AD8051_06 [ADI]

Low Cost, High Speed, Rail-to-Rail Amplifiers; 低成本,高速,轨到轨放大器
AD8051_06
型号: AD8051_06
厂家: ADI    ADI
描述:

Low Cost, High Speed, Rail-to-Rail Amplifiers
低成本,高速,轨到轨放大器

放大器
文件: 总24页 (文件大小:464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, High Speed,  
Rail-to-Rail Amplifiers  
AD8051/AD8052/AD8054  
FEATURES  
PIN CONNECTIONS (TOP VIEWS)  
High speed and fast settling on 5 V  
110 MHz, −3 dB bandwidth (G = +1) (AD8051/AD8052)  
150 MHz, −3 dB bandwidth (G = +1) (AD8054)  
145 V/μs slew rate  
AD8051  
1
2
3
4
8
NC  
NC  
–IN  
+IN  
AD8051  
7
6
5
+V  
V
1
2
5
+V  
S
OUT  
S
V
OUT  
–V  
S
+ –  
–V  
S
NC  
+IN  
3
4
–IN  
50 ns settling time to 0.1%  
NC = NO CONNECT  
Single-supply operation  
Figure 1. SOIC-8 (R)  
Figure 2. SOT-23-5 (RJ)  
Output swings to within 25 mV of either rail  
Input voltage range: −0.2 V to +4 V; VS = 5 V  
Video specifications (G = +2)  
0.1 dB gain flatness: 20 MHz; RL = 150 Ω  
Differential gain/phase: 0.03%/0.03°  
Low distortion  
1
2
3
4
5
6
7
14  
13  
OUT D  
–IN D  
OUT A  
–IN A  
12 +IN D  
+IN A  
V+  
AD8052  
11  
1
2
3
4
+V  
AD8054  
8
7
6
5
V–  
OUT1  
–IN1  
S
10  
9
+IN C  
–IN C  
OUT C  
+
OUT  
+IN B  
–IN B  
OUT B  
+IN1  
–IN2  
+IN2  
−80 dBc total harmonic @ 1 MHz, RL = 100 Ω  
Outstanding load drive capability  
+
8
–V  
S
Figure 3. SOIC (R-8) and MSOP (RM-8) Figure 4. SOIC (R-14) and TSSOP (RU-14)  
Drives 45 mA, 0.5 V from supply rails (AD8051/AD8052)  
Drives 50 pF capacitive load (G = +1) (AD8051/AD8052)  
Low power: 2.75 mA/amplifier (AD8054)  
Low power: 4.4 mA/amplifier (AD8051/AD8052)  
APPLICATIONS  
Active filters  
A/D drivers  
Consumer video  
Professional cameras  
CCD imaging systems  
CD/DVD ROMs  
The AD8051/AD8052 in the 8-lead SOIC, the AD8052 in the  
MSOP, the AD8054 in the 14-lead SOIC, and the 14-lead TSSOP  
packages are available in the extended temperature range of  
−40°C to +125°C.  
GENERAL DESCRIPTION  
The AD8051 (single), AD8052 (dual), and AD8054 (quad) are  
low cost, high speed, voltage feedback amplifiers. The amplifiers  
operate on +3 V, +5 V, or 5 V supplies at low supply current.  
They have true single-supply capability with an input voltage  
range extending 200 mV below the negative rail and within 1 V  
of the positive rail.  
5.0  
4.5  
V
= 5V  
S
G = –1  
4.0  
3.5  
3.0  
2.5  
2.0  
R
R
= 2k  
= 2kΩ  
F
L
Despite their low cost, the AD8051/AD8052/AD8054 provide  
excellent overall performance and versatility. The output voltage  
swings to within 25 mV of each rail, providing maximum output  
dynamic range with excellent overdrive recovery.  
1.5  
1.0  
The AD8051/AD8052/AD8054 are well suited for video  
electronics, cameras, video switchers, or any high speed portable  
equipment. Low distortion and fast settling make them ideal for  
active filter applications.  
0.5  
0
0.1  
1
10  
50  
FREQUENCY (MHz)  
Figure 5. Low Distortion Rail-to-Rail Output Swing  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD8051/AD8052/AD8054  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Circuit Description .................................................................... 16  
Application Information................................................................ 17  
Overdrive Recovery ................................................................... 17  
Driving Capacitive Loads.......................................................... 17  
Layout Considerations............................................................... 18  
Active Filters ............................................................................... 18  
A/D and D/A Applications ....................................................... 18  
Sync Stripper............................................................................... 19  
Single-Supply Composite Video Line Driver ......................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Connections (Top Views)......................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 9  
Maximum Power Dissipation ..................................................... 9  
ESD Caution.................................................................................. 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 16  
REVISION HISTORY  
5/06—Rev. F to Rev. G  
2/03—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Changes to Features, Applications, and General Description.....1  
Changes to Figure 15...................................................................... 12  
Changes to the Ordering Guide.................................................... 22  
Changes to General Description .....................................................1  
Changes to Specifications.................................................................3  
Changes to Absolute Maximum Ratings........................................6  
1/03—Rev. B to Rev. C  
9/04—Rev. E to Rev. F  
Changes to Ordering Guide .............................................................7  
Changes to Figure 15...................................................................... 15  
Changes to General Description .....................................................1  
Changes to Pin Connections............................................................1  
Changes to Specifications.................................................................2  
Changes to Absolute Maximum Ratings........................................9  
Changes to Figure 2...........................................................................9  
Changes to Ordering Guide.............................................................9  
Updated Outline Dimensions........................................................20  
3/04—Rev. D to Rev. E  
Changes to General Description .....................................................2  
Changes to Specifications.................................................................3  
Changes to Ordering Guide .............................................................6  
Rev. G | Page 2 of 24  
 
AD8051/AD8052/AD8054  
SPECIFICATIONS  
@ TA = 25°C, VS = 5 V, RL = 2 kΩ to 2.5 V, unless otherwise noted.  
Table 1.  
AD8051A/AD8052A  
AD8054A  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
70  
110  
50  
20  
80  
150  
60  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
RL = 150 Ω to 2.5 V, RF = 806 Ω  
for AD8051A/AD8052A  
RF = 200 Ω for AD8054A  
G = –1, VO = 2 V step  
G = +1, VO = 2 V p-p  
G = –1, VO = 2 V step  
12  
170  
45  
MHz  
V/μs  
MHz  
MHz  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion1  
Input Voltage Noise  
100  
145  
35  
50  
140  
40  
fC = 5 MHz, VO = 2 V p-p, G = +2  
f = 10 kHz  
f = 10 kHz  
G = +2, RL = 150 Ω to 2.5 V  
RL = 1 kΩ to 2.5 V  
G = +2, RL = 150 Ω to 2.5 V  
RL = 1 kΩ to 2.5 V  
−67  
16  
−68  
16  
dB  
nV/√Hz  
fA/√Hz  
%
Input Current Noise  
Differential Gain Error (NTSC)  
850  
0.09  
0.03  
0.19  
0.03  
−60  
850  
0.07  
0.02  
0.26  
0.05  
−60  
%
Differential Phase Error (NTSC)  
Degrees  
Degrees  
dB  
Crosstalk  
f = 5 MHz, G = +2  
DC PERFORMANCE  
Input Offset Voltage  
1.7  
10  
25  
1.7  
12  
30  
mV  
mV  
μV/°C  
μA  
μA  
μA  
dB  
dB  
dB  
dB  
TMIN − TMAX  
Offset Drift  
Input Bias Current  
10  
1.4  
15  
2
2.5  
3.25  
0.75  
4.5  
4.5  
1.2  
TMIN − TMAX  
Input Offset Current  
Open-Loop Gain  
0.1  
98  
96  
82  
78  
0.2  
98  
96  
82  
78  
RL = 2 kΩ to 2.5 V  
TMIN − TMAX  
RL = 150 Ω to 2.5 V  
TMIN − TMAX  
86  
76  
82  
74  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
290  
1.4  
−0.2 to  
+4  
300  
1.5  
−0.2 to  
+4  
kΩ  
pF  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VCM = 0 V to 3.5 V  
72  
88  
70  
86  
dB  
RL = 10 kΩ to 2.5 V  
RL = 2 kΩ to 2.5 V  
RL = 150 Ω to 2.5 V  
0.015 to  
4.985  
0.03 to  
4.975  
V
V
V
0.1 to 0.025 to  
4.9 4.975  
0.3 to 0.2 to  
4.625 4.8  
0.125 to 0.05 to  
4.875  
0.55 to  
4.4  
4.95  
0.25 to  
4.65  
Output Current  
VOUT = 0.5 V to 4.5 V  
TMIN − TMAX  
Sourcing  
Sinking  
G = +1 (AD8051/AD8052)  
G = +2 (AD8054)  
45  
45  
80  
130  
50  
30  
30  
45  
85  
mA  
mA  
mA  
mA  
pF  
Short-Circuit Current  
Capacitive Load Drive  
40  
pF  
Rev. G | Page 3 of 24  
 
AD8051/AD8052/AD8054  
AD8051A/AD8052A  
AD8054A  
Typ  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
3
Max  
Unit  
POWER SUPPLY  
Operating Range  
3
12  
5
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
OPERATING TEMPERATURE RANGE  
4.4  
80  
2.75  
80  
3.275 mA  
dB  
ΔVS = 1 V  
70  
68  
RJ-5  
−40  
−40  
+85  
+125 −40  
°C  
RM-8, R-8, RU-14, R-14  
+125 °C  
1 Refer to Figure 19.  
Rev. G | Page 4 of 24  
AD8051/AD8052/AD8054  
@ TA = 25°C, VS = 3 V, RL = 2 kΩ to 1.5 V, unless otherwise noted.  
Table 2.  
AD8051A/AD8052A  
AD8054A  
Parameter  
Conditions  
Min  
Typ  
Max Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
70  
110  
50  
17  
80  
135  
65  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
RL = 150 Ω to 2.5 V, RF = 402 Ω  
for AD8051A/AD8052A  
RF = 200 Ω for AD8054A  
G = −1, VO = 2 V step  
G = +1, VO = 1 V p-p  
G = −1, VO = 2 V step  
10  
150  
85  
MHz  
V/μs  
MHz  
ns  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion1  
90  
135  
65  
55  
110  
55  
fC = 5 MHz, VO = 2 V p-p,  
–47  
–48  
dB  
G = −1, RL = 100 Ω to 1.5 V  
Input Voltage Noise  
Input Current Noise  
f = 10 kHz  
f = 10 kHz  
16  
600  
16  
600  
nV/√Hz  
fA/√Hz  
Differential Gain Error (NTSC)  
G = +2, VCM = 1 V  
RL = 150 Ω to 1.5 V  
RL = 1 kΩ to 1.5 V  
G = +2, VCM = 1 V  
RL = 150 Ω to 1.5 V  
RL = 1 kΩ to 1.5 V  
f = 5 MHz, G = +2  
0.11  
0.09  
0.13  
0.09  
%
%
Differential Phase Error (NTSC)  
0.24  
0.10  
−60  
0.3  
0.1  
−60  
Degrees  
Degrees  
dB  
Crosstalk  
DC PERFORMANCE  
Input Offset Voltage  
1.6  
10  
25  
1.6  
12  
30  
mV  
mV  
μV/°C  
μA  
μA  
μA  
dB  
dB  
dB  
dB  
TMIN − TMAX  
Offset Drift  
Input Bias Current  
10  
1.3  
15  
2
2.6  
3.25  
0.8  
4.5  
4.5  
1.2  
TMIN − TMAX  
Input Offset Current  
Open-Loop Gain  
0.15  
96  
94  
82  
76  
0.2  
96  
94  
80  
76  
RL = 2 kΩ  
TMIN − TMAX  
RL = 150 Ω  
TMIN − TMAX  
80  
74  
80  
72  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
290  
1.4  
−0.2 to  
+2  
300  
1.5  
−0.2 to  
+2  
kΩ  
pF  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VCM = 0 V to 1.5 V  
72  
88  
70  
86  
dB  
RL = 10 kΩ to 1.5 V  
RL = 2 kΩ to 1.5 V  
RL = 150 Ω to 1.5 V  
0.01 to  
2.99  
0.025 to  
2.98  
0.35 to  
2.965  
V
V
V
0.0.75 to 0.02 to  
2.9  
0.2 to  
2.75  
0.1 to  
2.9  
0.35 to 0.15 to  
2.98  
0.125 to  
2.875  
2.55  
2.75  
Output Current  
VOUT = 0.5 V to 2.5 V  
TMIN − TMAX  
45  
45  
25  
25  
mA  
mA  
Rev. G | Page 5 of 24  
AD8051/AD8052/AD8054  
AD8051A/AD8052A  
AD8054A  
Parameter  
Conditions  
Min  
Typ  
60  
90  
Max Min  
Typ  
30  
50  
Max  
Unit  
mA  
mA  
pF  
Short-Circuit Current  
Sourcing  
Sinking  
G = +1 (AD8051/AD8052)  
G = +2 (AD8054)  
Capacitive Load Drive  
45  
35  
pF  
POWER SUPPLY  
Operating Range  
3
12  
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
OPERATING TEMPERATURE RANGE  
4.2  
80  
4.8  
2.625  
80  
3.125 mA  
dB  
ΔVS = 0.5 V  
68  
68  
RJ-5  
−40  
−40  
+85  
+125 −40  
°C  
RM-8, R-8, RU-14, R-14  
+125 °C  
1 Refer to Figure 19.  
Rev. G | Page 6 of 24  
AD8051/AD8052/AD8054  
@ TA = 25°C, VS = 5 V, RL = 2 kΩ to ground, unless otherwise noted.  
Table 3.  
AD8051A/AD8052A  
AD8054A  
Parameter  
Conditions  
Min  
Typ  
Max Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
RL = 150 Ω, RF = 1.1 kΩ  
for AD8051A/AD8052A  
70  
110  
50  
20  
85  
160  
65  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
RF = 200 Ω for AD8054A  
G = −1, VO = 2 V step  
G = +1, VO = 2 V p-p  
G = −1, VO = 2 V step  
15  
190  
50  
MHz  
V/μs  
MHz  
MHz  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
Input Voltage Noise  
105  
170  
40  
50  
150  
40  
fC = 5 MHz, VO = 2 V p-p, G = +2  
f = 10 kHz  
–71  
16  
–72  
16  
dB  
nV/√Hz  
Input Current Noise  
Differential Gain Error (NTSC)  
f = 10 kHz  
G = +2, RL = 150 Ω  
RL = 1 kΩ  
G = +2, RL = 150 Ω  
RL = 1 kΩ  
f = 5 MHz, G = +2  
900  
0.02  
0.02  
0.11  
0.02  
–60  
900  
0.06  
0.02  
0.15  
0.03  
–60  
fA/√Hz  
%
%
Degrees  
Degrees  
dB  
Differential Phase Error (NTSC)  
Crosstalk  
DC PERFORMANCE  
Input Offset Voltage  
1.8  
11  
27  
1.8  
13  
32  
mV  
mV  
μV/°C  
μA  
μA  
μA  
dB  
dB  
dB  
dB  
TMIN − TMAX  
Offset Drift  
Input Bias Current  
10  
1.4  
15  
2
2.6  
3.5  
0.75  
4.5  
4.5  
1.2  
TMIN − TMAX  
Input Offset Current  
Open-Loop Gain  
0.1  
96  
96  
82  
80  
0.2  
96  
96  
82  
80  
RL = 2 kΩ  
TMIN − TMAX  
RL = 150 Ω  
TMIN − TMAX  
88  
78  
84  
76  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
290  
1.4  
−5.2 to  
+4  
300  
1.5  
−5.2 to  
+4  
kΩ  
pF  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VCM = −5 V to +3.5 V  
72  
88  
70  
86  
dB  
RL = 10 kΩ  
RL = 2 kΩ  
RL = 150 Ω  
−4.98 to  
+4.98  
−4.97 to  
+4.97  
V
V
V
−4.85 to −4.97 to  
+4.85 +4.97  
−4.45 to −4.6 to  
−4.8 to −4.9 to  
+4.8 +4.9  
−4.0 to −4.5 to  
+4.3  
+4.6  
+3.8  
+4.5  
Output Current  
VOUT = −4.5 V to +4.5 V  
TMIN − TMAX  
Sourcing  
Sinking  
G = +1 (AD8051/AD8052)  
G = +2 (AD8054)  
45  
45  
100  
160  
50  
30  
30  
60  
100  
mA  
mA  
mA  
mA  
pF  
Short-Circuit Current  
Capacitive Load Drive  
40  
pF  
Rev. G | Page 7 of 24  
AD8051/AD8052/AD8054  
AD8051A/AD8052A  
AD8054A  
Typ  
Parameter  
Conditions  
Min  
Typ  
Max Min  
Max Unit  
POWER SUPPLY  
Operating Range  
3
12  
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
OPERATING TEMPERATURE RANGE  
4.8  
80  
5.5  
2.875  
80  
3.4  
mA  
dB  
ΔVS = 1  
68  
68  
RJ-5  
−40  
−40  
+85  
+125 −40  
°C  
RM-8, R-8, RU-14, R-14  
+125 °C  
Rev. G | Page 8 of 24  
AD8051/AD8052/AD8054  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
Ratings  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Supply Voltage  
Internal Power Dissipation1  
SOIC Packages  
12.6 V  
Observe Power  
Derating Curves  
Observe Power  
Derating Curves  
Observe Power  
Derating Curves  
Observe Power  
Derating Curves  
SOT-23 Package  
MSOP Package  
TSSOP Package  
MAXIMUM POWER DISSIPATION  
The maximum power that can be safely dissipated by the  
AD8051/AD8052/AD8054 is limited by the associated rise in  
junction temperature. The maximum safe junction temperature  
for plastic encapsulated devices is determined by the glass  
transition temperature of the plastic, approximately 150°C.  
Temporarily exceeding this limit can cause a shift in parametric  
performance due to a change in the stresses exerted on the die  
by the package. Exceeding a junction temperature of 175°C for  
an extended period can result in device failure.  
Input Voltage (Common Mode)  
Differential Input Voltage  
Output Short-Circuit Duration  
VS  
2.5 V  
Observe Power  
Derating Curves  
−65°C to +150°C  
−40°C to +125°C  
300°C  
Storage Temperature Range (R)  
Operating Temperature Range (A Grade)  
Lead Temperature (Soldering 10 sec)  
1
Specification is for device in free air:  
While the AD8051/AD8052/AD8054 are internally short-  
circuit protected, this cannot be sufficient to guarantee that the  
maximum junction temperature (150°C) is not exceeded under  
all conditions. To ensure proper operation, it is necessary to  
observe the maximum power derating curves.  
8-Lead SOIC: θJA = 125°C/W  
5-Lead SOT-23: θJA = 180°C/W  
8-Lead MSOP: θJA = 150°C/W  
14-Lead SOIC: θJA = 90°C/W  
14-Lead TSSOP: θJA = 120°C/W.  
2.5  
SOIC-14  
SOIC-8  
2.0  
1.5  
1.0  
TSSOP-14  
MSOP-8  
0.5  
0
SOT-23-5  
–55 –35 –15  
5
15  
35  
55  
75  
95  
115  
AMBIENT TEMPERATURE (°C)  
Figure 6. Maximum Power Dissipation vs.  
Temperature for AD8051/AD8052/AD8054  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. G | Page 9 of 24  
 
 
AD8051/AD8052/AD8054  
TYPICAL PERFORMANCE CHARACTERISTICS  
3
5
4
3
2
1
G = +1  
= 0  
V
= 5V  
S
G = +2  
= 2k  
2
R
G = +2  
F
GAIN AS SHOWN  
R
R
R
F
R
= 2k  
AS SHOWN  
= 5kΩ  
= 0.2V p-p  
F
F
L
1
V
O
0
–1  
–2  
G = +5  
= 2kΩ  
R
F
0
–1  
–2  
–3  
G = +1  
= 0  
G = +10  
= 2kΩ  
R
F
R
F
G = +10  
= 2kΩ  
–3  
–4  
–5  
R
F
V
= 5V  
S
GAIN AS SHOWN  
–4  
–5  
–6  
–7  
R
R
V
AS SHOWN  
= 2kΩ  
= 0.2V p-p  
F
L
G = +5  
= 2kΩ  
–6  
–7  
O
R
F
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
Figure 7. AD8051/AD8052 Normalized Gain vs. Frequency; VS = 5 V  
Figure 10. AD8054 Normalized Gain vs. Frequency; VS = 5 V  
3
6
V
AS SHOWN  
S
G = +1  
5
2
1
G = +1  
R
V
+3V  
+5V  
±5V  
R
C
= 2k  
L
L
V
= +5V  
V
= +3V  
S
S
= 2kΩ  
= 0.2V p-p  
L
= 5pF  
4
O
V
= 0.2V p-p  
O
0
3
2
–1  
V
= ±5V  
S
–2  
–3  
–4  
–5  
1
0
±5V  
–1  
–2  
–3  
–4  
+3V  
+5V  
–6  
–7  
100k  
1M  
10M  
100M  
500M  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
FREQUENCY (Hz)  
Figure 8. AD8051/AD8052 Gain vs. Frequency vs. Supply  
Figure 11. AD8054 Gain vs. Frequency vs. Supply  
4
3
3
V
R
C
= 5V  
= 2kTO 2.5V  
= 5pF  
S
+85°C  
+25°C  
2
1
L
–40°C  
L
2
G = +1  
= 0.2V p-p  
–40°C  
V
O
0
1
+85°C  
+25°C  
–1  
0
–2  
–1  
–2  
–3  
–4  
–5  
V
= 5V  
S
G = +1  
R
–3  
–4  
–5  
= 2k  
= 0.2V p-p  
L
V
O
–6 TEMPERATURE AS SHOWN  
–7  
1
10  
FREQUENCY (MHz)  
100  
500  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
Figure 12. AD8054 Gain vs. Frequency vs. Temperature  
Figure 9. AD8051/AD8052 Gain vs. Frequency vs. Temperature  
Rev. G | Page 10 of 24  
 
AD8051/AD8052/AD8054  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
V
= 5V  
V
R
R
= 5V  
= 200Ω  
= 150Ω  
S
S
G = +2  
F
R
R
V
= 150Ω  
= 806Ω  
= 0.2V p-p  
L
F
L
5.5  
G = +2  
= 0.2V p-p  
V
5.4  
5.3  
O
O
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. AD8054 0.1 dB Gain Flatness vs. Frequency; G = +2  
Figure 13. AD8051/AD8052 0.1 dB Gain Flatness vs. Frequency; G = +2  
9
9
V
V
= +5V  
= 2V p-p  
8
7
6
V
V
= +5V  
= 2V p-p  
S
8
7
6
S
O
O
5
4
3
5
4
3
V
V
= ±5V  
= 4V p-p  
S
O
V
V
= ±5V  
= 4V p-p  
S
O
V
AS SHOWN  
V
AS SHOWN  
S
S
2
1
2
1
G = +2  
G = +2  
R
R
V
= 2kΩ  
= 2kΩ  
AS SHOWN  
R
R
V
= 2kΩ  
= 2kΩ  
AS SHOWN  
F
L
F
L
O
0
O
0
–1  
–1  
0.1  
1
10  
100  
500  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
FREQUENCY (MHz)  
Figure 17. AD8054 Large Signal Frequency Response; G = +2  
Figure 14. AD8051/AD8052 Large Signal Frequency Response; G = +2  
80  
70  
80  
V
R
C
= 5V  
= 2k  
= 5pF  
V
R
= 5V  
= 2kΩ  
S
S
70  
60  
50  
40  
30  
20  
L
L
L
60  
50  
40  
30  
20  
GAIN  
GAIN  
180  
0
50° PHASE  
MARGIN  
135  
90  
–45  
–90  
–135  
–180  
PHASE  
45° PHASE  
MARGIN  
PHASE  
10  
0
10  
0
45  
0
–10  
–20  
–10  
–20  
30k  
100k  
1M  
10M  
100M  
500M  
0.01  
0.1  
1
10  
100  
500  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 18. AD8054 Open-Loop Gain and Phase Margin vs. Frequency  
Figure 15. AD8051/AD8052 Open-Loop Gain and Phase vs. Frequency  
Rev. G | Page 11 of 24  
AD8051/AD8052/AD8054  
1000  
100  
–20  
V
= 2V p-p  
V = 3V, G = –1  
S
V
= 5V  
O
S
R
= 2k, R = 100Ω  
L
F
–30  
–40  
V
R
= 5V, G = +2  
S
= 2k, R = 100Ω  
F
L
V
= 5V, G = +1  
S
–50  
–60  
R
= 100Ω  
L
–70  
V
R
= 5V, G = +1  
= 2kΩ  
S
–80  
10  
L
V
R
= 5V, G = +2  
= 2k, R = 2kΩ  
L
S
–90  
F
–100  
–110  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
2
3
4
5
6
7
8 9 10  
FREQUENCY (Hz)  
FUNDAMENTAL FREQUENCY (MHz)  
Figure 22. Input Voltage Noise vs. Frequency  
Figure 19. Total Harmonic Distortion  
100  
10  
–30  
–40  
V
= 5V  
S
10MHz  
–50  
–60  
–70  
–80  
5MHz  
1MHz  
–90  
–100  
–110  
–120  
–130  
–140  
1
V
= 5V  
S
R
= 2kΩ  
L
G = +2  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
0.5 1.0  
1.5 2.0  
2.5 3.0 3.5  
OUTPUT VOLTAGE (V p-p)  
4.0 4.5  
5.0  
FREQUENCY (Hz)  
Figure 23. Input Current Noise vs. Frequency  
Figure 20. Worst Harmonic vs. Output Voltage  
0.10  
0.05  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
–0.02  
–0.04  
–0.06  
NTSC SUBSCRIBER (3.58MHz)  
R
= 150Ω  
= 1kΩ  
NTSC SUBSCRIBER (3.58MHz)  
L
R
= 1k  
L
0.00  
–0.05  
R
V = 5V, G = +2  
S
L
V
= 5V, G = +2  
S
R
= 2k, R AS SHOWN  
R
= 150Ω  
R
= 2k, R AS SHOWN  
F
L
L
F
L
–0.10  
ST  
ND  
RD  
TH  
TH  
TH  
TH  
TH  
TH TH  
10  
TH  
11  
1
2
3
4
5
6
7
8
9
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0.3  
0.2  
0.1  
0.10  
0.05  
R
= 1kΩ  
L
0.00  
R
= 1kΩ  
L
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
0.0  
–0.1  
–0.2  
R
= 150Ω  
L
R
= 150Ω  
L
V = 5V, G = +2  
S
V
R
= 5V, G = +2  
S
R
= 2k, R AS SHOWN  
L
= 2k, R AS SHOWN  
F
F
L
–0.3  
ST  
ND  
RD  
TH  
TH  
TH  
6
TH  
TH  
TH  
TH  
TH  
11  
1
2
3
4
5
7
8
9
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
MODULATING RAMP LEVEL (IRE)  
MODULATING RAMP LEVEL (IRE)  
Figure 24. AD8054 Differential Gain and Phase Errors  
Figure 21. AD8051/AD8052 Differential Gain and Phase Errors  
Rev. G | Page 12 of 24  
AD8051/AD8052/AD8054  
–10  
–20  
–10  
–20  
V
= ±5V  
= 1kΩ  
= AS SHOWN  
= 2V p-p  
S
V
R
R
= 5V  
S
R
R
V
F
L
= 2kΩ  
= 2kΩ  
= 2V p-p  
F
L
–30  
–40  
–30  
–40  
–50  
–60  
–70  
–80  
O
V
O
R
= 100Ω  
L
–50  
–60  
–70  
–80  
–90  
R
= 1kΩ  
L
–90  
–100  
–110  
–100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
Figure 25. AD8052 Crosstalk (Output-to-Output) vs. Frequency  
Figure 28. AD8054 Crosstalk (Output-to-Output) vs. Frequency  
0
20  
V
= 5V  
V
= 5V  
S
S
–10  
–20  
–30  
–40  
–50  
–60  
10  
0
–10  
–PSRR  
+PSRR  
–20  
–30  
–40  
–50  
–70  
–80  
–60  
–70  
–90  
–100  
0.03  
–80  
0.01  
0.1  
1
10  
100  
500  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 29. PSRR vs. Frequency  
Figure 26. CMRR vs. Frequency  
100.000  
31.000  
10.000  
3.100  
70  
V
=5V  
V
= 5V  
S
S
G = +1  
G = –1  
= 2kΩ  
60  
50  
R
L
AD8051/AD8052  
AD8054  
40  
1.000  
0.310  
0.100  
30  
20  
10  
0
0.031  
0.010  
0.1  
1
10  
100  
500  
0.5  
1.0  
1.5  
2.0  
FREQUENCY (MHz)  
INPUT STEP (V p-p)  
Figure 27. Closed-Loop Output Resistance vs. Frequency  
Figure 30. Settling Time vs. Input Step  
Rev. G | Page 13 of 24  
AD8051/AD8052/AD8054  
1.0  
1.000  
V
= 5V  
V
= 5V  
V
= +85°C  
S
S
OH  
0.9  
0.8  
+5V – V  
(+125°C)  
OH  
0.875  
0.750  
0.625  
0.500  
V
= +25°C  
OH  
+5V – V  
(+25°C)  
0.7  
0.6  
0.5  
0.4  
OH  
V
= –40°C  
OH  
V
= +85°C  
OL  
+5V – V  
(–40°C)  
OH  
0.375  
0.250  
0.125  
0
0.3  
0.2  
V
= +25°C  
OL  
V
(+125°C)  
27  
OL  
V
= –40°C  
OL  
V
OL  
(+25°C)  
0.1  
0
V
(–40°C)  
15  
OL  
0
3
6
9
12  
18  
21  
24  
30  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 31. AD8051/AD8052 Output Saturation Voltage vs. Load Current  
Figure 33. AD8054 Output Saturation Voltage vs. Load Current  
100  
R
= 2kΩ  
L
90  
R
= 150Ω  
L
80  
70  
V
= 5V  
S
60  
0
0.5  
1.0 1.5  
2.0  
2.5 3.0 3.5 4.0  
4.5 5.0  
OUTPUT VOLTAGE (V)  
Figure 32. Open-Loop Gain vs. Output Voltage  
Rev. G | Page 14 of 24  
AD8051/AD8052/AD8054  
V
= 5V  
V
= 0.1V p-p  
S
IN  
G = –1  
G = +1  
R
= 2kΩ  
R
= 2k  
F
L
L
5.0  
2.5  
R
= 2kΩ  
V
= 3V  
S
1.5  
20ns  
2µs  
20mV  
1V  
Figure 34. 100 mV Step Response, G = +1  
Figure 37. Output Swing; G = −1, RL = 2 kΩ  
V
= 5V  
V
= 5V  
S
S
G = +1  
= 2kΩ  
G = +1  
= 2kΩ  
R
R
L
L
2.55  
2.50  
2.45  
2.6  
2.5  
2.4  
20ns  
50mV  
40ns  
50mV  
Figure 35. AD8051/AD8052 200 mV Step Response; VS = 5 V, G = +1  
Figure 38. AD8054 100 mV Step Response; VS = 5 V, G = +1  
V
= ±5V  
V
= 1V p-p  
S
IN  
G = +2  
4.5  
3.5  
2.5  
1.5  
0.5  
4
3
2
1
G = +1  
= 2kΩ  
R
R
= 2kΩ  
= 5V  
L
L
S
V
–1  
–2  
–3  
–4  
1V  
20ns  
20ns  
500mV  
Figure 36. Large Signal Step Response; VS = 5 V, G = +2  
Figure 39. Large Signal Step Response; VS = 5 V, G = +1  
Rev. G | Page 15 of 24  
AD8051/AD8052/AD8054  
THEORY OF OPERATION  
The rail-to-rail output range of the AD8051/AD8052/AD8054  
is provided by a complementary common-emitter output stage.  
High output drive capability is provided by injecting all output  
stage predriver currents directly into the bases of the output  
devices Q8 and Q36. Biasing of Q8 and Q36 is accomplished by  
I8 and I5, along with a common-mode feedback loop (not  
shown). This circuit topology allows the AD8051/AD8052 to  
drive 45 mA of output current and allows the AD8054 to drive  
30 mA of output current with the outputs within 0.5 V of the  
supply rails.  
CIRCUIT DESCRIPTION  
The AD8051/AD8052/AD8054 is fabricated on the Analog  
Devices proprietary eXtra-Fast Complementary Bipolar (XFCB)  
process, which enables the construction of PNP and NPN  
transistors with similar fTs in the 2 GHz to 4 GHz region. The  
process is dielectrically isolated to eliminate the parasitic and  
latch-up problems caused by junction isolation. These features  
allow the construction of high frequency, low distortion  
amplifiers with low supply currents. This design uses a  
differential output input stage to maximize bandwidth and  
headroom (see Figure 40). The smaller signal swings required  
on the first stage outputs (nodes SIP, SIN) reduce the effect of  
nonlinear currents due to junction capacitances and improve  
the distortion performance. This design achieves harmonic  
distortion of −80 dBc @ 1 MHz into 100 Ω with VOUT = 2 V p-p  
(Gain = +1) on a single 5 V supply.  
V
CC  
I9  
Q25  
Q50  
Q39  
R26  
Q4  
R39  
Q5  
I10  
I2  
I3  
Q36  
I5  
Q51  
Q23  
V
Q40  
EE  
R2  
R15  
Q13  
Q22  
R27  
R23  
Q21  
V
EE  
C3  
C9  
Q31  
Q7  
V
P
Q1  
IN  
V
OUT  
Q27  
V
N
IN  
SIN  
SIP  
The inputs of the device can handle voltages from −0.2 V below  
the negative rail to within 1 V of the positive rail. Exceeding  
these values will not cause phase reversal; however, the input  
ESD devices will begin to conduct if the input voltages exceed  
the rails by greater than 0.5 V. During this overdrive condition,  
the output stays at the rail.  
Q2  
Q8  
Q11  
R3  
Q3  
Q24  
I7  
Q47  
I8  
CC  
I11  
V
C7  
R21  
R5  
V
EE  
Figure 40. AD8051/AD8052 Simplified Schematic  
Rev. G | Page 16 of 24  
 
 
AD8051/AD8052/AD8054  
APPLICATION INFORMATION  
OVERDRIVE RECOVERY  
V
= 5V  
S
Overdrive of an amplifier occurs when the output and/or input  
range is exceeded. The amplifier must recover from this  
overdrive condition. As shown in Figure 41, the AD8051/  
AD8052/AD8054 recovers within 60 ns from negative overdrive  
and within 45 ns from positive overdrive.  
G = +1  
R
= 2kΩ  
L
L
C
= 50pF  
2.60  
2.55  
2.50  
2.45  
2.40  
V
= ±5V  
S
G = +5  
INPUT 1V/DIV  
OUTPUT 2V/DIV  
R
= 2kΩ  
F
L
R
= 2kΩ  
100ns  
50mV  
Figure 43. AD8051/AD8052 200 mV Step Response: CL = 50 pF  
10000  
1000  
100  
10  
V
= 5V  
S
30%  
OVERSHOOT  
R
= 3Ω  
S
100ns  
V/DIV AS SHOWN  
R
= 0Ω  
S
Figure 41. Overdrive Recovery  
R
R
F
DRIVING CAPACITIVE LOADS  
G
R
S
Consider the AD8051/AD8052 in a closed-loop gain of +1 with  
+VS = 5 V and a load of 2 kΩ in parallel with 50 pF. Figure 42  
and Figure 43 show their frequency and time domain responses,  
respectively, to a small-signal excitation. The capacitive load  
drive of the AD8051/AD8052/AD8054 can be increased by  
adding a low value resistor in series with the load. Figure 44  
and Figure 45 show the effect of a series resistor on the  
capacitive drive for varying voltage gains. As the closed-loop  
gain is increased, the larger phase margin allows for larger  
capacitive loads with less peaking. Adding a series resistor with  
lower closed-loop gains accomplishes the same effect. For large  
capacitive loads, the frequency response of the amplifier will be  
dominated by the roll-off of the series resistor and the load  
capacitance.  
V
IN  
V
OUT  
100mV  
STEP  
C
L
50Ω  
1
1
2
3
4
5
6
A
(V/V)  
CL  
Figure 44. AD8051/AD8052 Capacitive Load Drive vs. Closed-Loop Gain  
1000  
V
= 5V  
S
30%  
OVERSHOOT  
R
= 10Ω  
S
R
= 0Ω  
S
100  
R
R
F
8
G
R
6
S
V
IN  
V
OUT  
100mV  
STEP  
4
C
L
50Ω  
2
10  
0
1
2
3
4
5
6
A
(V/V)  
CL  
–2  
–4  
Figure 45. AD8054 Capacitive Load Drive vs. Closed-Loop Gain  
V
= 5V  
S
–6  
–8  
G = +1  
R
C
= 2kΩ  
= 50pF  
L
L
V
= 200mV p-p  
O
–10  
–12  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
Figure 42. AD8051/AD8052 Closed-Loop Frequency Response: CL = 50 pF  
Rev. G | Page 17 of 24  
 
 
 
 
 
 
AD8051/AD8052/AD8054  
R6  
1k  
LAYOUT CONSIDERATIONS  
C1  
50pF  
The specified high speed performance of the AD8051/AD8052/  
AD8054 requires careful attention to board layout and  
component selection. Proper RF design techniques and low  
parasitic component selection are necessary.  
R2  
2kΩ  
13  
12  
R4  
2kΩ  
C2  
50pF  
14  
R1  
3kΩ  
R3  
2kΩ  
2
3
V
IN  
R5  
2kΩ  
1
6
5
7
9
The PCB should have a ground plane covering all unused  
portions of the component side of the board to provide a low  
impedance path. The ground plane should be removed from the  
area near the input pins to reduce parasitic capacitance.  
8
10  
AD8054  
AD8054  
AD8054  
BAND-PASS  
FILTER OUTPUT  
Figure 46. 2 MHz Biquad Band-Pass Filter Using AD8054  
Chip capacitors should be used for supply bypassing. One end  
should be connected to the ground plane and the other within  
3 mm of each power pin. An additional large (4.7 μF to 10 μF)  
tantalum electrolytic capacitor should be connected in parallel,  
but not necessarily so close, to supply current for fast, large  
signal changes at the output.  
The frequency response of the circuit is shown in Figure 47.  
0
–10  
–20  
–30  
–40  
The feedback resistor should be located close to the inverting  
input pin to keep the parasitic capacitance at this node to a  
minimum. Parasitic capacitance of less than 1 pF at the  
inverting input can significantly affect high speed performance.  
Stripline design techniques should be used for long signal traces  
(greater than about 25 mm). These should be designed with a  
characteristic impedance of 50 Ω or 75 Ω and be properly  
terminated at each end.  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 47. Frequency Response of 2 MHz Band-Pass Biquad Filter  
ACTIVE FILTERS  
Active filters at higher frequencies require wider bandwidth op  
amps to work effectively. Excessive phase shift produced by  
lower frequency op amps can significantly affect active filter  
performance.  
A/D AND D/A APPLICATIONS  
Figure 48 is a schematic showing the AD8051 used as a driver  
for an AD9201, a 10-bit, 20 MSPS, dual A/D converter. This  
converter is designed to convert I and Q signals in communications  
systems. In this application, only the I channel is being driven.  
The I channel is enabled by applying a logic high to SELECT  
(Pin 13).  
Figure 46 shows an example of a 2 MHz biquad bandwidth filter  
that uses three op amps of an AD8054. Such circuits are  
sometimes used in medical ultrasound systems to lower the  
noise bandwidth of the analog signal before A/D conversion.  
The AD8051 is running from a dual supply and is configured  
for a gain of +2. The input signal is terminated in 50 Ω and the  
output is 2 V p-p, which is the maximum input range of the  
AD9201. The 22 Ω series resistor limits the maximum current  
that flows and helps to lower the distortion of the A/D converter.  
Note that the unused amplifier’s inputs should be tied to  
ground.  
Rev. G | Page 18 of 24  
 
 
 
AD8051/AD8052/AD8054  
14  
13  
CLOCK  
15  
16  
SLEEP  
INA-I  
0.33µF  
0.01µF  
22Ω  
+V  
SELECT  
DD  
+5V  
7
10pF  
1kΩ  
22Ω  
INB-I  
17  
10pF  
0.1µF  
6
10µF  
AD9201  
DATA OUT  
18 REFT-I  
12  
11  
10  
9
D9  
D8  
D7  
D6  
22Ω  
3
2
0.1µF  
10µF  
0.1µF  
19  
REFB-I  
50Ω  
AD8051  
0.1µF  
20 AVSS  
1kΩ  
1kΩ  
4
21  
22  
REFSENSE  
VREF  
D5  
D4  
8
7
6
5
4
3
2
1
10µF  
0.1µF  
0.1µF  
10µF  
–5V  
23  
AVDD  
+5V  
D3  
10µF  
0.1µF  
D2  
24 REFB-Q  
25 REFT-Q  
0.1µF  
10µF  
0.1µF  
D1  
0.1µF  
D0  
22Ω  
DVDD  
DVSS  
+5V  
26 INB-Q  
0.1µF  
10µF  
10pF  
22Ω  
INA-Q  
27  
28  
10pF  
CHIP–SELECT  
Figure 48. The AD8051 Driving an AD9201, a 10-Bit, 20 MSPS A/D Converter  
The AD9201 has differential inputs for each channel. These are  
designated the A and B inputs. The B inputs of each channel are  
connected to VREF (Pin 22), which supplies a positive reference  
of 2.5 V. Each of the B inputs has a small low-pass filter that also  
helps to reduce distortion.  
Figure 49 shows the FFT response of the A/D for the case of a  
1 MHz analog input. The SFDR is 71.66 dB, and the A/D is  
producing 8.8 ENOB (effective number of bits). When the  
analog frequency was raised to 9.5 MHz, the SFDR was reduced  
to −60.18 dB and the A/D operated with 8.46 ENOBs as shown  
in Figure 50. The inclusion of the AD8051 in the circuit did not  
worsen the distortion performance of the AD9201.  
The output of the op amp is ac-coupled into INA-I (Pin 16) via  
two parallel capacitors to provide good high frequency and low  
frequency coupling. The 1 kΩ resistor references the signal to  
VREF that is applied to INB-I. Thus, INA-I swings both positive  
and negative with respect to the bias voltage applied to INB-I.  
10  
PART#  
0
FUND  
0
FFTSIZE 8192  
FCLK 20.0MHz  
FUND 9.5MHz  
–10  
–20  
–30  
–40  
–50  
VIN  
–0.44dB  
–57.08  
54.65  
THD  
SNR  
10  
PART#  
0
FUND  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
FFTSIZE 8192  
SINAD 52.69  
ENOB 8.46  
FCLK 20.0MHz  
2ND  
3RD  
998.5kHz  
–0.51dB  
–68.13  
SFDR  
2ND  
3RD  
4TH  
5TH  
6TH  
60.18  
FUND  
VIN  
–60  
–70  
–80  
–60.18  
–60.23  
–82.01  
–78.83  
–81.28  
–77.28  
–84.54  
7TH  
THD  
SNR  
5TH  
4TH  
8TH  
6TH  
54.97  
SINAD 54.76  
8.80  
–90  
ENOB  
SFDR 71.66  
–100  
7TH  
8TH  
9TH  
2ND  
3RD  
4TH  
5TH  
6TH  
7TH  
–74.53  
–76.06  
–76.35  
–79.05  
–80.36  
–75.08  
–88.12  
–77.87  
–110  
–120  
2ND  
7TH  
3RD  
4TH  
–92.78  
9TH  
8TH  
5TH  
6TH  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
–90  
Figure 50. FFT Plot for AD8051 Driving the AD9201 at 9.5 MHz  
–100  
8TH  
9TH  
–110  
–120  
SYNC STRIPPER  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
Synchronizing pulses are sometimes carried on video signals so  
as not to require a separate channel to carry the synchronizing  
information. However, for some functions, such as A/D  
conversion, it is not desirable to have the sync pulses on the  
video signal. These pulses reduce the dynamic range of the  
video signal and do not provide any useful information for such  
a function.  
Figure 49. FFT Plot for AD8051 Driving the AD9201 at 1 MHz  
With the sampling clock running at 20 MSPS, the A/D output  
was analyzed with a digital analyzer. Two input frequencies  
were used, 1 MHz and 9.5 MHz, which is just short of the  
Nyquist frequency. These signals were well filtered to minimize  
any harmonics.  
Rev. G | Page 19 of 24  
 
 
 
 
AD8051/AD8052/AD8054  
A sync stripper removes the synchronizing pulses from a video  
signal while passing all the useful video information. Figure 51  
shows a practical single-supply circuit that uses only a single  
AD8051. It is capable of directly driving a reverse terminated  
video line.  
The worst case of composite video is not quite this demanding.  
One bounding condition is a signal that is mostly black for an  
entire frame but has a white (full amplitude) minimum width  
spike at least once in a frame.  
The other extreme is for a full white video signal. The blanking  
intervals and sync tips of such a signal have negative-going  
excursions in compliance with the composite video  
VIDEO WITHOUT SYNC  
VIDEO WITH SYNC  
specifications. The combination of horizontal and vertical  
blanking intervals limit such a signal to being at the highest  
(white) level for a maximum of about 75% of the time.  
V
GROUND  
0.4V  
BLANK  
GROUND  
3V OR 5V  
As a result of the duty cycles between the two extremes  
+
10µF  
0.1µF  
previously presented, a 1 V p-p composite video signal that is  
multiplied by a gain of 2 requires about 3.2 V p-p of dynamic  
voltage swing at the output for an op amp to pass a composite  
video signal of arbitrarily varying duty cycle without distortion.  
7
V
3
2
IN  
TO A/D  
6
AD8051  
100  
4
R2  
1kΩ  
Some circuits use a sync tip clamp to hold the sync tips at a  
relatively constant level to lower the amount of dynamic signal  
swing required. However, these circuits can have artifacts, such  
as sync tip compression, unless they are driven by a source with  
a very low output impedance. The AD8051/AD8052/AD8054  
have adequate signal swing when running on a single 5 V  
supply to handle an ac-coupled composite video signal.  
R1  
1kΩ  
0.8V  
(OR 2 × V  
)
BLANK  
Figure 51. Sync Stripper  
The video signal plus sync is applied to the noninverting input  
with the proper termination. The amplifier gain is set to 2 via  
the two 1 kꢀ resistors in the feedback circuit. A bias voltage  
must be applied to R1 so that the input signal has the sync  
pulses stripped at the proper level.  
The input to the circuit in Figure 52 is a standard composite  
(1 V p-p) video signal that has the blanking level at ground. The  
input network level shifts the video signal by means of ac coupling.  
The noninverting input of the op amp is biased to half of the  
supply voltage.  
The blanking level of the input video pulse is the desired place  
to remove the sync information. This level is multiplied by 2 by  
the amplifier. This level must be at ground at the output for the  
sync stripping action to take place. Since the gain of the amplifier  
from the input of R1 to the output is −1, a voltage equal to 2 ×  
The feedback circuit provides unity gain for the dc-biasing of  
the input and provides a gain of 2 for any signals that are in the  
video bandwidth. The output is ac-coupled and terminated to  
drive the line.  
V
BLANK must be applied to make the blanking level come out at  
ground.  
The capacitor values were selected for providing minimum tilt  
or field time distortion of the video signal. These values would  
be required for video that is considered to be studio or broadcast  
quality. However, if a lower consumer grade of video, sometimes  
referred to as consumer video, is all that is desired, the values  
and the cost of the capacitors can be reduced by as much as a  
factor of five with minimum visible degradation in the picture.  
SINGLE-SUPPLY COMPOSITE VIDEO LINE DRIVER  
Many composite video signals have their blanking level at  
ground and have video information that is both positive and  
negative. Such signals require dual-supply amplifiers to pass  
them. However, by ac level shifting, a single-supply amplifier  
can be used to pass these signals. The following complications  
can arise from such techniques.  
5V  
4.99k  
Signals of bounded peak-to-peak amplitude that vary in duty  
cycle require larger dynamic swing capacity than their  
(bounded) peak-to-peak amplitude after they are ac-coupled.  
As a worst case, the dynamic signal swing will approach twice  
the peak-to-peak value. The two conditions that define the  
maximum dynamic swing requirements are a signal that is  
mostly low but goes high with a duty cycle that is a small  
fraction of a percent, and the other extreme defined by the  
opposite condition.  
+
10µF  
4.99kΩ  
+
0.1µF  
10µF  
COMPOSITE  
VIDEO  
IN  
47µF  
+
7
R
BT  
75Ω  
3
1000µF  
+
R
T
V
6
10kΩ  
OUT  
AD8051  
75Ω  
R
75Ω  
L
2
4
0.1µF  
R
F
1kΩ  
R
1kΩ  
G
220µF  
Figure 52. Single-Supply Composite Video Line Driver  
Rev. G | Page 20 of 24  
 
 
 
AD8051/AD8052/AD8054  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8.75 (0.3445)  
8.55 (0.3366)  
14  
1
8
7
8
1
5
4
5.15  
4.90  
4.65  
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
3.20  
3.00  
2.80  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
PIN 1  
0.25 (0.0098)  
0.10 (0.0039)  
0.65 BSC  
0.95  
0.85  
0.75  
8°  
0°  
1.10 MAX  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 53. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-14)  
Figure 55. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
2.90 BSC  
8
1
5
4
5
1
4
3
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
2.80 BSC  
1.60 BSC  
2
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
PIN 1  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.95 BSC  
0.25 (0.0098)  
0.10 (0.0040)  
1.90  
BSC  
1.30  
1.15  
0.90  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
1.45 MAX  
0.22  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
10°  
5°  
0°  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 56. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Figure 54. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
8°  
0°  
0.60  
0.45  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 57. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Rev. G | Page 21 of 24  
 
AD8051/AD8052/AD8054  
ORDERING GUIDE  
Model  
AD8051AR  
Temperature Range  
Package Description  
Package Option  
R-8  
Branding  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead SOIC_N  
AD8051AR-REEL  
AD8051AR-REEL7  
AD8051ARZ1  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
R-8  
RJ-5  
RJ-5  
RJ-5  
AD8051ARZ-REEL1  
AD8051ARZ-REEL71  
AD8051ART-R2  
AD8051ART-REEL  
AD8051ART-REEL7  
AD8051ARTZ-R21  
AD8051ARTZ-REEL1  
AD8051ARTZ-REEL71  
AD8052AR  
AD8052AR-REEL  
AD8052AR-REEL7  
AD8052ARZ1  
AD8052ARZ-REEL1  
AD8052ARZ-REEL71  
AD8052ARM  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
5-Lead SOT-23, 7" Tape and Reel  
5-Lead SOT-23, 13" Tape and Reel  
5-Lead SOT-23, 7" Tape and Reel  
5-Lead SOT-23, 7" Tape and Reel  
5-Lead SOT-23, 13" Tape and Reel  
5-Lead SOT-23, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 7" Tape and Reel  
14-Lead SOIC_N  
14-Lead SOIC_N, 13" Tape and Reel  
14-Lead SOIC_N, 7" Tape and Reel  
14-Lead SOIC_N  
14-Lead SOIC_N, 13" Tape and Reel  
14-Lead SOIC_N, 7" Tape and Reel  
14-Lead TSSOP  
H2A  
H2A  
H2A  
H06  
H06  
H06  
RJ-5  
RJ-5  
RJ-5  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
H4A  
H4A  
H4A  
H4A#  
H4A#  
AD8052ARM-REEL  
AD8052ARM-REEL7  
AD8052ARMZ1  
AD8052ARMZ-REEL71  
AD8054AR  
AD8054AR-REEL  
AD8054AR-REEL7  
AD8054ARZ1  
AD8054ARZ-REEL1  
AD8054ARZ-REEL71  
AD8054ARU  
AD8054ARU-REEL  
AD8054ARU-REEL7  
AD8054ARUZ1  
AD8054ARUZ-REEL1  
AD8054ARUZ-REEL71  
14-Lead TSSOP, 13" Tape and Reel  
14-Lead TSSOP, 7" Tape and Reel  
14-Lead TSSOP  
14-Lead TSSOP, 13" Tape and Reel  
14-Lead TSSOP, 7" Tape and Reel  
1 Z = Pb-free part, # denotes lead-free product may be top or bottom marked.  
Rev. G | Page 22 of 24  
 
 
AD8051/AD8052/AD8054  
NOTES  
Rev. G | Page 23 of 24  
AD8051/AD8052/AD8054  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C01062–0–5/06(G)  
Rev. G | Page 24 of 24  
 
 

相关型号:

AD8051_07

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8051_15

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8052

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8052AR

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8052AR-REEL

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8052AR-REEL7

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8052ARM

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8052ARM-REEL

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8052ARM-REEL7

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8052ARMZ

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8052ARMZ-REEL

Low Cost, High Speed, Rail-to-Rail Amplifier
ADI

AD8052ARMZ-REEL7

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI