AD8065AR-REEL7 [ADI]

High Performance, 145 MHz FastFET⑩ Op Amps; 高性能, 145 MHz的FastFET⑩运算放大器
AD8065AR-REEL7
型号: AD8065AR-REEL7
厂家: ADI    ADI
描述:

High Performance, 145 MHz FastFET⑩ Op Amps
高性能, 145 MHz的FastFET⑩运算放大器

运算放大器
文件: 总28页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance, 145 MHz  
FastFET™ Op Amps  
AD8065/AD8066  
FEATURES  
APPLICATIONS  
FET input amplifier  
1 pA input bias current  
Low cost  
Instrumentation  
Photodiode preamps  
Filters  
High speed: 145 MHz, −3 dB bandwidth (G = +1)  
180 V/µs slew rate (G = +2)  
Low noise  
A/D drivers  
Level shifting  
Buffering  
7 nV/√Hz (f = 10 kHz)  
0.6 fA/√Hz (f = 10 kHz)  
CONNECTION DIAGRAMS  
AD8065  
AD8065  
V
+V  
1
2
3
5
Wide supply voltage range: 5 V to 24 V  
Single-supply and rail-to-rail output  
Low offset voltage 1.5 mV max  
High common-mode rejection ratio: −100 dB  
Excellent distortion specifications  
SFDR −88 dB @ 1 MHz  
Low power: 6.4 mA/amplifier typical supply current  
No phase reversal  
Small packaging: SOIC-8, SOT-23-5, and MSOP  
OUT  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
S
–V  
S
+V  
V
S
4
+IN  
–IN  
OUT  
TOP VIEW  
(Not to Scale)  
–V  
S
NC  
TOP VIEW  
(Not to Scale)  
AD8066  
1
2
3
4
8
7
6
5
+V  
S
V
OUT1  
V
–IN1  
+IN1  
OUT2  
–IN2  
+IN2  
–V  
S
TOP VIEW  
(Not to Scale)  
Figure 1.  
GENERAL DESCRIPTION  
The AD8065/AD80661 FastFET amplifiers are voltage feedback  
amplifiers with FET inputs offering high performance and ease  
of use. The AD8065 is a single amplifier, and the AD8066 is a  
dual amplifier. These amplifiers are developed in the Analog  
Devices, Inc. proprietary XFCB process and allow exceptionally  
low noise operation (7.0 nV/√Hz and 0.6 fA/Hz) as well as  
very high input impedance.  
operate using only a 6.4 mA/amplifier typical supply current  
and are capable of delivering up to 30 mA of load current.  
The AD8065/AD8066 are high performance, high speed,  
FET input amplifiers available in small packages: SOIC-8,  
MSOP-8, and SOT-23-5. They are rated to work over the  
industrial temperature range of −40°C to +85°C.  
24  
With a wide supply voltage range from 5 V to 24 V, the ability to  
operate on single supplies, and a bandwidth of 145 MHz, the  
AD8065/AD8066 are designed to work in a variety of  
applications. For added versatility, the amplifiers also contain  
rail-to-rail outputs.  
21  
18  
15  
12  
9
G = +10  
G = +5  
V
= 200mV p-p  
O
G = +2  
G = +1  
Despite the low cost, the amplifiers provide excellent overall  
performance. The differential gain and phase errors of 0.02%  
and 0.02°, respectively, along with 0.1 dB flatness out to 7 MHz,  
make these amplifiers ideal for video applications. Additionally,  
they offer a high slew rate of 180 V/µs, excellent distortion  
(SFDR of −88 dB @ 1 MHz), extremely high common-mode  
rejection of −100 dB, and a low input offset voltage of 1.5 mV  
maximum under warmed up conditions. The AD8065/AD8066  
6
3
0
–3  
–6  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 2. Small Signal Frequency Response  
1Protected by U. S. Patent No. 6,262,633.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8065/AD8066  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
REVISION HISTORY  
2/04—Data Sheet Changed from Rev. D to Rev. E.  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Maximum Power Dissipation ..................................................... 7  
Output Short Circuit.................................................................... 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits..................................................................................... 15  
Theory of Operation ...................................................................... 18  
Closed-Loop Frequency Response........................................... 18  
Noninverting Closed-Loop Frequency Response.................. 18  
Inverting Closed-Loop Frequency Response ......................... 18  
Wideband Operation ................................................................. 19  
Input Protection.......................................................................... 19  
Thermal Considerations............................................................ 20  
Input and Output Overload Behavior...................................... 20  
Layout, Grounding, and Bypassing Considerations................... 21  
Power Supply Bypassing ............................................................ 21  
Grounding ................................................................................... 21  
Leakage Currents........................................................................ 22  
Input Capacitance....................................................................... 22  
Output Capacitance ................................................................... 22  
Input-to-Output Coupling ........................................................ 23  
Wideband Photodiode Preamp ................................................ 23  
High Speed JFET Input Instrumentation Amplifier.............. 24  
Video Buffer ................................................................................ 24  
Outline Dimensions ....................................................................... 25  
Ordering Guide........................................................................... 26  
Updated Format.................................................................Universal  
Updated Figure 56......................................................................... 21  
Updated Outline Dimensions...................................................... 25  
Updated Ordering Guide.............................................................. 26  
11/03—Data Sheet changed from Rev. C to Rev. D.  
Changes to Features ........................................................................ 1  
Changes to Connection Diagrams................................................ 1  
Updated Ordering Guide................................................................ 5  
Updated Outline Dimensions...................................................... 22  
4/03—Data Sheet changed from Rev. B to Rev. C.  
Added SOIC-8 (R) for the AD8065............................................... 4  
2/03—Data Sheet changed from Rev. A to Rev. B.  
Changes to Absolute Maximum Ratings...................................... 4  
Changes to Test Circuit 10 ........................................................... 14  
Changes to Test Circuit 11 ........................................................... 15  
Changes to Noninverting Closed-Loop Frequency Response 16  
Changes to Inverting Closed-Loop Frequency Response ....... 16  
Updated Figure 6 .......................................................................... 18  
Changes to Figure 7....................................................................... 19  
Changes to Figures 10................................................................... 21  
Changes to Figure 11..................................................................... 22  
Changes to High Speed JFET Instrumentation Amplifier....... 22  
Changes to Video Buffer............................................................... 22  
8/02—Data Sheet changed from Rev. 0 to Rev. A.  
Added AD8066 ..................................................................Universal  
Added SOIC-8 (R) and MSOP-8 (RM) ........................................ 1  
Edits to General Description ......................................................... 1  
Edits to Specifications..................................................................... 2  
New Figure 2 .................................................................................... 5  
Changes to Ordering Guide........................................................... 5  
Edits to TPCs 18, 25, and 28........................................................... 8  
New TPC 36 ................................................................................... 11  
Added Test Circuits 10 and 11..................................................... 14  
MSOP (RM-8) added.................................................................... 23  
Rev. E | Page 2 of 28  
AD8065/AD8066  
SPECIFICATIONS  
@ TA = 25°C, VS = 5 V, RL = 1 kΩ, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.2 V p-p (AD8065)  
G = +1, VO = 0.2 V p-p (AD8066)  
G = +2, VO = 0.2 V p-p  
G = +2, VO = 2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +1, −5.5 V to +5.5 V  
G = −1, −5.5 V to +5.5 V  
G = +2, VO = 4 V Step  
100  
100  
145  
120  
50  
42  
7
175  
170  
180  
55  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
ns  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Input Overdrive Recovery Time  
Output Recovery Time  
Slew Rate  
130  
Settling Time to 0.1%  
G = +2, VO = 2 V Step  
G = +2, VO = 8 V Step  
205  
ns  
NOISE/HARMONIC PERFORMANCE  
SFDR  
fC = 1 MHz, G = +2, VO = 2 V p-p  
fC = 5 MHz, G = +2, VO = 2 V p-p  
fC = 1 MHz, G = +2, VO = 8 V p-p  
fC = 10 MHz, RL = 100 Ω  
f = 10 kHz  
f = 10 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 150 Ω  
−88  
−67  
−73  
24  
7
0.6  
dBc  
dBc  
dBc  
dBm  
nV/√Hz  
fA/√Hz  
%
Third-Order Intercept  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
0.02  
0.02  
Degree  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
VCM = 0 V, SOIC Package  
0.4  
1
2
25  
1
1.5  
17  
6
mV  
µV/°C  
pA  
pA  
pA  
SOIC Package  
TMIN to TMAX  
Input Offset Current  
10  
TMIN to TMAX  
1
pA  
Open-Loop Gain  
VO = 3 V, RL = 1 kΩ  
100  
113  
dB  
INPUT CHARACTERISTICS  
Common-Mode Input Impedance  
Differential Input Impedance  
Input Common-Mode Voltage Range  
FET Input Range  
1000 || 2.1  
1000 || 4.5  
GΩ || pF  
GΩ || pF  
−5 to +1.7  
−5.0 to +2.4  
−5.0 to +5.0  
−100  
V
V
dB  
dB  
Usable Range  
Common-Mode Rejection Ratio  
See the Theory of Operation section  
VCM = −1 V to +1 V  
VCM = −1 V to +1 V (SOT-23)  
−85  
−82  
−91  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 1 kΩ  
−4.88 to +4.90 −4.94 to +4.95  
V
RL = 150 Ω  
−4.8 to +4.7  
V
Output Current  
VO = 9 V p-p, SFDR ≥ −60 dBc, f = 500 kHz  
35  
90  
20  
mA  
mA  
pF  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
30% Overshoot G = +1  
Operating Range  
5
24  
V
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
6.4  
−100  
7.2  
mA  
dB  
PSRR  
−85  
Rev. E | Page 3 of 28  
AD8065/AD8066  
@ TA = 25°C, VS = 12 V, RL = 1 kΩ, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.2 V p-p (AD8065)  
G = +1, VO = 0.2 V p-p (AD8066)  
G = +2, VO = 0.2 V p-p  
G = +2, VO = 2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +1, −12.5 V to +12.5 V  
G = −1, −12.5 V to +12.5 V  
G = +2, VO = 4 V Step  
100  
100  
145  
115  
50  
40  
7
175  
170  
180  
55  
Bandwidth for 0.1 dB Flatness  
Input Overdrive Recovery  
Output Overdrive Recovery  
Slew Rate  
ns  
V/µs  
ns  
130  
Settling Time to 0.1%  
G = +2, VO = 2 V Step  
G = +2, VO = 10 V Step  
250  
ns  
NOISE/HARMONIC PERFORMANCE  
SFDR  
fC = 1 MHz, G = +2, VO = 2 V p-p  
fC = 5 MHz, G = +2, VO = 2 V p-p  
fC = 1 MHz, G = +2, VO = 10 V p-p  
fC = 10 MHz, RL = 100 Ω  
f = 10 kHz  
f = 10 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 150 Ω  
−100  
−67  
−85  
24  
7
1
dBc  
dBc  
dBc  
dBm  
nV/√Hz  
fA/√Hz  
%
Third-Order Intercept  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
0.04  
0.03  
Degree  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
VCM = 0 V, SOIC Package  
0.4  
1
3
25  
2
1.5  
17  
7
mV  
µV/°C  
pA  
pA  
pA  
SOIC Package  
TMIN to TMAX  
Input Offset Current  
10  
TMIN to TMAX  
2
pA  
Open-Loop Gain  
VO = 10 V, RL = 1 kΩ  
103  
114  
dB  
INPUT CHARACTERISTICS  
Common-Mode Input Impedance  
Differential Input Impedance  
Input Common-Mode Voltage Range  
FET Input Range  
1000 || 2.1  
1000 || 4.5  
GΩ || pF  
GΩ || pF  
−12 to +8.5  
−12.0 to +9.5  
−12.0 to +12.0  
−100  
V
V
dB  
dB  
Usable Range  
Common-Mode Rejection Ratio  
See the Theory of Operation section  
VCM = −1 V to +1 V  
VCM = −1 V to +1 V (SOT-23)  
−85  
−82  
−91  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 1 kΩ  
−11.8 to +11.8 −11.9 to +11.9  
V
RL = 350 Ω  
−11.25 to +11.5  
V
Output Current  
VO = 22 V p-p, SFDR ≥ −60 dBc, f = 500 kHz  
30  
120  
25  
mA  
mA  
pF  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
30% Overshoot G = +1  
Operating Range  
5
24  
V
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
6.6  
−93  
7.4  
mA  
dB  
PSRR  
−84  
Rev. E | Page 4 of 28  
AD8065/AD8066  
@ TA = 25°C, VS = 5 V, RL = 1 kΩ, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.2 V p-p (AD8065)  
G = +1, VO = 0.2 V p-p (AD8066)  
G = +2, VO = 0.2 V p-p  
G = +2, VO = 2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +1, −0.5 V to +5.5 V  
G = −1, −0.5 V to +5.5 V  
G = +2, VO = 2 V Step  
125  
110  
155  
130  
50  
43  
6
175  
170  
160  
60  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
ns  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Input Overdrive Recovery Time  
Output Recovery Time  
Slew Rate  
Settling Time to 0.1%  
NOISE/HARMONIC PERFORMANCE  
SFDR  
105  
G = +2, VO = 2 V Step  
fC = 1 MHz, G = +2, VO = 2 V p-p  
fC = 5 MHz, G = +2, VO = 2 V p-p  
fC = 10 MHz, RL = 100 Ω  
f = 10 kHz  
f = 10 kHz  
NTSC, G = +2, RL = 150 Ω  
NTSC, G = +2, RL = 150 Ω  
−65  
−50  
22  
7
0.6  
dBc  
dBc  
dBm  
nV/√Hz  
fA/√Hz  
%
Third-Order Intercept  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
Differential Phase Error  
DC PERFORMANCE  
0.13  
0.16  
Degree  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
VCM = 1.0 V, SOIC Package  
0.4  
1
1
25  
1
1
1.5  
17  
5
mV  
µV/ºC  
pA  
pA  
pA  
pA  
dB  
dB  
SOIC Package  
TMIN to TMAX  
Input Offset Current  
Open-Loop Gain  
5
TMIN to TMAX  
VO = 1 V to 4 V (AD8065)  
VO = 1 V to 4 V (AD8066)  
100  
90  
113  
103  
INPUT CHARACTERISTICS  
Common-Mode Input Impedance  
Differential Input Impedance  
Input Common-Mode Voltage Range  
FET Input Range  
1000 || 2.1  
1000 || 4.5  
GΩ || pF  
GΩ || pF  
0 to 1.7  
0 to 2.4  
0 to 5.0  
−100  
V
V
dB  
dB  
Usable Range  
Common-Mode Rejection Ratio  
See the Theory of Operation section  
VCM = 1 V to 4 V  
VCM = 1 V to 2 V (SOT-23)  
−74  
−78  
−91  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 1 kΩ  
0.1 to 4.85  
0.03 to 4.95  
V
RL = 150 Ω  
0.07 to 4.83  
V
Output Current  
VO = 4 V p-p, SFDR ≥ −60 dBc, f = 500 kHz  
35  
75  
5
mA  
mA  
pF  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
30% Overshoot G = +1  
Operating Range  
5
24  
V
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
5.8  
−78  
6.4  
−100  
7.0  
mA  
dB  
PSRR  
Rev. E | Page 5 of 28  
AD8065/AD8066  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Supply Voltage  
Power Dissipation  
26.4 V  
See Figure 3  
VEE − 0.5 V to VCC + 0.5 V  
1.8 V  
−65°C to +125°C  
−40°C to +85°C  
300°C  
Common-Mode Input Voltage  
Differential Input Voltage  
Storage Temperature  
Operating Temperature Range  
Lead Temperature Range  
(Soldering, 10 sec)  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. E | Page 6 of 28  
AD8065/AD8066  
MAXIMUM POWER DISSIPATION  
2.0  
1.5  
1.0  
0.5  
0
The maximum safe power dissipation in the AD8065/AD8066  
packages is limited by the associated rise in junction  
temperature (TJ) on the die. The plastic encapsulating the die  
will locally reach the junction temperature. At approximately  
150°C, which is the glass transition temperature, the plastic will  
change its properties. Even temporarily exceeding this  
temperature limit can change the stresses that the package  
exerts on the die, permanently shifting the parametric  
performance of the AD8065/AD8066. Exceeding a junction  
temperature of 175°C for an extended period of time can result  
in changes in the silicon devices, potentially causing failure.  
MSOP-8  
SOIC-8  
SOT-23-5  
The still-air thermal properties of the package and PCB (θJA),  
ambient temperature (TA), and total power dissipated in the  
package (PD) determine the junction temperature of the die. The  
junction temperature can be calculated as  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
Airflow will increase heat dissipation, effectively reducing θJA.  
Also, more metal directly in contact with the package leads  
from metal traces, through holes, ground, and power planes will  
reduce the θJA. Care must be taken to minimize parasitic  
capacitances at the input leads of high speed op amps as  
discussed in the Layout, Grounding, and Bypassing  
Considerations section.  
TJ =TA +  
(
PD × θJA  
)
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). Assuming the load (RL) is referenced to  
midsupply, then the total drive power is VS /2 × IOUT, some of  
which is dissipated in the package and some in the load (VOUT  
Figure 3 shows the maximum safe power dissipation in the  
package versus the ambient temperature for the SOIC  
(125°C/W), SOT-23 (180°C/W), and MSOP (150°C/W)  
packages on a JEDEC standard 4-layer board. θJA values are  
approximations.  
×
I
OUT). The difference between the total drive power and the load  
power is the drive power dissipated in the package.  
PD = Quiescent Power + Total Drive Power Load Power  
(
)
OUTPUT SHORT CIRCUIT  
2
V
VOUT  
RL  
V OUT  
RL  
S
Shorting the output to ground or drawing excessive current for  
the AD8065/AD8066 will likely cause catastrophic failure.  
PD =  
(
VS × IS  
)
+
×
2
RMS output voltages should be considered. If RL is referenced to  
VS−, as in single-supply operation, then the total drive power is  
VS × IOUT  
.
If the rms signal levels are indeterminate, then consider the  
worst case, when VOUT = VS/4 for RL to midsupply.  
2
(
VS/4  
RL  
)
PD =  
(
VS × IS +  
)
In single-supply operation with RL referenced to VS, worst case  
is VOUT = VS/2.  
Rev. E | Page 7 of 28  
 
 
AD8065/AD8066  
TYPICAL PERFORMANCE CHARACTERISTICS  
Default Conditions: 5 V, CL = 5 pF, RL = 1 kΩ, VOUT = 2 V p-p, Temperature = 25°C.  
24  
21  
18  
15  
12  
9
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
R
= 150  
L
G = +10  
G = +5  
G = +2  
V
V
= 0.2V p-p  
= 0.7V p-p  
V
= 200mV p-p  
OUT  
O
OUT  
V
= 1.4V p-p  
OUT  
G = +2  
G = +1  
6
3
0
–3  
–6  
0.1  
1
10  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 4. Small Signal Frequency Response for Various Gains  
Figure 7. 0.1 dB Flatness Frequency Response (See Figure 43)  
6
4
9
8
7
6
5
4
3
V
= 200mV p-p  
O
V
= 200mV p-p  
O
G = +1  
G = +2  
V
= +5V  
S
V
= +5V  
S
2
V
= ±5V  
S
V
= ±5V  
S
0
V
= ±12V  
S
V
= ±12V  
S
–2  
–4  
–6  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 5. Small Signal Frequency Response for Various Supplies (See Figure 42)  
Figure 8. Small Signal Frequency Response for Various Supplies (See Figure 43)  
2
8
V
= 2V p-p  
O
G = +1  
G = +2  
1
0
7
6
5
4
3
2
1
0
V
= +5V  
S
V
= ±5V  
S
V
= ±12V  
S
V
= ±5V  
S
–1  
–2  
–3  
–4  
–5  
V
= ±12V  
S
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 6. Large Signal Frequency Response for Various Supplies (See Figure 42)  
Figure 9. Large Signal Frequency Response for Various Supplies (See Figure 43)  
Rev. E | Page 8 of 28  
 
AD8065/AD8066  
9
6
8
6
V
= 200mV p-p  
O
C
R
= 25pF  
L
G = +1  
= 20  
SNUB  
C
C
= 25pF  
= 20pF  
C
= 55pF  
= 25pF  
L
L
L
C
= 5pF  
L
4
C
L
3
2
0
0
C
= 5pF  
L
–2  
–4  
–6  
–8  
–3  
–6  
–9  
V
= 200mV p-p  
O
G = +2  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 10. Small Signal Frequency Response for Various CLOAD (See Figure 42)  
Figure 13. Small Signal Frequency Response for Various CLOAD (See Figure 43)  
8
8
V
= 0.2V p-p  
OUT  
R
= 100Ω  
7
6
5
4
3
2
1
0
6
4
L
V
= 2V p-p  
= 4V p-p  
G = +2  
OUT  
R
= 1kΩ  
L
2
V
OUT  
0
–2  
–4  
–6  
–8  
V
= 200mV p-p  
O
G = +2  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 14. Small Signal Frequency Response for Various RLOAD (See Figure 43)  
Figure 11. Frequency Response for Various Output Amplitudes (See Figure 43)  
80  
60  
40  
20  
0
120  
14  
V
= 200mV p-p  
O
12  
10  
8
G = +2  
PHASE  
60  
R
R
= R = 1k,  
G
F
S
= 500  
R
R
= R = 500  
,
,
F
S
G
0
= 250Ω  
6
GAIN  
R
R
C
= R = 500  
F
S
F
G
= 250  
4
,  
–60  
–120  
–180  
R
= R = 1k  
,
,
F
G
= 2.2pF  
R
C
= 500  
= 3.3pF  
S
2
F
0
–2  
–20  
0.01  
–4  
0.1  
0.1  
1
10  
100  
1000  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
Figure 15. Open-Loop Response  
Figure 12. Small Signal Frequency Response for Various RF/CF (See Figure 43)  
Rev. E | Page 9 of 28  
 
 
AD8065/AD8066  
–40  
–50  
–30  
–40  
–50  
G = +2  
–60  
HD2 G = +2  
–60  
HD3 G = +2  
–70  
–70  
HD2 R = 150  
L
HD2 R = 1k  
HD2 G = +1  
L
–80  
–80  
HD3 R = 1k  
L
–90  
–90  
HD3 R = 150  
L
HD3 G = +1  
–100  
–110  
–120  
–100  
–110  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 19. Harmonic Distortion vs. Frequency for Various Gains  
(See Figure 42 and Figure 43)  
Figure 16. Harmonic Distortion vs. Frequency for Various Loads (See Figure 43)  
–30  
–20  
–30  
V
= ±12V  
S
–40  
–50  
G = +2  
= ±12V  
F = 1MHz  
G = +2  
HD2 V = 20V p-p  
V
O
S
–40  
HD3 V = 20V p-p  
–50  
O
–60  
–60  
HD2 R = 150  
HD2 V = 10V p-p  
O
–70  
L
–70  
HD3 R = 150  
L
–80  
HD3 V = 10V p-p  
–80  
O
–90  
HD2 R = 300  
L
–90  
–100  
–110  
–120  
HD2 V = 2V p-p  
–100  
–110  
–120  
O
HD3 R = 300  
L
HD3 V = 2V p-p  
O
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
0.1  
1.0  
10.0  
OUTPUT AMPLITUDE (V p-p)  
FREQUENCY (MHz)  
Figure 17. Harmonic Distortion vs. Amplitude for Various Loads VS = 12 V  
(See Figure 43)  
Figure 20. Harmonic Distortion vs. Frequency for Various Amplitudes  
(See Figure 42 and Figure 43)  
50  
100  
R
= 100Ω  
L
V
= ±12V  
S
45  
40  
35  
30  
25  
20  
15  
V
= ±5V  
S
10  
V
= +5V  
S
1
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 18. Third-Order Intercept vs. Frequency and Supply Voltage  
Figure 21. Voltage Noise  
Rev. E | Page 10 of 28  
 
 
AD8065/AD8066  
G = +1  
C
= 5pF  
G = +1  
L
C
= 20pF  
L
20ns/DIV  
50mV/DIV  
20ns/DIV  
50mV/DIV  
Figure 22. Small Signal Transient Response 5 V Supply (See Figure 52)  
Figure 25. Small Signal Transient Response 5 V (See Figure 42)  
G = +2  
5µs  
S
G = +1  
V
= ±12V  
V
= ±12V  
S
V
= 10V p-p  
= 2V p-p  
OUT  
V
= 10V p-p  
= 4V p-p  
OUT  
V
OUT  
V
OUT  
V
= 2V p-p  
OUT  
80ns/DIV  
80ns/DIV  
2V/DIV  
2V/DIV  
Figure 23. Large Signal Transient Response (See Figure 42)  
Figure 26. Large Signal Transient Response (See Figure 43)  
IN  
–IN  
OUT  
G = +1  
G = –1  
= ±5V  
V
= ±5V  
V
S
S
OUT  
1.5V/DIV  
1.5V/DIV  
100ns/DIV  
100ns/DIV  
Figure 24. Output Overdrive Recovery (See Figure 44)  
Figure 27. Input Overdrive Recovery (See Figure 42)  
Rev. E | Page 11 of 28  
 
 
AD8065/AD8066  
V
= 140mV/DIV  
IN  
V
= 500mV/DIV  
IN  
V
– 2V  
IN  
OUT  
+0.1%  
+0.1%  
–0.1%  
–0.1%  
t = 0  
t = 0  
V
– 2V  
IN  
OUT  
2mV/DIV  
10ns/DIV  
2mV/DIV  
64µs/DIV  
Figure 28. Long-Term Settling Time (See Figure 49)  
Figure 31. 0.1% Short-Term Settling Time (See Figure 49)  
42  
36  
30  
24  
18  
12  
6
0
–5  
+I  
b
–I  
b
–I  
b
–10  
–15  
–20  
–25  
–30  
0
10  
5
–I  
b
0
+I  
b
–5  
–10  
–15  
+I  
b
–20  
–25  
–30  
–12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12  
25  
35  
45  
55  
65  
75  
85  
COMMON-MODEVOLTAGE (V)  
TEMPERATURE (°C)  
Figure 32. Input Bias Current vs. Common-Mode Voltage Range  
(see the Input and Output Overload Behavior section)  
Figure 29. Input Bias Current vs. Temperature  
40  
35  
30  
25  
20  
15  
10  
5
0.3  
0.2  
N = 299  
SD = 0.388  
MEAN = –0.069  
0.1  
V
= +5V  
S
V
= ±5V  
S
0
–0.1  
–0.2  
–0.3  
V
= ±12V  
S
0
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–14 –12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14  
INPUT OFFSET VOLTAGE (mV)  
COMMON-MODE VOLTAGE (V)  
Figure 33. Input Offset Voltage  
Figure 30. Input Offset Voltage vs. Common-Mode Voltage  
Rev. E | Page 12 of 28  
 
AD8065/AD8066  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100  
10  
1
G = +1  
G = +2  
V
= ±12V  
S
0.1  
0.01  
0
V
= ±5V  
S
0.1  
1
10  
FREQUENCY (MHz)  
100  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 37. Output Impedance vs. Frequency (See Figure 45 and Figure 47)  
Figure 34. CMRR vs. Frequency (See Figure 46)  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
80  
70  
V
– V  
OH  
CC  
V
– V  
OH  
CC  
60  
50  
40  
30  
V
– V  
EE  
OL  
V
– V  
EE  
OL  
0
10  
20  
30  
40  
25  
35  
45  
55  
65  
75  
85  
I
(mA)  
LOAD  
TEMPERATURE (°C)  
Figure 35. Output Saturation Voltage vs. Output Load Current  
Figure 38. Output Saturation Voltage vs. Temperature  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
= 2V p-p  
IN  
G = +1  
–PSRR  
+PSRR  
B TO A  
A TO B  
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 36. PSRR vs. Frequency (See Figure 48 and Figure 50)  
Figure 39. Crosstalk vs. Frequency (See Figure 51)  
Rev. E | Page 13 of 28  
AD8065/AD8066  
125  
120  
115  
110  
105  
100  
95  
6.60  
V
= ±12V  
S
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
6.25  
V
= ±5V  
S
V
= ±12V  
S
V
= +5V  
S
V
= +5V  
S
V
= ±5V  
S
90  
85  
80  
0
10  
20  
(mA)  
30  
40  
–40  
–20  
0
20  
40  
60  
80  
I
LOAD  
TEMPERATURE (°C)  
Figure 41. Open-Loop Gain vs. Load Current for Various Supply Voltages  
Figure 40. Quiescent Supply Current vs. Temperature for Various Supply Voltages  
Rev. E | Page 14 of 28  
AD8065/AD8066  
TEST CIRCUITS  
SOIC-8 Pinout  
+V  
CC  
+V  
CC  
4.7µF  
0.1µF  
4.7µF  
0.1µF  
2.2pF  
24.9Ω  
499Ω  
499Ω  
V
IN  
49.9Ω  
FET PROBE  
FET PROBE  
R
SNUB  
AD8065  
AD8065  
V
IN  
249Ω  
C
LOAD  
1kΩ  
1kΩ  
49.9Ω  
0.1µF  
4.7µF  
0.1µF  
4.7µF  
–V  
–V  
EE  
EE  
Figure 42. G = +1  
Figure 44. G = −1  
+V  
+V  
CC  
CC  
4.7µF  
0.1µF  
4.7µF  
0.1µF  
2.2pF  
24.9Ω  
499Ω  
499Ω  
FET PROBE  
R
SNUB  
AD8065  
AD8065  
NETWORK ANALYZER S22  
V
IN  
249Ω  
C
1kΩ  
LOAD  
0.1µF  
4.7µF  
0.1µF  
49.9Ω  
4.7µF  
–V  
EE  
–V  
EE  
Figure 45. Output Impedance G = +1  
Figure 43. G = +2  
Rev. E | Page 15 of 28  
 
 
AD8065/AD8066  
+V  
CC  
V
IN  
1V p-p  
4.7µF  
0.1µF  
+V  
CC  
49.9  
24.9Ω  
499Ω  
499Ω  
V
IN  
FET PROBE  
FET PROBE  
AD8065  
AD8065  
49.9Ω  
499Ω  
1kΩ  
1kΩ  
0.1µF  
4.7µF  
499Ω  
0.1µF  
4.7µF  
–V  
EE  
–V  
EE  
Figure 46. CMRR  
Figure 48. Positive PSRR  
+V  
+V  
CC  
CC  
4.7µF  
0.1µF  
4.7µF  
0.1µF  
2.2pF  
499Ω  
499Ω  
499Ω  
499Ω  
AD8065  
249Ω  
NETWORK ANALYZER  
S22  
976Ω  
TO SCOPE  
AD8065  
249Ω  
V
IN  
0.1µF  
49.9Ω  
0.1µF  
4.7µF  
49.9Ω  
4.7µF  
–V  
EE  
–V  
EE  
Figure 47. Output Impedance G = +2  
Figure 49. Settling Time  
Rev. E | Page 16 of 28  
AD8065/AD8066  
+V  
CC  
4.7µF  
0.1µF  
2.2pF  
499  
499Ω  
24.9Ω  
5V  
4.7µF  
1.5V  
0.1µF  
FET PROBE  
FET PROBE  
AD8065  
AD8065  
249Ω  
V
IN  
1kΩ  
49.9Ω  
1kΩ  
49.9Ω  
V
IN  
1V p-p  
1.5V  
1.5V  
–V  
EE  
Figure 50. Negative PSRR  
Figure 52. Single Supply  
24.9  
FET PROBE  
24.9Ω  
AD8066  
+5V  
1kΩ  
4.7µF  
0.1µF  
RECEIVE SIDE  
AD8066  
V
IN  
0.1µF  
1kΩ  
49.9Ω  
4.7µF  
–5V  
DRIVE SIDE  
Figure 51. Crosstalk—AD8066  
Rev. E | Page 17 of 28  
AD8065/AD8066  
THEORY OF OPERATION  
The AD8065/AD8066 are voltage feedback operational  
amplifiers that combine a laser-trimmed JFET input stage with  
the Analog Devices eXtra Fast Complementary Bipolar (XFCB)  
process, resulting in an outstanding combination of precision  
and speed. The supply voltage range is from 5 V to 24 V. The  
amplifiers feature a patented rail-to-rail output stage capable of  
driving within 0.5 V of either power supply while sourcing or  
sinking up to 30 mA. Also featured is a single-supply input stage  
that handles common-mode signals from below the negative  
supply to within 3 V of the positive rail. Operation beyond the  
JFET input range is possible because of an auxiliary bipolar  
input stage that functions with input voltages up to the positive  
supply. The amplifiers operate as if they have a rail-to-rail input  
and exhibit no phase reversal behavior for common-mode  
voltages within the power supply.  
NONINVERTING CLOSED-LOOP FREQUENCY  
RESPONSE  
Solving for the transfer function  
2π× fcrossover  
RG + RF  
( )  
VO  
VI  
=
(
RF + RG s +2π× fcrossover × RG  
)
where fcrossover is the frequency where the amplifiers open-loop  
gain equals 0 db  
VO RF + RG  
At dc  
=
VI  
RG  
Closed-loop −3 dB frequency  
RG  
RF + RG  
f3dB = fcrossover  
×
With voltage noise of 7 nV/√Hz and −88 dBc distortion for  
1 MHz 2 V p-p signals, the AD8065/AD8066 are a great choice  
for high resolution data acquisition systems. Their low noise,  
sub-pA input current, precision offset, and high speed make  
them superb preamps for fast photodiode applications. The  
speed and output drive capability of the AD8065/AD8066 also  
make them useful in video applications.  
INVERTING CLOSED-LOOP FREQUENCY  
RESPONSE  
2π× fcrossover × RF  
RF + RG +2π× fcrossover × RG  
VO  
VI  
=
s
(
)
VO  
VI  
RF  
RG  
At dc  
= −  
CLOSED-LOOP FREQUENCY RESPONSE  
The AD8065/AD8066 are classic voltage feedback amplifiers  
with an open-loop frequency response that can be approx-  
imated as the integrator response shown in Figure 53. Basic  
closed-loop frequency response for inverting and noninverting  
configurations can be derived from the schematics shown.  
Closed-loop −3 dB frequency  
RG  
f3dB = fcrossover  
×
RF + RG  
R
F
R
F
R
G
R
G
V
I
V
V
O
O
V
A
A
V
E
E
V
I
80  
A = (2π × fcrossover)/s  
60  
40  
20  
0
fcrossover = 65MHz  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 53. Open-Loop Gain vs. Frequency and Basic Connections  
Rev. E | Page 18 of 28  
 
AD8065/AD8066  
The closed-loop bandwidth is inversely proportional to the  
noise gain of the op amp circuit, (RF + RG )/RG. This simple  
model is accurate for noise gains above 2. The actual bandwidth  
of circuits with noise gains at or below 2 will be higher than  
those predicted with this model due to the influence of other  
poles in the frequency response of the real op amp.  
For the best settling times and the best distortion, the  
impedances at the AD8065/AD8066 input terminals should be  
matched. This minimizes nonlinear common-mode capacitive  
effects that can degrade ac performance.  
Actual distortion performance depends on a number of  
variables:  
R
F
The closed-loop gain of the application  
Whether it is inverting or noninverting  
Amplifier loading  
Signal frequency and amplitude  
Board layout  
+V  
OS  
R
G
V
O
I
I
A
b
R
S
V
I
b+  
Also see Figure 16 to Figure 20. The lowest distortion will be  
obtained with the AD8065 used in low gain inverting appli-  
cations, since this eliminates common-mode effects. Higher  
closed-loop gains result in worse distortion performance.  
Figure 54. Voltage Feedback Amplifier DC Errors  
Figure 54 shows a voltage feedback amplifiers dc errors. For  
both inverting and noninverting configurations  
INPUT PROTECTION  
The inputs of the AD8065/AD8066 are protected with back-to-  
back diodes between the input terminals as well as ESD diodes  
to either power supply. This results in an input stage with  
picoamps of input current that can withstand up to 1500 V ESD  
events (human body model) with no degradation.  
R + R  
RG  
R + R  
RG  
G
F
G
F
VO  
(
error  
)
= Ib+ × RS  
I × RF +VOS  
b−  
The voltage error due to Ib+ and Ib– is minimized if RS = RF || RG  
(though with the AD8065 input currents at less than 20 pA over  
temperature, this is likely not a concern). To include common-  
mode and power supply rejection effects, total VOS can be  
modeled as  
Excessive power dissipation through the protection devices will  
destroy or degrade the performance of the amplifier. Differ-  
ential voltages greater than 0.7 V will result in an input current  
of approximately (|V+ V| 0.7 V)/RI, where RI is the resistance  
in series with the inputs. For input voltages beyond the positive  
ΔVS ΔVCM  
PSR CMR  
VOS =VOS  
+
+
nom  
supply, the input current will be approximately (VI VCC  
VOS  
is the offset voltage specified at nominal conditions,  
nom  
0.7)/RI. Beyond the negative supply, the input current will be  
about (VI VEE + 0.7)/RI. If the inputs of the amplifier are to be  
subjected to sustained differential voltages greater than 0.7 V or  
to input voltages beyond the amplifier power supply, input  
current should be limited to 30 mA by an appropriately sized  
input resistor (RI) as shown in Figure 55.  
VS is the change in power supply from nominal conditions,  
PSR is the power supply rejection, VCM is the change in  
common-mode voltage from nominal conditions, and CMR  
is the common-mode rejection.  
WIDEBAND OPERATION  
(V – V – 0.7V)  
Figure 42 through Figure 44 show the circuits used for  
wideband characterization for gains of +1, +2, and −1. Source  
impedance at the summing junction (RF || RG) will form a pole  
in the amplifier’s loop response with the amplifier’s input  
capacitance of 6.6 pF. This can cause peaking and ringing if the  
time constant formed is too low. Feedback resistances of 300 Ω  
to 1 kΩ are recommended, since they will not unduly load  
down the amplifier and the time constant formed will not be  
too low. Peaking in the frequency response can be compensated  
for with a small capacitor (CF) in parallel with the feedback  
resistor, as illustrated in Figure 12. This shows the effect of  
different feedback capacitances on the peaking and bandwidth  
for a noninverting G = +2 amplifier.  
(| V – V | – 0.7V)  
I
EE  
+
R >  
I
R >  
I
30mA  
30mA  
(V – V + 0.7V)  
I
EE  
FOR LARGE | V – V  
+
|
R >  
I
30mA  
FOR V BEYOND  
AD8065  
I
R
SUPPLY VOLTAGES  
I
V
I
V
O
Figure 55. Current Limiting Resistor  
Rev. E | Page 19 of 28  
 
 
AD8065/AD8066  
The circuit is arranged such that when the input common-  
mode voltage exceeds a certain threshold, the input JFET pairs  
bias current will turn OFF, and the bias current of an auxiliary  
NPN pair will turn ON, taking over control of the amplifier.  
When the input common-mode voltage returns to a viable  
operating value, the FET stage turns back ON, the NPN stage  
turns OFF, and normal operation resumes.  
THERMAL CONSIDERATIONS  
With 24 V power supplies and 6.5 mA quiescent current, the  
AD8065 dissipates 156 mW with no load. The AD8066  
dissipates 312 mW. This can lead to noticeable thermal effects,  
especially in the small SOT-23-5 (thermal resistance of  
160°C/W). VOS temperature drift is trimmed to guarantee a  
maximum drift of 17 µV/°C, so it can change up to 0.425 mV  
due to warm-up effects for an AD8065/AD8066 in a SOT-23-5  
package on 24 V.  
The NPN pair can sustain operation with the input voltage up  
to the positive supply, so this is a pseudo rail-to-rail input stage.  
For operation beyond the FET stage’s common-mode limit, the  
amplifiers VOS will change to the NPN pairs offset (mean of  
160 µV, standard deviation of 820 µV), and Ib will increase to the  
NPN pairs base current up to 45 µA (see Figure 32).  
Ib increases by a factor of 1.7 for every 10°C rise in temperature.  
Ib will be close to 5 times higher at 24 V supplies as opposed to a  
single 5 V supply.  
Heavy loads will increase power dissipation and raise the chip  
junction temperature as described in the Maximum Power  
Dissipation section. Care should be taken to not exceed the  
rated power dissipation of the package.  
Switchback, or recovery time, is about 100 ns, see Figure 27.  
The output transistors of the rail-to-rail output stage have  
circuitry to limit the extent of their saturation when the output  
is overdriven. This helps output recovery time. Output recovery  
from a 0.5 V output overdrive on a 5 V supply is shown in  
Figure 24.  
INPUT AND OUTPUT OVERLOAD BEHAVIOR  
The AD8065/AD8066 have internal circuitry to guard against  
phase reversal due to overdriving the input stage. A simplified  
schematic of the input stage, including the input-protection  
diodes and antiphase reversal circuitry, is shown in Figure 56.  
Rev. E | Page 20 of 28  
AD8065/AD8066  
LAYOUT, GROUNDING, AND BYPASSING CONSIDERATIONS  
POWER SUPPLY BYPASSING  
GROUNDING  
Power supply pins are actually inputs and care must be taken so  
that a noise-free stable dc voltage is applied. The purpose of  
bypass capacitors is to create low impedances from the supply  
to ground at all frequencies, thereby shunting or filtering most  
of the noise.  
A ground plane layer is important in densely packed PC boards  
to spread the current minimizing parasitic inductances.  
However, an understanding of where the current flows in a  
circuit is critical to implementing effective high speed circuit  
design. The length of the current path is directly proportional to  
the magnitude of parasitic inductances and therefore the high  
frequency impedance of the path. High speed currents in an  
inductive ground return will create an unwanted voltage noise.  
Decoupling schemes are designed to minimize the bypassing  
impedance at all frequencies with a parallel combination of  
capacitors. 0.1 µF (X7R or NPO) chip capacitors are critical  
and should be as close as possible to the amplifier package.  
The 4.7 µF tantalum capacitor is less critical for high frequency  
bypassing, and, in most cases, only one is needed per board, at  
the supply inputs.  
V
CC  
R1  
R5  
TO REST OF AMP  
Q2  
Q5  
V
THRESHOLD  
VBIAS  
D1  
D2  
R6  
R3  
Q1  
Q6  
V
V
N
P
D3  
D4  
Q3  
Q4  
S
S
R4  
R7  
R2  
R8  
Q7  
I
I
T2  
T1  
–V  
EE  
Figure 56. Simplified Input Stage  
Rev. E | Page 21 of 28  
AD8065/AD8066  
The length of the high frequency bypass capacitor leads is most  
critical. A parasitic inductance in the bypass grounding will  
work against the low impedance created by the bypass capacitor.  
Place the ground leads of the bypass capacitors at the same  
physical location. Because load currents flow from the supplies  
as well, the ground for the load impedance should be at the  
same physical location as the bypass capacitor grounds. For the  
larger value capacitors, which are effective at lower frequencies,  
the current return path distance is less critical.  
INPUT CAPACITANCE  
Along with bypassing and ground, high speed amplifiers can be  
sensitive to parasitic capacitance between the inputs and  
ground. A few pF of capacitance will reduce the input imped-  
ance at high frequencies, in turn increasing the amplifiers gain,  
causing peaking of the frequency response or even oscillations,  
if severe enough. It is recommended that the external passive  
components connected to the input pins be placed as close as  
possible to the inputs to avoid parasitic capacitance. The ground  
and power planes must be kept at a small distance from the  
input pins on all layers of the board.  
LEAKAGE CURRENTS  
Poor PC board layout, contaminants, and the board insulator  
material can create leakage currents that are much larger than  
the input bias current of the AD8065/AD8066. Any voltage  
differential between the inputs and nearby runs will set up  
leakage currents through the PC board insulator, for example,  
1 V/100 GΩ = 10 pA. Similarly, any contaminants on the board  
can create significant leakage (skin oils are a common problem).  
To significantly reduce leakage, put a guard ring (shield) around  
the inputs and input leads that are driven to the same voltage  
potential as the inputs. This way there is no voltage potential  
between the inputs and surrounding area to set up any leakage  
currents. For the guard ring to be completely effective, it must  
be driven by a relatively low impedance source and should  
completely surround the input leads on all sides, above and  
below, using a multilayer board.  
OUTPUT CAPACITANCE  
To a lesser extent, parasitic capacitances on the output can cause  
peaking and ringing of the frequency response. There are two  
methods to effectively minimize their effect.  
As shown in Figure 57, put a small value resistor (RS) in  
series with the output to isolate the load capacitor from the  
amp’s output stage. A good value to choose is 20 Ω (see  
Figure 10).  
Increase the phase margin with higher noise gains or add a  
pole with a parallel resistor and capacitor from −IN to the  
output.  
Another effect that can cause leakage currents is the charge  
absorption of the insulator material itself. Minimizing the  
amount of material between the input leads and the guard ring  
will help to reduce the absorption. Also, low absorption  
materials, such as Teflon® or ceramic, could be necessary in  
some instances.  
R
= 20  
S
V
AD8065  
O
C
V
L
I
Figure 57. Output Isolation Resistor  
C
F
R
F
11  
= 10 Ω  
SH  
C
C
I
R
M
PHOTO  
C
S
C
D
V
M
O
V
B
C
+ C  
S
F
R
F
Figure 58. Wideband Photodiode Preamp  
Rev. E | Page 22 of 28  
 
 
AD8065/AD8066  
INPUT-TO-OUTPUT COUPLING  
The preamp’s output noise over frequency is shown in Figure 59.  
In order to minimize capacitive coupling between the inputs  
and output, the output signal traces should not be parallel with  
the inputs.  
1
f1  
=
2πR (C + C + C + 2C  
)
F
F
S
M
D
1
WIDEBAND PHOTODIODE PREAMP  
f2  
f3  
=
=
2πR C  
F
F
Figure 58 shows an I/V converter with an electrical model of a  
photodiode. The basic transfer function is where  
fCR  
(C + C + 2C + C )/C  
F
S
M
D
F
IPHOTO × RF  
1+ sCF RF  
R
NOISE  
F
VOUT  
=
f3  
f2  
VEN (C + C + C + 2C )/C  
F
F
S
M
D
where IPHOTO is the output current of the photodiode, and the  
parallel combination of RF and CF set the signal bandwidth.  
f1  
VEN  
NOISE DUE TO AMPLIFIER  
The stable bandwidth attainable with this preamp is a function  
of RF, the gain bandwidth product of the amplifier, and the total  
capacitance at the amplifiers summing junction, including CS  
and the amplifier input capacitance. RF and the total capacitance  
produce a pole in the amplifiers loop transmission that can  
result in peaking and instability. Adding CF creates a 0 in the  
loop transmission, which compensates for the poles effect and  
reduces the signal bandwidth. It can be shown that the signal  
bandwidth resulting in a 45° phase margin (f(45)) is defined by  
the expression  
FREQUENCY (Hz)  
Figure 59. Photodiode Voltage Noise Contributions  
The pole in the loop transmission translates to a 0 in the  
amplifiers noise gain, leading to an amplification of the input  
voltage noise over frequency. The loop transmission 0  
introduced by CF limits the amplification. The noise gain  
bandwidth extends past the preamp signal bandwidth and is  
eventually rolled off by the decreasing loop gain of the  
amplifier. Keeping the input terminal impedances matched is  
recommended to eliminate common-mode noise peaking  
effects, which will add to the output noise.  
fCR  
f(  
=
)
45  
2π× RF ×CS  
Integrating the square of the output voltage noise spectral  
density over frequency and then taking the square root allows  
users to obtain the total rms output noise of the preamp. Table 5  
summarizes approximations for the amplifier and feedback and  
source resistances. Noise components for an example preamp  
with RF = 50 kΩ, CS = 15 pF, and CF = 2 pF (bandwidth of about  
1.6 MHz) are also listed.  
where fCR is the amplifier crossover frequency, RF is the feedback  
resistor, and CS is the total capacitance at the amplifier summing  
junction (amplifier + photodiode + board parasitics).  
The value of CF that produces f(45) can be shown to be  
CS  
CF =  
2π× RF × fCR  
The frequency response in this case will show about 2 dB of  
peaking and 15% overshoot. Doubling CF and cutting the  
bandwidth in half will result in a flat frequency response, with  
about 5% transient overshoot.  
Table 5. RMS Noise Contributions of Photodiode Preamp  
RMS Noise with RF = 50 kΩ,  
CS = 15 pF, CS = 15 pF  
Contributor  
Expression  
64.5 µV  
2.4 µV  
31 µV  
RF (×2)  
2 × 4 kT × RF × f2 ×1.57  
Amp to f1  
VEN × f1  
Amp (f2 – f1)  
CS +CM +CF +2CD  
VEN ×  
×
f2 f1  
CF  
Amp to (past f2)  
260 µV  
CS +CM +CD +2CF  
VEN ×  
×
f3 ×1.57  
CF  
270 µV (Total)  
Rev. E | Page 23 of 28  
 
 
AD8065/AD8066  
V
CC  
4.7µF  
0.1µF  
R
S1  
1
/
2
V
N
2.2pF  
AD8066  
4.7µF  
R2  
0.1µF  
500Ω  
V
V
CC  
EE  
4.7µF  
0.1µF  
R1  
500Ω  
R
= 500Ω  
F
V
O
AD8065  
R
G
4.7µF  
0.1µF  
R3  
V
R
= 500Ω  
500Ω  
EE  
F
V
CC  
4.7µF  
0.1µF  
R4  
500Ω  
2.2pF  
1
/
2
AD8066  
R
S2  
V
P
4.7µF  
0.1µF  
V
EE  
Figure 60. High Speed Instrumentation Amplifier  
RF || 0.5(RG). This is the value to be used for matching purposes.  
HIGH SPEED JFET INPUT INSTRUMENTATION  
AMPLIFIER  
VIDEO BUFFER  
Figure 60 shows an example of a high speed instrumentation  
amplifier with high input impedance using the  
AD8065/AD8066. The dc transfer function is  
The output current capability and speed of the AD8065 make it  
useful as a video buffer, shown in Figure 61.  
The G = +2 configuration compensates for the voltage division  
of the signal due to the signal termination. This buffer  
maintains 0.1 dB flatness for signals up to 7 MHz, from low  
amplitudes up to 2 V p-p (Figure 7). Differential gain and phase  
have been measured to be 0.02% and 0.028° at 5 V supplies.  
1+1000  
RG  
VOUT  
= VN VP  
( )  
For G = +1, it is recommended that the feedback resistors for  
the two preamps be set to a low value (for instance 50 Ω for 50  
Ω source impedance). The bandwidth for G = +1 will be 50  
MHz. For higher gains, the bandwidth will be set by the preamp,  
equaling  
+V  
S
4.7µF  
4.7µF  
0.1µF  
249Ω  
75Ω  
+
AD8065  
V
I
Inamp3dB  
=
(
f
CR × RG  
)
/
(
2 × RF  
)
+
V
75Ω  
O
0.1µF  
Common-mode rejection of the inamp will be primarily  
determined by the match of the resistor ratios R1:R2 to R3:R4. It  
can be estimated  
–V  
S
2.2pF  
VO  
VCM  
(
δ1δ2  
)
499Ω  
=
499Ω  
(
1+ δ1  
)
δ2  
The summing junction impedance for the preamps is equal to  
Figure 61. Video Buffer  
Rev. E | Page 24 of 28  
 
 
AD8065/AD8066  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
3.00  
BSC  
8
1
5
4
8
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
4.90  
BSC  
3.00  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
PIN 1  
1.75 (0.0688)  
1.35 (0.0532)  
0.65 BSC  
0.25 (0.0098)  
0.10 (0.0040)  
1.10 MAX  
8°  
0.15  
0.00  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.80  
0.60  
0.40  
0.40 (0.0157)  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
COPLANARITY  
0.10  
SEATING  
PLANE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 62. 8-Lead Standard Small Outline Package Narrow Body [SOIC]  
Figure 64. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
(R-8)  
Dimensions shown in millimeters (inches)  
Dimensions shown in millimeters  
2.90 BSC  
5
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
10°  
5°  
0°  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178AA  
Figure 63. 5-Lead Small Outline Transistor Package [SOT-23]  
(RT-5)  
Dimensions shown in millimeters  
Rev. E | Page 25 of 28  
AD8065/AD8066  
ORDERING GUIDE  
Model  
AD8065AR  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead SOIC  
8-Lead SOIC  
Package Outline  
Branding  
R-8  
R-8  
R-8  
RT-5  
RT-5  
RT-5  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
AD8065AR-REEL  
AD8065AR-REEL7  
AD8065ART-REEL  
AD8065ART-R2  
AD8065ART-REEL7  
AD8066AR  
AD8066AR-REEL  
AD8066AR-REEL7  
AD8066ARZ1  
AD8066ARZ-REEL1  
AD8066ARZ-REEL71  
AD8066ARM  
AD8066ARM-REEL  
AD8066ARM-REEL7  
8-Lead SOIC  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
HRA  
HRA  
HRA  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
HIB  
HIB  
HIB  
1 Z = Pb-free part.  
Rev. E | Page 26 of 28  
 
 
AD8065/AD8066  
NOTES  
Rev. E | Page 27 of 28  
AD8065/AD8066  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02916-0-2/04(E)  
Rev. E | Page 28 of 28  

相关型号:

AD8065ART-EBZ

High Performance, 145 MHz FastFET Op Amps
ADI

AD8065ART-R2

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ART-REEL

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ART-REEL7

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ARTZ-R2

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ARTZ-REEL

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ARTZ-REEL7

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ARZ

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ARZ-REEL

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065ARZ-REEL7

High Performance, 145 MHz FastFET⑩ Op Amps
ADI

AD8065WARTZ-R7

High Performance, 145 MHz FastFET Op Amps
ADI

AD8065WARTZ-REEL7

High Performance, 145 MHz FastFET Op Amps
ADI