AD8062ARMZ-REEL7 [ADI]

IC DUAL OP-AMP, 6000 uV OFFSET-MAX, PDSO8, MO-187AA, MSOP-8, Operational Amplifier;
AD8062ARMZ-REEL7
型号: AD8062ARMZ-REEL7
厂家: ADI    ADI
描述:

IC DUAL OP-AMP, 6000 uV OFFSET-MAX, PDSO8, MO-187AA, MSOP-8, Operational Amplifier

放大器 光电二极管
文件: 总20页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, 300 MHz  
Rail-to-Rail Amplifiers  
AD8061/AD8062/AD8063  
Data Sheet  
FEATURES  
CONNECTION DIAGRAMS  
Low cost  
AD8062  
V
+V  
V
1
2
3
4
8
7
6
5
OUT1  
IN1  
+IN1  
S
Single (AD8061), dual (AD8062)  
Single with disable (AD8063)  
Rail-to-rail output swing  
Low offset voltage: 6 mV  
High speed  
AD8061/  
AD8063  
DISABLE  
1
2
3
4
8
7
6
5
NC  
–IN  
+IN  
(AD8063 ONLY)  
OUT2  
IN2  
+V  
S
V
OUT  
–V  
S
NC  
+IN2  
V  
S
(Not to Scale)  
(Not to Scale)  
300 MHz, −3 dB bandwidth (G = 1)  
650 V/µs slew rate  
NC = NO CONNECT  
Figure 1. 8-Lead SOIC (R)  
Figure 2. 8-Lead SOIC (R)/MSOP (RM)  
8.5 nV/√Hz at 5 V  
AD8063  
AD8061  
35 ns settling time to 0.1% with 1 V step  
Operates on 2.7 V to 8 V supplies  
Input voltage range = −0.2 V to +3.2 V with VS = 5 V  
Excellent video specifications (RL = 150 Ω, G = 2)  
Gain flatness: 0.1 dB to 30 MHz  
0.01% differential gain error  
0.04° differential phase error  
35 ns overload recovery  
V
+V  
S
1
2
3
6
5
4
OUT  
V
5
+V  
S
1
2
3
OUT  
V
DISABLE  
IN  
S
V
S
+IN  
4
IN  
+IN  
(Not to Scale)  
(Not to Scale)  
Figure 3. 6-Lead SOT-23 (RJ)  
Figure 4. 5-Lead SOT-23 (RJ)  
3
0
Low power  
6.8 mA/amplifier typical supply current  
AD8063 400 µA when disabled  
R
= 50Ω  
F
V
= 0.2V p-p  
O
R
= 1kΩ  
R
= 0Ω  
L
F
V
= 1V  
BIAS  
–3  
–6  
APPLICATIONS  
R
F
Imaging  
Photodiode preamps  
Professional video and cameras  
Handsets  
OUT  
IN  
R
L
50Ω  
–9  
DVDs/CDs  
V
BIAS  
Base stations  
Filters  
–12  
1
10  
100  
1k  
ADC drivers  
FREQUENCY (MHz)  
Clock buffers  
Figure 5. Small Signal Response, RF = 0 Ω, 50 Ω  
GENERAL DESCRIPTION  
The AD8061/AD8062/AD8063 are rail-to-rail output voltage  
feedback amplifiers offering ease of use and low cost. They have  
a bandwidth and slew rate typically found in current feedback  
amplifiers. All have a wide input common-mode voltage range  
and output voltage swing, making them easy to use on single  
supplies as low as 2.7 V.  
150 Ω load, along with 0.1 dB flatness out to 30 MHz. Addi-  
tionally, they offer wide bandwidth to 300 MHz along with  
650 V/µs slew rate.  
The AD8061/AD8062/AD8063 offer a typical low power of  
6.8 mA/amplifier, while being capable of delivering up to  
50 mA of load current. The AD8063 has a power-down disable  
feature that reduces the supply current to 400 µA. These features  
make the AD8063 ideal for portable and battery-powered  
applications where size and power are critical.  
Despite being low cost, the AD8061/AD8062/AD8063 provide  
excellent overall performance. For video applications, their  
differential gain and phase errors are 0.01% and 0.04° into a  
Rev. J  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©1999–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD8061/AD8062/AD8063  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Headroom Considerations........................................................ 14  
Overload Behavior and Recovery ............................................ 15  
Capacitive Load Drive ............................................................... 16  
Disable Operation ...................................................................... 16  
Board Layout Considerations ................................................... 16  
Applications Information .............................................................. 17  
Single-Supply Sync Stripper...................................................... 17  
RGB Amplifier............................................................................ 17  
Multiplexer.................................................................................. 18  
Outline Dimensions ....................................................................... 19  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Connection Diagrams...................................................................... 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Maximum Power Dissipation ..................................................... 6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ............................................. 7  
Circuit Description......................................................................... 14  
REVISION HISTORY  
5/13—Rev. I to Rev. J  
Added Output Voltage Swing Parameters; Table 1 ...................... 3  
Added Output Voltage Swing Parameters; Table 2 ...................... 4  
Added Output Voltage Swing Parameters; Table 3 ...................... 5  
Changes to Ordering Guide .......................................................... 20  
5/13—Rev. H to Rev. I  
Changes to Figure 15........................................................................ 8  
Changes to Ordering Guide .......................................................... 20  
1/13—Rev. G to Rev. H  
Changes to Figure 12........................................................................ 7  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 20  
2/10—Rev. F to Rev. G  
Changes to Table 4............................................................................ 6  
11/09—Rev. E to Rev. F  
Changed Input Common-Mode Voltage Range Parameter........ 4  
Updated Outline Dimensions....................................................... 19  
10/07—Rev. D to Rev. E  
Changes to Applications .................................................................. 1  
Updated Outline Dimensions....................................................... 19  
12/05—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Change to Features and General Description............................... 1  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 20  
5/01—Rev. B to Rev. C  
Replaced TPC 9 with new graph .................................................... 7  
11/00—Rev. A to Rev. B  
2/00—Rev. 0 to Rev. A  
11/99—Revision 0: Initial Version  
Rev. J | Page 2 of 20  
 
Data Sheet  
AD8061/AD8062/AD8063  
SPECIFICATIONS  
TA = 25°C, VS = 5 V, RL = 1 kΩ, VO = 1 V, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = 1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = 1, VO = 1 V p-p  
150  
60  
320  
115  
280  
30  
650  
500  
35  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
−3 dB Large Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
G = 1, VO = 0.2 V p-p  
G = 1, VO = 2 V step, RL = 2 kΩ  
G = 2, VO = 2 V step, RL = 2 kΩ  
G = 2, VO = 2 V step  
500  
300  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = 2, AD8062  
f = 100 kHz  
f = 100 kHz  
G = 2, RL = 150 Ω  
G = 2, RL = 150 Ω  
f = 10 MHz  
f = 5 MHz  
−77  
−50  
−90  
8.5  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
%
Degrees  
dBc  
dB  
Crosstalk, Output to Output  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error (NTSC)  
Differential Phase Error (NTSC)  
Third-Order Intercept  
SFDR  
1.2  
0.01  
0.04  
28  
62  
DC PERFORMANCE  
Input Offset Voltage  
1
2
3.5  
3.5  
4
6
6
mV  
mV  
µV/°C  
µA  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
9
9
TMIN to TMAX  
µA  
Input Offset Current  
Open-Loop Gain  
0.3  
70  
90  
4.5 µA  
VO = 0.5 V to 4.5 V, RL = 150 Ω  
VO = 0.5 V to 4.5 V, RL = 2 kΩ  
68  
74  
dB  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing Low  
13  
1
MΩ  
pF  
V
−0.2 to +3.2  
80  
VCM = –0.2 V to +3.2 V  
62  
dB  
RL = 150 Ω  
0.3  
0.1  
V
RL = 2 kΩ  
RL = 150 Ω  
RL = 2 kΩ  
0.25 0.1  
4.75 4.86  
4.85 4.9  
V
V
V
Output Voltage Swing High  
Output Current  
Capacitive Load Drive, VOUT = 0.8 V  
VO = 0.5 V to 4.5 V  
30% overshoot: G = 1, RS = 0 Ω  
G = 2, RS = 4.7 Ω  
25  
50  
25  
300  
mA  
pF  
pF  
POWER-DOWN DISABLE  
Turn-On Time  
Turn-Off Time  
40  
ns  
ns  
V
300  
2.8  
3.2  
DISABLE Voltage (Off)  
DISABLE Voltage (On)  
V
POWER SUPPLY  
Operating Range  
2.7  
72  
5
8
9.5  
V
Quiescent Current per Amplifier  
Supply Current when Disabled (AD8063 Only)  
Power Supply Rejection Ratio  
6.8  
0.4  
80  
mA  
mA  
dB  
∆VS = 2.7 V to 5 V  
Rev. J | Page 3 of 20  
 
AD8061/AD8062/AD8063  
Data Sheet  
TA = 25°C, VS = 3 V, RL = 1 kΩ, VO = 1 V, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min Typ  
Max Unit  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = 1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = 1, VO = 1 V p-p  
150  
60  
300  
115  
250  
30  
280  
230  
40  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
–3 dB Large Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
G = 1, VO = 0.2 V p-p  
G = 1, VO = 1 V step, RL = 2 kΩ  
G = 2, VO = 1.5 V step, RL = 2 kΩ  
G = 2, VO = 1 V step  
190  
180  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = 2  
f = 100 kHz  
f = 100 kHz  
−60  
−44  
−90  
8.5  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
Crosstalk, Output to Output  
Input Voltage Noise  
Input Current Noise  
1.2  
DC PERFORMANCE  
Input Offset Voltage  
1
2
3.5  
3.5  
4
6
6
mV  
mV  
µV/°C  
µA  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
8.5  
8.5  
TMIN to TMAX  
µA  
Input Offset Current  
Open-Loop Gain  
0.3  
70  
90  
4.5 µA  
VO = 0.5 V to 2.5 V, RL = 150 Ω  
VO = 0.5 V to 2.5 V, RL = 2 kΩ  
66  
74  
dB  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing Low  
13  
1
MΩ  
pF  
V
−0.2 to +1.2  
80  
VCM = –0.2 V to +1.2 V  
dB  
RL = 150 Ω  
RL = 2 kΩ  
0.3  
0.3  
0.1  
0.1  
V
V
Output Voltage Swing High  
RL = 150 Ω  
2.85 2.87  
V
RL = 2 kΩ  
2.9  
2.9  
25  
25  
V
Output Current  
Capacitive Load Drive, VOUT = 0.8 V  
VO = 0.5 V to 2.5 V  
30% overshoot, G = 1, RS = 0 Ω  
G = 2, RS = 4.7 Ω  
mA  
pF  
pF  
300  
POWER-DOWN DISABLE  
Turn-On Time  
Turn-Off Time  
40  
ns  
ns  
V
300  
0.8  
1.2  
DISABLE Voltage—Off  
DISABLE Voltage—On  
V
POWER SUPPLY  
Operating Range  
2.7  
72  
3
9
V
Quiescent Current per Amplifier  
Supply Current when Disabled (AD8063 Only)  
Power Supply Rejection Ratio  
6.8  
0.4  
80  
mA  
mA  
dB  
Rev. J | Page 4 of 20  
Data Sheet  
AD8061/AD8062/AD8063  
TA = 25°C, VS = 2.7 V, RL = 1 kΩ, VO = 1 V, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min Typ  
Max Unit  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = 1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = 1, VO = 1 V p-p  
G = 1, VO = 0.2 V p-p, VO dc = 1 V  
G = 1, VO = 0.7 V step, RL = 2 kΩ  
G = 2, VO = 1.5 V step, RL = 2 kΩ  
G = 2, VO = 1 V step  
150  
60  
300  
115  
230  
30  
150  
130  
40  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
110  
95  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = 2  
–60  
–44  
–90  
8.5  
dBc  
dBc  
dBc  
Crosstalk, Output to Output  
Input Voltage Noise  
f = 100 kHz  
nV/√Hz  
Input Current Noise  
f = 100 kHz  
1.2  
pA/√Hz  
DC PERFORMANCE  
Input Offset Voltage  
1
2
3.5  
3.5  
4
6
6
mV  
mV  
µV/°C  
µA  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
TMIN to TMAX  
8.5  
µA  
Input Offset Current  
Open-Loop Gain  
0.3  
70  
90  
4.5 µA  
VO = 0.5 V to 2.2 V, RL = 150 Ω  
VO = 0.5 V to 2.2 V, RL = 2 kΩ  
63  
74  
dB  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing Low  
13  
1
MΩ  
pF  
V
–0.2 to +0.9  
0.8  
VCM = –0.2 V to +0.9 V  
dB  
RL = 150 Ω  
0.3  
0.1  
V
RL = 2 kΩ  
0.25 0.1  
V
Output Voltage Swing High  
RL = 150 Ω  
2.55 2.55  
V
RL = 2 kΩ  
2.6  
2.6  
25  
25  
V
Output Current  
Capacitive Load Drive, VOUT = 0.8 V  
VO = 0.5 V to 2.2 V  
30% overshoot: G = 1, RS = 0 Ω  
G = 2, RS = 4.7 Ω  
mA  
pF  
pF  
300  
POWER-DOWN DISABLE  
Turn-On Time  
Turn-Off Time  
40  
300  
0.5  
ns  
ns  
V
DISABLE  
DISABLE  
Voltage (Off)  
Voltage (On)  
0.9  
V
POWER SUPPLY  
Operating Range  
2.7  
8
V
Quiescent Current per Amplifier  
Supply Current when Disabled (AD8063 Only)  
Power Supply Rejection Ratio  
6.8  
0.4  
80  
8.5  
mA  
mA  
dB  
Rev. J | Page 5 of 20  
AD8061/AD8062/AD8063  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
MAXIMUM POWER DISSIPATION  
The maximum power that can be safely dissipated by the  
AD8061/AD8062/AD8063 is limited by the associated rise in  
junction temperature. The maximum safe junction temperature  
for plastic encapsulated devices is determined by the glass  
transition temperature of the plastic, approximately 150°C.  
Temporarily exceeding this limit may cause a shift in parametric  
performance due to a change in the stresses exerted on the die  
by the package. Exceeding a junction temperature of 175°C for  
an extended period can result in device failure. While the  
AD8061/AD8062/AD8063 is internally short-circuit protected,  
this may not be sufficient to guarantee that the maximum  
junction temperature (150°C) is not exceeded under all  
conditions.  
Parameter  
Rating  
Supply Voltage  
Internal Power Dissipation1  
8-lead SOIC (R)  
5-lead SOT-23 (RJ)  
6-lead SOT-23 (RJ)  
8 V  
0.8 W  
0.5 W  
0.5 W  
0.6 W  
8-lead MSOP (RM)  
Input Voltage (Common-Mode)  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range  
R-8, RM-8, SOT-23-5, SOT-23-6  
(−VS − 0.2 V) to (+VS + 0.2 V)  
VS  
Observe power derating curves  
−65°C to +125°C  
Operating Temperature Range −40°C to +85°C  
Lead Temperature (Soldering,  
10 sec)  
300°C  
To ensure proper operation, it is necessary to observe the  
maximum power derating curves.  
2.0  
1 Specification is for device in free air.  
8-Lead SOIC_N: θJA = 160°C/W; θJC = 56°C/W.  
5-Lead SOT-23: θJA = 240°C/W; θJC = 92°C/W.  
6-Lead SOT-23: θJA = 230°C/W; θJC = 92°C/W.  
8-Lead MSOP: θJA = 200°C/W; θJC = 44°C/W.  
T
= 150°C  
8-LEAD SOIC  
PACKAGE  
J
1.5  
1.0  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
0.5  
0
MSOP  
SOT-23-5, SOT-23-6  
–50 –40 –30  
90  
–20 –10  
0
10 20 30 40 50 60 70 80  
AMBIENT TEMPERATURE (°C)  
Figure 6. Maximum Power Dissipation vs. Temperature for  
AD8061/AD8062/AD8063  
ESD CAUTION  
Rev. J | Page 6 of 20  
 
 
 
 
Data Sheet  
AD8061/AD8062/AD8063  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.2  
3
G = +1  
1.0  
+V  
@ +85°C  
OUT  
0
–3  
–6  
+V  
@ +25°C  
OUT  
0.8  
0.6  
0.4  
0.2  
0
G = +2  
G = +5  
+V  
@ –40°C  
OUT  
–V  
@ –40°C  
OUT  
V
R
= 0.2V p-p  
= 1kΩ  
= 1V  
O
–9  
–V  
OUT  
@ +85°C  
80  
L
V
BIAS  
–V  
@ +25°C  
60  
OUT  
–12  
10  
20  
30  
40  
50  
70  
90  
1
0
10  
100  
1k  
LOAD CURRENT (mA)  
FREQUENCY (MHz)  
Figure 7. Output Saturation Voltage vs. Load Current  
Figure 10. Small Signal Frequency Response  
18  
16  
14  
12  
10  
8
3
V
R
= 1.0V p-p  
= 1kΩ  
= 1V  
O
AD8062  
L
G = +1  
V
BIAS  
0
–3  
–6  
G = +2  
AD8061  
G = +5  
6
4
–9  
2
0
–12  
2
3
4
5
6
7
8
1
10  
100  
1k  
SINGLE POWER SUPPLY (V)  
FREQUENCY (MHz)  
Figure 8. ISUPPLY vs. VSUPPLY  
Figure 11. Large Signal Frequency Response  
3
3
R
= 50Ω  
V
V
= 5V  
= 0.2V p-p  
F
S
O
R
= 1kΩ  
= 1V  
L
0
–3  
–6  
0
–3  
–6  
V
BIAS  
V
R
= 0.2V p-p  
= 1kΩ  
= 1V  
O
R
= 0Ω  
L
F
G = –1  
G = –2  
V
BIAS  
G = –5  
R
F
OUT  
IN  
R
L
50Ω  
–9  
–9  
V
BIAS  
–12  
–12  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Small Signal Response, RF = 0 Ω, 50 Ω  
Figure 12. Small Signal Frequency Response  
Rev. J | Page 7 of 20  
 
AD8061/AD8062/AD8063  
Data Sheet  
0
3
V
V
R
= 5V  
= 1V p-p  
= 1kΩ  
V
= 5V  
S
S
–10  
R
= 1kΩ  
O
L
G = +1  
L
–20  
–30  
0
V
= 1V  
BIAS  
G = –1  
2ND @ 1MHz  
–3  
–40  
–50  
3RD @ 10MHz  
G = –2  
–60  
–70  
–6  
G = –5  
–80  
–90  
–9  
3RD @ 1MHz  
2.5  
INPUT SIGNAL DC BIAS (V)  
2ND @ 10MHz  
–100  
–12  
0.5  
1.0  
3.5  
1.5 2.0  
3.0  
1
10  
100  
1k  
FREQUENCY (MHz)  
Figure 13. Large Signal Frequency Response  
Figure 16. Harmonic Distortion for a 1 V p-p Signal vs. Input Signal DC Bias  
0.1  
0
–40  
604Ω  
V
R
= 0.2V p-p  
= 1kΩ  
= 1V  
V
= 2.7V  
O
S
10µF  
5V  
+
L
V
–50  
BIAS  
0.1µF  
G = +1  
1kΩ  
50Ω  
1MΩ INPUT  
–60  
–70  
52.3Ω  
–0.1  
–0.2  
0.1µF  
1.25V  
+
V
= 5V  
1kΩ  
S
dc  
(R  
)
LOAD  
V
= 3V  
S
–80  
2ND H  
–0.3  
–0.4  
–90  
–100  
–110  
3RD H  
–0.5  
1
10  
100  
1k  
1
50  
0.01  
0.1  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz, START = 10kHz, STOP = 30MHz)  
Figure 14. 0.1 dB Flatness  
Figure 17. Harmonic Distortion for a 1 V p-p Output Signal vs.  
Input Signal DC Bias  
–30  
80  
60  
200  
150  
100  
50  
V
R
= 5V  
= 1kΩ  
S
L
–40  
–50  
G = +5  
= 1V p-p  
V
O
PHASE  
2ND  
3RD  
10MHz  
–60  
40  
GAIN  
0
–70  
20  
–50  
–100  
–150  
–200  
–250  
–300  
–80  
2ND  
–90  
0
3RD  
2ND  
5MHz  
–100  
–110  
–120  
1MHz  
– 20  
3RD  
– 40  
0
1
5
2
3
4
0.01  
0.1  
1
10  
100  
1k  
OUTPUT SIGNAL DC BIAS (V)  
FREQUENCY (MHz)  
Figure 18. Harmonic Distortion vs. Output Signal DC Bias  
Figure 15. AD8062 Open-Loop Gain and Phase vs. Frequency,  
VS = 5 V, RL = 1 kΩ  
Rev. J | Page 8 of 20  
 
 
 
Data Sheet  
AD8061/AD8062/AD8063  
–40  
V
= 5V  
S
R
= R = 1kΩ  
L
F
–50  
2ND @ 10MHz  
G = +2  
0.01  
0
–60  
–70  
–80  
–90  
5V  
+
10µF  
–0.01  
–0.02  
–0.04  
–0.06  
1MΩ  
INPUT  
TO  
0.1µF  
50Ω  
50Ω  
1kΩ  
2ND @ 2MHz  
1kΩ  
1kΩ  
3589A  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
2ND @ 500kHz  
3RD @ 2MHz  
0.02  
0
–100  
–110  
–0.02  
–0.04  
–0.06  
3RD @ 500kHz  
1.0  
3.5  
4.0  
4.5  
1.5  
2.0  
2.5  
3.0  
RTO OUTPUT (V p-p)  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
Figure 19. Harmonic Distortion vs. Output Signal Amplitude  
Figure 22. Differential Gain and Phase Error, G = 2,  
NTSC Input Signal, RL = 1 kΩ, VS = 5 V  
–30  
V
= 5V  
S
R = R = 1kΩ  
I
L
0.010  
0.005  
0
–40  
–50  
–60  
V
= 2V p-p  
O
G = 2  
S1 3RD HARMONIC/  
DUAL ±2.5V SUPPLY  
–0.005  
–0.010  
S1 2ND HARMONIC/  
DUAL ±2.5V SUPPLY  
–70  
–80  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
S1 2ND HARMONIC/  
SINGLE +5V SUPPLY  
0.04  
0.03  
0.02  
0.01  
0
–90  
–100  
–110  
S1 3RD HARMONIC/  
SINGLE +5V SUPPLY  
–0.01  
–0.02  
0.01  
0.1  
1
10  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
FREQUENCY (MHz, START = 10kHz, STOP = 30MHz)  
Figure 23. Differential Gain and Phase Error, G = 2,  
NTSC Input Signal, RL = 150 Ω, VS = 5 V  
Figure 20. Harmonic Distortion vs. Frequency  
1000  
1.0  
V
= 5V  
S
FALLING EDGE  
900  
800  
700  
600  
500  
V
R
= 5V  
= 1kΩ  
R
= 1kΩ  
S
0.9  
0.8  
L
G = +1  
L
G = +1  
0.7  
0.6  
RISING EDGE  
0.5  
0.4  
0.3  
0.2  
0.1  
400  
300  
200  
100  
0
0
1.5  
OUTPUT STEP AMPLITUDE (V)  
3.0  
1.0  
2.0  
2.5  
0
0.1  
0.2  
TIME (µs)  
0.3  
0.4  
0.5  
Figure 24. Slew Rate vs. Output Step Amplitude  
Figure 21. 400 mV Pulse Response  
Rev. J | Page 9 of 20  
AD8061/AD8062/AD8063  
Data Sheet  
1400  
V
= ±2.5V  
S
G = +1  
= 1k  
FALLING EDGE  
V
R
IN  
L
1200  
1000  
800  
V
= ±4V  
S
2.5V  
FALLING EDGE  
= +5V  
V
S
V
OUT  
600  
400  
200  
0
RISING EDGE  
V
= ±4V  
S
0V  
RISING EDGE  
V
= +5V  
S
500mV/DIV  
0
20  
40  
60  
80 100  
120 140 160  
180 200  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
TIME (ns)  
OUTPUT STEP (V)  
Figure 25. Slew Rate vs. Output Step Amplitude, G = 2, RL = 1 kΩ, VS = 5 V  
Figure 28. Input Overload Recovery, Input Step = 0 V to 2 V  
1k  
V
= ±2.5V  
S
G = +5  
= 1k  
V
R
= 5V  
= 1kΩ  
S
R
L
L
V
OUT  
2.5V  
1.0V  
100  
10  
1
V
IN  
0V  
500mV/DIV  
0
20  
40  
60  
80 100  
120 140 160  
180 200  
10  
100  
1k  
10k  
100k  
1M  
10M  
TIME (ns)  
FREQUENCY (Hz)  
Figure 26. Voltage Noise vs. Frequency  
Figure 29. Output Overload Recovery, Input Step = 0 V to 1 V  
100  
10  
1
0
V
= 0.2V p-p  
CM  
= 100  
V
R
= 5V  
= 1kΩ  
–10  
–20  
–30  
S
R
V
L
L
=
±2.5V  
SIDE 2  
S
SIDE 1  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
604  
604  
50  
V
154  
IN  
200mV p-p  
154  
57.6  
0
10  
10M  
100  
1k  
10k  
100k  
1M  
0.01  
0.1  
1
10  
100  
500  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 27. Current Noise vs. Frequency  
Figure 30. CMRR vs. Frequency  
Rev. J | Page 10 of 20  
Data Sheet  
AD8061/AD8062/AD8063  
7
6
5
4
3
2
1
0
0
ΔV = 0.2V p-p  
S
V
= 5V  
S
R
V
= 1kΩ  
= 5V  
–10  
–20  
–30  
–40  
L
S
PSRR  
+PSRR  
–50  
–60  
–70  
–80  
–90  
–100  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0.01  
0.1  
1
10  
100  
500  
5.0  
DISABLE VOLTAGE  
FREQUENCY (MHz)  
Figure 31. PSRR vs. Frequency Delta  
DISABLE  
Figure 34. AD8063  
Voltage vs. Supply Current  
6
–20  
–30  
V
= 5V  
S
1kΩ  
50Ω  
1kΩ  
G = +2  
f = 10MHz  
IN  
V
5
4
+2.5V  
DISABLE  
@ 1.3V  
–40  
BIAS  
= 100Ω  
R
L
OUT  
1kΩ  
–50  
IN  
–60  
–2.5V  
3
–70  
INPUT = SIDE 2  
INPUT = SIDE 1  
2
–80  
–90  
V
V
R
= 5V  
1
S
= 400mV rms  
= 1kΩ  
IN  
–100  
–110  
–120  
L
0
G = +2  
V
OUT  
–1  
0.1  
1
10  
100  
500  
0.01  
0
0.4  
0.8  
1.2  
1.6  
2.0  
FREQUENCY (MHz)  
TIME (µs)  
Figure 32. AD8062 Crosstalk, VOUT = 2.0 V p-p, RL = 1 kΩ, G = 2, VS = 5 V  
DISABLE  
Figure 35. AD8063  
Function, Voltage = 0 V to 5 V  
0
1k  
V
V
R
= 5V  
= 0.2V p-p  
= 1kΩ  
S
V
V
R
= 5V  
S
O
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
= 0.2V p-p  
= 1kΩ  
= 1V  
O
L
L
V
= 1V  
BIAS  
100  
10  
V
BIAS  
1
0.1  
0.01  
1
10  
100  
1k  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1k  
FREQUENCY (MHz)  
Figure 33. AD8063 Disabled Output Isolation Frequency Response  
Figure 36. Output Impedance vs. Frequency,  
OUT = 0.2 V p-p, RL = 1 kΩ, VS = 5 V  
V
Rev. J | Page 11 of 20  
 
 
 
AD8061/AD8062/AD8063  
Data Sheet  
V
R
= 5V  
= 1kΩ  
V
= 5V  
S
S
G = +2  
L
R
= 1kΩ  
L
V
= 1V p-p  
IN  
3.5V  
2.5V  
1.5V  
+0.1%  
–0.1%  
1kΩ  
1kΩ  
R
= 1kΩ  
L
50Ω  
500mV/DIV  
10 20  
t = 0  
0
30  
40  
50  
60  
70  
80  
90  
100  
20ns/DIV  
TIME (ns)  
Figure 37. Output Settling Time to 0.1%  
Figure 40. 1 V Step Response  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 5V  
S
FALLING EDGE  
G = +2  
R
V
= 1kΩ  
L
2.6V  
= 100mV  
IN  
RISING EDGE  
2.5V  
2.4V  
V
R
= 5V  
= 1kΩ  
S
L
G = +1  
20mV/DIV  
0
0.5  
1.0  
1.5  
OUTPUT VOLTAGE STEP  
2.0  
2.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME (ns)  
Figure 38. Settling Time vs. VOUT  
Figure 41. 100 mV Step Response  
V
= 5V  
S
V
= 5V  
S
G = –1  
R
R
G = +2  
R
V
= 1kΩ  
= 1kΩ  
F
L
= R = 1kΩ  
F
L
= 4V p-p  
IN  
4.86V  
2.43V  
0V  
0V  
1V  
2µs  
2µs/DIV  
1V/DIV  
Figure 39. Output Swing  
Figure 42. Output Rail-to-Rail Swing  
Rev. J | Page 12 of 20  
Data Sheet  
AD8061/AD8062/AD8063  
V
= 5V  
S
V
= 5V  
S
G = +2  
R
V
G = +1  
R
= R = 1kΩ  
L
F
= 1kΩ  
L
= 2V p-p  
IN  
2.6V  
2.5V  
2.4V  
4.5V  
2.5V  
0.5V  
50mV/DIV  
10  
1V/DIV  
5
0
5
15  
20  
25  
30  
35  
40  
45  
50  
0
10  
15  
20  
25  
30  
35  
40  
45  
50  
TIME (ns)  
TIME (ns)  
Figure 43. 200 mV Step Response  
Figure 44. 2 V Step Response  
Rev. J | Page 13 of 20  
AD8061/AD8062/AD8063  
Data Sheet  
CIRCUIT DESCRIPTION  
The AD8061/AD8062/AD8063 family is comprised of high  
speed voltage feedback op amps. The high slew rate input stage  
is a true, single-supply topology, capable of sensing signals at or  
below the minus supply rail. The rail-to-rail output stage can  
pull within 30 mV of either supply rail when driving light loads  
and within 0.3 V when driving 150 Ω. High speed perform-  
ance is maintained at supply voltages as low as 2.7 V.  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–2.4  
–2.8  
–3.2  
–3.6  
–4.0  
HEADROOM CONSIDERATIONS  
These amplifiers are designed for use in low voltage systems.  
To obtain optimum performance, it is useful to understand the  
behavior of the amplifier as input and output signals approach  
the amplifiers headroom limits.  
–0.5  
0
0.5  
1.0  
1.5  
V
2.0  
(V)  
2.5  
3.0  
3.5  
4.0  
CM  
The AD8061/AD8062/AD8063 input common-mode voltage  
range extends from the negative supply voltage (actually 200 mV  
below this), or ground for single-supply operation, to within  
1.8 V of the positive supply voltage. Thus, at a gain of 2, the  
AD8061/AD8062/AD8063 can provide full rail-to-rail output  
swing for supply voltage as low as 3.6 V, assuming the input  
signal swings from −VS (or ground) to +VS/2. At a gain of 3,  
the AD8061/AD8062/AD8063 can provide a rail-to-rail output  
range down to 2.7 V total supply voltage.  
Figure 45. VOS vs. Common-Mode Voltage, VS = 5 V  
2
0
V
V
V
V
V
= 3.0  
CM  
CM  
CM  
CM  
CM  
= 3.1  
= 3.2  
= 3.3  
= 3.4  
–2  
–4  
–6  
–8  
Exceeding the headroom limit is not a concern for any inverting  
gain on any supply voltage, as long as the reference voltage at  
the amplifiers positive input lies within the amplifiers input  
common-mode range.  
The input stage is the headroom limit for signals when the  
amplifier is used in a gain of 1 for signals approaching the  
positive rail. Figure 45 shows a typical offset voltage vs. input  
common-mode voltage for the AD8061/AD8062/AD8063  
amplifier on a 5 V supply. Accurate dc performance is main-  
tained from approximately 200 mV below the minus supply  
to within 1.8 V of the positive supply. For high speed signals,  
however, there are other considerations. Figure 46 shows −3 dB  
bandwidth vs. dc input voltage for a unity-gain follower. As  
the common-mode voltage approaches the positive supply,  
the amplifier holds together well, but the bandwidth begins to  
drop at 1.9 V within +VS.  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (MHz)  
Figure 46. Unity-Gain Follower Bandwidth vs. Input Common Mode, VS = 5 V  
Higher frequency signals require more headroom than lower  
frequencies to maintain distortion performance. Figure 47  
illustrates how the rising edge settling time for the amplifier  
configured as a unity-gain follower stretches out as the top of  
a 1 V step input approaches and exceeds the specified input  
common-mode voltage limit.  
For signals approaching the minus supply and inverting gain  
and high positive gain configurations, the headroom limit is  
the output stage. The AD8061/AD8062/AD8063 amplifiers use  
a common emitter style output stage. This output stage  
maximizes the available output range, limited by the saturation  
voltage of the output transistors. The saturation voltage  
increases with the drive current the output transistor is required  
to supply, due to the output transistors’ collector resistance. The  
saturation voltage is estimated using the equation  
This manifests itself in increased distortion or settling time.  
Figure 16 plots the distortion of a 1 V p-p signal with the  
AD8061/AD8062/AD8063 amplifier used as a follower on  
a 5 V supply vs. signal common-mode voltage. Distortion  
performance is maintained until the input signal center voltage  
gets beyond 2.5 V, as the peak of the input sine wave begins to  
run into the upper common-mode voltage limit.  
V
SAT = 25 mV + IO × 8 Ω  
where:  
IO is the output current.  
8 Ω is a typical value for the output transistors’ collector  
resistance.  
Rev. J | Page 14 of 20  
 
 
 
 
Data Sheet  
AD8061/AD8062/AD8063  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
VOLTAGE STEP  
FROM 2.4V TO 3.4V  
2V TO 3V STEP  
2.1V TO 3.1V STEP  
VOLTAGE STEP  
FROM 2.4V TO 3.6V  
2.2V TO 3.2V STEP  
2.3V TO 3.3V STEP  
VOLTAGE STEP  
FROM 2.4V TO 3.8V,  
4V AND 5V  
2.4V TO 3.4V STEP  
0
100  
200  
300  
400  
500  
600  
0
4
8
12  
16  
20  
24  
28  
32  
TIME (ns)  
TIME (ns)  
Figure 48. Pulse Response for G = 1 Follower,  
Input Step Overloading the Input Stage  
Figure 47. Output Rising Edge for 1 V Step at  
Input Headroom Limits, G = 1, VS = 5 V, 0 V  
Output  
As the saturation point of the output stage is approached, the  
output signal shows increasing amounts of compression and  
clipping. As in the input headroom case, the higher frequency  
signals require a bit more headroom than lower frequency  
signals. Figure 16, Figure 17, and Figure 18 illustrate this point,  
plotting typical distortion vs. output amplitude and bias for  
gains of 2 and 5.  
Output overload recovery is typically within 40 ns after the  
amplifiers input is brought to a nonoverloading value. Figure 49  
shows output recovery transients for the amplifier recovering  
from a saturated output from the top and bottom supplies to a  
point at midsupply.  
5.0  
4.6  
OVERLOAD BEHAVIOR AND RECOVERY  
Input  
OUTPUT VOLTAGE  
4.2  
5V TO 2.5V  
3.8  
OUTPUT VOLTAGE  
3.4  
The specified input common-mode voltage of the AD8061/  
AD8062/AD8063 is −200 mV below the negative supply to  
within 1.8 V of the positive supply. Exceeding the top limit  
results in lower bandwidth and increased settling time as seen  
in Figure 46 and Figure 47. Pushing the input voltage of a unity-  
gain follower beyond 1.6 V within the positive supply leads to  
the behavior shown in Figure 48—an increasing amount of  
output error and much increased settling time. Recovery time  
from input voltages 1.6 V or closer to the positive supply is  
approximately 35 ns, which is limited by the settling artifacts  
caused by transistors in the input stage coming out of saturation.  
0V TO 2.5V  
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
INPUT VOLTAGE  
EDGES  
R
5V  
R
V
IN  
2.5V  
V
O
0.6  
0.2  
–0.2  
0
10  
20  
30  
40  
TIME (ns)  
50  
60  
70  
Figure 49. Overload Recovery, G = −1, VS = 5 V  
The AD8061/AD8062/AD8063 family does not exhibit phase  
reversal, even for input voltages beyond the voltage supply rails.  
Going more than 0.6 V beyond the power supplies turns on  
protection diodes at the input stage, which greatly increases the  
current draw of the device.  
Rev. J | Page 15 of 20  
 
 
 
 
AD8061/AD8062/AD8063  
Data Sheet  
CAPACITIVE LOAD DRIVE  
DISABLE OPERATION  
The AD8061/AD8062/AD8063 family is optimized for  
bandwidth and speed, not for driving capacitive loads. Output  
capacitance creates a pole in the amplifiers feedback path,  
leading to excessive peaking and potential oscillation. If dealing  
with load capacitance is a requirement of the application, the  
two strategies to consider are as follows:  
The internal circuit for the AD8063 disable function is shown  
DISABLE  
from the positive supply, the supply current decreases from  
typically 6.5 mA to under 400 µA, and the AD8063 output  
in Figure 52. When the  
node is pulled below 2 V  
DISABLE  
enters a high impedance state. If the  
node is not  
connected and allowed to float, the AD8063 stays biased at  
full power.  
Use a small resistor in series with the amplifier’s output and the  
load capacitance.  
VCC  
Reduce the bandwidth of the amplifiers feedback loop by  
increasing the overall noise gain.  
2V  
TO AMPLIFIER  
BIAS  
Figure 50 shows a unity-gain follower using the series resistor  
strategy. The resistor isolates the output from the capacitance  
and, more importantly, creates a zero in the feedback path that  
compensates for the pole created by the output capacitance.  
DISABLE  
VEE  
R
Figure 52. Disable Circuit of the AD8063  
SERIES  
V
AD8061  
O
C
DISABLE  
LOAD  
Figure 34 shows the AD8063 supply current vs.  
voltage. Figure 35 plots the output seen when the AD8063 input  
DISABLE  
V
IN  
Figure 50. Series Resistor Isolating Capacitive Load  
is driven with a 10 MHz sine wave, and  
is toggled  
from 0 V to 5 V, illustrating the parts turn-on and turn-off  
time. Figure 33 shows the input/output isolation response with  
the AD8063 shut off.  
Voltage feedback amplifiers like those in the AD8061/AD8062/  
AD8063 family are able to drive more capacitive load without  
excessive peaking when used in higher gain configurations  
because the increased noise gain reduces the bandwidth of the  
overall feedback loop. Figure 51 plots the capacitance that  
produces 30% overshoot vs. noise gain for a typical amplifier.  
10k  
BOARD LAYOUT CONSIDERATIONS  
Maintaining the high speed performance of the AD8061/AD8062/  
AD8063 family requires the use of high speed board layout  
techniques and low parasitic components.  
The PCB should have a ground plane covering unused portions  
of the component side of the board to provide a low impedance  
path. Remove the ground plane near the package to reduce  
parasitic capacitance.  
R
= 4.7  
S
1k  
100  
10  
Proper bypassing is critical. Use a ceramic 0.1 µF chip capacitor  
to bypass both supplies. Locate the chip capacitor within 3 mm  
of each power pin. Additionally, connect in parallel a 4.7 µF to  
10 µF tantalum electrolytic capacitor to provide charge for fast,  
large signal changes at the output.  
R
= 0  
S
Minimizing parasitic capacitance at the amplifiers inverting  
input pin is very important. Locate the feedback resistor close to  
the inverting input pin. The value of the feedback resistor may  
come into play—for instance, 1 kΩ interacting with 1 pF of  
parasitic capacitance creates a pole at 159 MHz. Use stripline  
design techniques for signal traces longer than 25 mm. Design  
them with either 50 Ω or 75 Ω characteristic impedance and  
proper termination at each end.  
1
2
3
4
5
CLOSED-LOOP GAIN  
Figure 51. Capacitive Load vs. Closed-Loop Gain  
Rev. J | Page 16 of 20  
 
 
 
 
 
 
Data Sheet  
AD8061/AD8062/AD8063  
APPLICATIONS INFORMATION  
The circuit can be modified to provide the sync stripping  
function for such a waveform. Instead of connecting RG to  
ground, connect it to a dc voltage that is two times the black  
level of the input signal. The gain from the noninverting input  
to the output is 2, which means the black level is amplified by 2  
to the output. However, the gain through RG is −1 to the output.  
It takes a dc level of twice the input black level to shift the black  
level to ground at the output. When this occurs, the sync is  
stripped, and the active video is passed as in the ground-  
referenced case.  
SINGLE-SUPPLY SYNC STRIPPER  
When a video signal contains synchronization pulses, it is  
sometimes desirable to remove them prior to performing  
certain operations. In the case of analog-to-digital conversion,  
the sync pulses consume some of the dynamic range, so  
removing them increases the converters available dynamic  
range for the video information.  
Figure 53 shows a basic circuit for creating a sync stripper using  
the AD8061 powered by a single supply. When the negative  
supply is at ground potential, the lowest potential to which the  
output can go is ground. This feature is exploited to create a  
waveform whose lowest amplitude is the black level of the video  
and does not include the sync level.  
RED  
DAC  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
MONITOR  
#1  
GREEN  
DAC  
3V  
BLUE  
DAC  
0.1µF  
6
10µF  
7
3
2
VIDEO IN  
1kΩ  
75Ω  
VIDEO OUT  
75Ω  
AD8061  
3V  
75Ω  
R
4
F
1kΩ  
0.1µF  
6
10µF  
7
R
1kΩ  
G
1kΩ  
2
3
PIN NUMBERS ARE  
FOR 8-LEAD PACKAGE  
75Ω  
RED  
75Ω  
AD8061  
4
Figure 53. Single 3 V Sync Stripper Using AD8061  
1kΩ  
In this case, the input video signal has its black level at ground,  
so it comes out at ground at the input. Because the sync level is  
below the black level, it does not show up at the output. However,  
all of the active video portion of the waveform is amplified by a  
gain of 2 and then normalized to unity gain by the back-  
terminated transmission line. Figure 54 is an oscilloscope plot  
of the input and output waveforms.  
3V  
8
MONITOR  
#2  
0.1µF  
10µF  
1
1kΩ  
1kΩ  
2
75Ω  
75Ω  
GREEN  
AD8062  
3
5
75Ω  
BLUE  
7
1
AD8062  
75Ω  
6
INPUT  
4
1kΩ  
Figure 55. RGB Cable Driver Using AD8061 and AD8062  
2
RGB AMPLIFIER  
Most RGB graphics signals are created by video DAC outputs  
that drive a current through a resistor to ground. At the video  
black level, the current goes to zero, and the voltage of the video  
is also zero. Before the availability of high speed rail-to-rail op  
amps, it was essential that an amplifier have a negative supply  
to amplify such a signal. Such an amplifier is necessary if one  
wants to drive a second monitor from the same DAC outputs.  
OUTPUT  
10µs  
500mV  
Figure 54. Input and Output Waveforms for a Single-Supply  
Video Sync Stripper Using an AD8061  
Some video signals with sync are derived from single-supply  
devices, such as video DACs. These signals can contain sync,  
but the whole waveform is positive, and the black level is not  
at ground but at a positive voltage.  
However, high speed, rail-to-rail output amplifiers like the  
AD8061 and AD8062 accept ground-level input signals and  
output ground-level signals. They are used as RGB signal  
amplifiers. A combination of the AD8061 (single) and the  
AD8062 (dual) amplifies the three video channels of an RGB  
system. Figure 55 shows a circuit that performs this function.  
Rev. J | Page 17 of 20  
 
 
 
 
 
 
AD8061/AD8062/AD8063  
Data Sheet  
The select signal and the output waveforms for this circuit are  
shown in Figure 57. For synchronization clarity, two different  
frequency synthesizers, whose time bases are locked to each  
other, generate the signals.  
MULTIPLEXER  
The AD8063 has a disable pin used to power down the ampli-  
fier to save power or to create a mux circuit. If two (or more)  
AD8063 outputs are connected together, and only one is enabled,  
then only the signal of the enabled amplifier will appear at the  
output. This configuration is used to select from various input  
signal sources. Additionally, the same input signal is applied to  
different gain stages, or differently tuned filters, to make a gain-  
step amplifier or a selectable frequency amplifier.  
2µs  
OUTPUT  
Figure 56 shows a schematic of two AD8063 devices used to  
create a mux that selects between two inputs. One of these is a  
1 V p-p, 3 MHz sine wave; the other is a 2 V p-p, 1 MHz sine wave.  
+4V  
SELECT  
0.1µF  
1
10µF  
1V  
2V  
TIME  
BASE  
OUT  
49.9Ω  
AD8063  
Figure 57. AD8063 Mux Output  
1V p-p  
3MHz  
0.1µF  
10µF  
–4V  
+4V  
1kΩ  
V
49.9Ω  
OUT  
1kΩ  
49.9Ω  
0.1µF  
1
10µF  
10µF  
49.9Ω  
AD8063  
4V  
2V p-p  
1MHz  
TIME  
BASE  
IN  
0.1µF  
1kΩ  
1kΩ  
HCO4  
SELECT  
Figure 56. Two-to-One Multiplexer Using Two AD8063s  
Rev. J | Page 18 of 20  
 
 
 
Data Sheet  
AD8061/AD8062/AD8063  
OUTLINE DIMENSIONS  
3.00  
2.90  
2.80  
5
1
4
3
5.00 (0.1968)  
4.80 (0.1890)  
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.95 BSC  
1.90  
BSC  
0.50 (0.0196)  
45°  
1.27 (0.0500)  
BSC  
1.30  
1.15  
0.90  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0099)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.55  
0.45  
0.35  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.35 MIN  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 58. 5-Lead Small Outline Transistor Package [SOT-23]  
Figure 59. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
(RJ-5)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
3.00  
2.90  
2.80  
3.20  
3.00  
2.80  
6
1
5
2
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
PIN 1  
IDENTIFIER  
1.30  
1.15  
0.90  
0.65 BSC  
0.95  
0.85  
0.75  
0.20 MAX  
0.08 MIN  
15° MAX  
1.45 MAX  
0.95 MIN  
1.10 MAX  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
4°  
0°  
0.80  
0.55  
0.40  
0.15  
0.05  
SEATING  
PLANE  
0.23  
0.09  
0.60  
BSC  
6°  
0°  
0.50 MAX  
0.30 MIN  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-178-AB  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 60. 6-Lead Small Outline Transistor Package [SOT-23]  
Figure 61. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
(RJ-6)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
Rev. J | Page 19 of 20  
 
AD8061/AD8062/AD8063  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
Branding  
AD8061AR  
AD8061ARZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead SOIC_N  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
AD8061ARZ-REEL  
AD8061ARZ-REEL7  
AD8061ART-R2  
AD8061ART-REEL7  
AD8061ARTZ-R2  
AD8061ARTZ-REEL  
AD8061ARTZ-REEL7  
AD8061AR-EBZ  
AD8061ART-EBZ  
AD8062AR  
8-Lead SOIC_N, 13-Inch Tape and Reel  
8-Lead SOIC_N, 7-Inch Tape and Reel  
5-Lead SOT-23, 250 Piece Tape and Reel  
5-Lead SOT-23, 7-Inch Tape and Reel  
5-Lead SOT-23, 250 Piece Tape and Reel  
5-Lead SOT-23, 13-Inch Tape and Reel  
5-Lead SOT-23, 7-Inch Tape and Reel  
Evaluation Board for 8-Lead SOIC_N  
Evaluation Board for 5-Lead SOT-23  
8-Lead SOIC_N  
HGA  
HGA  
H0D2  
H0D2  
H0D2  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
–40°C to +85°C  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
AD8062ARZ  
8-Lead SOIC_N  
AD8062ARZ-RL  
AD8062ARZ-R7  
AD8062ARM  
8-Lead SOIC_N, 13-Inch Tape and Reel  
8-Lead SOIC_N, 7-Inch Tape and Reel  
8-Lead MSOP  
HCA  
AD8062ARMZ  
8-Lead MSOP  
#HCA  
#HCA  
#HCA  
AD8062ARMZ-RL  
AD8062ARMZ-R7  
AD8062AR-EBZ  
AD8062ARM-EBZ  
AD8063ARZ  
AD8063ARZ-REEL  
AD8063ARZ-REEL7  
AD8063ART-R2  
AD8063ART-REEL7  
AD8063ARTZ-R2  
AD8063ARTZ-REEL  
AD8063ARTZ-REEL7  
AD8063AR-EBZ  
AD8063ART-EBZ  
8-Lead MSOP, 13-Inch Tape and Reel  
8-Lead MSOP, 7-Inch Tape and Reel  
Evaluation Board for 8-Lead SOIC_N  
Evaluation Board for 8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N, 13-Inch Tape and Reel  
8-Lead SOIC_N, 7-Inch Tape and Reel  
6-Lead SOT-23, 250 Piece Tape and Reel  
6-Lead SOT-23, 7-Inch Tape and Reel  
6-Lead SOT-23, 250 Piece Tape and Reel  
6-Lead SOT-23, 13-Inch Tape and Reel  
6-Lead SOT-23, 7-Inch Tape and Reel  
Evaluation Board for 8-Lead SOIC_N  
Evaluation Board for 6-Lead SOT-23  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
R-8  
R-8  
R-8  
RJ-6  
RJ-6  
RJ-6  
RJ-6  
RJ-6  
HHA  
HHA  
H0E3  
H0E3  
H0E3  
1 Z = RoHS Compliant Part, # denotes RoHS product may be top or bottom marked.  
2 New branding after data code 0542, previously branded HGA.  
3 New branding after data code 0542, previously branded HHA.  
©1999–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D01065-0-5/13(J)  
Rev. J | Page 20 of 20  
 
 
 
 

相关型号:

AD8062ARMZ-RL

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8062ARZ

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8062ARZ-R7

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8062ARZ-REEL

DUAL OP-AMP, 6000uV OFFSET-MAX, PDSO8, MS-012AA, SOIC-8
ADI

AD8062ARZ-REEL7

DUAL OP-AMP, 6000uV OFFSET-MAX, PDSO8, MS-012AA, SOIC-8
ADI

AD8062ARZ-RL

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8062ARZ1

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8062_15

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063-EB

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063AR

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063AR-REEL

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI