AD8052ARZ [ADI]

Low Cost, High Speed, Rail-to-Rail Amplifiers; 低成本,高速,轨到轨放大器
AD8052ARZ
型号: AD8052ARZ
厂家: ADI    ADI
描述:

Low Cost, High Speed, Rail-to-Rail Amplifiers
低成本,高速,轨到轨放大器

放大器 光电二极管
文件: 总24页 (文件大小:570K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, High Speed,  
Rail-to-Rail Amplifiers  
AD8051/AD8052/AD8054  
FEATURES  
PIN CONNECTIONS (TOP VIEWS)  
High speed and fast settling on 5 V  
110 MHz, −3 dB bandwidth (G = +1) (AD8051/AD8052)  
150 MHz, −3 dB bandwidth (G = +1) (AD8054)  
145 V/μs slew rate  
AD8051  
1
2
3
4
8
NC  
NC  
–IN  
+IN  
AD8051  
V
1
2
5
+V  
OUT  
S
7
6
5
+V  
S
–V  
S
V
+ –  
OUT  
–V  
S
NC  
+IN  
3
4
–IN  
50 ns settling time to 0.1%  
NC = NO CONNECT  
Single-supply operation  
Figure 1. SOIC-8 (R)  
Figure 2. SOT-23-5 (RJ)  
Output swings to within 25 mV of either rail  
Input voltage range: −0.2 V to +4 V; VS = 5 V  
Video specifications (G = +2)  
0.1 dB gain flatness: 20 MHz; RL = 150 Ω  
Differential gain/phase: 0.03%/0.03°  
Low distortion  
1
2
3
4
5
6
7
14  
13  
OUT D  
–IN D  
OUT A  
–IN A  
AD8052  
1
2
3
4
+V  
S
8
7
6
5
OUT1  
–IN1  
12 +IN D  
+IN A  
V+  
+
OUT  
–IN2  
+IN2  
11  
AD8054  
V–  
+IN1  
+
10  
9
+IN C  
–IN C  
OUT C  
+IN B  
–IN B  
OUT B  
−80 dBc total harmonic @ 1 MHz, RL = 100 Ω  
Outstanding load drive capability  
–V  
S
8
Drives 45 mA, 0.5 V from supply rails (AD8051/AD8052)  
Drives 50 pF capacitive load (G = +1) (AD8051/AD8052)  
Low power: 2.75 mA/amplifier (AD8054)  
Low power: 4.4 mA/amplifier (AD8051/AD8052)  
Figure 3. SOIC (R-8) and MSOP (RM-8) Figure 4. SOIC (R-14) and TSSOP (RU-14)  
5.0  
4.5  
APPLICATIONS  
V
= 5V  
S
G = –1  
Active filters  
Analog-to-digital drivers  
Clock buffer  
Consumer video  
Professional cameras  
CCD imaging systems  
CD/DVD ROMs  
4.0  
3.5  
3.0  
2.5  
2.0  
R
R
= 2k  
= 2kΩ  
F
L
1.5  
1.0  
0.5  
0
0.1  
1
10  
50  
FREQUENCY (MHz)  
Figure 5. Low Distortion Rail-to-Rail Output Swing  
GENERAL DESCRIPTION  
The AD8051 (single), AD8052 (dual), and AD8054 (quad) are  
low cost, high speed, voltage feedback amplifiers. The amplifiers  
operate on +3 V, +5 V, or 5 V supplies at low supply current.  
They have true single-supply capability with an input voltage  
range extending 200 mV below the negative rail and within 1 V  
of the positive rail.  
The AD8051/AD8052/AD8054 are well suited for video  
electronics, cameras, video switchers, or any high speed portable  
equipment. Low distortion and fast settling make them ideal for  
active filter applications.  
The AD8051/AD8052 in the 8-lead SOIC, the AD8052 in the  
MSOP, the AD8054 in the 14-lead SOIC, and the 14-lead TSSOP  
packages are available in the extended temperature range of  
−40°C to +125°C.  
Despite their low cost, the AD8051/AD8052/AD8054 provide  
excellent overall performance and versatility. The output voltage  
swings to within 25 mV of each rail, providing maximum output  
dynamic range with excellent overdrive recovery.  
Rev. H  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD8051/AD8052/AD8054  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Circuit Description .................................................................... 16  
Application Information................................................................ 17  
Overdrive Recovery ................................................................... 17  
Driving Capacitive Loads.......................................................... 17  
Layout Considerations............................................................... 18  
Active Filters ............................................................................... 18  
Analog-to-Digital and Digital-to-Analog Applications........ 19  
Sync Stripper............................................................................... 20  
Single-Supply Composite Video Line Driver ......................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Pin Connections (Top Views)......................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
Maximum Power Dissipation ..................................................... 9  
ESD Caution.................................................................................. 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 16  
REVISION HISTORY  
12/07—Rev. G to Rev. H  
2/03—Rev. C to Rev. D  
Changes to Applications .................................................................. 1  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide .......................................................... 23  
Changes to General Description .....................................................1  
Changes to Specifications.................................................................3  
Changes to Absolute Maximum Ratings........................................6  
5/06—Rev. F to Rev. G  
1/03—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Changes to Features, Applications, and General Description.....1  
Changes to Figure 15...................................................................... 12  
Changes to the Ordering Guide.................................................... 22  
Changes to General Description .....................................................1  
Changes to Pin Connections............................................................1  
Changes to Specifications.................................................................2  
Changes to Absolute Maximum Ratings........................................9  
Changes to Figure 2...........................................................................9  
Changes to Ordering Guide.............................................................9  
Updated Outline Dimensions........................................................20  
9/04—Rev. E to Rev. F  
Changes to Ordering Guide .............................................................7  
Changes to Figure 15...................................................................... 15  
3/04—Rev. D to Rev. E  
Changes to General Description .....................................................2  
Changes to Specifications.................................................................3  
Changes to Ordering Guide .............................................................6  
Rev. H | Page 2 of 24  
 
AD8051/AD8052/AD8054  
SPECIFICATIONS  
@ TA = 25°C, VS = 5 V, RL = 2 kΩ to 2.5 V, unless otherwise noted.  
Table 1.  
AD8051A/AD8052A  
AD8054A  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, VOUT = 0.2 V p-p  
G = −1, +2, VOUT = 0.2 V p-p  
70  
110  
50  
80  
150  
60  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
G = +2, VOUT = 0.2 V p-p,  
RL = 150 Ω to 2.5 V  
RF = 806 Ω (AD8051A/  
AD8052A)  
20  
MHz  
RF = 200 Ω (AD8054A)  
G = −1, VOUT = 2 V step  
G = +1, VOUT = 2 V p-p  
G = −1, VOUT = 2 V step  
12  
170  
45  
MHz  
V/μs  
MHz  
MHz  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion1  
100  
145  
35  
50  
140  
40  
fC = 5 MHz, VOUT = 2 V p-p,  
G = +2  
−67  
−68  
dB  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error (NTSC)  
f = 10 kHz  
f = 10 kHz  
16  
16  
nV/√Hz  
fA/√Hz  
%
850  
0.09  
0.03  
0.19  
0.03  
−60  
850  
0.07  
0.02  
0.26  
0.05  
−60  
G = +2, RL = 150 Ω to 2.5 V  
RL = 1 kΩ to 2.5 V  
G = +2, RL = 150 Ω to 2.5 V  
RL = 1 kΩ to 2.5 V  
f = 5 MHz, G = +2  
%
Differential Phase Error (NTSC)  
Degrees  
Degrees  
dB  
Crosstalk  
DC PERFORMANCE  
Input Offset Voltage  
1.7  
10  
25  
1.7  
12  
30  
mV  
mV  
μV/°C  
μA  
μA  
μA  
dB  
dB  
dB  
dB  
TMIN − TMAX  
Offset Drift  
Input Bias Current  
10  
1.4  
15  
2
2.5  
3.25  
0.75  
4.5  
4.5  
1.2  
TMIN − TMAX  
Input Offset Current  
Open-Loop Gain  
0.1  
98  
96  
82  
78  
0.2  
98  
96  
82  
78  
RL = 2 kΩ to 2.5 V  
TMIN − TMAX  
RL = 150 Ω to 2.5 V  
TMIN − TMAX  
86  
76  
82  
74  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
290  
1.4  
−0.2 to  
+4  
300  
1.5  
−0.2 to  
+4  
kΩ  
pF  
V
Input Common-ModeVoltage Range  
Common-Mode Rejection Ratio  
VCM = 0 V to 3.5 V  
72  
88  
70  
86  
dB  
Rev. H | Page 3 of 24  
 
AD8051/AD8052/AD8054  
AD8051A/AD8052A  
AD8054A  
Typ  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 10 kΩ to 2.5 V  
RL = 2 kΩ to 2.5 V  
RL = 150 Ω to 2.5 V  
0.015 to  
4.985  
0.1 to 0.025 to  
4.9 4.975  
0.3 to 0.2 to  
4.625 4.8  
0.03 to  
4.975  
0.125 to 0.05 to  
V
V
V
4.875  
0.55 to  
4.4  
4.95  
0.25 to  
4.65  
Output Current  
VOUT = 0.5 V to 4.5 V  
TMIN − TMAX  
Sourcing  
Sinking  
G = +1 (AD8051/AD8052)  
G = +2 (AD8054)  
45  
45  
80  
130  
50  
30  
30  
45  
85  
mA  
mA  
mA  
mA  
pF  
Short-Circuit Current  
Capacitive Load Drive  
40  
pF  
POWER SUPPLY  
Operating Range  
3
12  
5
3
12  
3.275  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
OPERATING TEMPERATURE RANGE  
4.4  
80  
2.75  
80  
mA  
dB  
°C  
°C  
ΔVS = 1 V  
70  
68  
−40  
RJ-5  
−40  
−40  
+85  
+125  
RM-8, R-8, RU-14, R-14  
+125  
1 Refer to Figure 19.  
Rev. H | Page 4 of 24  
AD8051/AD8052/AD8054  
@ TA = 25°C, VS = 3 V, RL = 2 kΩ to 1.5 V, unless otherwise noted.  
Table 2.  
AD8051A/AD8052A  
AD8054A  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, VOUT = 0.2 V p-p  
70  
110  
50  
80  
135  
65  
MHz  
MHz  
G = −1, +2, VOUT  
0.2 V p-p  
=
Bandwidth for 0.1 dB Flatness  
G = +2, VOUT = 0.2 V p-p,  
RL = 150 Ω to 2.5 V  
RF = 402 Ω (AD8051A/  
AD8052A)  
17  
MHz  
RF = 200 Ω (AD8054A)  
G = −1, VOUT = 2 V step  
G = +1, VOUT = 1 V p-p  
G = −1, VOUT = 2 V step  
10  
150  
85  
MHz  
V/μs  
MHz  
ns  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion1  
90  
135  
65  
55  
110  
55  
fC = 5 MHz, VOUT = 2 V p-p,  
G = −1, RL = 100 Ω to 1.5 V  
−47  
−48  
dB  
Input Voltage Noise  
Input Current Noise  
f = 10 kHz  
f = 10 kHz  
16  
600  
16  
600  
nV/√Hz  
fA/√Hz  
Differential Gain Error (NTSC)  
G = +2, VCM = 1 V  
RL = 150 Ω to 1.5 V  
RL = 1 kΩ to 1.5 V  
G = +2, VCM = 1 V  
RL = 150 Ω to 1.5 V  
RL = 1 kΩ to 1.5 V  
f = 5 MHz, G = +2  
0.11  
0.09  
0.13  
0.09  
%
%
Differential Phase Error (NTSC)  
0.24  
0.10  
−60  
0.3  
0.1  
−60  
Degrees  
Degrees  
dB  
Crosstalk  
DC PERFORMANCE  
Input Offset Voltage  
1.6  
10  
25  
1.6  
12  
30  
mV  
mV  
μV/°C  
μA  
μA  
μA  
dB  
dB  
dB  
dB  
TMIN − TMAX  
Offset Drift  
Input Bias Current  
10  
1.3  
15  
2
2.6  
3.25  
0.8  
4.5  
4.5  
1.2  
TMIN − TMAX  
Input Offset Current  
Open-Loop Gain  
0.15  
96  
94  
82  
76  
0.2  
96  
94  
80  
76  
RL = 2 kΩ  
TMIN − TMAX  
RL = 150 Ω  
TMIN − TMAX  
80  
74  
80  
72  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
290  
1.4  
−0.2 to  
+2  
300  
1.5  
−0.2 to  
+2  
kΩ  
pF  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
VCM = 0 V to 1.5 V  
72  
88  
70  
86  
dB  
Rev. H | Page 5 of 24  
AD8051/AD8052/AD8054  
AD8051A/AD8052A  
AD8054A  
Typ  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 10 kΩ to 1.5 V  
RL = 2 kΩ to 1.5 V  
RL = 150 Ω to 1.5 V  
0.01 to  
2.99  
0.0.75 to 0.02 to  
0.025 to  
2.98  
0.35 to  
2.965  
V
V
V
0.1 to  
2.9  
2.9  
0.2 to  
2.75  
2.98  
0.125 to  
2.875  
0.35 to 0.15 to  
2.55  
2.75  
Output Current  
VOUT = 0.5 V to 2.5 V  
TMIN − TMAX  
Sourcing  
Sinking  
G = +1 (AD8051/AD8052)  
G = +2 (AD8054)  
45  
45  
60  
90  
45  
25  
25  
30  
50  
mA  
mA  
mA  
mA  
pF  
Short-Circuit Current  
Capacitive Load Drive  
35  
pF  
POWER SUPPLY  
Operating Range  
3
12  
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
OPERATING TEMPERATURE RANGE  
4.2  
80  
4.8  
2.625  
80  
3.125 mA  
ΔVS = 0.5 V  
68  
68  
−40  
dB  
°C  
RJ-5  
−40  
−40  
+85  
+125  
RM-8, R-8, RU-14, R-14  
+125  
°C  
1 Refer to Figure 19.  
Rev. H | Page 6 of 24  
AD8051/AD8052/AD8054  
@ TA = 25°C, VS = 5 V, RL = 2 kΩ to ground, unless otherwise noted.  
Table 3.  
AD8051A/AD8052A  
AD8054A  
Parameter  
Conditions  
Min  
Typ  
Max Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, VOUT = 0.2 V p-p  
G = −1, +2, VOUT = 0.2 V p-p  
70  
110  
50  
85  
160  
65  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
G = +2, VOUT = 0.2 V p-p,  
RL = 150 Ω,  
RF = 1.1 kΩ (AD8051A/  
AD8052A)  
20  
MHz  
RF = 200 Ω (AD8054A)  
G = −1, VOUT = 2 V step  
G = +1, VOUT = 2 V p-p  
G = −1, VOUT = 2 V step  
15  
190  
50  
MHz  
V/μs  
MHz  
MHz  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
105  
170  
40  
50  
150  
40  
fC = 5 MHz, VOUT = 2 V p-p,  
G = +2  
−71  
−72  
dB  
Input Voltage Noise  
f = 10 kHz  
16  
16  
nV/√Hz  
Input Current Noise  
Differential Gain Error (NTSC)  
f = 10 kHz  
G = +2, RL = 150 Ω  
RL = 1 kΩ  
G = +2, RL = 150 Ω  
RL = 1 kΩ  
f = 5 MHz, G = +2  
900  
0.02  
0.02  
0.11  
0.02  
−60  
900  
0.06  
0.02  
0.15  
0.03  
−60  
fA/√Hz  
%
%
Degrees  
Degrees  
dB  
Differential Phase Error (NTSC)  
Crosstalk  
DC PERFORMANCE  
Input Offset Voltage  
1.8  
11  
27  
1.8  
13  
32  
mV  
mV  
μV/°C  
μA  
μA  
μA  
dB  
dB  
dB  
dB  
TMIN − TMAX  
Offset Drift  
Input Bias Current  
10  
1.4  
15  
2
2.6  
3.5  
0.75  
4.5  
4.5  
1.2  
TMIN − TMAX  
Input Offset Current  
Open-Loop Gain  
0.1  
96  
96  
82  
80  
0.2  
96  
96  
82  
80  
RL = 2 kΩ  
TMIN − TMAX  
RL = 150 Ω  
TMIN − TMAX  
88  
78  
84  
76  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
290  
1.4  
−5.2 to  
+4  
300  
1.5  
−5.2 to  
+4  
kΩ  
pF  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VCM = −5 V to +3.5 V  
72  
88  
70  
86  
dB  
RL = 10 kΩ  
RL = 2 kΩ  
RL = 150 Ω  
−4.98 to  
+4.98  
−4.97 to  
+4.97  
V
V
V
−4.85 to −4.97 to  
+4.85 +4.97  
−4.45 to −4.6 to  
−4.8 to −4.9 to  
+4.8 +4.9  
−4.0 to −4.5 to  
+4.3  
+4.6  
+3.8  
+4.5  
Output Current  
VOUT = −4.5 V to +4.5 V  
TMIN − TMAX  
Sourcing  
Sinking  
G = +1 (AD8051/AD8052)  
G = +2 (AD8054)  
45  
45  
100  
160  
50  
30  
30  
60  
100  
mA  
mA  
mA  
mA  
pF  
Short-Circuit Current  
Capacitive Load Drive  
40  
pF  
Rev. H | Page 7 of 24  
AD8051/AD8052/AD8054  
AD8051A/AD8052A  
AD8054A  
Typ  
Parameter  
Conditions  
Min  
Typ  
Max Min  
Max Unit  
POWER SUPPLY  
Operating Range  
3
12  
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
OPERATING TEMPERATURE RANGE  
4.8  
80  
5.5  
2.875  
80  
3.4  
mA  
dB  
°C  
ΔVS =  
RJ-5  
RM-8, R-8, RU-14, R-14  
1
68  
68  
−40  
−40  
+85  
+125 −40  
+125 °C  
Rev. H | Page 8 of 24  
AD8051/AD8052/AD8054  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
MAXIMUM POWER DISSIPATION  
Parameter  
Ratings  
The maximum power that can be safely dissipated by the  
AD8051/AD8052/AD8054 is limited by the associated rise in  
junction temperature. The maximum safe junction temperature  
for plastic encapsulated devices is determined by the glass  
transition temperature of the plastic, approximately 150°C.  
Temporarily exceeding this limit can cause a shift in parametric  
performance due to a change in the stresses exerted on the die  
by the package. Exceeding a junction temperature of 175°C for  
an extended period can result in device failure.  
Supply Voltage  
Internal Power Dissipation1  
SOIC Packages  
12.6 V  
Observe power  
derating curves  
Observe power  
derating curves  
Observe power  
derating curves  
Observe power  
derating curves  
VS  
2.5 V  
Observe power  
derating curves  
−65°C to +150°C  
SOT-23 Package  
MSOP Package  
TSSOP Package  
While the AD8051/AD8052/AD8054 are internally short-  
circuit protected, this cannot be sufficient to guarantee that the  
maximum junction temperature (150°C) is not exceeded under  
all conditions. To ensure proper operation, it is necessary to  
observe the maximum power derating curves.  
2.5  
Input Voltage (Common Mode)  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range (R)  
Operating Temperature Range (A Grade) −40°C to +125°C  
Lead Temperature (Soldering 10 sec)  
300°C  
SOIC-14  
SOIC-8  
2.0  
1.5  
1.0  
1 See Table 5.  
TSSOP-14  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
MSOP-8  
0.5  
0
SOT-23-5  
THERMAL RESISTANCE  
–55 –35 –15  
5
15  
35  
55  
75  
95  
115  
AMBIENT TEMPERATURE (°C)  
Specification is for device in free air.  
Figure 6. Maximum Power Dissipation vs.  
Temperature for AD8051/AD8052/AD8054  
Table 5. Thermal Resistance  
ESD CAUTION  
Package Type  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
8-Lead SOIC  
125  
180  
150  
90  
5-Lead SOT-23  
8-Lead MSOP  
14-Lead SOIC  
14-Lead TSSOP  
120  
Rev. H | Page 9 of 24  
 
 
AD8051/AD8052/AD8054  
TYPICAL PERFORMANCE CHARACTERISTICS  
3
5
4
3
2
1
G = +1  
= 0  
V
= 5V  
S
G = +2  
= 2k  
2
R
G = +2  
F
GAIN AS SHOWN  
R
R
R
F
R
= 2k  
AS SHOWN  
= 5kΩ  
F
F
1
L
V
= 0.2V p-p  
OUT  
0
–1  
–2  
G = +5  
= 2kΩ  
R
F
0
–1  
–2  
–3  
G = +1  
= 0  
G = +10  
= 2kΩ  
R
F
R
F
G = +10  
= 2kΩ  
–3  
–4  
–5  
R
F
V
= 5V  
S
GAIN AS SHOWN  
R
R
–4  
–5  
–6  
–7  
AS SHOWN  
= 2kΩ  
F
L
G = +5  
= 2kΩ  
V
= 0.2V p-p  
OUT  
–6  
–7  
R
F
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
Figure 7. AD8051/AD8052 Normalized Gain vs. Frequency; VS = 5 V  
Figure 10. AD8054 Normalized Gain vs. Frequency; VS = 5 V  
3
6
V
AS SHOWN  
S
G = +1  
5
2
1
G = +1  
= 2k  
+3V  
+5V  
±5V  
R
C
= 2kΩ  
L
L
V
= +5V  
V
= +3V  
S
S
R
L
= 5pF  
4
V
= 0.2V p-p  
OUT  
V
= 0.2V p-p  
OUT  
0
3
2
–1  
V
= ±5V  
S
–2  
–3  
–4  
–5  
1
0
±5V  
–1  
–2  
–3  
–4  
+3V  
+5V  
–6  
–7  
100k  
1M  
10M  
100M  
500M  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
FREQUENCY (Hz)  
Figure 8. AD8051/AD8052 Gain vs. Frequency vs. Supply  
Figure 11. AD8054 Gain vs. Frequency vs. Supply  
4
3
3
V
R
C
= 5V  
= 2kTO 2.5V  
= 5pF  
S
+85°C  
+25°C  
2
1
L
–40°C  
L
2
G = +1  
= 0.2V p-p  
–40°C  
V
OUT  
0
1
+85°C  
+25°C  
–1  
0
–2  
–1  
–2  
–3  
–4  
–5  
V
= 5V  
S
G = +1  
R
–3  
–4  
–5  
= 2k  
= 0.2V p-p  
L
V
OUT  
–6 TEMPERATURE AS SHOWN  
–7  
1
10  
FREQUENCY (MHz)  
100  
500  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
Figure 12. AD8054 Gain vs. Frequency vs. Temperature  
Figure 9. AD8051/AD8052 Gain vs. Frequency vs. Temperature  
Rev. H | Page 10 of 24  
 
AD8051/AD8052/AD8054  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
V
= 5V  
V
R
R
= 5V  
= 200Ω  
= 150Ω  
S
S
G = +2  
F
L
R
R
V
= 150Ω  
L
F
5.5  
= 806Ω  
= 0.2V p-p  
G = +2  
V = 0.2V p-p  
OUT  
5.4  
5.3  
OUT  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. AD8054 0.1 dB Gain Flatness vs. Frequency; G = +2  
Figure 13. AD8051/AD8052 0.1 dB Gain Flatness vs. Frequency; G = +2  
9
9
V
V
= +5V  
S
8
7
6
V
V
= +5V  
8
7
6
S
= 2V p-p  
OUT  
= 2V p-p  
OUT  
5
4
3
5
4
3
V
V
= ±5V  
S
= 4V p-p  
OUT  
V
V
= ±5V  
S
= 4V p-p  
OUT  
V
AS SHOWN  
V
AS SHOWN  
S
S
2
1
2
1
G = +2  
G = +2  
R
R
V
= 2k  
= 2kΩ  
AS SHOWN  
R
R
V
= 2kΩ  
= 2kΩ  
AS SHOWN  
F
L
F
L
OUT  
OUT  
0
0
–1  
–1  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
Figure 17. AD8054 Large Signal Frequency Response; G = +2  
Figure 14. AD8051/AD8052 Large Signal Frequency Response; G = +2  
80  
70  
80  
V
R
C
= 5V  
= 2k  
= 5pF  
V
R
= 5V  
= 2k  
S
S
70  
60  
50  
40  
30  
20  
L
L
L
60  
50  
40  
30  
20  
GAIN  
GAIN  
180  
0
50° PHASE  
MARGIN  
135  
90  
–45  
–90  
–135  
–180  
PHASE  
45° PHASE  
MARGIN  
PHASE  
10  
0
10  
0
45  
0
–10  
–20  
–10  
–20  
30k  
100k  
1M  
10M  
100M  
500M  
0.01  
0.1  
1
10  
100  
500  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 18. AD8054 Open-Loop Gain and Phase Margin vs. Frequency  
Figure 15. AD8051/AD8052 Open-Loop Gain and Phase vs. Frequency  
Rev. H | Page 11 of 24  
AD8051/AD8052/AD8054  
–20  
1000  
100  
V
= 2V p-p  
V = 3V, G = –1  
S
V
= 5V  
OUT  
S
R
= 2k, R = 100Ω  
L
F
–30  
–40  
V
R
= 5V, G = +2  
S
= 2k, R = 100Ω  
F
L
V
R
= 5V, G = +1  
S
–50  
–60  
= 100Ω  
L
–70  
V
R
= 5V, G = +1  
= 2kΩ  
S
–80  
10  
L
V
R
= 5V, G = +2  
= 2k, R = 2kΩ  
L
S
–90  
F
–100  
–110  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
2
3
4
5
6
7
8
9 10  
FUNDAMENTAL FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 22. Input Voltage Noise vs. Frequency  
Figure 19. Total Harmonic Distortion  
100  
10  
–30  
–40  
V
= 5V  
S
10MHz  
–50  
–60  
–70  
–80  
5MHz  
1MHz  
–90  
–100  
–110  
–120  
–130  
–140  
1
V
= 5V  
S
R
= 2kΩ  
L
G = +2  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
0.5 1.0  
1.5 2.0  
2.5 3.0 3.5  
OUTPUT VOLTAGE (V p-p)  
4.0  
4.5  
5.0  
FREQUENCY (Hz)  
Figure 23. Input Current Noise vs. Frequency  
Figure 20. Worst Harmonic vs. Output Voltage  
0.10  
0.05  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
–0.02  
–0.04  
–0.06  
NTSC SUBSCRIBER (3.58MHz)  
R
= 150  
= 1kΩ  
NTSC SUBSCRIBER (3.58MHz)  
L
R
= 1k  
L
0.00  
–0.05  
R
V = 5V, G = +2  
S
L
V
= 5V, G = +2  
S
R
= 2k, R AS SHOWN  
R
= 150Ω  
R
= 2k, R AS SHOWN  
F
L
L
F
L
–0.10  
ST  
ND  
RD  
TH  
TH  
TH  
TH  
TH  
TH TH  
10  
TH  
11  
1
2
3
4
5
6
7
8
9
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0.3  
0.2  
0.1  
0.10  
0.05  
R
= 1kΩ  
L
0.00  
R
= 1kΩ  
L
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
0.0  
–0.1  
–0.2  
R
= 150Ω  
L
R
= 150Ω  
L
V = 5V, G = +2  
S
V
R
= 5V, G = +2  
S
R
= 2k, R AS SHOWN  
L
= 2k, R AS SHOWN  
F
F
L
–0.3  
ST  
ND  
RD  
TH  
TH  
TH  
6
TH  
TH  
TH  
TH  
TH  
11  
1
2
3
4
5
7
8
9
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
MODULATING RAMP LEVEL (IRE)  
MODULATING RAMP LEVEL (IRE)  
Figure 24. AD8054 Differential Gain and Phase Errors  
Figure 21. AD8051/AD8052 Differential Gain and Phase Errors  
Rev. H | Page 12 of 24  
AD8051/AD8052/AD8054  
–10  
–20  
–10  
–20  
V
= ±5V  
= 1k  
S
V
R
R
= 5V  
= 2k  
= 2kΩ  
S
R
R
V
F
L
F
L
= AS SHOWN  
= 2V p-p  
–30  
–40  
–30  
–40  
–50  
–60  
–70  
–80  
OUT  
V
= 2V p-p  
OUT  
R
= 100Ω  
L
–50  
–60  
–70  
–80  
–90  
R
= 1kΩ  
L
–90  
–100  
–110  
–100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
Figure 25. AD8052 Crosstalk (Output-to-Output) vs. Frequency  
Figure 28. AD8054 Crosstalk (Output-to-Output) vs. Frequency  
0
20  
V
= 5V  
V
= 5V  
S
S
–10  
–20  
–30  
–40  
–50  
–60  
10  
0
–10  
–PSRR  
+PSRR  
–20  
–30  
–40  
–50  
–70  
–80  
–60  
–70  
–90  
–100  
–80  
0.01  
0.1  
1
10  
100  
500  
0.03  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 29. PSRR vs. Frequency  
Figure 26. CMRR vs. Frequency  
100.000  
31.000  
10.000  
3.100  
70  
V
=5V  
V
= 5V  
S
S
G = +1  
G = –1  
= 2k  
60  
50  
R
L
AD8051/AD8052  
AD8054  
40  
1.000  
0.310  
0.100  
30  
20  
10  
0
0.031  
0.010  
0.1  
1
10  
100  
500  
0.5  
1.0  
1.5  
2.0  
FREQUENCY (MHz)  
INPUT STEP (V p-p)  
Figure 27. Closed-Loop Output Resistance vs. Frequency  
Figure 30. Settling Time vs. Input Step  
Rev. H | Page 13 of 24  
AD8051/AD8052/AD8054  
1.0  
1.000  
V
= 5V  
V
= 5V  
V
= +85°C  
S
S
OH  
0.9  
0.8  
+5V – V  
(+125°C)  
OH  
0.875  
0.750  
0.625  
0.500  
V
= +25°C  
OH  
+5V – V  
(+25°C)  
0.7  
0.6  
0.5  
0.4  
OH  
V
= –40°C  
OH  
V
= +85°C  
OL  
+5V – V  
(–40°C)  
OH  
0.375  
0.250  
0.125  
0
0.3  
0.2  
V
= +25°C  
OL  
V
(+125°C)  
27  
OL  
V
= –40°C  
OL  
V
(+25°C)  
0.1  
0
OL  
V
(–40°C)  
15  
OL  
0
3
6
9
12  
18  
21  
24  
30  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 31. AD8051/AD8052 Output Saturation Voltage vs. Load Current  
Figure 33. AD8054 Output Saturation Voltage vs. Load Current  
100  
R
= 2kΩ  
L
90  
R
= 150Ω  
L
80  
70  
V
= 5V  
S
60  
0
0.5  
1.0 1.5  
2.0 2.5 3.0 3.5 4.0  
4.5 5.0  
OUTPUT VOLTAGE (V)  
Figure 32. Open-Loop Gain vs. Output Voltage  
Rev. H | Page 14 of 24  
AD8051/AD8052/AD8054  
V
= 5V  
V
= 0.1V p-p  
S
IN  
G = –1  
G = +1  
R
= 2kΩ  
R
= 2k  
F
L
L
5.0  
2.5  
R
= 2kΩ  
V
= 3V  
S
1.5  
20ns  
2µs  
20mV  
1V  
Figure 34. 100 mV Step Response, G = +1  
Figure 37. Output Swing; G = −1, RL = 2 kΩ  
V
= 5V  
V
= 5V  
S
S
G = +1  
= 2kΩ  
G = +1  
= 2k  
R
R
L
L
2.55  
2.50  
2.45  
2.6  
2.5  
2.4  
20ns  
50mV  
40ns  
50mV  
Figure 35. AD8051/AD8052 200 mV Step Response; VS = 5 V, G = +1  
Figure 38. AD8054 100 mV Step Response; VS = 5 V, G = +1  
V
= ±5V  
V
= 1V p-p  
S
IN  
4.5  
3.5  
2.5  
1.5  
0.5  
4
3
2
1
G = +1  
= 2k  
G = +2  
R
R
= 2kΩ  
= 5V  
L
L
S
V
–1  
–2  
–3  
–4  
1V  
20ns  
20ns  
500mV  
Figure 36. Large Signal Step Response; VS = 5 V, G = +2  
Figure 39. Large Signal Step Response; VS = 5 V, G = +1  
Rev. H | Page 15 of 24  
AD8051/AD8052/AD8054  
THEORY OF OPERATION  
The inputs of the device can handle voltages from −0.2 V below  
the negative rail to within 1 V of the positive rail. Exceeding  
these values do not cause phase reversal; however, the input  
ESD devices begin to conduct if the input voltages exceed the  
rails by greater than 0.5 V. During this overdrive condition, the  
output stays at the rail.  
CIRCUIT DESCRIPTION  
The AD8051/AD8052/AD8054 are fabricated on the Analog  
Devices, Inc. proprietary eXtra-Fast Complementary Bipolar  
(XFCB) process, which enables the construction of PNP and  
NPN transistors with similar fTs in the 2 GHz to 4 GHz region.  
The process is dielectrically isolated to eliminate the parasitic  
and latch-up problems caused by junction isolation. These  
features allow the construction of high frequency, low distortion  
amplifiers with low supply currents. This design uses a differential  
output input stage to maximize bandwidth and headroom (see  
Figure 40). The smaller signal swings required on the first stage  
outputs (nodes SIP, SIN) reduce the effect of nonlinear currents  
due to junction capacitances and improve the distortion per-  
formance. This design achieves harmonic distortion of −80 dBc  
@ 1 MHz into 100 Ω with VOUT = 2 V p-p (gain = +1) on a  
single 5 V supply.  
The rail-to-rail output range of the AD8051/AD8052/AD8054  
is provided by a complementary common emitter output stage.  
High output drive capability is provided by injecting all output  
stage predriver currents directly into the bases of the output  
devices Q8 and Q36. Biasing of Q8 and Q36 is accomplished by  
I8 and I5, along with a common-mode feedback loop (not  
shown). This circuit topology allows the AD8051/AD8052 to  
drive 45 mA of output current and allows the AD8054 to drive  
30 mA of output current with the outputs within 0.5 V of the  
supply rails.  
V
CC  
I9  
Q25  
Q50  
Q39  
R26  
Q4  
R39  
Q5  
I10  
I2  
I3  
Q36  
I5  
Q51  
Q23  
V
Q40  
EE  
R2  
R15  
Q13  
Q22  
R27  
R23  
Q21  
V
EE  
C3  
C9  
Q31  
Q7  
V
P
Q1  
IN  
V
OUT  
Q27  
V
N
IN  
SIN  
SIP  
Q8  
Q2  
Q11  
R3  
Q3  
Q24  
I7  
Q47  
I8  
CC  
I11  
V
C7  
R21  
R5  
V
EE  
Figure 40. AD8051/AD8052 Simplified Schematic  
Rev. H | Page 16 of 24  
 
 
AD8051/AD8052/AD8054  
APPLICATION INFORMATION  
OVERDRIVE RECOVERY  
V
= 5V  
S
Overdrive of an amplifier occurs when the output and/or input  
range is exceeded. The amplifier must recover from this over-  
drive condition. As shown in Figure 41, the AD8051/AD8052/  
AD8054 recover within 60 ns from negative overdrive and  
within 45 ns from positive overdrive.  
G = +1  
R
= 2kΩ  
L
L
C
= 50pF  
2.60  
2.55  
2.50  
2.45  
V
= ±5V  
S
2.40  
G = +5  
INPUT 1V/DIV  
OUTPUT 2V/DIV  
R
R
= 2k  
= 2kΩ  
F
L
100ns  
50mV  
Figure 43. AD8051/AD8052 200 mV Step Response; CL = 50 pF  
10000  
1000  
100  
10  
V
= 5V  
S
30%  
OVERSHOOT  
R
= 3Ω  
S
100ns  
V/DIV AS SHOWN  
R
= 0Ω  
S
Figure 41. Overdrive Recovery  
DRIVING CAPACITIVE LOADS  
Consider the AD8051/AD8052 in a closed-loop gain of +1 with  
+VS = 5 V and a load of 2 kΩ in parallel with 50 pF. Figure 42  
and Figure 43 show their frequency and time domain responses,  
respectively, to a small-signal excitation. The capacitive load  
drive of the AD8051/AD8052/AD8054 can be increased by  
adding a low value resistor in series with the load. Figure 44  
and Figure 45 show the effect of a series resistor on the capaci-  
tive drive for varying voltage gains. As the closed-loop gain is  
increased, the larger phase margin allows for larger capacitive  
loads with less peaking. Adding a series resistor with lower  
closed-loop gains accomplishes the same effect. For large  
capacitive loads, the frequency response of the amplifier is  
dominated by the roll-off of the series resistor and the load  
capacitance.  
R
R
F
G
R
S
V
IN  
V
OUT  
100mV  
STEP  
C
L
50Ω  
1
1
2
3
4
5
6
A
(V/V)  
CL  
Figure 44. AD8051/AD8052 Capacitive Load Drive vs. Closed-Loop Gain  
1000  
V
= 5V  
S
30%  
OVERSHOOT  
R
= 10Ω  
S
8
R = 0Ω  
S
6
4
100  
R
R
F
G
2
R
S
V
IN  
V
0
OUT  
100mV  
STEP  
C
L
50Ω  
–2  
–4  
10  
V
= 5V  
1
2
3
4
5
6
S
–6  
–8  
G = +1  
A
(V/V)  
CL  
R
C
= 2kΩ  
= 50pF  
L
L
Figure 45. AD8054 Capacitive Load Drive vs. Closed-Loop Gain  
V
= 200mV p-p  
OUT  
–10  
–12  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
Figure 42. AD8051/AD8052 Closed-Loop Frequency Response; CL = 50 pF  
Rev. H | Page 17 of 24  
 
 
 
 
 
 
AD8051/AD8052/AD8054  
noise bandwidth of the analog signal before analog-to-digital  
conversion.  
LAYOUT CONSIDERATIONS  
The specified high speed performance of the AD8051/AD8052/  
AD8054 requires careful attention to board layout and component  
selection. Proper RF design techniques and low parasitic  
component selection are necessary.  
Note that the unused amplifier’s inputs should be tied to ground.  
R6  
1k  
C1  
50pF  
The PCB should have a ground plane covering all unused  
portions of the component side of the board to provide a low  
impedance path. The ground plane should be removed from the  
area near the input pins to reduce parasitic capacitance.  
R2  
2kΩ  
13  
12  
R4  
2kΩ  
C2  
50pF  
14  
R1  
3kΩ  
R3  
2
3
V
IN  
R5  
2kΩ  
2kΩ  
1
6
5
7
9
8
Chip capacitors should be used for supply bypassing. One end  
should be connected to the ground plane and the other within  
3 mm of each power pin. An additional large (4.7 μF to 10 μF)  
tantalum electrolytic capacitor should be connected in parallel,  
but not necessarily so close, to supply current for fast, large  
signal changes at the output.  
AD8054  
10  
AD8054  
AD8054  
BAND-PASS  
FILTER OUTPUT  
Figure 46. 2 MHz Biquad Band-Pass Filter Using AD8054  
The frequency response of the circuit is shown in Figure 47.  
0
The feedback resistor should be located close to the inverting  
input pin to keep the parasitic capacitance at this node to a  
minimum. Parasitic capacitance of less than 1 pF at the inverting  
input can significantly affect high speed performance.  
–10  
–20  
–30  
–40  
Stripline design techniques should be used for long signal traces  
(greater than about 25 mm). These should be designed with a  
characteristic impedance of 50 Ω or 75 Ω and be properly  
terminated at each end.  
ACTIVE FILTERS  
Active filters at higher frequencies require wider bandwidth op  
amps to work effectively. Excessive phase shift produced by  
lower frequency op amps can significantly affect active filter  
performance.  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 47. Frequency Response of 2 MHz Band-Pass Biquad Filter  
Figure 46 shows an example of a 2 MHz biquad bandwidth filter  
that uses three op amps of an AD8054. Such circuits are  
sometimes used in medical ultrasound systems to lower the  
Rev. H | Page 18 of 24  
 
 
 
AD8051/AD8052/AD8054  
reduced to −60.18 dB and the ADC operated with 8.46 ENOBs  
as shown in Figure 49. The inclusion of the AD8051 in the  
circuit did not worsen the distortion performance of the AD9201.  
10  
ANALOG-TO-DIGITAL AND DIGITAL-TO-ANALOG  
APPLICATIONS  
Figure 50 is a schematic showing the AD8051 used as a driver  
for an AD9201, a 10-bit, 20 MSPS, dual analog-to-digital  
converter. This converter is designed to convert I and Q signals in  
communications systems. In this application, only the I channel  
is being driven. The I channel is enabled by applying a logic  
high to SELECT (Pin 13).  
PART#  
0
FUND  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
FFTSIZE 8192  
FCLK 20.0MHz  
998.5kHz  
–0.51dB  
–68.13  
FUND  
VIN  
THD  
SNR  
54.97  
SINAD 54.76  
8.80  
ENOB  
SFDR 71.66  
The AD8051 is running from a dual supply and is configured  
for a gain of +2. The input signal is terminated in 50 Ω and the  
output is 2 V p-p, which is the maximum input range of the  
AD9201. The 22 Ω series resistor limits the maximum current  
that flows and helps to lower the distortion of the ADC.  
2ND  
3RD  
4TH  
5TH  
6TH  
7TH  
–74.53  
–76.06  
–76.35  
–79.05  
–80.36  
–75.08  
–88.12  
–77.87  
2ND  
7TH  
3RD  
4TH  
9TH  
8TH  
5TH  
6TH  
–90  
–100  
8TH  
9TH  
–110  
–120  
The AD9201 has differential inputs for each channel. These are  
designated the A and B inputs. The B inputs of each channel are  
connected to VREF (Pin 22), which supplies a positive reference  
of 2.5 V. Each of the B inputs has a small low-pass filter that also  
helps to reduce distortion.  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
Figure 48. FFT Plot for AD8051 Driving the AD9201 at 1 MHz  
10  
0
PART#  
FUND  
0
The output of the op amp is ac-coupled into INA-I (Pin 16) via  
two parallel capacitors to provide good high frequency and low  
frequency coupling. The 1 kΩ resistor references the signal to  
VREF that is applied to INB-I. Thus, INA-I swings both positive  
and negative with respect to the bias voltage applied to INB-I.  
FFTSIZE 8192  
FCLK 20.0MHz  
FUND 9.5MHz  
–10  
–20  
–30  
–40  
–50  
VIN  
–0.44dB  
–57.08  
54.65  
THD  
SNR  
SINAD 52.69  
ENOB 8.46  
2ND  
3RD  
60.18  
SFDR  
2ND  
3RD  
4TH  
5TH  
6TH  
With the sampling clock running at 20 MSPS, the analog-to-  
digital output was analyzed with a digital analyzer. Two input  
frequencies were used, 1 MHz and 9.5 MHz, which is just short  
of the Nyquist frequency. These signals were well filtered to  
minimize any harmonics.  
–60  
–70  
–80  
–60.18  
–60.23  
–82.01  
–78.83  
–81.28  
–77.28  
–84.54  
7TH  
5TH  
4TH  
8TH  
6TH  
–90  
–100  
7TH  
8TH  
9TH  
–110  
–120  
–92.78  
Figure 48 shows the FFT response of the ADC for the case of a  
1 MHz analog input. The SFDR is 71.66 dB, and the analog-to-  
digital is producing 8.8 ENOB (effective number of bits). When  
the analog frequency was raised to 9.5 MHz, the SFDR was  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
Figure 49. FFT Plot for AD8051 Driving the AD9201 at 9.5 MHz  
14  
13  
CLOCK  
15  
16  
SLEEP  
INA-I  
0.33µF  
22  
+V  
SELECT  
DD  
+5V  
10pF  
1kΩ  
22Ω  
INB-I  
17  
0.01µF  
22Ω  
10pF  
0.1µF  
6
10µF  
AD9201  
DATA OUT  
18 REFT-I  
12  
11  
10  
9
D9  
D8  
D7  
D6  
7
3
2
0.1µF  
10µF  
0.1µF  
19  
REFB-I  
50Ω  
AD8051  
0.1µF  
20 AVSS  
1kΩ  
4
21  
22  
REFSENSE  
VREF  
D5  
D4  
8
7
6
5
4
3
2
1
10µF  
0.1µF  
0.1µF  
10µF  
–5V  
23  
AVDD  
+5V  
D3  
10µF  
0.1µF  
1kΩ  
D2  
24 REFB-Q  
25 REFT-Q  
0.1µF  
10µF  
0.1µF  
D1  
0.1µF  
D0  
22Ω  
DVDD  
DVSS  
+5V  
26 INB-Q  
0.1µF  
10µF  
10pF  
22Ω  
INA-Q  
27  
28  
10pF  
CHIP–SELECT  
Figure 50. The AD8051 Driving an AD9201, a 10-Bit, 20 MSPS Analog-to-Digital Converter  
Rev. H | Page 19 of 24  
 
 
 
 
AD8051/AD8052/AD8054  
dynamic swing requirements are a signal that is mostly low but  
goes high with a duty cycle that is a small fraction of a percent,  
and the other extreme defined by the opposite condition.  
SYNC STRIPPER  
Synchronizing pulses are sometimes carried on video signals so  
as not to require a separate channel to carry the synchronizing  
information. However, for some functions, such as analog-to-  
digital conversion, it is not desirable to have the sync pulses on  
the video signal. These pulses reduce the dynamic range of the  
video signal and do not provide any useful information for such  
a function.  
The worst case of composite video is not quite this demanding.  
One bounding condition is a signal that is mostly black for an  
entire frame but has a white (full amplitude) minimum width  
spike at least once in a frame.  
The other extreme is for a full white video signal. The blanking  
intervals and sync tips of such a signal have negative-going  
excursions in compliance with the composite video specifications.  
The combination of horizontal and vertical blanking intervals  
limit such a signal to being at the highest (white) level for a  
maximum of about 75% of the time.  
A sync stripper removes the synchronizing pulses from a video  
signal while passing all the useful video information. Figure 51  
shows a practical single-supply circuit that uses only a single  
AD8051. It is capable of directly driving a reverse terminated  
video line.  
VIDEO WITHOUT SYNC  
VIDEO WITH SYNC  
As a result of the duty cycles between the two extremes  
previously presented, a 1 V p-p composite video signal that is  
multiplied by a gain of 2 requires about 3.2 V p-p of dynamic  
voltage swing at the output for an op amp to pass a composite  
video signal of arbitrarily varying duty cycle without distortion.  
V
GROUND  
0.4V  
BLANK  
GROUND  
3V OR 5V  
Some circuits use a sync tip clamp to hold the sync tips at a  
relatively constant level to lower the amount of dynamic signal  
swing required. However, these circuits can have artifacts, such  
as sync tip compression, unless they are driven by a source with  
a very low output impedance. The AD8051/AD8052/AD8054  
have adequate signal swing when running on a single 5 V  
supply to handle an ac-coupled composite video signal.  
+
10µF  
0.1µF  
7
V
3
2
IN  
TO A/D  
6
AD8051  
100  
4
R2  
1kΩ  
R1  
1kΩ  
The input to the circuit in Figure 52 is a standard composite  
(1 V p-p) video signal that has the blanking level at ground. The  
input network level shifts the video signal by means of ac coupling.  
The noninverting input of the op amp is biased to half of the  
supply voltage.  
0.8V  
(OR 2 × V  
)
BLANK  
Figure 51. Sync Stripper  
The video signal plus sync is applied to the noninverting input  
with the proper termination. The amplifier gain is set to 2 via  
the two 1 kꢀ resistors in the feedback circuit. A bias voltage  
must be applied to R1 so that the input signal has the sync  
pulses stripped at the proper level.  
The feedback circuit provides unity gain for the dc-biasing of  
the input and provides a gain of 2 for any signals that are in the  
video bandwidth. The output is ac-coupled and terminated to  
drive the line.  
The blanking level of the input video pulse is the desired place to  
remove the sync information. This level is multiplied by 2 by the  
amplifier. This level must be at ground at the output for the sync  
stripping action to take place. Since the gain of the amplifier from  
the input of R1 to the output is −1, a voltage equal to 2 × VBLANK  
must be applied to make the blanking level come out at ground.  
The capacitor values were selected for providing minimum tilt  
or field time distortion of the video signal. These values would  
be required for video that is considered to be studio or broadcast  
quality. However, if a lower consumer grade of video, sometimes  
referred to as consumer video, is all that is desired, the values  
and the cost of the capacitors can be reduced by as much as a  
factor of five with minimum visible degradation in the picture.  
SINGLE-SUPPLY COMPOSITE VIDEO LINE DRIVER  
5V  
Many composite video signals have their blanking level at  
ground and have video information that is both positive and  
negative. Such signals require dual-supply amplifiers to pass  
them. However, by ac level shifting, a single-supply amplifier  
can be used to pass these signals. The following complications  
can arise from such techniques.  
4.99k  
+
10µF  
4.99kΩ  
+
0.1µF  
10µF  
COMPOSITE  
VIDEO  
IN  
47µF  
+
7
R
BT  
75Ω  
3
1000µF  
+
R
T
V
6
10kΩ  
OUT  
AD8051  
75Ω  
R
L
2
75Ω  
4
0.1µF  
R
1kΩ  
F
Signals of bounded peak-to-peak amplitude that vary in duty  
cycle require larger dynamic swing capacity than their (bounded)  
peak-to-peak amplitude after they are ac-coupled. As a worst  
case, the dynamic signal swing will approach twice the peak-to-  
peak value. The two conditions that define the maximum  
R
1kΩ  
G
220µF  
Figure 52. Single-Supply Composite Video Line Driver  
Rev. H | Page 20 of 24  
 
 
 
AD8051/AD8052/AD8054  
OUTLINE DIMENSIONS  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 53. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-14)  
Dimensions shown in millimeters and (inches)  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
10°  
5°  
0°  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 54. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
Rev. H | Page 21 of 24  
 
AD8051/AD8052/AD8054  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 55. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 56. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 57. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Rev. H | Page 22 of 24  
AD8051/AD8052/AD8054  
ORDERING GUIDE  
Model  
AD8051AR  
AD8051AR-REEL  
AD8051AR-REEL7  
AD8051ARZ1  
AD8051ARZ-REEL1  
AD8051ARZ-REEL71  
AD8051ART-R2  
AD8051ART-REEL  
AD8051ART-REEL7  
AD8051ARTZ-R21  
AD8051ARTZ-REEL1  
AD8051ARTZ-REEL71  
AD8052AR  
AD8052AR-REEL  
AD8052AR-REEL7  
AD8052ARZ1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
Branding  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
5-Lead SOT-23, 7" Tape and Reel  
5-Lead SOT-23, 13" Tape and Reel  
5-Lead SOT-23, 7" Tape and Reel  
5-Lead SOT-23, 7" Tape and Reel  
5-Lead SOT-23, 13" Tape and Reel  
5-Lead SOT-23, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 7" Tape and Reel  
14-Lead SOIC_N  
14-Lead SOIC_N, 13" Tape and Reel  
14-Lead SOIC_N, 7" Tape and Reel  
14-Lead SOIC_N  
14-Lead SOIC_N, 13" Tape and Reel  
14-Lead SOIC_N, 7" Tape and Reel  
14-Lead TSSOP  
H2A  
H2A  
H2A  
H06  
H06  
H06  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD8052ARZ-REEL1  
AD8052ARZ-REEL71  
AD8052ARM  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
H4A  
H4A  
H4A  
H4A#  
H4A#  
AD8052ARM-REEL  
AD8052ARM-REEL7  
AD8052ARMZ1  
AD8052ARMZ-REEL71  
AD8054AR  
AD8054AR-REEL  
AD8054AR-REEL7  
AD8054ARZ1  
AD8054ARZ-REEL1  
AD8054ARZ-REEL71  
AD8054ARU  
AD8054ARU-REEL  
AD8054ARU-REEL7  
AD8054ARUZ1  
AD8054ARUZ-REEL1  
AD8054ARUZ-REEL71  
14-Lead TSSOP, 13" Tape and Reel  
14-Lead TSSOP, 7" Tape and Reel  
14-Lead TSSOP  
14-Lead TSSOP, 13" Tape and Reel  
14-Lead TSSOP, 7" Tape and Reel  
1 Z = RoHS Compliant Part. # denotes lead-free product may be top or bottom marked.  
Rev. H | Page 23 of 24  
 
AD8051/AD8052/AD8054  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D01062-0-12/07(H)  
Rev. H | Page 24 of 24  

相关型号:

AD8052ARZ-REEL

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8052ARZ-REEL7

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8052BH

Microcontroller, 8-Bit, MROM, 8051 CPU, 12MHz, CMOS, CDIP40
INTEL

AD8052LV

Low Cost, +2.7V to 5.5V, 260MHz Rail-to-Rail Amplifier
CADEKA

AD8052LVIMP8X

Low Cost, +2.7V to 5.5V, 260MHz Rail-to-Rail Amplifier
CADEKA

AD8052LVISO8

Low Cost, +2.7V to 5.5V, 260MHz Rail-to-Rail Amplifier
CADEKA

AD8052LVISO8X

Low Cost, +2.7V to 5.5V, 260MHz Rail-to-Rail Amplifier
CADEKA

AD8052RM

IC IC,OP-AMP,DUAL,BIPOLAR,SOP,8PIN,PLASTIC, Operational Amplifier
ADI

AD8052_15

Low Cost, High Speed, Rail-to-Rail Amplifiers
ADI

AD8054

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8054AR

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8054AR-REEL

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI