AD812ARZ [ADI]

Dual, Current Feedback Low Power Op Amp; 双通道,电流反馈型低功耗运算放大器
AD812ARZ
型号: AD812ARZ
厂家: ADI    ADI
描述:

Dual, Current Feedback Low Power Op Amp
双通道,电流反馈型低功耗运算放大器

商用集成电路 运算放大器 光电二极管
文件: 总16页 (文件大小:358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, Current Feedback  
Low Power Op Amp  
a
AD812  
PIN CONFIGURATION  
8-Lead Plastic  
FEATURES  
Two Video Amplifiers in One 8-Lead SOIC Package  
Optimized for Driving Cables in Video Systems  
Excellent Video Specifications (RL = 150 ):  
Gain Flatness 0.1 dB to 40 MHz  
0.02% Differential Gain Error  
0.02؇ Differential Phase Error  
Low Power  
Operates on Single +3 V Supply  
5.5 mA/Amplifier Max Power Supply Current  
High Speed  
Mini-DIP and SOIC  
OUT1  
–IN1  
+IN1  
V–  
1
2
3
4
8
7
6
5
V+  
+
OUT2  
–IN2  
+IN2  
+
AD812  
145 MHz Unity Gain Bandwidth (3 dB)  
1600 V/s Slew Rate  
Easy to Use  
50 mA Output Current  
Output Swing to 1 V of Rails (150 Load)  
APPLICATIONS  
The AD812 offers low power of 4.0 mA per amplifier max (VS =  
+5 V) and can run on a single +3 V power supply. The outputs  
of each amplifier swing to within one volt of either supply rail to  
easily accommodate video signals of 1 V p-p. Also, at gains of  
+2 the AD812 can swing 3 V p-p on a single +5 V power sup-  
ply. All this is offered in a small 8-lead plastic DIP or 8-lead  
SOIC package. These features make this dual amplifier ideal  
for portable and battery powered applications where size and  
power is critical.  
Video Line Driver  
Professional Cameras  
Video Switchers  
Special Effects  
PRODUCT DESCRIPTION  
The AD812 is a low power, single supply, dual video amplifier.  
Each of the amplifiers have 50 mA of output current and are  
optimized for driving one back-terminated video load (150 )  
each. Each amplifier is a current feedback amplifier and fea-  
tures gain flatness of 0.1 dB to 40 MHz while offering differen-  
tial gain and phase error of 0.02% and 0.02°. This makes the  
AD812 ideal for professional video electronics such as cameras  
and video switchers.  
The outstanding bandwidth of 145 MHz along with 1600 V/µs  
of slew rate make the AD812 useful in many general purpose  
high speed applications where a single +5 V or dual power sup-  
plies up to ±15 V are available. The AD812 is available in the  
industrial temperature range of –40°C to +85°C.  
0.4  
0.06  
G = +2  
= 150  
0.3  
R
L
0.04  
0.2  
0.1  
DIFFERENTIAL GAIN  
0.08  
0.06  
0.04  
0.02  
0
–0.1  
–0.2  
DIFFERENTIAL PHASE  
V
= ؎15V  
S
–0.3  
–0.4  
؎5V  
5V  
0.02  
0
–0.5  
–0.6  
3V  
100k  
1M  
10M  
100M  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SUPPLY VOLTAGE – ؎Volts  
FREQUENCY – Hz  
Figure 1. Fine-Scale Gain Flatness vs. Frequency, Gain  
Figure 2. Differential Gain and Phase vs. Supply Voltage,  
= +2, RL = 150 Ω  
Gain = +2, RL = 150 Ω  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
AD812–SPECIFICATIONS  
Dual Supply(@ TA = +25؇C, RL = 150 , unless otherwise noted)  
Model  
AD812A  
Typ  
Conditions  
VS  
Min  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +2, No Peaking  
±5 V  
50  
75  
100  
20  
25  
65  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
V/µs  
V/µs  
±15 V  
±15 V  
±5 V  
±15 V  
±5 V  
±15 V  
±5 V  
±15 V  
100  
145  
30  
Gain = +1  
G = +2  
Bandwidth for 0.1 dB Flatness  
Slew Rate1  
40  
G = +2, RL = 1 kΩ  
20 V Step  
G = –1, RL = 1 kΩ  
275  
1400  
425  
1600  
250  
600  
Settling Time to 0.1%  
G = –1, RL = 1 kΩ  
VO = 3 V Step  
±5 V  
±15 V  
50  
40  
ns  
ns  
VO = 10 V Step  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
Input Voltage Noise  
fC = 1 MHz, RL = 1 kΩ  
f = 10 kHz  
f = 10 kHz, +In  
f = 10 kHz, –In  
±15 V  
–90  
3.5  
1.5  
dBc  
±5 V, ±15 V  
±5 V, ±15 V  
±5 V, ±15 V  
nV/Hz  
pA/Hz  
pA/Hz  
%
%
Degrees  
Degrees  
Input Current Noise  
18  
Differential Gain Error  
Differential Phase Error  
NTSC, G = +2, RL = 150 ±5 V  
0.05  
0.02  
0.07  
0.02  
0.1  
±15 V  
±5 V  
±15 V  
0.06  
0.15  
0.06  
DC PERFORMANCE  
Input Offset Voltage  
±5 V, ±15 V  
2
5
12  
mV  
mV  
µV/°C  
µA  
T
MIN –TMAX  
Offset Drift  
–Input Bias Current  
±5 V, ±15 V  
±5 V, ±15 V  
15  
7
25  
TMIN –TMAX  
38  
µA  
+Input Bias Current  
±5 V, ±15 V  
±5 V  
0.3  
76  
1.5  
2.0  
µA  
µA  
dB  
dB  
TMIN –TMAX  
VO = ±2.5 V, RL = 150 Ω  
TMIN –TMAX  
Open-Loop Voltage Gain  
68  
69  
VO = ±10 V, RL = 1 kΩ  
TMIN –TMAX  
±15 V  
76  
75  
82  
dB  
dB  
Open-Loop Transresistance  
VO = ±2.5 V, RL = 150 Ω  
±5 V  
350  
270  
450  
370  
550  
800  
kΩ  
kΩ  
kΩ  
kΩ  
T
MIN –TMAX  
VO = ±10 V, RL = 1 kΩ  
TMIN –TMAX  
±15 V  
INPUT CHARACTERISTICS  
Input Resistance  
+Input  
–Input  
+Input  
±15 V  
15  
65  
1.7  
4.0  
13.5  
MΩ  
pF  
±V  
±V  
Input Capacitance  
Input Common Mode  
Voltage Range  
±5 V  
±15 V  
Common-Mode Rejection Ratio  
Input Offset Voltage  
–Input Current  
+Input Current  
Input Offset Voltage  
–Input Current  
VCM = ±2.5 V  
VCM = ±12 V  
±5 V  
51  
55  
58  
2
0.07  
60  
1.5  
0.05  
dB  
3.0  
0.15  
µA/V  
µA/V  
dB  
µA/V  
µA/V  
±15 V  
3.3  
0.15  
+Input Current  
REV. B  
–2–  
AD812  
Model  
AD812A  
Typ  
Conditions  
VS  
Min  
Max  
Units  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 150 , TMIN –TMAX  
RL = 1 k, TMIN –TMAX  
±5 V  
±15 V  
±5 V  
±15 V  
±15 V  
3.5  
13.6  
30  
3.8  
14.0  
40  
50  
100  
±V  
±V  
mA  
mA  
mA  
Output Current  
40  
Short Circuit Current  
Output Resistance  
G = +2, RF = 715 Ω  
VIN = 2 V  
Open-Loop  
±15 V  
15  
MATCHING CHARACTERISTICS  
Dynamic  
Crosstalk  
Gain Flatness Match  
DC  
G = +2, f = 5 MHz  
G = +2, f = 40 MHz  
±5 V, ±15 V  
±15 V  
–75  
0.1  
dB  
dB  
Input offset Voltage  
–Input Bias Current  
TMIN –TMAX  
TMIN –TMAX  
±5 V, ±15 V  
±5 V, ±15 V  
0.5  
2
3.6  
25  
mV  
µA  
POWER SUPPLY  
Operating Range  
Quiescent Current  
±1.2  
±18  
4.0  
5.5  
6.0  
V
Per Amplifier  
±5 V  
±15 V  
±15 V  
3.5  
4.5  
mA  
mA  
mA  
TMIN –TMAX  
Power Supply Rejection Ratio  
Input Offset Voltage  
–Input Current  
VS = ±1.5 V to ±15 V  
70  
80  
0.3  
0.005  
dB  
µA/V  
µA/V  
0.6  
0.05  
+Input Current  
NOTES  
1Slew rate measurement is based on 10% to 90% rise time in the specified closed-loop gain.  
Specifications subject to change without notice.  
Single Supply  
(@ TA = +25؇C, RL = 150 , unless otherwise noted)  
Model  
AD812A  
Conditions  
VS  
Min  
Typ  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +2, No Peaking  
+5 V  
+3 V  
35  
30  
50  
40  
MHz  
MHz  
Bandwidth for 0.1 dB  
Flatness  
G = +2  
+5 V  
+3 V  
+5 V  
+3 V  
13  
10  
20  
18  
125  
60  
MHz  
MHz  
V/µs  
Slew Rate1  
G = +2, RL = 1 kΩ  
V/µs  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
f = 10 kHz  
f = 10 kHz, +In  
f = 10 kHz, –In  
+5 V, +3 V  
+5 V, +3 V  
+5 V, +3 V  
3.5  
1.5  
18  
0.07  
0.15  
0.06  
0.15  
nV/Hz  
pA/Hz  
pA/Hz  
%
%
Degrees  
Degrees  
Input Current Noise  
Differential Gain Error2  
Differential Phase Error2  
NTSC, G = +2, RL = 150 +5 V  
G = +1  
G = +2  
G = +1  
+3 V  
+5 V  
+3 V  
REV. B  
–3–  
AD812–SPECIFICATIONS  
Single Supply (Continued)  
AD812A  
Typ  
Model  
Conditions  
VS  
Min  
Max  
Units  
DC PERFORMANCE  
Input Offset Voltage  
+5 V, +3 V  
1.5  
4.5  
7.0  
mV  
mV  
µV/°C  
µA  
TMIN –TMAX  
Offset Drift  
–Input Bias Current  
+5 V, +3 V  
+5 V, +3 V  
7
2
20  
TMIN –TMAX  
MIN –TMAX  
30  
1.5  
2.0  
µA  
µA  
µA  
+Input Bias Current  
+5 V, +3 V  
0.2  
T
Open-Loop Voltage Gain  
Open-Loop Transresistance  
VO = +2.5 V p-p  
VO = +0.7 V p-p  
VO = +2.5 V p-p  
VO = +0.7 V p-p  
+5 V  
+3 V  
+5 V  
+3 V  
67  
73  
70  
400  
300  
dB  
dB  
kΩ  
kΩ  
250  
INPUT CHARACTERISTICS  
Input Resistance  
+Input  
–Input  
+Input  
+5 V  
+5 V  
15  
90  
2
MΩ  
pF  
V
Input Capacitance  
Input Common Mode  
Voltage Range  
+5 V  
+3 V  
1.0  
1.0  
4.0  
2.0  
V
Common-Mode Rejection Ratio  
Input Offset Voltage  
–Input Current  
+Input Current  
Input Offset Voltage  
–Input Current  
VCM = 1.25 V to 3.75 V  
VCM = 1 V to 2 V  
+5 V  
+3 V  
52  
55  
3
0.1  
52  
3.5  
0.1  
dB  
5.5  
0.2  
µA/V  
µA/V  
dB  
µA/V  
µA/V  
+Input Current  
OUTPUT CHARACTERISTICS  
Output Voltage Swing p-p  
RL = 1 k, TMIN –TMAX  
RL = 150 , TMIN –TMAX  
+5 V  
+5 V  
+3 V  
+5 V  
+3 V  
+5 V  
3.0  
2.8  
1.0  
20  
3.2  
3.1  
1.3  
30  
25  
40  
V p-p  
V p-p  
V p-p  
mA  
mA  
mA  
Output Current  
15  
Short Circuit Current  
G = +2, RF = 715 Ω  
VIN = 1 V  
MATCHING CHARACTERISTICS  
Dynamic  
Crosstalk  
Gain Flatness Match  
DC  
G = +2, f = 5 MHz  
G = +2, f = 20 MHz  
+5 V, +3 V  
+5 V, +3 V  
–72  
0.1  
dB  
dB  
Input offset Voltage  
–Input Bias Current  
TMIN –TMAX  
TMIN –TMAX  
+5 V, +3 V  
+5 V, +3 V  
0.5  
2
3.5  
25  
mV  
µA  
POWER SUPPLY  
Operating Range  
Quiescent Current  
2.4  
70  
36  
V
Per Amplifier  
+5 V  
+3 V  
+5 V  
3.2  
3.0  
4.0  
3.5  
4.5  
mA  
mA  
mA  
TMIN –TMAX  
Power Supply Rejection Ratio  
Input Offset Voltage  
–Input Current  
VS = +3 V to +30 V  
80  
0.3  
0.005  
dB  
µA/V  
µA/V  
0.6  
0.05  
+Input Current  
TRANSISTOR COUNT  
NOTES  
56  
1Slew rate measurement is based on 10% to 90% rise time in the specified closed-loop gain.  
2Single supply differential gain and phase are measured with the ac coupled circuit of Figure 53.  
Specifications subject to change without notice.  
–4–  
REV. B  
AD812  
ABSOLUTE MAXIMUM RATINGS1  
MAXIMUM POWER DISSIPATION  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±18 V  
The maximum power that can be safely dissipated by the  
AD812 is limited by the associated rise in junction temperature.  
The maximum safe junction temperature for the plastic encap-  
sulated parts is determined by the glass transition temperature  
of the plastic, about 150°C. Exceeding this limit temporarily  
may cause a shift in parametric performance due to a change in  
the stresses exerted on the die by the package. Exceeding a  
junction temperature of 175°C for an extended period can result  
in device failure.  
Internal Power Dissipation2  
Plastic (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Watts  
Small Outline (R) . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9 Watts  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±1.2 V  
Output Short Circuit Duration  
. . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range N, R . . . . . . . . . –65°C to +125°C  
Operating Temperature Range . . . . . . . . . . . . –40°C to +85°C  
Lead Temperature Range (Soldering, 10 sec) . . . . . . . +300°C  
While the AD812 is internally short circuit protected, this may  
not be sufficient to guarantee that the maximum junction tem-  
perature (150 degrees) is not exceeded under all conditions. To  
ensure proper operation, it is important to observe the derating  
curves.  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air: 8-lead plastic package: θJA = 90°C/Watt;  
8-lead SOIC package: θJA = 150°C/Watt.  
It must also be noted that in high (noninverting) gain configura-  
tions (with low values of gain resistor), a high level of input  
overdrive can result in a large input error current, which may  
result in a significant power dissipation in the input stage. This  
power must be included when computing the junction tempera-  
ture rise due to total internal power.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
2.0  
T
= +150؇C  
J
AD812AN  
AD812AR  
–40°C to +85°C 8-Lead Plastic DIP N-8  
–40°C to +85°C 8-Lead Plastic SOIC SO-8  
8-LEAD MINI-DIP PACKAGE  
AD812AR-REEL  
AD812AR-REEL7  
13" Reel  
7" Reel  
1.5  
1.0  
0.5  
0
METALIZATION PHOTO  
Dimensions shown in inches and (mm).  
8-LEAD SOIC PACKAGE  
0.0783  
(1.99)  
V+  
8
OUT2  
7
–IN2  
6
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
5 +IN2  
AMBIENT TEMPERATURE – ؇C  
Figure 3. Plot of Maximum Power Dissipation vs.  
Temperature  
0.0539  
(1.37)  
4 V–  
1
2
–IN1  
3
+IN1  
4
V–  
OUT1  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD812 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–5–  
AD812–Typical Performance Characteristics  
16  
20  
14  
12  
15  
10  
V
= ؎15V  
S
10  
V
= ؎5V  
S
8
6
4
5
0
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0
5
10  
15  
20  
SUPPLY VOLTAGE – ؎Volts  
JUNCTION TEMPERATURE – ؇C  
Figure 4. Input Common-Mode Voltage Range vs. Supply  
Voltage  
Figure 7. Total Supply Current vs. Junction Temperature  
10  
20  
T
= +25 C  
A
NO LOAD  
9
8
7
6
5
15  
10  
R
= 150⍀  
L
5
0
10  
SUPPLY VOLTAGE – ؎Volts  
12  
14  
16  
0
2
4
6
8
0
5
10  
15  
20  
SUPPLY VOLTAGE – ؎Volts  
Figure 5. Output Voltage Swing vs. Supply Voltage  
Figure 8. Total Supply Current vs. Supply Voltage  
30  
25  
20  
؎15V SUPPLY  
25  
15  
–I , V = ؎5V  
10  
5
B
S
20  
15  
10  
0
–5  
+I , V = ؎5V, ؎15V  
B S  
–10  
–15  
–20  
–25  
–I , V = ؎15V  
؎5V SUPPLY  
B
S
5
0
10  
100  
1k  
10k  
–40 –20  
0
20  
40  
60  
80 100 120 140  
–60  
LOAD RESISTANCE – ⍀  
JUNCTION TEMPERATURE – ؇C  
Figure 6. Output Voltage Swing vs. Load Resistance  
Figure 9. Input Bias Current vs. Junction Temperature  
REV. B  
–6–  
AD812  
70  
4
2
V
= ؎5V  
S
60  
50  
0
–2  
–4  
V
= ؎15V  
S
–6  
40  
30  
–8  
–10  
–12  
–14  
–16  
20  
10  
15  
20  
0
5
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
SUPPLY VOLTAGE – ؎Volts  
JUNCTION TEMPERATURE – ؇C  
Figure 10. Input Offset Voltage vs. Junction Temperature  
Figure 13. Linear Output Current vs. Supply Voltage  
1k  
160  
140  
G = +2  
100  
SINK  
V
= ؎15V  
S
120  
10  
1
100  
80  
SOURCE  
؎5V  
S
0.1  
60  
؎15V  
S
0.01  
40  
10k  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
JUNCTION TEMPERATURE – ؇C  
Figure 11. Short Circuit Current vs. Junction Temperature  
Figure 14. Closed-Loop Output Resistance vs. Frequency  
30  
80  
70  
60  
50  
V
= ؎15V  
S
25  
20  
15  
10  
5
R
= 1k⍀  
L
V
= ؎5V  
S
40  
30  
20  
V
= ؎5V  
S
V
= ؎15V  
S
0
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
100k  
1M  
10M  
FREQUENCY – Hz  
100M  
JUNCTION TEMPERATURE – ؇C  
Figure 12. Linear Output Current vs. Junction Temperature  
Figure 15. Large Signal Frequency Response  
REV. B  
–7–  
AD812  
100  
100  
0
–45  
120  
100  
80  
V
V
= ؎15V  
PHASE  
S
INVERTING INPUT  
CURRENT NOISE  
–90  
–135  
–180  
GAIN  
= 3V  
S
10  
10  
VOLTAGE NOISE  
V
= 3V  
V
= ؎15V  
S
S
NONINVERTING INPUT  
CURRENT NOISE  
60  
1
100k  
1
10  
40  
10k  
100  
1k  
FREQUENCY – Hz  
10k  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
Figure 16. Input Current and Voltage Noise vs. Frequency  
Figure 19. Open-Loop Transimpedance vs. Frequency  
(Relative to 1 )  
–30  
90  
681⍀  
G = +2  
V
V
V
= 2V p-p  
80  
70  
60  
50  
40  
30  
20  
10  
681⍀  
681⍀  
S
S
S
V
V
IN  
OUT  
= ؎15V ; R = 1k⍀  
L
–50  
–70  
–90  
= ؎5V ; R = 150⍀  
L
681⍀  
V
= ؎5V  
S
V
S
= ؎15V  
V
= ؎15V  
ND  
S
2
HARMONIC  
HARMONIC  
V
= 3V  
S
RD  
3
–110  
–130  
ND  
2
RD  
3
10k  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
100M  
Figure 17. Common-Mode Rejection vs. Frequency  
Figure 20. Harmonic Distortion vs. Frequency  
80  
10  
GAIN = –1  
؎15V  
8
70  
V
=
S
؎15V  
6
4
2
60  
50  
؎1.5V  
40  
0.025%  
0
1%  
0.1%  
–2  
–4  
30  
20  
10  
–6  
–8  
0
10k  
–10  
20  
100k  
1M  
10M  
100M  
30  
40  
SETTLING TIME – ns  
50  
60  
FREQUENCY – Hz  
Figure 18. Power Supply Rejection vs. Frequency  
Figure 21. Output Swing and Error vs. Settling Time  
REV. B  
–8–  
AD812  
1400  
1200  
1000  
800  
600  
400  
200  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
G = +1  
G = +1  
V
= ؎15V  
= 500⍀  
S
R
L
G = +2  
G = +2  
G = +10  
G = +10  
G = –1  
G = –1  
0
1.5  
3.0  
4.5  
6.0  
7.5  
9.0 10.5 12.0 13.5 15.0  
0
1
2
3
4
5
6
7
8
9
10  
SUPPLY VOLTAGE – ؎Volts  
OUTPUT STEP SIZE – Vp-p  
Figure 22. Slew Rate vs. Output Step Size  
Figure 25. Maximum Slew Rate vs. Supply Voltage  
500mV  
20ns  
50ns  
2V  
100  
90  
100  
90  
V
V
IN  
IN  
V
V
OUT  
10  
10  
OUT  
0%  
0%  
500mV  
2V  
Figure 26. Small Signal Pulse Response, Gain = +1,  
(RF = 750 , RL = 150 , VS = ±5 V)  
Figure 23. Large Signal Pulse Response, Gain = +1,  
(RF = 750 , RL = 150 , VS = ±5 V)  
200  
G = +1  
= 150⍀  
PHASE  
GAIN  
G = +1  
180  
R
0
L
R
= 150⍀  
L
V
= ؎15V  
؎5V  
S
160  
140  
120  
100  
80  
–90  
R
= 750⍀  
= 866⍀  
F
1
–180  
–270  
R
F
5V  
3V  
0
PEAKING 1dB  
–1  
–2  
–3  
–4  
V
= ؎15V  
PEAKING 0.2dB  
S
؎5V  
60  
5V  
3V  
40  
20  
–5  
–6  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
1
10  
100  
1000  
FREQUENCY – MHz  
SUPPLY VOLTAGE – ؎Volts  
Figure 24. Closed-Loop Gain and Phase vs. Frequency,  
G = +1  
Figure 27. –3 dB Bandwidth vs. Supply Voltage, G = +1  
REV. B  
–9–  
AD812  
20ns  
50mV  
50ns  
500mV  
100  
90  
100  
V
V
IN  
IN  
90  
V
10  
V
OUT  
10  
OUT  
0%  
0%  
500mV  
5V  
Figure 28. Large Signal Pulse Response, Gain = +10,  
(RF = 357 , RL = 500 , VS = ±15 V)  
Figure 31. Small Signal Pulse Response, Gain = +10,  
(RF = 357 , RL = 150 , VS = ±5 V)  
PHASE  
GAIN  
G = +10  
= 150⍀  
PHASE  
GAIN  
G = +10  
= 1k⍀  
0
V
= ؎15V  
V
= ؎15V  
؎5V  
S
0
S
R
R
L
L
–90  
؎5V  
–90  
3V  
5V  
5V  
–180  
–270  
1
0
1
0
–180  
–270  
–360  
3V  
V
= ؎15V  
S
–1  
–1  
5V  
3V  
5V  
3V  
–2  
–3  
–4  
–2  
–3  
–4  
V
= ؎15V  
S
؎5V  
؎5V  
–5  
–6  
–5  
–6  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 29. Closed-Loop Gain and Phase vs. Frequency,  
Gain = +10, RL = 150 Ω  
Figure 32. Closed-Loop Gain and Phase vs. Frequency,  
Gain = +10, RL = 1 kΩ  
100  
110  
G = +10  
90  
G = +10  
100  
R = 150⍀  
L
R
= 1k⍀  
L
80  
70  
60  
90  
80  
70  
R
= 357⍀  
= 649⍀  
F
R
= 357⍀  
= 649⍀  
PEAKING 1dB  
F
R
= 154⍀  
F
R
= 154⍀  
F
50  
40  
30  
60  
R
F
R
F
50  
40  
30  
20  
10  
0
20  
10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
SUPPLY VOLTAGE – ؎Volts  
SUPPLY VOLTAGE – ؎Volts  
Figure 30. –3 dB Bandwidth vs. Supply Voltage,  
Gain = +10, RL = 150 Ω  
Figure 33. –3 dB Bandwidth vs. Supply Voltage,  
Gain = +10, RL = 1 kΩ  
REV. B  
–10–  
AD812  
50ns  
500mV  
20ns  
2V  
100  
90  
100  
90  
V
V
IN  
IN  
V
10  
10  
V
OUT  
OUT  
0%  
0%  
500mV  
2V  
Figure 34. Large Signal Pulse Response, Gain = –1,  
Figure 37. Small Signal Pulse Response, Gain = –1,  
(RF = 750 , RL = 150 , VS = ±5 V)  
(RF = 750 , RL = 150 , VS = ±5 V)  
PHASE  
GAIN  
V
= ؎15V  
G = –1  
= 150⍀  
S
V
= ؎15V  
PHASE  
GAIN  
G = –10  
= 1k⍀  
S
R
0
L
0
R
؎5V  
L
؎5V  
5V  
–90  
–90  
3V  
1
0
–180  
–270  
–180  
–270  
5V  
1
0
3V  
–1  
–2  
–3  
–4  
–1  
V
= ؎15V  
S
–2  
–3  
–4  
V
= ؎15V  
S
؎5V  
؎5V  
5V  
3V  
5V  
–5  
–6  
3V  
–5  
–6  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 35. Closed-Loop Gain and Phase vs. Frequency,  
Gain = –1, RL = 150 Ω  
Figure 38. Closed-Loop Gain and Phase vs. Frequency,  
Gain = –10, RL = 1 kΩ  
130  
100  
G = –1  
120  
G = –10  
90  
R
= 150⍀  
L
R
= 1k⍀  
L
R
= 681⍀  
F
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PEAKING Յ 1.0dB  
R
= 357⍀  
= 649⍀  
F
R
= 715⍀  
F
R
= 154⍀  
R
F
F
80  
70  
60  
PEAKING Յ 0.2dB  
50  
40  
30  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
SUPPLY VOLTAGE – ؎Volts  
SUPPLY VOLTAGE – ؎Volts  
Figure 36. –3 dB Bandwidth vs. Supply Voltage,  
Gain = –1, RL = 150 Ω  
Figure 39. –3 dB Bandwidth vs. Supply Voltage,  
Gain = –10, RL = 1 kΩ  
REV. B  
–11–  
AD812  
General Considerations  
To estimate the –3 dB bandwidth for closed-loop gains or feed-  
back resistors not listed in the above table, the following two  
pole model for the AD812 many be used:  
The AD812 is a wide bandwidth, dual video amplifier which  
offers a high level of performance on less than 5.5 mA per am-  
plifier of quiescent supply current. It is designed to offer out-  
standing performance at closed-loop inverting or noninverting  
gains of one or greater.  
G
ACL  
=
RF +GrIN CT  
(
)
Built on a low cost, complementary bipolar process, and achiev-  
ing bandwidth in excess of 100 MHz, differential gain and phase  
errors of better than 0.1% and 0.1° (into 150 ), and output  
current greater than 40 mA, the AD812 is an exceptionally  
efficient video amplifier. Using a conventional current feedback  
architecture, its high performance is achieved through careful  
attention to design details.  
S2  
+S RF +GrIN CT +1  
(
)
2πf2  
where: ACL = closed-loop gain  
= 1 + RF/RG  
G
rIN = input resistance of the inverting input  
CT = “transcapacitance,” which forms the open-loop  
dominant pole with the tranresistance  
RF = feedback resistor  
Choice of Feedback and Gain Resistors  
Because it is a current feedback amplifier, the closed-loop band-  
width of the AD812 depends on the value of the feedback resis-  
tor. The bandwidth also depends on the supply voltage. In  
addition, attenuation of the open-loop response when driving  
load resistors less than about 250 will affect the bandwidth.  
Table I contains data showing typical bandwidths at different  
supply voltages for some useful closed-loop gains when driving a  
load of 150 . (Bandwidths will be about 20% greater for load  
resistances above a few hundred ohms.)  
RG = gain resistor  
f2 = frequency of second (nondominant) pole  
S
= 2 πj f  
Appropriate values for the model parameters at different supply  
voltages are listed in Table II. Reasonable approximations for  
these values at supply voltages not found in the table can be  
obtained by a simple linear interpolation between those tabu-  
lated values which “bracket” the desired condition.  
Table II. Two-Pole Model Parameters at Various  
Supply Voltages  
The choice of feedback resistor is not critical unless it is impor-  
tant to maintain the widest, flattest frequency response. The  
resistors recommended in the table are those (metal film values)  
that will result in the widest 0.1 dB bandwidth. In those appli-  
cations where the best control of the bandwidth is desired, 1%  
metal film resistors are adequate. Wider bandwidths can be  
attained by reducing the magnitude of the feedback resistor (at  
the expense of increased peaking), while peaking can be reduced  
by increasing the magnitude of the feedback resistor.  
VS  
rIN ()  
CT (pF)  
f2 (MHz)  
±15  
±5  
+5  
85  
90  
105  
115  
2.5  
3.8  
4.8  
5.5  
150  
125  
105  
95  
+3  
As discussed in many amplifier and electronics textbooks (such  
as Roberge’s Operational Amplifiers: Theory and Practice), the  
–3 dB bandwidth for the 2-pole model can be obtained as:  
1/2  
Table I. –3 dB Bandwidth vs. Closed-Loop Gain and  
Feedback Resistor (RL = 150 )  
f3 = fN [1 2d2 + (2 4d2 + 4d4)1/2  
]
VS (V)  
Gain  
RF ()  
BW (MHz)  
where:  
±15  
+1  
+2  
+10  
–1  
–10  
866  
715  
357  
715  
357  
145  
100  
65  
100  
60  
1/2  
f2  
fN =  
R + GrIN C  
F T  
(
)
±5  
+5  
+3  
+1  
+2  
+10  
–1  
–10  
750  
681  
154  
715  
154  
90  
65  
45  
70  
45  
and:  
d = (1/2) [f2 (RF + GrIN) CT]1/2  
This model will predict –3 dB bandwidth within about 10 to  
15% of the correct value when the load is 150 . However, it is  
not an accurate enough to predict either the phase behavior or  
the frequency response peaking of the AD812.  
+1  
+2  
+10  
–1  
–10  
750  
681  
154  
715  
154  
60  
50  
35  
50  
35  
Printed Circuit Board Layout Guidelines  
As with all wideband amplifiers, printed circuit board parasitics  
can affect the overall closed-loop performance. Most important  
for controlling the 0.1 dB bandwidth are stray capacitances at  
the output and inverting input nodes. Increasing the space between  
signal lines and ground plane will minimize the coupling. Also,  
signal lines connecting the feedback and gain resistors should be  
kept short enough that their associated inductance does not  
cause high frequency gain errors.  
+1  
+2  
+10  
–1  
–10  
750  
681  
154  
715  
154  
50  
40  
30  
40  
25  
REV. B  
–12–  
AD812  
Power Supply Bypassing  
The input and output signal return paths must also be kept from  
overlapping. Since ground connections are not of perfectly zero  
impedance, current in one ground return path can produce a  
voltage drop in another ground return path if they are allowed  
to overlap.  
Adequate power supply bypassing can be very important when  
optimizing the performance of high speed circuits. Inductance  
in the supply leads can (for example) contribute to resonant  
circuits that produce peaking in the amplifier’s response. In  
addition, if large current transients must be delivered to a load,  
then large (greater than 1 µF) bypass capacitors are required to  
produce the best settling time and lowest distortion. Although  
0.1 µF capacitors may be adequate in some applications, more  
elaborate bypassing is required in other cases.  
Electric field coupling external to (and across) the package can  
be reduced by arranging for a narrow strip of ground plane to be  
run between the pins (parallel to the pin rows). Doing this on  
both sides of the board can reduce the high frequency crosstalk  
by about 5 dB or 6 dB.  
When multiple bypass capacitors are connected in parallel, it is  
important to be sure that the capacitors themselves do not form  
resonant circuits. A small (say 5 ) resistor may be required in  
series with one of the capacitors to minimize this possibility.  
Driving Capacitive Loads  
When used with the appropriate output series resistor, any load  
capacitance can be driven without peaking or oscillation. In  
most cases, less than 50 is all that is needed to achieve an  
extremely flat frequency response. As illustrated in Figure 44,  
the AD812 can be very attractive for driving largely capacitive  
loads. In this case, the AD812’s high output short circuit  
current allows for a 150 V/µs slew rate when driving a 510 pF  
capacitor.  
As discussed below, power supply bypassing can have a signifi-  
cant impact on crosstalk performance.  
Achieving Low Crosstalk  
Measured crosstalk from the output of amplifier 2 to the input  
of amplifier 1 of the AD812 is shown in Figure 40. The crosstalk  
from the output of amplifier 1 to the input of amplifier 2 is a few  
dB better than this due to the additional distance between criti-  
cal signal nodes.  
R
F
+V  
0.1F  
1.0F  
S
A carefully laid-out PC board should be able to achieve the level  
of crosstalk shown in the figure. The most significant contribu-  
tors to difficulty in achieving low crosstalk are inadequate power  
supply bypassing, overlapped input and/or output signal paths,  
and capacitive coupling between critical nodes.  
R
G
8
R
S
V
AD812  
O
The bypass capacitors must be connected to the ground plane at  
a point close to and between the ground reference points for the  
two loads. (The bypass of the negative power supply is particu-  
larly important in this regard.) There are two amplifiers in the  
package, and low impedance signal return paths must be pro-  
vided for each load. (Using a parallel combination of 1 µF,  
0.1 µF, and 0.01 µF bypass capacitors will help to achieve opti-  
mal crosstalk.)  
V
C
R
IN  
L
4
L
1.0F  
0.1F  
R
T
–V  
S
Figure 41. Circuit for Driving a Capacitive Load  
–10  
–20  
V
= ؎5V  
S
G = +2  
R
= 150⍀  
R
R
C
= 750⍀  
L
F
L
L
–30  
–40  
= 1k⍀  
= 10pF  
12  
9
6
–50  
R
= 0  
S
–60  
R
= 30⍀  
S
3
0
–70  
R
= 50⍀  
S
–80  
–3  
–6  
–90  
–100  
–110  
1
10  
100  
1000  
100k  
1M  
10M  
100M  
FREQUENCY – MHz  
FREQUENCY – Hz  
Figure 42. Response to a Small Load Capacitor at ±5 V  
Figure 40. Crosstalk vs. Frequency  
REV. B  
–13–  
AD812  
V
= ؎15V  
S
50ns  
1V  
G = +2  
R
R
= 750⍀  
= 1k⍀  
F
L
100  
90  
V
IN  
12  
9
6
C
= 150pF, R = 30⍀  
S
L
3
0
V
10  
OUT  
0%  
–3  
–6  
C
= 510pF, R = 15⍀  
L
S
2V  
–9  
1
10  
100  
1000  
Figure 45. 6 dB Overload Recovery; G = 10, RL = 500 ,  
VS = ±5 V  
FREQUENCY – MHz  
Figure 43. Response to Large Load Capacitor, VS = ±15 V  
In the case of high gains with very high levels of input overdrive,  
a longer recovery time may occur. For example, if the input  
common-mode voltage range is exceeded in a gain of +10, the  
recovery time will be on the order of 100 ns. This is primarily  
due to current overloading of the input stage.  
5V  
100ns  
V
100  
90  
IN  
As noted in the warning under “Maximum Power Dissipation,”  
a high level of input overdrive in a high noninverting gain circuit  
can result in a large current flow in the input stage. For differ-  
ential input voltages of less than about 1.25 V, this will be inter-  
nally limited to less than 20 mA (decreasing with supply voltage).  
For input overdrives which result in higher differential input  
voltages, power dissipation in the input stage must be consid-  
ered. It is recommended that external diode clamps be used in  
cases where the differential input voltage is expected to exceed  
1.25 V.  
V
10  
OUT  
0%  
5V  
Figure 44. Pulse Response of Circuit of Figure 41 with  
CL = 510 pF, RL = 1 k, RF = RG = 715 , RS = 15 Ω  
High Performance Video Line Driver  
At a gain of +2, the AD812 makes an excellent driver for a back-  
terminated 75 video line. Low differential gain and phase  
errors and wide 0.1 dB bandwidth can be realized over a wide  
range of power supply voltage. Outstanding gain and group  
delay matching are also attainable over the full operating supply  
voltage range.  
Overload Recovery  
There are three important overload conditions to consider.  
They are due to input common mode voltage overdrive, input  
current overdrive, and output voltage overdrive. When the  
amplifier is configured for low closed-loop gains, and its input  
common-mode voltage range is exceeded, the recovery time will  
be very fast, typically under 10 ns. When configured for a higher  
gain, and overloaded at the output, the recovery time will also  
be short. For example, in a gain of +10, with 6 dB of input  
overdrive, the recovery time of the AD812 is about 10 ns.  
R
R
F
G
+V  
S
0.1F  
75⍀  
CABLE  
8
75⍀  
75⍀  
CABLE  
V
AD812  
OUT  
V
75⍀  
4
IN  
75⍀  
0.1F  
–V  
S
Figure 46. Gain of +2 Video Line Driver (RF = RG from  
Table I)  
REV. B  
–14–  
AD812  
90  
0.4  
PHASE  
GAIN  
G = +2  
G = +2  
= 150⍀  
0
0.3  
0.2  
0.1  
R
= 150⍀  
L
R
L
–90  
3V  
V
= ؎15V  
؎5V  
S
5V  
–180  
–270  
1
0
0
5V  
3V  
–1  
–0.1  
–2  
–3  
–4  
V
= ؎15V  
–0.2  
S
V
= ؎15V  
S
–0.3  
–0.4  
؎5V  
؎5V  
5V  
–5  
–6  
–0.5  
–0.6  
3V  
1
10  
100  
1000  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY –MHz  
Figure 47. Closed-Loop Gain and Phase vs. Frequency for  
the Line Driver  
Figure 50. Fine-Scale Gain Flatness vs. Frequency,  
Gain = +2, RL = 150 Ω  
120  
1.0  
R
R
R
= 590⍀  
= 715⍀  
= 750⍀  
F
F
F
G = +2  
= 150⍀  
G = +2  
= 150⍀  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0.8  
R
L
R
L
V
= 3V  
S
0.6  
0.4  
PEAKING Յ 1dB  
R
= 681⍀  
F
0.2  
NO PEAKING  
0
V
= ؎15V  
= 715⍀  
S
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
R
F
0
2
4
6
8
10  
12  
14  
16  
18  
20  
1
10  
100  
1000  
SUPPLY VOLTAGE – ؎Volts  
FREQUENCY – MHz  
Figure 48. –3 dB Bandwidth vs. Supply Voltage,  
Gain = +2, RL = 150 Ω  
Figure 51. Closed-Loop Gain Matching vs. Frequency,  
Gain = +2, RL = 150 Ω  
DELAY  
0.06  
0.04  
0.02  
8
3V  
6
5V  
؎5V  
4
DIFFERENTIAL GAIN  
؎15V  
2
0.08  
0
0.06  
DELAY MATCHING  
0.4  
DIFFERENTIAL PHASE  
0.2  
0.04  
V
= 3V TO ؎15V  
S
0
–0.2  
–0.4  
0.02  
0
100k  
1M  
10M  
100M  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
FREQUENCY – Hz  
SUPPLY VOLTAGE – ؎Volts  
Figure 52. Group Delay and Group Delay Matching vs.  
Frequency, G = +2, RL = 150 Ω  
Figure 49. Differential Gain and Phase vs. Supply Voltage,  
Gain = +2, RL = 150 Ω  
REV. B  
–15–  
AD812  
Operation Using a Single Supply  
90  
PHASE  
GAIN  
The AD812 will operate with total supply voltages from 36 V  
down to 2.4 V. With proper biasing (see Figure 53), it can be an  
outstanding single supply video amplifier. Since the input and  
output voltage ranges extend to within 1 volt of the supply rails,  
it will handle a 1.3 V p-p signal on a single 3.3 V supply, or a  
3 V p-p signal on a single 5 V supply. The small signal, 0.1 dB  
bandwidths will exceed 10 MHz in either case, and the large  
signal bandwidths will exceed 6 MHz.  
0
V
= 5V  
S
0.5  
0
–90  
–180  
–270  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
The capacitively coupled cable driver in Figure 53 will achieve  
outstanding differential gain and phase errors of 0.07% and 0.06  
degrees respectively on a single 5 V supply. Resistor R2, in this  
circuit, is selected to optimize the differential gain and phase by  
operating the amplifier in its most linear region. To optimize the  
circuit for a 3 V supply, a value of 8 kis recommended for R2.  
–3.0  
–3.5  
1
10  
100  
1000  
FREQUENCY – MHz  
Figure 54. Closed-Loop Gain and Phase vs. Frequency,  
Circuit of Figure 53  
649⍀  
649⍀  
C3  
30F  
R3  
1k⍀  
+V  
S
C2  
1V  
50ns  
1F  
R1  
9k⍀  
C
OUT  
75⍀  
CABLE  
100  
90  
8
47F  
75⍀  
V
IN  
C1  
2F  
V
OUT  
AD812  
V
IN  
75⍀  
4
R2  
11.8k⍀  
V
OUT  
Figure 53. Biasing for Single Supply Operation  
10  
0%  
500mV  
Figure 55. Pulse Response of the Circuit of Figure 53 with  
VS = 5 V  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic DIP  
(N-8)  
8-Lead Plastic SOIC  
(SO-8)  
0.39 (9.91)  
0.1968 (5.00)  
0.1890 (4.80)  
8
5
4
0.25  
(6.35)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
1
0.325 (8.25)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.10  
0.195 (4.95)  
0.115 (2.93)  
0.165 ؎0.01  
(4.19 ؎0.25)  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
0.0099 (0.25)  
؋
 45؇  
0.0098 (0.25)  
0.0040 (0.10)  
0.125 (3.18)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.018 ؎0.003  
0.033 (0.84)  
NOM  
8؇  
0؇  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
(0.46 +0.08) (2.54)  
BSC  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
REV. B  
–16–  

相关型号:

AD812ARZ-REEL7

Dual, Current Feedback Low Power Op Amp
ADI

AD813

Single Supply, Low Power Triple Video Amplifier
ADI

AD8130

Low-Cost 270 MHz Differential Receiver Amplifiers
ADI

AD8130-EVAL

Low-Cost 270 MHz Differential Receiver Amplifiers
ADI

AD8130AR

Low-Cost 270 MHz Differential Receiver Amplifiers
ADI

AD8130AR

SPECIALTY ANALOG CIRCUIT, PDSO8, SOIC-8
ROCHESTER

AD8130AR-REEL

Low Cost 270 MHz Differential Receiver Amplifiers
ADI

AD8130AR-REEL

SPECIALTY ANALOG CIRCUIT, PDSO8, SOIC-8
ROCHESTER

AD8130AR-REEL1

Low-Cost 270 MHz Differential Receiver Amplifiers
ADI

AD8130AR-REEL7

Low Cost 270 MHz Differential Receiver Amplifiers
ADI

AD8130AR-REEL7

SPECIALTY ANALOG CIRCUIT, PDSO8, SOIC-8
ROCHESTER

AD8130AR-REEL72

Low-Cost 270 MHz Differential Receiver Amplifiers
ADI