AD8055ARTZ-R2 [ADI]

Low Cost, 300 MHz Voltage Feedback Amplifiers; 低成本, 300 MHz电压反馈放大器
AD8055ARTZ-R2
型号: AD8055ARTZ-R2
厂家: ADI    ADI
描述:

Low Cost, 300 MHz Voltage Feedback Amplifiers
低成本, 300 MHz电压反馈放大器

消费电路 商用集成电路 音频放大器 视频放大器 光电二极管
文件: 总16页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, 300 MHz  
Voltage Feedback Amplifiers  
AD8055/AD8056  
CONNECTION DIAGRAMS  
FEATURES  
Low cost single (AD8055) and dual (AD8056)  
Easy-to-use voltage feedback architecture  
High speed  
300 MHz, −3 dB bandwidth (G = +1)  
1400 V/μs slew rate  
20 ns settling to 0.1%  
Low distortion: −72 dBc @ 10 MHz  
Low noise: 6 nV/√Hz  
1
2
3
4
NC  
–IN  
+IN  
8
7
6
5
NC  
1
2
3
V
5
4
+V  
OUT  
–V  
S
+V  
S
S
V
OUT  
+IN  
–IN  
–V  
S
NC  
AD8055  
AD8055  
Figure 2. RJ-5  
S
NC = NO CONNECT  
Figure 1. N-8 and R-8  
1
2
3
4
8
7
6
5
OUT1  
–IN1  
+IN1  
+V  
Low dc errors: 5 mV max VOS, 1.2 μA max IB  
Small packaging  
OUT  
–IN2  
+IN2  
AD8055 available in 5-lead SOT-23  
AD8056 available in 8-lead MSOP  
Excellent video specifications (RL = 150 Ω, G = +2)  
Gain flatness 0.1 dB to 40 MHz  
0.01% differential gain error  
–V  
S
AD8056  
Figure 3. N-8, R-8, and RM-8  
Their 0.1 dB flatness out to 40 MHz, wide bandwidth out to  
300 MHz, along with 1400 V/μs slew rate and 20 ns settling  
time, make them useful for a variety of high speed applications.  
0.02° differential phase error  
Drives 4 video loads (37.5 V) with 0.02% differential  
Gain and 0.1° differential phase  
Low power, 5 V supplies 5 mA typ/amplifier power  
supply current  
The AD8055 and AD8056 require only 5 mA typ/amplifier of  
supply current and operate on a dual 5 V or a single +12 V  
power supply, while capable of delivering over 60 mA of load  
current. The AD8055 is available in a small 8-lead PDIP, an 8-lead  
SOIC, and a 5-lead SOT-23, while the AD8056 is available in an  
8-lead MSOP. These features make the AD8055/AD8056 ideal  
for portable and battery-powered applications where size and  
power are critical. These amplifiers in the R-8, N-8, and RM-8  
packages are available in the extended temperature range of  
−40°C to +125°C.  
High output drive current: over 60 mA  
APPLICATIONS  
Imaging  
Photodiode preamps  
Video line drivers  
Differential line drivers  
Professional cameras  
Video switchers  
Special effects  
5
V
R
= 100mV p-p  
= 100  
OUT  
L
R
C
4
3
V
V
OUT  
IN  
50Ω  
A-to-D drivers  
Active filters  
G = +1  
= 0Ω  
R
R
2
R
F
F
C
R
R
L
G
= 100Ω  
G = +2  
= 402Ω  
1
R
F
GENERAL DESCRIPTION  
0
–1  
–2  
–3  
–4  
–5  
The AD8055 (single) and AD8056 (dual) voltage feedback  
amplifiers offer bandwidth and slew rate typically found in  
current feedback amplifiers. Additionally, these amplifiers are  
easy to use and available at a very low cost.  
G = +10  
F
R
= 909Ω  
G = +5  
R
= 1000Ω  
F
Despite their low cost, the AD8055 and AD8056 provide  
excellent overall performance. For video applications, their  
differential gain and phase error are 0.01% and 0.02° into a  
150 Ω load and 0.02% and 0.1° while driving four video loads  
(37.50 Ω).  
0.3M  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 4. Frequency Response  
Rev. J  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
AD8055/AD8056  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications..................................................................................... 12  
Four-Line Video Driver............................................................. 12  
Single-Ended-to-Differential Line Driver............................... 12  
Low Noise, Low Power Preamp................................................ 12  
Power Dissipation Limits .......................................................... 13  
Resistor Selection ....................................................................... 13  
Driving Capacitive Loads.......................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Connection Diagrams...................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Maximum Power Dissipation ..................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Test Circuits ..................................................................................... 11  
REVISION HISTORY  
2/06—Rev. I to Rev. J  
10/02—Rev. E to Rev. F  
Changes to Format .............................................................Universal  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 16  
Text Changes to Reflect Extended Temperature Range for  
R-8, N-8 Packages..............................................................................1  
Changes to Specifications.................................................................2  
Changes to Absolute Maximum Ratings........................................3  
Figure 2 Replaced ..............................................................................3  
Changes to Ordering Guide.............................................................3  
Outline Dimensions Updated....................................................... 11  
2/04—Rev. H to Rev. I  
Changes to Features.......................................................................... 1  
Changes to Ordering Guide ............................................................ 3  
7/01—Rev. D to Rev. E  
TPC 24 Replaced with New Graph .................................................7  
6/03—Rev. G to Rev. H  
Changes to Absolute Maximum Ratings....................................... 3  
Updated Ordering Guide................................................................. 3  
Updated Outline Dimensions....................................................... 11  
3/01—Rev. C to Rev. D  
Edit to Curve in TPC 23...................................................................7  
2/03—Rev. F to Rev. G  
2/01—Rev. B to Rev. C  
Edits to Text at Top of Specifications Page (65 to 5)....................2  
Changes to Product Description .................................................... 1  
Changes to Specifications................................................................ 2  
Change to Ordering Guide.............................................................. 3  
Outline Dimensions Updated....................................................... 11  
Rev. J | Page 2 of 16  
AD8055/AD8056  
SPECIFICATIONS  
TA = 25°C, VS = 5 V, RF = 402 Ω, RL = 100 Ω, Gain = +2, unless otherwise noted.  
Table 1.  
AD8055A/AD8056A  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
G=+1, VO = 2 V p-p  
G=+2, VO = 0.1 V p-p  
G=+2, VO = 2 V p-p  
VO = 100 mV p-p  
G = +1, VO = 4 V step  
G = +2, VO = 4 V step  
G = +2, VO = 2 V step  
G = +1, VO = 0.5 V step  
G = +1, VO = 4 V step  
G = +2, VO = 0.5 V step  
G = +2, VO = 4 V step  
220  
125  
120  
125  
25  
300  
150  
160  
150  
40  
MHz  
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
ns  
ns  
ns  
ns  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
1000 1400  
750  
840  
20  
2
2.7  
2.8  
4
Settling Time to 0.1%  
Rise and Fall Time, 10% to 90%  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
fC = 10 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
−72  
−57  
−60  
6
dBc  
dBc  
dB  
nV/√Hz  
pA/√Hz  
%
%
Degree  
Degree  
Crosstalk, Output-to-Output (AD8056) f = 5 MHz, G = +2  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
f = 100 kHz  
f = 100 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 37.5 Ω  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 37.5 Ω  
1
0.01  
0.02  
0.02  
0.1  
Differential Phase Error  
DC PERFORMANCE  
Input Offset Voltage  
3
5
10  
mV  
mV  
μV/°C  
μA  
μA  
dB  
TMIN to TMAX  
Offset Drift  
Input Bias Current  
6
0.4  
71  
1.2  
TMIN to TMAX  
VO = 2.5 V  
TMIN to TMAX  
1
66  
64  
Open-Loop Gain  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
10  
2
3.2  
82  
MΩ  
pF  
V
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Current1  
VCM  
=
2.5 V  
dB  
RL = 150 Ω  
VO = 2.0 V  
2.9  
55  
3.1  
60  
110  
V
mA  
mA  
Short-Circuit Current1  
Rev. J | Page 3 of 16  
AD8055/AD8056  
AD8055A/AD8056A  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current  
4.0  
5.0  
5.4  
7.6  
6.0  
6.5  
V
AD8055  
TMIN to 125°C  
TMIN to 85°C  
AD8056  
TMIN to 125°C  
TMIN to 85°C  
+VS = +5 V to +6 V, −VS = −5 V  
−VS = –5 V to −6 V, +VS = +5 V  
AD8055ART  
mA  
mA  
mA  
mA  
mA  
mA  
dB  
7.3  
12  
10  
13.9  
13.3  
Power Supply Rejection Ratio  
66  
69  
72  
86  
dB  
OPERATING TEMPERATURE RANGE  
−40  
+85  
°C  
AD8055AR, AD8055AN, AD8056AR, AD8056AN, AD8056ARM −40  
+125 °C  
1 Output current is limited by the maximum power dissipation in the package. See Figure 5.  
Rev. J | Page 4 of 16  
 
AD8055/AD8056  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
MAXIMUM POWER DISSIPATION  
Ratings  
The maximum power that can be safely dissipated by the  
AD8055/AD8056 is limited by the associated rise in junction  
temperature. The maximum safe junction temperature for  
plastic encapsulated devices is determined by the glass  
transition temperature of the plastic, approximately 150°C.  
Exceeding this limit temporarily can cause a shift in parametric  
performance due to a change in the stresses exerted on the die  
by the package. Exceeding a junction temperature of 175°C for  
an extended period can result in device failure.  
Supply Voltage  
13.2 V  
VS  
2.5 V  
Observe Power  
Derating Curves  
−65°C to +150°C  
−40°C to +125°C  
300°C  
Input Voltage (Common Mode)  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range N, R  
Operating Temperature Range (A Grade)  
Lead Temperature (Soldering 10 sec)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
While the AD8055/AD8056 are internally short-circuit  
protected, this may not be sufficient to guarantee that the  
maximum junction temperature (150°C) is not exceeded under  
all conditions. To ensure proper operation, it is necessary to  
observe the maximum power derating curves.  
2.5  
2.0  
PDIP-8  
SOIC-8  
1.5  
1.0  
MSOP-8  
0.5  
SOT-23-5  
0
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
AMBIENT TEMPERATURE (°C)  
Figure 5. Plot of Maximum Power Dissipation vs.  
Temperature for AD8055/AD8056  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. J | Page 5 of 16  
AD8055/AD8056  
TYPICAL PERFORMANCE CHARACTERISTICS  
0V  
0V  
20mV  
5ns  
1V  
5ns  
Figure 6. Small Step Response, G = +1 (See Figure 34)  
Figure 9. Large Step Response, G = −1 (See Figure 35)  
5
4
3
2
1
0
V
= 100mV p-p  
OUT  
L
R
C
R
= 100Ω  
V
V
OUT  
IN  
50Ω  
G = +1  
F
C
R
R
= 0Ω  
R
F
R
R
L
G
= 100Ω  
G = +2  
= 402Ω  
R
F
0V  
–1  
–2  
–3  
–4  
–5  
G = +10  
F
R
= 909Ω  
G = +5  
1V  
5ns  
R
= 1000Ω  
F
0.3M  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 7. Large Step Response, G = +1 (See Figure 34)  
Figure 10. Small Signal Frequency Response, G = +1, G = +2, G = +5, G = +10  
5
V
R
= 2V p-p  
OUT  
L
= 100  
4
3
2
G = +1  
= 0Ω  
1
R
F
0V  
0
G = +2  
R = 402Ω  
F
–1  
–2  
–3  
G = +10  
= 909Ω  
R
F
G = +5  
F
20mV  
5ns  
–4  
–5  
R
= 1000Ω  
0.3M  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 8. Small Step Response, G = −1 (See Figure 35)  
Figure 11. Large Signal Frequency Response, G = +1, G = +2, G = +5, G = +10  
Rev. J | Page 6 of 16  
AD8055/AD8056  
–40  
–50  
–60  
–70  
–80  
–90  
0.5  
0.4  
V
= 100mV  
OUT  
G = +2  
R
R
= 100  
= 402Ω  
G = +2  
= 1kΩ  
L
F
0.3  
R
L
0.2  
0.1  
0
SECOND  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
THIRD  
0
0.4  
0.8 1.2  
1.6 2.0  
2.4 2.8  
3.2 3.6  
4.0  
0.3M  
1M  
10M  
100M  
1G  
V
(V p-p)  
FREQUENCY (Hz)  
OUT  
Figure 12. 0.1 dB Flatness  
Figure 15. Distortion vs. VOUT @ 20 MHz  
–50  
–60  
10  
9
8
7
6
5
4
3
2
1
0
G = +1  
V
= 2V p-p  
OUT  
R
R
= 100Ω  
L
F
G = +2  
= 100Ω  
= 0Ω  
R
L
SECOND  
–70  
FALL TIME  
–80  
THIRD  
–90  
RISE TIME  
–100  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
0
0.5 1.0 1.5  
2.0 2.5 3.0 3.5  
4.0 4.5 5.0  
V
(V p-p)  
IN  
Figure 13. Harmonic Distortion vs. Frequency  
Figure 16. Rise Time and Fall Time vs. VIN  
10  
9
8
7
6
5
4
3
2
1
0
–50  
–60  
G = +1  
L
F
R
R
= 1kΩ  
= 0Ω  
V
= 2V p-p  
OUT  
G = +2  
= 1kΩ  
R
L
–70  
FALL TIME  
–80  
SECOND  
–90  
RISE TIME  
THIRD  
0
0.5 1.0 1.5  
2.0 2.5 3.0 3.5  
V
4.0 4.5 5.0  
–100  
(V p-p)  
10k  
100k  
1M  
10M  
100M  
IN  
FREQUENCY (Hz)  
Figure 17. Rise Time and Fall Time vs. VIN  
Figure 14. Harmonic Distortion vs. Frequency  
Rev. J | Page 7 of 16  
AD8055/AD8056  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
V
V
= 0V TO +2V OR  
= 0V TO –2V  
G = +2  
= 402Ω  
OUT  
OUT  
R
F
G = +2  
R
= 100  
L
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–PSRR  
+PSRR  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
10  
20  
30  
40  
50  
60  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
TIME (ns)  
Figure 18. Settling Time  
Figure 21. PSRR vs. Frequency  
10  
9
8
7
6
5
4
3
2
1
0
G = +2  
L
F
V
IN  
R
R
= 100Ω  
= 402Ω  
G = +1  
R
= 100Ω  
L
S
V
= ±5V  
V
OUT  
RISE TIME  
FALL TIME  
1V  
50ns  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
V
(V p-p)  
IN  
Figure 19. Rise Time and Fall Time vs. VIN  
Figure 22. Overload Recovery  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
G = +2  
–20  
–30  
R
R
= 1kΩ  
L
F
V
= 0dBm  
IN  
= 402Ω  
G = +2  
R
R
= 100Ω  
= 402Ω  
L
F
–40  
RISE TIME  
FALL TIME  
–50  
–60  
SIDE 2 DRIVEN  
–70  
–80  
SIDE 1 DRIVEN  
–90  
–100  
–110  
–120  
0
0.2  
0.4  
0.6  
0.8  
(V p-p)  
1.0  
1.2  
1.4  
1.6  
V
IN  
0.1  
1
10  
FREQUENCY (MHz)  
100 200  
Figure 20. Rise Time and Fall Time vs. VIN  
Figure 23. Crosstalk (Output-to-Output) vs. Frequency  
Rev. J | Page 8 of 16  
AD8055/AD8056  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
402Ω  
402Ω  
402Ω  
180  
135  
90  
50Ω  
58Ω  
402Ω  
45  
0
–45  
–90  
10k  
100k  
1M  
10M  
100M  
500M  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
FREQUENCY (Hz)  
Figure 24. CMRR vs. Frequency  
Figure 27. Phase vs. Frequency  
0.04  
0.02  
G = +2  
V
(1V/DIV)  
1 BACK TERMINATED LOAD (150)  
IN  
R
R
= 100Ω  
L
F
S
= 402Ω  
= ±5V  
V
V
(2V/DIV)  
OUT  
0
G = +2  
= 402Ω  
–0.02  
R
F
–0.04  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
IRE  
0.04  
0.02  
1 BACK TERMINATED LOAD (150)  
0
–0.02  
–0.04  
G = +2  
F
50ns  
R
= 402Ω  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
IRE  
Figure 25. Overload Recovery  
Figure 28. Differential Gain and Differential Phase  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.04  
0.02  
4 VIDEO LOADS (37.5)  
R
= 100Ω  
L
0
G = +2  
–0.02  
R
= 402Ω  
F
–0.04  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
IRE  
0.15  
0.10  
4 VIDEO LOADS (37.5)  
0.05  
0
–0.05  
–0.10  
G = +2  
R
= 402Ω  
F
–10  
0.01  
–0.15  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
IRE  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
Figure 26. Open-Loop Gain vs. Frequency  
Figure 29. Differential Gain and Differential Phase  
Rev. J | Page 9 of 16  
AD8055/AD8056  
100  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= ±5V  
S
R
= 1k  
L
R
= 150Ω  
L
R
= 50Ω  
L
1
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M 50M  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 30. Output Swing vs. Temperature  
Figure 32. Current Noise vs. Frequency  
1000  
100  
45  
40  
35  
30  
25  
20  
15  
10  
G = +2  
= 402Ω  
R
F
10  
6nV/ Hz  
5
0
1
10  
–5  
0.01  
100  
1k  
10k  
100k  
1M  
10M 50M  
0.1  
1
10  
100  
500  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 31. Voltage Noise vs. Frequency  
Figure 33. Output Impedance vs. Frequency  
Rev. J | Page 10 of 16  
AD8055/AD8056  
TEST CIRCUITS  
4.7µF  
402  
+V  
S
0.01µF  
4.7µF  
+V  
S
0.001µF  
0.01µF  
HP8130A  
V
IN  
100  
PULSE  
7
0.001µF  
3
2
GENERATOR  
V
OUT  
T
/T = 1ns  
HP8130A  
PULSE  
R
F
6
V
50Ω  
AD8055  
IN  
402Ω  
7
2
3
100Ω  
GENERATOR  
R
4
T
/T = 0.67ns  
4.7µF  
0.01µF  
F
6
57Ω  
AD8055  
V
OUT  
100Ω  
4
4.7µF  
0.01µF  
0.001µF  
–V  
S
0.001µF  
–V  
S
Figure 35. G = −1, RL = 100 Ω  
Figure 34. G = +1, RL = 100 Ω  
Rev. J | Page 11 of 16  
 
 
AD8055/AD8056  
APPLICATIONS  
Between these points, a feedback resistor can be used to close  
the loop. As in the case of a conventional op amp inverting gain  
stage, an input resistor is added to vary the gain.  
FOUR-LINE VIDEO DRIVER  
The AD8055 is a useful low cost circuit for driving up to four  
video lines. For such an application, the amplifier is configured  
for a noninverting gain of 2, as shown in Figure 36. The input  
video source is terminated in 75 ꢀ and is applied to the high  
impedance noninverting input.  
The gain of this circuit from the input to AMP1 output is RF/RI,  
while the gain to the output of AMP2 is −RF /RI. The circuit  
therefore creates a balanced differential output signal from a  
single-ended input. The advantage of this circuit is that the gain  
can be changed by changing a single resistor, while still  
maintaining the balanced differential outputs.  
Each output cable is connected to the op amp output via a 75 ꢀ  
series back termination resistor for proper cable termination.  
The terminating resistors at the other ends of the lines divide  
the output signal by 2, which is compensated for by the gain of 2  
of the op amp stage.  
R
F
402  
+5V  
For a single load, the differential gain error of this circuit was  
measured as 0.01%, with a differential phase error of 0.02°. The  
two load measurements were 0.02% and 0.03°, respectively. For  
four loads, the differential gain error is 0.02%, while the  
differential phase increases to 0.1°.  
0.1µF  
1
10µF  
R
402Ω  
I
8
3
2
V
IN  
49.9Ω  
+V  
AMP1  
OUT  
402Ω  
402Ω  
75  
V
OUT1  
+5V  
402Ω  
402Ω  
75Ω  
402Ω  
AD8056  
75Ω  
0.1µF  
10µF  
10µF  
V
402Ω  
75Ω  
OUT2  
2
7
75Ω  
6
AD8055  
6
5
V
3
4
IN  
49.9Ω  
75Ω  
75Ω  
7
–V  
OUT  
AMP2  
4
V
V
OUT3  
0.1µF  
75Ω  
75Ω  
75Ω  
0.1µF  
10µF  
–5V  
–5V  
OUT4  
Figure 37. Single-Ended-to-Differential Line Driver  
Figure 36. Four-Line Video Driver  
LOW NOISE, LOW POWER PREAMP  
The AD8055 makes a good, low cost, low noise, low power  
preamp. A gain-of-10 preamp can be made with a feedback  
resistor of 909 ꢀ and a gain resistor of 100 ꢀ, as shown in  
Figure 38. The circuit has a −3 dB bandwidth of 20 MHz.  
SINGLE-ENDED-TO-DIFFERENTIAL LINE DRIVER  
Creating differential signals from single-ended signals is  
required for driving balanced, twisted pair cables, differential  
input ADCs, and other applications that require differential  
signals. This can be accomplished by using an inverting and a  
noninverting amplifier stage to create the complementary  
signals.  
909  
+5V  
+
10µF  
0.1µF  
6
100Ω  
2
3
7
The circuit shown in Figure 37 shows how an AD8056 can be  
used to make a single-ended-to-differential converter that offers  
some advantages over the architecture previously mentioned.  
Each op amp is configured for unity gain by the feedback  
resistors from the outputs to the inverting inputs. In addition,  
each output drives the opposite op amp with a gain of −1 by  
means of the crossed resistors. The result of this is that the  
outputs are complementary and there is high gain in the overall  
configuration.  
V
AD8055  
OUT  
4
R
S
0.1µF  
10µF  
–5V  
Figure 38. Low Noise, Low Power Preamp with G = +10 and BW = 20 MHz  
With a low source resistance (< approximately 100 ꢀ), the  
major contributors to the input-referred noise of this circuit are  
the input voltage noise of the amplifier and the noise of the  
100 Ω resistor. These are 6 nV/√Hz and 1.2 nV/√Hz, respectively.  
These values yield a total input referred noise of 6.1 nV/√Hz.  
Feedback techniques similar to a conventional op amp are used  
to control the gain of the circuit. From the noninverting input  
of AMP1 to the output of AMP2 is an inverting gain.  
Rev. J | Page 12 of 16  
 
 
 
AD8055/AD8056  
5
4
POWER DISSIPATION LIMITS  
402Ω  
402Ω  
With a 10 V supply (total VCC − VEE), the quiescent power  
dissipation of the AD8055 in the SOT-23-5 package is 65 mW,  
while the quiescent power dissipation of the AD8056 in the  
MSOP-8 is 120 mW. This translates into a 15.6°C rise above the  
ambient for the SOT-23-5 package and a 24°C rise for the  
MSOP-8 package.  
3
C
= 30pF  
L
C
100Ω  
V
= 0dBm  
L
IN  
2
50Ω  
1
0
C
L
= 20pF  
= 10pF  
–1  
–2  
–3  
–4  
–5  
C
L
The power dissipated under heavy load conditions is  
approximately equal to the supply voltage minus the output  
voltage, times the load current, plus the quiescent power  
previously computed. The total power dissipation is then  
multiplied by the thermal resistance of the package to find the  
temperature rise, above ambient, of the part. The junction  
temperature should be kept below 150°C.  
C
= 0pF  
L
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
Figure 39. Capacitive Load Drive  
In general, to minimize peaking or to ensure the stability for  
larger values of capacitive loads, a small series resistor, RS, can  
be added between the op amp output and the capacitor, CL. For  
the setup depicted in Figure 40, the relationship between RS and  
CL was empirically derived and is shown in Figure 41. RS was  
chosen to produce less than 1 dB of peaking in the frequency  
response. Note also that after a sharp rise, RS quickly settles to  
approximately 25 ꢀ.  
The AD8055 in the SOT-23-5 package can dissipate 270 mW,  
while the AD8056 in the MSOP-8 package can dissipate  
325 mW (at 85°C ambient) without exceeding the maximum  
die temperature. In the case of the AD8056, this is greater than  
1.5 V rms into 50 ꢀ, enough to accommodate a 4 V p-p sine  
wave signal on both outputs simultaneously. However, because  
each output of the AD8055 or AD8056 is capable of supplying  
as much as 110 mA into a short circuit, a continuous short-  
circuit condition will exceed the maximum safe junction  
temperature.  
402Ω  
+5V  
0.1µF  
6
10µF  
RESISTOR SELECTION  
402Ω  
7
2
3
FET PROBE  
Table 3 is a guide for resistor selection for maintaining gain  
flatness vs. frequency for various values of gain.  
R
S
V
AD8055  
OUT  
C
L
4
V
= 0dBm  
IN  
Table 3.  
Gain  
+1  
+2  
+5  
+10  
50Ω  
0.1µF  
10µF  
RF (Ω)  
0
402  
1 k  
RG (Ω)  
−3 dB Bandwidth (MHz)  
–5V  
300  
160  
45  
Figure 40. Setup for RS vs. CL  
402  
249  
100  
40  
35  
30  
25  
20  
15  
10  
5
909  
20  
DRIVING CAPACITIVE LOADS  
When driving a capacitive load, most op amps exhibit peaking  
in the frequency response just before the frequency rolls off.  
Figure 39 shows the responses for an AD8056 running at a gain  
of +2, with an 100 ꢀ load that is shunted by various values of  
capacitance. It can be seen that under these conditions the part  
is still stable with capacitive loads of up to 30 pF.  
0
0
10  
20  
30  
40  
(pF)  
50  
60  
270  
C
L
Figure 41. RS vs. CL  
Rev. J | Page 13 of 16  
 
 
 
 
AD8055/AD8056  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
1
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001-BA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 42. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body (N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 43. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
Rev. J | Page 14 of 16  
AD8055/AD8056  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 44. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
10°  
5°  
0°  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 45. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
Rev. J | Page 15 of 16  
AD8055/AD8056  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
Branding  
AD8055AN  
AD8055ANZ1  
AD8055AR  
AD8055AR-REEL  
AD8055AR-REEL7  
AD8055ARZ1  
AD8055ARZ-REEL1  
AD8055ARZ-REEL71  
AD8055ART-R2  
AD8055ART-REEL  
AD8055ART-REEL7  
AD8055ARTZ-R21  
AD8055ARTZ-REEL71  
AD8056AN  
8-Lead PDIP  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
5-Lead SOT-23, Reel  
5-Lead SOT-23, 13" Tape and Reel  
5-Lead SOT-23, 7" Tape and Reel  
5-Lead SOT-23, Reel  
5-Lead SOT-23, 7" Tape and Reel  
8-Lead PDIP  
H3A  
H3A  
H3A  
H3A  
H072  
AD8056ANZ1  
AD8056AR  
8-Lead PDIP  
8-Lead SOIC_N  
AD8056AR-REEL  
AD8056AR-REEL7  
AD8056ARZ1  
AD8056ARZ-REEL1  
AD8056ARZ-REEL71  
AD8056ARM  
AD8056ARM-REEL  
AD8056ARM-REEL7  
AD8056ARMZ1  
AD8056ARMZ-REEL1  
AD8056ARMZ-REEL71  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
H5A  
H5A  
H5A  
H5A#  
H5A#  
H5A#  
1 Z = Pb-free part, # denotes lead-free product may be top or bottom marked.  
2 Prior to 0542, parts were branded H3A.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C01063-0-2/06(J)  
Rev. J | Page 16 of 16  
 
 
 

相关型号:

AD8055ARTZ-REEL7

Low Cost, 300 MHz Voltage Feedback Amplifiers
ADI

AD8055ARTZ-REEL7

1 CHANNEL, VIDEO AMPLIFIER, PDSO5, LEAD FREE, MO-178AA, SOT-23, 5 PIN
ROCHESTER

AD8055ARZ

Low Cost, 300 MHz Voltage Feedback Amplifiers
ADI

AD8055ARZ

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, LEAD FREE, MS-012AA, SOIC-8
ROCHESTER

AD8055ARZ-REEL

Low Cost, 300 MHz Voltage Feedback Amplifiers
ADI

AD8055ARZ-REEL

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, LEAD FREE, MS-012AA, SOIC-8
ROCHESTER

AD8055ARZ-REEL1

Low Cost, 300 MHz Voltage Feedback Amplifiers
ADI

AD8055ARZ-REEL7

Low Cost, 300 MHz Voltage Feedback Amplifiers
ADI

AD8055ARZ-REEL7

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, LEAD FREE, MS-012AA, SOIC-8
ROCHESTER

AD8055_06

Low Cost, 300 MHz Voltage Feedback Amplifiers
ADI

AD8055_15

Low Cost, 300 MHz Voltage Feedback Amplifiers
ADI

AD8056

Low Cost, 300 MHz Voltage Feedback Amplifiers
ADI