AD8058ARM-REEL [ADI]

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifiers; 低成本,高性能电压反馈型, 325 MHz的放大器
AD8058ARM-REEL
型号: AD8058ARM-REEL
厂家: ADI    ADI
描述:

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifiers
低成本,高性能电压反馈型, 325 MHz的放大器

运算放大器 放大器电路 光电二极管
文件: 总14页 (文件大小:187K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, High Performance  
a
Voltage Feedback, 325 MHz Amplifiers  
AD8057/AD8058  
CONNECTION DIAGRAMS (TOP VIEWS)  
FEATURES  
Low Cost Single (AD8057) and Dual (AD8058)  
High Speed  
325 MHz, –3 dB Bandwidth (G = +1)  
1000 V/s Slew Rate  
Gain Flatness 0.1 dB to 28 MHz  
Low Noise  
7 nV/Hz  
SOT-23-5 (RT-5)  
SO-8 (SOIC)  
AD8057  
1
8
7
6
5
NC  
+V  
NC  
–IN  
+IN  
V
1
2
3
+V  
S
5
4
OUT  
2
3
4
S
–V  
S
V
OUT  
AD8057  
(Not to Scale)  
–V  
S
NC  
–IN  
+IN  
(Not to Scale)  
NC = NO CONNECT  
Low Power  
5.4 mA/Amplifier Typical Supply Current @ +5 V  
Low Distortion  
–85 dBc @ 5 MHz, RL = 1 k⍀  
Wide Supply Range from 3 V to 12 V  
Small Packaging  
RM-8 (SOIC)  
SO-8 (SOIC)  
AD8058  
OUT1  
–IN1  
+IN1  
1
+V  
S
8
7
6
5
2
3
4
OUT2  
–IN2  
+IN2  
AD8057 Available in SOIC-8 and SOT-23-5  
AD8058 Available in SOIC-8 and SOIC  
APPLICATIONS  
Imaging  
DVD/CD  
–V  
S
(Not to Scale)  
Photodiode Preamp  
A-to-D Driver  
Professional Cameras  
Filters  
5
PRODUCT DESCRIPTION  
4
3
The AD8057 (single) and AD8058 (dual) are very high perfor-  
mance amplifiers with a very low cost. The balance between  
cost and performance make them ideal for many applications.  
The AD8057 and AD8058 will reduce the need to qualify a  
variety of specialty amplifiers.  
2
1
G = +1  
G = +2  
0
The AD8057 and AD8058 are voltage feedback amplifiers with  
the bandwidth and slew rate normally found in current feedback  
amplifiers. The AD8057 and AD8058 are low power amplifiers  
having low quiescent current and a wide supply range from 3 V  
to 12 V. They have noise and distortion performance required  
for high-end video systems as well as dc performance param-  
eters rarely found in high speed amplifiers.  
–1  
–2  
–3  
–4  
–5  
G = +5  
G = +10  
1
10  
100  
1000  
The AD8057 and AD8058 are available in standard SOIC  
packaging as well as tiny SOT-23-5 (AD8057) and µSOIC  
(AD8058). These amplifiers are available in the industrial tem-  
perature range of –40°C to +85°C.  
FREQUENCY – MHz  
Figure 1. Small Signal Frequency Response  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
(@ TA = +25؇C, VS = ؎5 V, RL = 100 , RF = 0 , Gain = +1,  
unless otherwise noted)  
AD8057/AD8058–SPECIFICATIONS  
AD8057/AD8058  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VO = 0.2 V p-p  
G = –1, VO = 0.2 V p-p  
G = +1, VO = 2 V p-p  
G = +1, VO = 0.2 V p-p  
G = +1, VO = 2 V Step, RL = 2 kΩ  
G = +1, VO = 4 V Step, RL = 2 kΩ  
G = +2, VO = 2 V Step  
325  
95  
175  
30  
850  
1150  
30  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, VO = 2 V p-p, RL = 150 Ω  
f = 5 MHz, VO = ±2.0 V p-p  
f = 5 MHz, G = +2  
f = 100 kHz  
f = 100 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 1 kΩ  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 1 kΩ  
VIN = 200 mV p-p, G = +1  
–85  
–62  
–68  
–35  
–60  
7
dBc  
dBc  
dB  
dBm  
dB  
nV/Hz  
pA/Hz  
%
SFDR  
Third Order Intercept  
Crosstalk, Output to Output  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
0.7  
0.01  
0.02  
0.15  
0.01  
30  
%
Differential Phase Error  
Degree  
Degree  
ns  
Overload Recovery  
DC PERFORMANCE  
Input Offset Voltage  
1
2.5  
3
0.5  
3.0  
5
mV  
mV  
µV/°C  
µA  
T
MIN–TMAX  
Input Offset Voltage Drift  
Input Bias Current  
2.5  
TMIN–TMAX  
µA  
Input Offset Current  
Open-Loop Gain  
0.75  
±µA  
dB  
dB  
VO = ±2.5 V, RL = 2 kΩ  
VO = ±2.5 V, RL = 150 Ω  
50  
50  
55  
52  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
10  
2
MΩ  
pF  
+Input  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
RL = 1 kΩ  
VCM = ±2.5 V  
–4.0  
48  
+4.0  
+4.0  
±V  
dB  
60  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 2 kΩ  
RL = 150 Ω  
30% Overshoot  
–4.0  
±V  
±V  
pF  
±3.9  
30  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
Quiescent Current for AD8057  
Quiescent Current for AD8058  
Power Supply Rejection Ratio  
±1.5  
±6.0  
6.0  
14.0  
59  
±2.5  
7.5  
15  
V
mA  
mA  
dB  
VS = ±5 V to ±1.5 V  
54  
Specifications subject to change without notice.  
–2–  
REV. A  
AD8057/AD8058  
SPECIFICATIONS (@ TA = +25؇C, VS = +5 V, RL = 100 , RF = 0 , Gain = +1, unless otherwise noted)  
AD8057/AD8058  
Typ  
Parameter  
Conditions  
Min  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VO = 0.2 V p-p  
G = +1, VO = 2 V p-p  
VO = 0.2 V p-p  
G = +1, VO = 2 V Step, RL = 2 kΩ  
G = +2, VO = 2 V Step  
300  
155  
28  
700  
35  
MHz  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = +2  
f = 100 kHz  
f = 100 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 1 kΩ  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 1 kΩ  
–75  
–54  
–60  
7
dBc  
dBc  
dB  
nV/Hz  
pA/Hz  
%
%
Degree  
Degree  
Crosstalk, Output to Output  
Input Voltage Noise  
Input Current Noise  
0.7  
Differential Gain Error  
0.05  
0.05  
0.10  
0.02  
Differential Phase Error  
DC PERFORMANCE  
Input Offset Voltage  
1
2.5  
3
0.5  
3.0  
5
mV  
mV  
µV/°C  
µA  
T
MIN–TMAX  
Input Offset Voltage Drift  
Input Bias Current  
2.5  
TMIN–TMAX  
µA  
Input Offset Current  
Open-Loop Gain  
0.75  
µA  
dB  
dB  
VO = ±1.25 V, RL = 2 kΩ  
VO = ±1.25 V, RL = 150 Ω  
50  
45  
55  
52  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
10  
2
MΩ  
pF  
+Input  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
RL = 1 kΩ  
VCM = ±2.5 V  
0.9 to 3.4  
60  
±V  
dB  
48  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 2 kΩ  
RL = 150 Ω  
30% Overshoot  
0.9 to 4.1  
1.2 to 3.8  
30  
V
V
pF  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
Quiescent Current for AD8057  
Quiescent Current for AD8058  
Power Supply Rejection Ratio  
3.0  
54  
6.0  
5.4  
13.5  
58  
10.0  
7.0  
14  
V
mA  
mA  
dB  
VS = ±2.5 V to ±1.5 V  
Specifications subject to change without notice.  
REV. A  
–3–  
AD8057/AD8058  
ABSOLUTE MAXIMUM RATINGS1  
MAXIMUM POWER DISSIPATION  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 V  
The maximum power that can be safely dissipated by the  
AD8057/AD8058 is limited by the associated rise in junction  
temperature. Exceeding a junction temperature of +175°C for  
an extended period can result in device failure. While the  
AD8057/AD8058 is internally short circuit protected, this may  
not be sufficient to guarantee that the maximum junction tem-  
perature (+150°C) is not exceeded under all conditions.  
Internal Power Dissipation2  
Small Outline Package (R) . . . . . . . . . . . . . . . . . . . . . 0.8 W  
SOT-23-5 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 W  
µSOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 W  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . ±4.0 V  
Output Short Circuit Duration  
. . . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range (R) . . . . . . . . . –65°C to +125°C  
Operating Temperature Range (A Grade) . . –40°C to +85°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . +300°C  
To ensure proper operation, it is necessary to observe the maxi-  
mum power derating curves.  
2.0  
T
= +150؇C  
J
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
8-Lead SOIC Package: θJA = 160°C/W  
5-Lead SOT-23-5 Package: θJA = 240°C/W  
8-Lead µSOIC Package: θJA = 200°C/W  
1.5  
1.0  
0.5  
0
8-LEAD SOIC PACKAGE  
SOIC  
SOT-23-5  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE – ؇C  
Figure 2. Plot of Maximum Power Dissipation vs.  
Temperature  
ORDERING GUIDE  
Temperature  
Range  
Package  
Descriptions  
Package  
Options  
Model  
Brand Code  
AD8057AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Narrow Body SOIC  
Die  
8-Lead SOIC, 13" Reel  
8-Lead SOIC, 7" Reel  
5-Lead SOT-23, 13" Reel  
5-Lead SOT-23, 7" Reel  
SO-8  
Waffle Pak  
SO-8  
SO-8  
RT-5  
Standard  
N/A  
Standard  
Standard  
H7A  
AD8057ACHIPS  
AD8057AR-REEL  
AD8057AR-REEL7  
AD8057ART-REEL  
AD8057ART-REEL7  
RT-5  
H7A  
AD8058AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Narrow Body SOIC  
Die  
8-Lead SOIC, 13" Reel  
8-Lead SOIC, 7" Reel  
8-Lead µSOIC  
8-Lead µSOIC, 13" Reel  
8-Lead µSOIC, 7" Reel  
SO-8  
Waffle Pak  
SO-8  
Standard  
N/A  
Standard  
Standard  
H8A  
H8A  
H8A  
AD8058ACHIPS  
AD8058AR-REEL  
AD8058AR-REEL7  
AD8058ARM  
AD8058ARM-REEL  
AD8058ARM-REEL7  
SO-8  
RM-8  
RM-8  
RM-8  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8057/AD8058 feature proprietary ESD protection circuitry, permanent damage  
may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. A  
Typical Performance Characteristics–  
AD8057/AD8058  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–1.5V SWING R = 150⍀  
L
(+) OUTPUT  
VOLTAGE  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–2.5V SWING R = 150⍀  
L
ABS (–)  
OUTPUT  
–5V SWING R = 150⍀  
L
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 8085  
10  
100  
1k  
LOAD RESISTANCE – ⍀  
10k  
100k  
TEMPERATURE – ؇C  
Figure 6. Negative Output Voltage Swing vs.  
Temperature  
Figure 3. Output Swing vs. Load Resistance  
6
4
2
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
V
@ ؎1.5V  
OS  
–I  
@ ؎1.5V  
SUPPLY  
0
V
@ ؎5V  
OS  
–I  
@ ؎5V  
SUPPLY  
–2  
–4  
–6  
0
–40 –30 –20 –10  
10 20 30 40 50 60 70 80  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 8085  
TEMPERATURE –  
TEMPERATURE – ؇C  
C
Figure 7. VOS vs. Temperature  
Figure 4. –ISUPPLY vs. Temperature  
3.5  
3.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
A
@ ؎5V  
VOL  
+5V SWING R = 150⍀  
L
2.5  
2.0  
1.5  
1.0  
A
@ ؎2.5V  
VOL  
+2.5V SWING R = 150⍀  
L
+1.5V SWING R = 150⍀  
0.5  
0
L
0
–40 –30 –20 –10  
10 20 30 40 50 60 70 80 85  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 8085  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
Figure 8. Open-Loop Gain vs. Temperature  
Figure 5. Positive Output Voltage Swing vs.  
Temperature  
REV. A  
–5–  
–Typical Performance Characteristics  
AD8057/AD8058  
+V  
0.00  
–0.10  
–0.20  
–0.30  
–0.40  
S
4.7F  
0.01F  
0.001F  
HP8130A  
PULSE  
GENERATOR  
V
IN  
V
OUT  
50⍀  
T
/T = 1ns  
R
F
AD8057/58  
4.7F  
0.01F  
0.001F  
1k⍀  
+I @ ؎5V  
B
–0.50  
–0.60  
–0.70  
–0.80  
+I @ ؎2.5V  
B
–I @ ؎2.5V  
B
–I @ ؎5V  
B
+I @ ؎1.5V  
B
–I @ ؎1.5V  
B
–V  
S
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 8085  
TEMPERATURE –  
C
Figure 12. Test Circuit G = +1, RL = 1 kfor Figures 13  
and 14  
Figure 9. Input Bias Current vs. Temperature  
4
100mV  
3
PSRR @ ؎1.5V ؎5V  
20mV/  
DIV  
2
1
0
–100mV  
4ns/DIV  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 8085  
TEMPERATURE –  
C
Figure 13. Small Signal Step Response G = +1, RL = 1 k,  
VS = ±5 V  
Figure 10. PSRR vs. Temperature  
0
–10  
–20  
–30  
–40  
–50  
–60  
5V  
–PSRR V = ؎2.5V  
S
1V/DIV  
+PSRR V = ؎2.5V  
S
–5V  
4ns/DIV  
0.1  
1
10  
FREQUENCY – MHz  
100  
1000  
Figure 14. Large Signal Step Response G = +1, RL = 1 k,  
VS = ±5.0 V  
Figure 11. ±PSRR vs. Frequency  
–6–  
REV. A  
AD8057/AD8058  
5
4
1k⍀  
+V  
S
4.7F  
3
0.01F  
2
0.001F  
1
HP8130A  
PULSE  
V
1k⍀  
IN  
G = +1  
GENERATOR  
0
V
OUT  
50⍀  
T
/T = 1ns  
R
F
AD8057/58  
–1  
–2  
–3  
–4  
–5  
4.7F  
0.01F  
0.001F  
1k⍀  
G = +5  
G = +2  
G = +10  
–V  
S
1
10  
100  
1000  
FREQUENCY – MHz  
Figure 15. Test Circuit G = –1, RL = 1 kfor Figures 16  
and 17  
Figure 18. Small Signal Frequency Response,  
OUT = 0.2 V p-p  
V
5
100mV  
4
3
2
1
20mV/  
DIV  
G = +1  
0V  
0
G = +5  
–1  
–2  
G = +2  
–3  
–4  
–5  
G = +10  
–100mV  
4ns/DIV  
1
10  
100  
1000  
FREQUENCY – MHz  
Figure 16. Small Signal Step Response G = –1, RL = 1 kΩ  
Figure 19. Large Signal Frequency Response, VOUT = 2 V p-p  
5
4
3
2
5V  
1V/DIV  
1
G = –2  
G = –1  
0
–1  
–2  
–3  
–4  
–5  
G = –5  
G = –10  
10  
–5V  
4ns/DIV  
1
100  
FREQUENCY – MHz  
1000  
Figure 17. Large Signal Step Response G = –1, RL = 1 kΩ  
Figure 20. Large Signal Frequency Response  
REV. A  
–7–  
AD8057/AD8058  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.5  
V
= 0.2V  
OUT  
0.4  
G = +2  
R
R
= 1.0k⍀  
= 1.0k⍀  
L
F
0.3  
0.2  
0.1  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
FALL TIME  
RISE TIME  
–0.5  
1
0
1
2
3
4
10  
100  
1000  
V
– V p-p  
FREQUENCY – MHz  
OUT  
Figure 24. Rise Time and Fall Time vs. VOUT. G = +1,  
Figure 21. 0.1 dB Flatness G = +2  
RL = 1 k, RF = 0 Ω  
–50  
–60  
–70  
–80  
5
4
3
THD  
2ND  
RISE TIME  
3RD  
2
–90  
–100  
–110  
FALL TIME  
1
0
0.1  
1
10  
FREQUENCY – MHz  
100  
0
1
2
3
4
V
– V p-p  
OUT  
Figure 22. Distortion vs. Frequency, RL = 150 Ω  
Figure 25. Rise Time and Fall Time vs. VOUT. G = +2,  
RL = 100 , RF = 402 Ω  
–40  
V
= –1V TO + 1V OR +1V TO –1V  
G = +2  
OUT  
0.4%  
0.3%  
0.2%  
0.1%  
0.0%  
–0.1%  
R
= 100/1k⍀  
L
–50  
20MHz  
–60  
5MHz  
–0.2%  
–0.3%  
–0.4%  
–70  
0
10 20 30 40 50 60  
TIME – ns  
–80  
0.0  
0.4  
0.8  
1.2  
1.6  
V
2.0  
2.4  
2.8  
3.2  
3.6 4.0  
– V p-p  
OUT  
Figure 26. Settling Time  
Figure 23. Distortion vs. VOUT @ 20 MHz, 5 MHz, RL = 150 ,  
VS = ±5.0 V  
–8–  
REV. A  
AD8057/AD8058  
1.8V  
V
= ؎2.5V  
= 1k⍀  
V
= ؎2.5V  
S
L
S
R
R1 = 1k⍀  
G = +4  
OUTPUT SIGNAL 1.7V  
INPUT SIGNAL  
G = +1  
2.5V  
OUTPUT RESPONSE  
500mV/  
DIV  
200mV/  
DIV  
INPUT SIGNAL = 0.6V  
0V  
20ns/DIV  
20ns/DIV  
Figure 27. Input Overload Recovery, VS = ±2.5 V  
Figure 30. Output Overload Recovery, VS = ±2.5 V  
4.5V  
V
= ؎5.0V  
= 1k⍀  
V
= ؎5.0V  
S
L
S
R
R1 = 1k⍀  
G = +4  
G = +1  
INPUT SIGNAL 5V  
5.0V  
1V/DIV  
500mV/  
DIV  
OUTPUT SIGNAL = 4.0V  
0V  
20ns/DIV  
20ns/DIV  
37ns  
Figure 28. Output Overload Recovery, VS = ±5.0 V  
Figure 31. Output Overload Recovery, VS = ±5.0 V  
0
0
–20  
–40  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
SIDE B DRIVEN  
–80  
SIDE A DRIVEN  
–100  
–120  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 29. CMRR vs. Frequency  
Figure 32. Crosstalk (Output-to-Output) vs. Frequency  
REV. A  
–9–  
AD8057/AD8058  
DIFFERENTIAL GAIN (%)  
0.00 –0.00–0.000.01 –0.010.010.010.010.02 –0.030.04  
DIFFERENTIAL GAIN (%)  
0.00 –0.00 0.00 0.00 –0.000.000.000.000.00 –0.000.00  
0.01  
0.00  
0.015  
0.010  
V
R
= +5V  
= 150⍀  
S
V
= ؎5.0V  
= 150⍀  
L
S
L
R
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
0.005  
0.000  
–0.005  
–0.010  
–0.015  
DIFFERENTIAL PHASE (Degrees)  
0.00 0.01 0.03 0.05 0.07 0.09 0.11 0.12 0.12 0.13 0.13  
DIFFERENTIAL PHASE (Degrees)  
0.00 0.00 0.02 0.03 0.05 0.07 0.09 0.10 0.11 0.12 0.13  
0.14  
0.12  
0.10  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
–0.02  
0.08  
0.06  
0.04  
0.02  
0.00  
–0.02  
V
R
= ؎5.0V  
= 150⍀  
S
V
R
= +5V  
= 150⍀  
S
L
L
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
a.  
a.  
DIFFERENTIAL GAIN (%)  
DIFFERENTIAL GAIN (%)  
0.00 0.01 –0.000.01 –0.010.010.020.020.03 –0.040.05  
0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 –0.00 –0.010.01  
0.01  
0.00  
0.015  
0.010  
V
= +5V  
S
V
= ؎5.0V  
= 1k⍀  
S
R
= 1k⍀  
L
R
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
L
0.005  
0.000  
–0.005  
–0.010  
–0.015  
DIFFERENTIAL PHASE (Degrees)  
0.00 –0.00 0.00 0.00 –0.000.00–0.00 –0.000.01 –0.010.02  
DIFFERENTIAL PHASE (Degrees)  
0.00 0.00 0.00 –0.00 –0.00 –0.00 –0.01 –0.010.01 –0.01 –0.01`  
0.14  
0.12  
0.10  
0.14  
0.12  
0.10  
V
= +5V  
S
V
= ؎5.0V  
= 1k⍀  
S
R
= 1k⍀  
L
R
L
0.08  
0.06  
0.04  
0.02  
0.00  
–0.02  
0.08  
0.06  
0.04  
0.02  
0.00  
–0.02  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th  
b.  
b.  
Figure 35. Differential Gain and Differential Phase  
a. RL = 150 , b. RL = 1 kΩ  
Figure 33. Differential Gain and Differential Phase One  
Back Terminated Load (150 ) (Video Op Amps Only)  
100  
10  
1
180  
80  
60  
40  
20  
0
135  
90  
45  
0
–45  
–90  
–20  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY – Hz  
FREQUENCY – MHz  
Figure 36. Voltage Noise vs. Frequency  
Figure 34. Open-Loop Gain and Phase vs. Frequency  
–10–  
REV. A  
AD8057/AD8058  
100  
100  
10  
1
10  
1
0.1  
0.1  
0.1  
1
10  
100  
1000  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – MHz  
FREQUENCY – Hz  
Figure 38. Output Impedance vs. Frequency  
Figure 37. Current Noise vs. Frequency  
APPLICATIONS  
Driving Capacitive Loads  
When driving a capacitive load, most op amps will exhibit over-  
shoot in their pulse response.  
Table I. Recommended Value for Resistors RS, RF, RG vs.  
Capacitive Load, CL, Which Results in 30% Overshoot  
Gain  
RF  
RG  
CL w/RS = 0 CL w/RS = 2.4 ⍀  
1
2
3
4
5
10  
100  
100  
100  
100  
100  
100  
11  
51  
104  
186  
245  
870  
13  
69  
153  
270  
500  
1580  
Figure 39 shows the relationship between the capacitive load that  
results in 30% overshoot and closed loop gain of an AD8058. It can  
be seen that, under the Gain = +2 condition, the device is stable  
with capacitive loads of up to 69 pF.  
100  
50  
33.2  
25  
In general, to minimize peaking or to ensure device stability for  
larger values of capacitive loads, a small series resistor, RS, can  
be added between the op amp output and the load capacitor, CL,  
as shown in Figure 40.  
11  
R
F
+2.5V  
For the setup shown in Figure 40, the relationship between RS  
and CL was empirically derived and is shown in Table I.  
0.1F  
10F  
500  
400  
300  
200  
R
G
FET PROBE  
R
S
V
OUT  
AD8058  
V
= 200mV p-p  
IN  
C
L
50k⍀  
0.1F  
10F  
–2.5V  
Figure 40. Capacitive Load Drive Circuit  
R
= 2.4⍀  
S
100  
0
+ OVERSHOOT  
29.0%  
R
= 0⍀  
S
200mV  
100mV  
1
2
3
4
5
CLOSED-LOOP GAIN  
Figure 39. Capacitive Load Drive vs. Closed-Loop Gain  
–100mV  
–200mV  
100mV  
50ns/DIV  
Figure 41. Typical Pulse Response with CL = 65 pF,  
Gain = +2, and VS = ±2.5 V  
REV. A  
–11–  
AD8057/AD8058  
Video Filter  
Differential A-to-D Driver  
Some composite video signals that are derived from a digital  
source contain some clock feedthrough that can cause problems  
with downstream circuitry. This clock feedthrough is usually at  
27 MHz, which is a standard clock frequency for both NTSC  
and PAL video systems. A filter that passes the video band and  
rejects frequencies at 27 MHz can be used to remove these  
frequencies from the video signal.  
As system supply voltages are dropping, many A-to-D convert-  
ers provide differential analog inputs to increase the dynamic  
range of the input signal, while still operating on a low supply  
voltage. Differential driving can also reduce second and other  
even-order distortion products.  
Analog Devices offers an assortment of 12- and 14-bit high  
speed converters that have differential inputs and can be run  
from a single +5 V supply. These include the AD9220, AD9221,  
AD9223, AD9224 and AD9225 at 12 bits, and the AD9240,  
AD9241, and AD9243 at 14 bits. Although these devices can  
operate over a range of common-mode voltages at their analog  
inputs, they work best when the common-mode voltage at the  
input is at the midsupply or 2.5 V.  
Figure 42 shows a circuit that uses an AD8057 to create a single  
+5 V supply, three-pole Sallen-Key filter. This circuit uses a  
single RC pole in front of a standard two-pole active section. To  
shift the dc operating point to midsupply, ac coupling is pro-  
vided by R4, R5 and C4.  
C2  
Op amp architectures that require upwards of 2 V of headroom  
at the output have significant problems when trying to drive  
such A-to-Ds while operating with a +5 V positive supply. The  
low headroom output design of the AD8057 and AD8058 make  
them ideal for driving these types of A-to-D converters.  
680pF  
R
F
1k⍀  
+5V  
+
0.1F  
10F  
+5V  
R4  
2
3
The AD8058 can be used to make a dc-coupled, single-ended-  
to-differential driver for one of these A-to-Ds. Figure 44 is a  
schematic of such a circuit for driving an AD9225, a 12-bit,  
25 MSPS A-to-D converter.  
7
C4  
6
R1  
200⍀  
R2  
499⍀  
R3  
49.9⍀  
AD8057  
4
10k⍀  
0.1F  
C1  
100pF  
C3  
36pF  
R5  
10k⍀  
1k  
+2.5V  
+
+5V  
10F  
0.1F  
Figure 42. Low-Pass Filter for Video  
+5V  
+
10F  
0.1F  
Figure 43 shows a frequency sweep of this filter. The response is  
down 3 dB at 5.7 MHz, so it passes the video band with little  
attenuation. The rejection at 27 MHz is 42 dB, which provides  
more than a factor of 100 in suppression of the clock compo-  
nents at this frequency.  
8
1k⍀  
1k⍀  
3
2
REF  
50⍀  
1
V
IN  
VINA  
AD8058  
0V  
1k⍀  
AD9225  
10  
0
1k⍀  
1k⍀  
1k⍀  
6
5
50⍀  
7
VINB  
AD8058  
–10  
–20  
4
+
10F  
0.1F  
1k⍀  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–5V  
Figure 44. Schematic Circuit for Driving AD9225  
In this circuit, one of the op amps is configured in the inverting  
mode, while the other is in the noninverting mode. However, to  
provide better bandwidth matching, each op amp is configured  
for a noise gain of 2. The inverting op amp is configured for a  
gain of –1, while the noninverting op amp is configured for a  
gain of +2. Each of these produces a noise gain of 2, which is  
only determined by the inverse of the feedback ratio. The input  
signal to the noninverting op amp is divided by 2 in order to  
normalize its level and make it equal to the inverting output.  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 43. Video Filter Response  
–12–  
REV. A  
AD8057/AD8058  
For zero volts input, the outputs of the op amps want to be at  
2.5 V, which is the midsupply level of the A-to-D. This is ac-  
complished by first taking the 2.5 V reference output of the  
A-to-D and dividing it by two by a pair of 1 kresistors. The  
resulting 1.25 V is applied to each op amp’s positive input. This  
voltage is then multiplied by the gain of 2 of the op amps to  
provide a 2.5 V level at each output.  
this voltage in the negative direction. The inverting stage does  
not have this problem, because its common-mode input voltage  
remains fixed at 1.25 V. If dc-coupling is not required, various  
ac-coupling techniques can be used to eliminate this problem.  
Layout  
The AD8057 and AD8058 are high speed op amps and should  
be used in a board layout that follows standard high speed de-  
sign rules. All the signal traces should be as short and direct as  
possible. In particular, the parasitic capacitance on the inverting  
input of each device should be kept to a minimum to avoid  
excessive peaking and other undesirable performance.  
The assumption for this circuit is that the input signal is bipolar  
with respect to round and the circuit must be dc coupled. This  
implies the existence of a negative supply elsewhere in the system.  
This circuit uses –5 V as the negative supply for the AD8058.  
If the AD8058 negative supply were tied to ground, there would  
be a problem at the input of the noninverting op amp. The  
input common-mode voltage can only go to within 1 V of the  
negative rail. Since this circuit requires that the positive inputs  
operate with a 1.25 V bias, there is not enough room to swing  
The power supplies should be bypassed very close to the power  
pins of the package with 0.1 µF in parallel with a larger, approxi-  
mately 10 µF tantalum capacitor. These capacitors should be  
connected to a ground plane that is either on an inner layer, or  
fills the area of the board that is not used for other signals.  
REV. A  
–13–  
AD8057/AD8058  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead SOIC  
(RM-8)  
8-Lead Narrow Body SOIC  
(SO-8)  
0.122 (3.10)  
0.114 (2.90)  
0.1968 (5.00)  
0.1890 (4.80)  
5
4
8
1
8
1
5
4
0.199 (5.05)  
0.187 (4.75)  
0.1574 (4.00)  
0.1497 (3.80)  
0.122 (3.10)  
0.114 (2.90)  
0.2440 (6.20)  
0.2284 (5.80)  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
x 45°  
0.0098 (0.25)  
0.0040 (0.10)  
0.0256 (0.65) BSC  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
8°  
0°  
0.043 (1.09)  
0.037 (0.94)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.006 (0.15)  
0.002 (0.05)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
33؇  
27؇  
0.018 (0.46)  
0.008 (0.20)  
0.028 (0.71)  
0.016 (0.41)  
0.011 (0.28)  
0.003 (0.08)  
SEATING  
PLANE  
5-Lead Surface Mount (SOT-23)  
(RT-5)  
0.1181 (3.00)  
0.1102 (2.80)  
5
1
4
3
0.1181 (3.00)  
0.1024 (2.60)  
0.0669 (1.70)  
0.0590 (1.50)  
2
PIN 1  
0.0374 (0.95) BSC  
0.0748 (1.90)  
BSC  
0.0079 (0.20)  
0.0031 (0.08)  
0.0512 (1.30)  
0.0354 (0.90)  
0.0571 (1.45)  
0.0374 (0.95)  
10°  
0°  
SEATING  
PLANE  
0.0197 (0.50)  
0.0138 (0.35)  
0.0059 (0.15)  
0.0019 (0.05)  
0.0217 (0.55)  
0.0138 (0.35)  
–14–  
REV. A  

相关型号:

AD8058ARM-REEL7

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifiers
ADI

AD8058ARMZ

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifier
ADI

AD8058ARMZ-REEL

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifier
ADI

AD8058ARMZ-REEL7

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifiers
ADI

AD8058ARZ

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifier
ADI

AD8058ARZ-REEL

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifier
ADI

AD8058ARZ-REEL7

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifiers
ADI

AD8058_15

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifier
ADI

AD805BN

DATA RETIMING PHASE LOCKED LOOP
ADI

AD8061

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8061-EB

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8061AR

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI