidth active  
filters. These characteristics, while being more common in many  
current feedback op amps, are offered in the AD8047 and AD8048  
in a voltage feedback configuration. Many active filter configu-  
rations are not realizable with current feedback amplifiers.  
R
SERIES  
R
AD8048  
IN  
R
L
C
L
1kꢂ  
A multiple feedback active filter requires a voltage feedback  
amplifier and is more demanding of op amp performance than  
other active filter configurations such as the Sallen-Key. In  
general, the amplifier should have a bandwidth that is at least  
10 times the bandwidth of the filter if problems due to phase  
shift of the amplifier are to be avoided.  
Figure 8. Driving Capacitive Loads  
Figure 11 is an example of a 20 MHz low-pass multiple feed-  
back active filter using an AD8048.  
C1  
50pF  
10F  
0.1F  
+5V  
R4  
154ꢂ  
1
R1  
154ꢂ  
R3  
78.7ꢂ  
7
2
3
V
IN  
500mV  
5ns  
V
AD8048  
4
6
C2  
100pF  
OUT  
5
0.1F  
Figure 9. AD8048 Large Signal Transient Response;  
VO = 2 V p-p, G = +2, RF = RIN = 200 , RSERIES = 0 ,  
CL = 27 pF  
100ꢂ  
10F  
–5V  
Figure 11. Active Filter Circuit  
APPLICATIONS  
The AD8047 and AD8048 are voltage feedback amplifiers well  
suited for such applications as photodetectors, active filters, and  
log amplifiers. The devices’ wide bandwidth (260 MHz), phase  
REV. A  
–13–  
AD8047/AD8048  
Choose  
Layout Considerations  
The specified high speed performance of the AD8047 and  
AD8048 requires careful attention to board layout and compo-  
nent selection. Proper RF design techniques and low-pass  
parasitic component selection are mandatory.  
FO = Cutoff Frequency = 20 MHz  
= Damping Ratio = 1/Q = 2  
R4  
R1  
H = Absolute Value of Circuit Gain =  
= 1  
Then,  
The PCB should have a ground plane covering all unused por-  
tions of the component side of the board to provide a low  
impedance path. The ground plane should be removed from the  
area near the input pins to reduce stray capacitance.  
k = 2 π FO C1  
4 C1(H +1)  
C2 =  
R1=  
R3 =  
α2  
α
Chip capacitors should be used for the supply bypassing (see  
Figure 12). One end should be connected to the ground plane  
and the other within 1/8 inch of each power pin. An additional  
large (0.47 µF to 10 µF) tantalum electrolytic capacitor should  
be connected in parallel, though not necessarily so close, to the  
supply current for fast, large signal changes at the output.  
2 HK  
α
2 K (H +1)  
R4 = H(R1)  
The feedback resistor should be located close to the inverting  
input pin in order to keep the stray capacitance at this node to a  
minimum. Capacitance variations of less than 1 pF at the inverting  
input will significantly affect high speed performance.  
A/D Converter Driver  
As A/D converters move toward higher speeds with higher reso-  
lutions, there becomes a need for high performance drivers that  
will not degrade the analog signal to the converter. It is desir-  
able from a system’s standpoint that the A/D be the element in  
the signal chain that ultimately limits overall distortion. This  
places new demands on the amplifiers used to drive fast, high  
resolution A/Ds.  
Stripline design techniques should be used for long signal traces  
(greater than about 1 inch). These should be designed with a  
characteristic impedance of 50 or 75 and be properly termi-  
nated at each end.  
With high bandwidth, low distortion, and fast settling time,  
the AD8047 and AD8048 make high performance A/D drivers  
for advanced converters. Figure 12 is an example of an AD8047  
used as an input driver for an AD872A, a 12-bit, 10 MSPS  
A/D converter.  
+5V DIGITAL  
+5V ANALOG  
10ꢂ  
7
DV  
DD  
0.1F  
0.1F  
6
DGND  
+5V DIGITAL  
4
AV  
DD  
22  
23  
0.1F  
+5V ANALOG  
DRV  
DD  
5
AGND  
DRGND  
CLOCK INPUT  
10F  
0.1F  
21  
20  
CLK  
OTR  
AD872A  
49.9ꢂ  
7
19  
18  
MSB  
BIT2  
2
3
1
V
AD8047  
6
INA  
17  
16  
15  
14  
13  
12  
11  
10  
ANALOG IN  
BIT3  
BIT4  
BIT5  
BIT6  
0.1F  
4
2
DIGITAL OUTPUT  
10F  
V
INB  
BIT7  
BIT8  
BIT9  
BIT10  
BIT11  
BIT12  
27  
REF GND  
–5V  
ANALOG  
0.1F  
1F  
9
8
28  
26  
REF IN  
24  
AGND  
REF OUT  
AV  
SS  
AV  
SS  
3
25  
0.1F  
0.1F  
–5V ANALOG  
Figure 12. AD8047 Used as Driver for an AD872A, a 12-Bit, 10 MSPS A/D Converter  
–14–  
REV. A  
AD8047/AD8048  
OUTLINE DIMENSIONS  
8-Lead Plastic Dual In-Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8-Lead Standard Small Outline Package [SOIC]  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45ꢃ  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8ꢃ  
0.51 (0.0201)  
0.31 (0.0122)  
01.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. A  
–15–  
AD8047/AD8048  
Revision History  
Location  
Page  
7/03—Data Sheet changed from REV. 0 to REV. A.  
Renumbered Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Deleted Evaluation Board Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Updated ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
–16–  
REV. A  

相关型号:

AD8047ARZ-REEL

IC OP-AMP, 4000 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8, Operational Amplifier
ADI

AD8047ARZ-REEL

OP-AMP, 4000 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8
ROCHESTER

AD8047ARZ-REEL7

OP-AMP, 4000 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8
ROCHESTER

AD8047ARZ-REEL7

250 MHz, General Purpose Voltage Feedback Op Amps Gain 1 Stable
ADI

AD8047_03

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8047_15

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8048

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8048-EB

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8048AN

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8048ANZ

OP-AMP, 4000 uV OFFSET-MAX, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
ROCHESTER

AD8048AR

250 MHz, General Purpose Voltage Feedback Op Amps
ADI

AD8048AR-REEL

250 MHz, General Purpose Voltage Feedback Op Amps
ADI