AD8186ARU [ADI]

480 MHz Single-Supply (5 V) Triple 2:1 Multiplexers; 480 MHz的单电源供电( 5 V )三2 : 1多路复用器
AD8186ARU
型号: AD8186ARU
厂家: ADI    ADI
描述:

480 MHz Single-Supply (5 V) Triple 2:1 Multiplexers
480 MHz的单电源供电( 5 V )三2 : 1多路复用器

复用器
文件: 总20页 (文件大小:469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
480 MHz Single-Supply (5 V)  
Triple 2:1 Multiplexers  
a
AD8186/AD8187  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Fully Buffered Inputs and Outputs  
Fast Channel-to-Channel Switching: 4 ns  
Single-Supply Operation (5 V)  
High Speed:  
480 MHz Bandwidth (–3 dB) 2 V p-p  
>1600 V/s (G = +1)  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
V
IN0A  
CC  
LOGIC  
D
OE  
GND  
SEL A/B  
IN1A  
SELECT  
V
V
ENABLE  
REF  
CC  
0
1
2
IN2A  
OUT 0  
>1500 V/s (G = +2)  
V
V
EE  
CC  
Fast Settling Time of 7 ns to 0.1%  
Low Current: 19 mA/20 mA  
Excellent Video Specifications (RL = 150 )  
0.05% Differential Gain Error  
0.05Differential Phase Error  
Low Glitch  
V
OUT 1  
EE  
V
IN2B  
CC  
V
16 OUT 2  
EE  
IN1B 10  
11  
15  
14  
13  
V
EE  
V
DV  
V
EE  
IN0B 12  
CC  
CC  
AD8186/AD8187  
All Hostile Crosstalk  
–84 dB @ 5 MHz  
–52 dB @ 100 MHz  
High Off Isolation of –95 dB @ 5 MHz  
Low Cost  
Fast, High Impedance Disable Feature for Connecting  
Multiple Outputs  
Logic-Shifted Outputs  
Table I. Truth Table  
SEL A/B  
OE  
OUT  
0
1
1
0
0
0
1
1
High Z  
High Z  
IN A  
APPLICATIONS  
IN B  
Switching RGB in LCD and Plasma Displays  
RGB Video Switchers and Routers  
4.0  
3.5  
6.0  
5.5  
GENERAL DESCRIPTION  
The AD8186 (G = +1) and AD8187 (G = +2) are high speed,  
single-supply, triple 2-to-1 multiplexers. They offer –3 dB large signal  
bandwidth of over 480 MHz along with a slew rate in excess of  
1500 V/µs. With better than –80 dB of all hostile crosstalk and  
–95 dB OFF isolation, they are suited for many high speed appli-  
cations. The differential gain and differential phase error of 0.05%  
and 0.05°, along with 0.1 dB flatness to 85 MHz, make the  
AD8186 and AD8187 ideal for professional and component video  
multiplexing. They offer 4 ns switching time, making them an  
excellent choice for switching video signals while consuming less  
than 20 mA on a single 5 V supply (100 mW). Both devices have a  
high speed disable feature that sets the outputs into a high  
impedance state. This allows the building of larger input arrays  
while minimizing OFF channel output loading. The devices are  
offered in a 24-lead TSSOP package.  
3.0  
5.0  
4.5  
4.0  
3.5  
3.0  
INPUT  
2.5  
2.0  
1.5  
1.0  
0.5  
0
OUTPUT  
2.5  
2.0  
–0.5  
–1.0  
1.5  
1.0  
15  
20  
25  
0
5
10  
TIME (ns)  
Figure 1. AD8187 Video Amplitude Pulse  
Response, VOUT = 1.4 V p-p, RL = 150  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(TA = 25C; AD8186: VS = 5 V, RL = 1 kto 2.5 V; AD8187: VS = 5 V,  
AD8186/AD8187–SPECIFICATIONS VREF = 2.5 V, RL = 150 to 2.5 V; unless otherwise noted.)  
AD8186/AD8187  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth (Small Signal)  
–3 dB Bandwidth (Large Signal)  
0.1 dB Flatness  
Slew Rate (10% to 90% Rise Time)  
Settling Time to 0.1%  
VOUT = 200 mV p-p  
VOUT = 2 V p-p  
VOUT = 200 mV p-p  
VOUT = 2 V p-p, RL = 150 Ω  
VIN = 1 V Step, RL = 150 Ω  
1000/1000  
450/480  
90/85  
1600/1500  
6/7.5  
MHz  
MHz  
MHz  
V/s  
ns  
NOISE/DISTORTION PERFORMANCE  
Differential Gain  
Differential Phase  
3.58 MHz, RL = 150 Ω  
3.58 MHz, RL = 150 Ω  
5 MHz  
100 MHz  
5 MHz  
5 MHz  
f = 100 kHz to 100 MHz  
0.05/0.05  
0.05/0.05  
–84/–78  
–52/–48  
–90/–85  
–84/–95  
7/9  
%
Degrees  
dB  
dB  
dB  
dB  
nV/Hz  
All Hostile Crosstalk  
Channel-to-Channel Crosstalk, RTI  
OFF Isolation  
Voltage Noise, RTI  
DC PERFORMANCE  
Voltage Gain Error  
Voltage Gain Error Matching  
VREF Gain Error  
No Load  
Channel A to Channel B  
1 kLoad  
0.1/0.1  
0.04/0.04  
0.04  
0.2/0.5  
Ϯ8.0  
0.2/0.2  
10/5  
1.5/1.5  
1.0  
Ϯ0.3/0.6  
Ϯ0.2/0.2  
Ϯ0.6  
%
%
%
mV  
mV  
mV  
V/ºC  
A  
A  
Input Offset Voltage  
Ϯ6.5/7.0  
TMIN to TMAX  
Channel A to Channel B  
Input Offset Voltage Matching  
Input Offset Drift  
Input Bias Current  
Ϯ5.0/5.5  
4/4  
VREF Bias Current (for AD8187 only)  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
@100 kHz  
1.8/1.3  
0.9/1.0  
MΩ  
pF  
Input Voltage Range (About Midsupply) IN0A, IN0B, IN1A, IN1B,  
IN2A, IN2B  
VREF  
Ϯ1.2/Ϯ1.2  
+0.9, –1.2  
V
V
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 1 kΩ  
3.1/2.8  
2.8/2.5  
3.2/3.0  
3.0/2.7  
85  
0.2/0.35  
1000/600  
1.5/2.0  
V p-p  
V p-p  
mA  
RL = 150 Ω  
Short Circuit Current  
Output Resistance  
Enabled @ 100 kHz  
Disabled @ 100 kHz  
Disabled  
kΩ  
Output Capacitance  
pF  
POWER SUPPLY  
Operating Range  
Power Supply Rejection Ratio  
3.5  
15  
5.5  
V
+PSRR, VCC = 4.5 V to 5.5 V,  
VEE = 0 V  
–PSRR, VEE = –0.5 V to +0.5 V,  
VCC = 5.0 V  
All Channels ON  
All Channels OFF  
–72/–61  
dB  
–76/–72  
18.5/19.5  
3.5/4.5  
dB  
Quiescent Current  
21.5/22.5  
4.5/5.5  
23  
mA  
mA  
mA  
TMIN to TMAX, All Channels ON  
–2–  
REV. A  
AD8186/AD8187  
AD8186/AD8187  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SWITCHING CHARACTERISTICS  
Channel-to-Channel Switching Time  
50% Logic to 50% Output  
Settling, INA = +1 V, INB = –1 V  
50% Logic to 50% Output  
Settling, INPUT = 1 V  
50% Logic to 50% Output  
Settling, INPUT = 1 V  
3.6/4  
4/3.8  
ns  
ns  
ENABLE to Channel ON Time  
DISABLE to Channel OFF Time  
17/5  
ns  
Channel Switching Transient (Glitch)  
Output Enable Transient (Glitch)  
All Channels Grounded  
All Channels Grounded  
21/45  
64/118  
mV  
mV  
DIGITAL INPUTS  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Input Current  
Logic 0 Input Current  
SEL A/B, OE Inputs  
SEL A/B, OE Inputs  
SEL A/B, OE = 2.0 V  
SEL A/B, OE = 0.5 V  
1.6  
V
V
nA  
A  
0.6  
45  
2
OPERATING TEMPERATURE RANGE  
Temperature Range  
Operating (Still Air)  
Operating (Still Air)  
Operating  
–40  
+85  
ºC  
ºC/W  
ºC/W  
85  
20  
JA  
JC  
Specifications subject to change without notice.  
REV. A  
–3–  
AD8186/AD8187  
ABSOLUTE MAXIMUM RATINGS1, 2, 3, 4  
2.5  
2.0  
1.5  
1.0  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
DVCC to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
DVCC to VEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.0 V  
VCC to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.0 V  
IN0A, IN0B, IN1A, IN1B, IN2A, IN2B, VREF . . . VEE VIN VCC  
SEL A/B, OE . . . . . . . . . . . . . . . . . . . . . . DGND VIN DVCC  
Output Short Circuit Operation . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range . . . . . . . . . . . . –65ºC to +150ºC  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . . 300ºC  
NOTES  
0.5  
0
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the Theory of  
Operation section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2 Specification is for device in free air (TA = 25ºC).  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENTTEMPERATURE (C)  
3 24-lead TSSOP; TJA= 85ºC/W. Maximum internal power dissipation (PD) should be  
Figure 2. Maximum Power Dissipation vs. Temperature  
derated for ambient temperature (TA) such that PD < (150ºC TA)/TJA  
.
4 TJA of 85ЊC/W is on a 4-layer board (2s 2p).  
PIN CONFIGURATION  
MAXIMUM POWER DISSIPATION  
The maximum safe junction temperature for plastic encapsulated  
devices is determined by the glass transition temperature of the  
plastic, approximately 150ºC. Temporarily exceeding this limit  
may cause a shift in parametric performance due to a change in  
the stresses exerted on the die by the package. Exceeding a  
junction temperature of 175ºC for an extended period can result  
in device failure.  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
9
V
CC  
IN0A  
OE  
D
GND  
SEL A/B  
IN1A  
V
V
REF  
CC  
AD8186/  
AD8187  
IN2A  
OUT 0  
V
V
EE  
CC  
TOP VIEW  
(Not to Scale)  
V
OUT 1  
EE  
While the AD8186/AD8187 is internally short circuit protected,  
this may not be sufficient to guarantee that the maximum junction  
temperature (150ºC) is not exceeded under all conditions. To  
ensure proper operation, it is necessary to observe the maximum  
power derating curves shown in Figure 2.  
V
IN2B  
CC  
V
16 OUT 2  
EE  
15  
14  
13  
V
EE  
IN1B 10  
11  
V
DV  
V
EE  
IN0B 12  
CC  
CC  
ORDERING GUIDE  
Temperature Range Package Description  
–40ºC to +85ºC 24-Lead Thin Shrink Small Outline Package (TSSOP) RU-24  
Model  
Package Option  
AD8186ARU  
AD8186ARU-REEL –40ºC to +85ºC  
AD8186ARU-REEL 7 –40ºC to +85ºC  
13" Reel TSSOP  
7" Reel TSSOP  
24-Lead Thin Shrink Small Outline Package (TSSOP) RU-24  
RU-24  
RU-24  
AD8187ARU  
–40ºC to +85ºC  
AD8187ARU-REEL –40ºC to +85ºC  
AD8187ARU-REEL 7 –40ºC to +85ºC  
AD8186-EVAL  
13" Reel TSSOP  
7" Reel TSSOP  
Evaluation Board  
Evaluation Board  
RU-24  
RU-24  
AD8187-EVAL  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD8186/AD8187 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
–4–  
REV. A  
Typical Performance Characteristics–  
AD8186/AD8187  
3
2
1
0.5  
0.4  
0.3  
0.2  
0.6  
0.5  
0.4  
976ꢁ  
DUT  
0
50ꢁ  
52.3ꢁ  
GAIN  
1
0
–1  
–2  
–3  
–4  
GAIN  
0.3  
0.2  
0.1  
0
–1  
–2  
0.1  
0
FLATNESS  
–3  
–4  
–0.1  
FLATNESS  
10.0  
–5  
–6  
–0.1  
–0.2  
–5  
–6  
–0.2  
–0.3  
0.1  
1.0  
10.0  
100.0  
1000.0  
10000.0  
10000.0  
0.1  
1.0  
100.0  
1000.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 1. AD8186 Frequency Response,  
OUT = 200 mV p-p, RL = 1 kΩ  
TPC 4. AD8187 Frequency Response,  
VOUT = 200 mV p-p, RL = 150 Ω  
V
1
0
1
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
150ꢁ  
976ꢁ  
DUT  
1.0  
–5  
–6  
50ꢁ  
52.3ꢁ  
–7  
–8  
0.1  
10.0  
FREQUENCY (MHz)  
100.0  
1000.0  
0.1  
1.0  
10.0  
100.0  
1000.0  
FREQUENCY (MHz)  
TPC 2. AD8186 Frequency Response,  
TPC 5. AD8187 Frequency Response,  
VOUT = 2 V p-p, RL = 1 kΩ  
VOUT = 2 V p-p, RL = 150 Ω  
1
1
0
+85C  
–40C  
+25C  
0
–1  
–2  
–3  
–4  
+25C  
–1  
–2  
–3  
–4  
+85C  
–40C  
150ꢁ  
976ꢁ  
DUT  
1.0  
–5  
–6  
–5  
–6  
50ꢁ  
52.3ꢁ  
0.1  
10.0  
FREQUENCY (MHz)  
100.0  
1000.0  
0.1  
1.0  
10.0  
100.0  
1000.0  
FREQUENCY (MHz)  
TPC 3. AD8186 Large Signal Bandwidth vs.  
Temperature, VOUT = 2 V p-p, RL = 1 kΩ  
TPC 6. AD8187 Large Signal Bandwidth vs.  
Temperature, VOUT = 2 V p-p, RL = 150 Ω  
REV. A  
–5–  
AD8186/AD8187  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–100  
–110  
0.1  
0.1  
1
10  
100  
1000  
1.0  
10.0  
100.0  
1000.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 7. AD8186 All Hostile Crosstalk* vs. Frequency  
TPC 10. AD8187 All Hostile Crosstalk* vs. Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
–110  
–110  
–120  
0.1  
1.0  
10.0  
100.0  
1000.0  
0.1  
1.0  
10.0  
100.0  
1000.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 8. AD8186 Adjacent Channel Crosstalk* vs. Frequency  
TPC 11. AD8187 Adjacent Channel Crosstalk* vs. Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–90  
–100  
10  
FREQUENCY (MHz)  
0
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
TPC 9. AD8186 OFF Isolation* vs. Frequency  
TPC 12. AD8187 OFF Isolation* vs. Frequency  
*All hostile crosstalk—Drive all INA, listen to output with INB selected.  
Adjacent channel crosstalk—Drive one INA, listen to an adjacent output with INB selected.  
Off isolation—Drive inputs with OE tied low.  
–6–  
REV. A  
AD8186/AD8187  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
THIRD  
THIRD  
SECOND  
SECOND  
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
1
TPC 13. AD8186 Harmonic Distortion vs. Frequency  
TPC 16. AD8187 Harmonic Distortion vs. Frequency  
V
OUT = 2 V p-p, RL = 150 Ω  
V
OUT = 2 V p-p, RL = 150 Ω  
0
–10  
–20  
–30  
–40  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–PSRR  
–PSRR  
–50  
–60  
–70  
–80  
+PSRR  
+PSRR  
0.01  
0.10  
1
10  
100  
0.01  
0.10  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 14. AD8186 PSRR vs. Frequency, RL = 150 Ω  
TPC 17. AD8187 PSRR vs. Frequency, RL = 150 Ω  
20  
18  
16  
14  
20  
18  
16  
14  
12  
12  
10  
8
10  
8
6
6
4
4
2
0
2
0
0.01  
0.10  
1
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 18. AD8187 Input Voltage Noise vs. Frequency  
TPC 15. AD8186 Input Voltage Noise vs. Frequency  
REV. A  
–7–  
AD8186/AD8187  
10000  
10000  
1000  
100  
1000  
100  
10  
10  
1
1
0.1  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1.0  
10.0  
100.0  
1000.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 19. AD8186 Input Impedance vs. Frequency  
TPC 22. AD8187 Input Impedance vs. Frequency  
1000  
1000  
100  
10  
100  
10  
1
1
0.1  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1.0  
10.0  
100.0  
1000.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 20. AD8186 Enabled Output Impedance vs. Frequency  
TPC 23. AD8187 Enabled Output Impedance vs. Frequency  
10000  
1000  
100  
10000  
1000  
100  
10  
10  
1
1
0.1  
0.1  
0.1  
1.0  
10.0  
100.0  
1000.0  
0.1  
1.0  
10.0  
100.0  
1000.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 21. AD8186 Disabled Output Impedance vs. Frequency  
TPC 24. AD8187 Disabled Output Impedance vs. Frequency  
–8–  
REV. A  
AD8186/AD8187  
2.80  
2.70  
3.30  
2.8  
2.7  
3.2  
3.1  
INPUT  
2.60  
2.50  
2.40  
2.30  
2.20  
2.10  
2.00  
2.6  
3.0  
2.9  
2.8  
2.7  
INPUT  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
2.80  
2.6  
2.5  
2.4  
OUTPUT  
OUTPUT  
1.90  
1.80  
1.9  
1.8  
2.3  
2.2  
2.30  
15  
20  
25  
0
5
10  
15  
20  
25  
0
5
10  
TIME (ns)  
TIME (ns)  
TPC 25. AD8186 Small Signal Pulse Response,  
OUT = 200 mV p-p, RL = 1 kΩ  
TPC 28. AD8187 Small Signal Pulse Response,  
VOUT = 200 mV p-p, RL = 150 kΩ  
V
3.0  
2.5  
4.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.5  
3.0  
INPUT  
5.0  
4.5  
4.0  
3.5  
3.0  
2.0  
1.5  
1.0  
0.5  
0
INPUT  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
OUTPUT  
2.5  
2.0  
1.5  
1.0  
OUTPUT  
2.5  
2.0  
–0.5  
–1.0  
–0.5  
–1.0  
1.5  
1.0  
15  
20  
25  
0
5
10  
0
5
10  
15  
20  
25  
TIME (ns)  
TIME (ns)  
TPC 29. AD8187 Video Amplitude Pulse  
Response, VOUT = 1.4 V p-p, RL = 150 kΩ  
TPC 26. AD8186 Video Signal Pulse Response,  
VOUT = 700 mV p-p, RL = 1 kΩ  
4.0  
3.5  
6.0  
5.5  
4.0  
3.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
INPUT  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
INPUT  
4.0  
3.5  
3.0  
2.5  
OUTPUT  
OUTPUT  
2.0  
1.5  
1.0  
–0.5  
–1.0  
–0.5  
–1.0  
0.5  
0
–1.5  
–2.0  
1.5  
1.0  
–1.5  
–2.0  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
TIME (ns)  
TIME (ns)  
TPC 30. AD8187 Large Signal Pulse Response,  
VOUT = 2 V p-p, RL = 150 kΩ  
TPC 27. AD8186 Large Signal Pulse Response,  
VOUT = 2 V p-p, RL = 1 kΩ  
REV. A  
–9–  
AD8186/AD8187  
t
t
SETTLED  
SETTLED  
t
t
0
0
TIME (2ns/DIV)  
TIME (2ns/DIV)  
TPC 31. AD8186 Settling Time (0.1%),  
TPC 34. AD8187 Settling Time (0.1%),  
VOUT = 2 V Step, RL = 1 kΩ  
VOUT = 2 V Step, RL = 150 Ω  
5.5  
5.0  
2.3  
1.8  
2.0  
1.5  
1.0  
0.5  
0
6.0  
5.5  
5.0  
4.5  
SEL A/B  
SEL A/B  
1.3  
4.5  
4.0  
3.5  
3.0  
0.8  
4.0  
0.3  
OUTPUT  
–0.3  
–0.8  
–1.3  
–1.8  
OUTPUT  
3.5  
3.0  
2.5  
–0.5  
2.5  
2.0  
–1.0  
–1.5  
2.0  
1.5  
1.0  
1.5  
1.0  
–2.0  
–2.5  
–2.3  
–2.8  
25  
25  
0
5
10  
15  
20  
0
5
10  
15  
20  
TIME (ns)  
TIME (ns)  
TPC 32. AD8186 Channel-to-Channel Switching  
Time, VOUT = 2 V p-p, INA = 3.5 V, INB = 1.5 V  
TPC 35. AD8187 Channel-to-Channel Switching  
Time, VOUT = 2 V p-p, INA = 3.0 V, INB = 2.0 V  
3.0  
3.00  
2.00  
2.0  
SEL A/B  
SEL A/B  
2.90  
2.80  
1.5  
1.0  
0.5  
0
2.9  
2.8  
2.7  
1.50  
1.00  
0.50  
0
2.70  
2.60  
2.50  
2.40  
OUTPUT  
2.6  
2.5  
2.4  
OUTPUT  
–0.50  
–1.00  
–0.5  
–1.0  
20  
25  
30  
35  
40  
0
5
10  
15  
45  
50  
20  
25  
30  
35  
40  
50  
0
5
10  
15  
45  
TIME (ns)  
TIME (ns)  
TPC 33. AD8186 Channel Switching Transient (Glitch),  
INA = INB = 0 V  
TPC 36. AD8187 Channel Switching Transient  
(Glitch), INA = INB = VREF = 0 V  
–10–  
REV. A  
AD8186/AD8187  
5.5  
5.0  
4.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
2.0  
1.5  
2.0  
1.5  
OE  
OE  
1.0  
0.5  
1.0  
4.0  
0.5  
0
0
–0.5  
–1.0  
OUTPUT  
3.5  
3.0  
2.5  
OUTPUT  
–0.5  
–1.0  
–1.5  
–1.5  
–2.0  
2.0  
200  
200  
0
40  
80  
120  
TIME – ns  
160  
0
40  
80  
120  
TIME (ns)  
160  
TPC 37. AD8186 Enable ON/OFF Time,  
VOUT = 0 V to 1 V  
TPC 39. AD8187 Enable ON/OFF Time,  
VOUT = 0 V to 1 V  
1.5  
1.0  
3.0  
2.9  
2.00  
3.00  
2.90  
2.80  
2.70  
1.50  
1.00  
0.50  
0
OE  
OE  
2.8  
2.7  
2.6  
2.5  
2.4  
0.5  
2.60  
OUTPUT  
OUTPUT  
–0.50  
–1.00  
2.50  
2.40  
0
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
TIME (ns)  
TIME (ns)  
TPC 38. AD8186 Channel Enable/Disable  
Transient (Glitch)  
TPC 40. AD8187 Channel Enable/Disable  
Transient (Glitch)  
REV. A  
–11–  
AD8186/AD8187  
THEORY OF OPERATION  
The peak slew rate is not the same as the average slew rate. The  
average slew rate is typically specified as the ratio  
The AD8186 (G = +1) and AD8187 (G = +2) are single-supply,  
triple 2:1 multiplexers with TTL compatible global input switch-  
ing and output-enable control. Optimized for selecting between  
two RGB (red, green, blue) video sources, the devices have high  
peak slew rates, maintaining their bandwidth for large signals.  
Additionally, the multiplexers are compensated for high phase  
margin, minimizing overshoot for good pixel resolution. The  
multiplexers also have respectable video specifications and are  
superior for switching NTSC or PAL composite signals.  
VOUT  
t  
measured between the 20% to 80% output levels of a suffi-  
ciently large output pulse. For a natural response, the peak slew  
rate may be 2.7 times larger than the average slew rate. There-  
fore, calculating a full power bandwidth with a specified average  
slew rate will give a pessimistic result. In specifying the large  
signal performance of these multiplexers, we’ve published the  
large-signal bandwidth, the average slew rate, and the measure-  
ments of the total harmonic distortion. (Large signal bandwidth  
is defined as the –3 dB point measured on a 2 V p-p output  
sine wave.) Specifying these three aspects of the signal path’s  
large signal dynamics allows the user to predict system behavior  
for either pulse or sinusoid waveforms.  
The multiplexers are organized as three independent channels,  
each with two input transconductance stages and one output  
transimpedance stage. The appropriate input transconductance  
stages are selected via one logic pin (SEL A/B) such that all  
three outputs switch input connections simultaneously. The  
unused input stages are disabled with a proprietary clamp cir-  
cuit to provide excellent crosstalk isolation between “on” and  
“offinputs while protecting the disabled devices from damag-  
ing reverse base-emitter voltage stress. No additional input  
buffering is necessary, resulting in low input capacitance and  
high input impedance without additional signal degradation.  
Single-Supply Considerations  
DC-Coupled Inputs, Integrated Reference Buffers, and  
Selecting the VREF Level on the AD8187, (G = +2)  
The AD8186 and AD8187 offer superior large signal dynamics.  
The trade-off is that the input and output compliance is limited  
to ~1.3 V from either rail when driving a 150 load. These  
sections address some challenges of designing video systems  
within a single 5 V supply.  
The transconductance stage, a high slew rate, class AB circuit,  
sources signal current into a high impedance node. Each output  
stage contains a compensation network and is buffered to the  
output by a complementary emitter-follower stage. Voltage  
feedback sets the gain, with the AD8186 configured as a unity  
gain follower and the AD8187 as a gain-of-two amplifier with a  
feedback network. This architecture provides drive for a reverse-  
terminated video load (150 ) with low differential gain and  
phase errors while consuming relatively little power. Careful  
chip layout and biasing result in excellent crosstalk isolation  
between channels.  
The AD8186  
The AD8186 is internally wired as a unity-gain follower. Its  
inputs and outputs can both swing to within ~1.3 V of either  
rail. This affords the user 2.4 V of dynamic range at input and  
output, which should be enough for most video signals, whether  
the inputs are ac- or dc-coupled. In both cases, the choice of  
output termination voltage will determine the quiescent load  
current.  
High Impedance, Output Disable Feature, and Off Isolation  
The output-enable logic pin (OE) controls whether the three  
outputs are enabled or disabled to a high impedance state.  
The high impedance disable allows larger matrices to be built  
by busing the outputs together. In the case of the AD8187  
(G = +2), a feedback isolation scheme is used so that the  
impedance of the gain-of-two feedback network does not load  
the output. When not in use, the outputs can be disabled to  
reduce power consumption.  
For improved supply rejection, the VREF pin should be tied to  
an ac ground (the more quiet supply is a good bet). Internally,  
the VREF pin connects to one terminal of an on-chip capacitor.  
The capacitor’s other terminal connects to an internal node.  
The consequence of building this bypass capacitor on-chip is  
twofold. First, the VREF pin on the AD8186 draws no input bias  
current. (Contrast this to the case of the AD8187, where the  
VREF pin typically draws 2 µA of input bias current). Second,  
on the AD8186, the VREF pin may be tied to any voltage within  
the supply range.  
The reader may have noticed that the off isolation performance of  
the signal path is dependent upon the value of the load resistor,  
RL. For calculating off isolation, the signal path may be modeled  
as a simple high-pass network with an effective capacitance of  
3 fF. Off isolation will improve as the load resistance is decreased. In  
the case of the AD8186, off isolation is specified with a 1 kΩ  
load. However, a practical application would likely gang the  
outputs of multiple muxes. In this case, the proper load resistance  
for the off isolation calculation is the output impedance of an  
enabled AD8186, typically less than a 10th of an ohm.  
AD8186  
MUX SYSTEM  
IN0A  
OUT0  
IN0B  
IN1A  
OUT1  
IN1B  
IN2A  
OUT2  
IN2B  
Full Power Bandwidth vs. –3 dB Large Signal Bandwidth  
Note that full power bandwidth for an undistorted sinusoidal signal  
is often calculated using the peak slew rate from the equation  
“C_BYPASS”  
V
REF  
INTERNAL CAP  
Peak Slew Rate  
Full Power Bandwidth =  
BIAS REFERENCE  
2π × Sinusoid Amplitude  
DIRECT CONNECTION TO ANY “QUIET” AC GROUND  
(FOR EXAMPLE, GND, V , V  
CC EE)  
Figure 3. VREF Pin Connection for AD8186 (Differs  
from AD8187)  
–12–  
REV. A  
AD8186/AD8187  
The AD8187  
3) To maximize the output dynamic range, the reference voltage  
should be chosen with some care.  
The AD8187 uses on-chip feedback resistors to realize the gain-  
of-two function. To provide low crosstalk and a high output  
impedance when disabled, each set of 500 feedback resistors is  
terminated by a dedicated reference buffer. A reference buffer is  
a high speed op amp configured as a unity-gain follower. The  
three reference buffers, one for each channel, share a single, high  
impedance input, the VREF pin (see Figure 4). VREF input bias  
current is typically less than 2 µA.  
For example, consider amplifying a 700 mV video signal with a  
sync pulse 300 mV below black level. The user might decide to set  
VREF at black level to preferentially run video signals on the faster  
NPN transistor path. The AD8186 would, in this case, allow a  
reference voltage as low as 1.3 V + 300 mV = 1.6 V. If the AD8187  
is used, the sync pulse would be amplified to 600 mV. Therefore,  
the lower limit on VREF becomes 1.3 V + 600 mV = 1.9 V. For  
routing RGB video, an advantageous configuration would be to  
employ +3 V and –2 V supplies, in which case VREF could be  
tied to ground.  
5V  
A0  
OUT 0  
1ꢃ  
If system considerations prevent running the multiplexer on split  
supplies, a false ground reference should be employed. A low  
impedance reference may be synthesized with a second opera-  
tional amplifier. Alternately, a well bypassed resistor divider  
may serve. Refer to the Application section for further explana-  
tion and more examples.  
5V  
B0  
500ꢁ  
VFO  
5V  
GBUF 0  
500ꢁ  
V
REF  
VF-1  
5V  
5V  
GBUF 1  
OUT1  
OUT2  
10kꢁ  
500500ꢁ  
100kꢁ  
VF-2  
5V  
GBUF 2  
0.022F  
V
REF  
100ꢁ  
500500ꢁ  
OP21  
1F  
1F  
Figure 4. Conceptual Diagram of a Single  
Multiplexer Channel, G = +2  
FROM 1992 ADI AMPLIFIER  
APPLICATIONS GUIDE  
GND  
This configuration has a few implications for single-supply  
operation:  
Figure 6a. Synthesis of a False Ground Reference  
1) On the AD8187, VREF may not be tied to the most negative  
analog supply, VEE  
.
5V  
Limits on Reference Voltage (AD8187, see Figure 5):  
10kꢁ  
VEE +1.3V <VREF <VCC 1.6V  
1.3V <VREF < 3.4V on 0 V /5 V Supplies  
V
REF  
5V  
1F  
1.3V  
10kꢁ  
5V  
V
= 3.7V  
O_MAX  
A0  
V
OUT  
OUT 0  
V
= 1.3V  
CAP MUST BE LARGE  
ENOUGHTO ABSORB  
TRANSIENT CURRENTS  
WITH MINIMUM BOUNCE.  
O_MIN  
1.3V  
GND  
Figure 6b. Alternate Method for Synthesis of a  
False Ground Reference  
5V  
5V  
V
V
REF  
1.6V  
1.3V  
High Impedance Disable  
= 3.4V  
= 1.3V  
O_MAX  
Both the AD8186 and the AD8187 may have their outputs  
disabled to a high impedance state. In the case of the AD8187,  
the reference buffers also disable to a state of high output  
impedance. This feature prevents the feedback network of a  
disabled channel from loading the output, which is valuable  
when busing together the outputs of several muxes.  
V
REF  
V
O_MIN  
GND  
Figure 5. Output Compliance of Main Amplifier  
Channel and Ground Buffer  
2) Signal at the VREF pin appears at each output. Therefore,  
VREF should be tied to a well bypassed, low impedance source.  
Using superposition, it is easily shown that  
VOUT = 2 ×VIN VREF  
REV. A  
–13–  
AD8186/AD8187  
AC-Coupled Inputs (DC Restore before Mux Input)  
1
2
V
CC  
IN0A  
24  
23  
22  
21  
20  
19  
18  
17  
Using ac-coupled inputs presents an interesting challenge for video  
systems operating from a single 5 V supply. In NTSC and PAL  
video systems, 700 mV is the approximate difference between the  
maximum signal voltage and black level. It is assumed that sync  
has been stripped. However, given the two pathological cases  
shown in Figure 7, a dynamic range of twice the maximum signal  
swing is required if the inputs are to be ac-coupled. A possible  
solution would be to use a dc restore circuit before the mux.  
D
OE  
GND  
3
IN1A  
SEL A/B  
V
4
V
CC  
REF  
IN2A  
5
OUT 0  
6
V
MUX0  
MUX1  
MUX2  
V
CC  
EE  
WHITE LINEWITH BLACK PIXEL  
0.1F  
V
REF  
V
7
OUT 1  
EE  
+700mV  
V
1F  
AVG  
V
AVG  
V
IN2B  
8
CC  
–700mV  
V
REF  
BLACK LINEWITHWHITE PIXEL  
V
9
16 OUT 2  
EE  
+5V  
IN1B  
10  
11  
12  
15  
V
V
=V  
+V  
SIGNAL  
EE  
INPUT  
REF  
AVG  
IS A DCVOLTAGE  
V
~V  
REF  
V
SIGNAL  
V
V
14 DV  
REF  
SET BYTHE RESISTORS  
EE  
CC  
GND  
IN0B  
13  
V
CC  
Figure 7. Pathological Case for  
Input Dynamic Range  
Figure 8. Detail of Primary and Secondary Supplies  
Split-Supply Operation  
Tolerance to Capacitive Load  
Operating from split supplies (e.g., +3 V/–2 V or 2.5 V) simpli-  
fies the selection of the VREF voltage and load resistor termination  
voltage. In this case, it is convenient to tie VREF to ground.  
The logic inputs are level shifted internally to allow the digital  
supplies and logic inputs to operate from 0 V and 5 V when  
powering the analog circuits from split supplies. The maximum  
voltage difference between DVCC and VEE must not exceed 8 V  
(see Figure 9).  
Op amps are sensitive to reactive loads. A capacitive load at the  
output appears in parallel with an effective resistance of REFF  
=
(RLʈrO), where RL is the discrete resistive load, and rO is the open-  
loop output impedance, approximately 15 for these muxes.  
The load pole, at fLOAD = 1/(2REFF CL), can seriously degrade  
phase margin and therefore stability. The old workaround is to  
place a small series resistance directly at the output to isolate the  
load pole. While effective, this ruse also affects the dc and termina-  
tion characteristics of a 75 system. The AD8186 and AD8187  
are built with a variable compensation scheme that senses the  
output reactance and trades bandwidth for phase margin, ensuring  
faster settling and lower overshoot at higher capacitive loads.  
SPLIT-SUPPLY OPERATION  
ANALOG SUPPLIES  
(+2.5)  
DIGITAL SUPPLIES  
V
CC  
DV  
(+5)  
(0V)  
CC  
8V MAX  
Secondary Supplies and Supply Bypassing  
The high current output transistors are given their own supply  
pins (Pins 15, 17, 19, and 21) to reduce supply noise on-chip  
and to improve output isolation. Since these secondary, high  
current supply pins are not connected on-chip to the primary  
analog supplies (VCC/VEE, Pins 6, 7, 9, 11, 13, and 24), some  
care should be taken to ensure that the supply bypass capacitors  
are connected to the correct pins. At a minimum, the primary  
supplies should be bypassed. Pin 6 and Pin 7 may be a convenient  
place to accomplish this. Stacked power and ground planes could  
be a convenient way to bypass the high current supply pins.  
D
GND  
V
EE  
(–2.5)  
Figure 9. Split-Supply Operation  
–14–  
REV. A  
AD8186/AD8187  
APPLICATION  
Single-Supply Operation  
there is still enough dynamic range to handle an ac-coupled,  
standard video signal with 700 mV p-p amplitude.  
The AD8186/AD8187 are targeted mainly for use in single-  
supply 5 V systems. For operating on these supplies, both VEE  
and DGND should be tied to ground. The control logic pins will  
be referenced to ground. Normally, the DVCC supply should be  
set to the same positive supply as the driving logic.  
If the input is biased at 2.5 V dc, the input signal can potentially go  
700 mV both above and below this point. The resulting 1.8 V and  
2.2 V are within the input signal range for single 5 V operation.  
Since the part is unity-gain, the outputs will follow the inputs,  
and there will be adequate range at the output as well.  
For dc-coupled single-supply operation, it is necessary to set an  
appropriate input dc level that is within the specified range of the  
amplifier. For the unity-gain AD8186, the output dc level will  
be the same as the input, while for the gain-of-two AD8187, the  
VREF input can be biased to obtain an appropriate output dc level.  
When using the gain-of-two AD8187 in a simple ac-coupled  
application, there will be a dynamic range limitation at the output  
caused by its higher gain. At the output, the gain-of-two will  
produce a signal swing of 1.4 V, but the ac coupling will double  
this required amount to 2.8 V. The AD8187 outputs can only  
swing from 1.4 V to 3.6 V on a 5 V supply, so there are only  
2.2 V of dynamic signal swing available at the output.  
Figure 10 shows a circuit that provides a gain-of-two and is  
dc-coupled. The video input signals must have a dc bias  
from their source of approximately 1.5 V. This same volt-  
age is applied to VREF of the AD8187. The result is that when  
the video signal is at 1.5 V, the output will also be at the  
same voltage. This is close to the lower dynamic range of  
both the input and the output.  
A standard means for reducing the dynamic range requirements  
of an ac-coupled video signal is to use a dc restore. This circuit  
works to limit the dynamic range requirements by clamping the  
black level of the video signal to a fixed level at the input to the  
amplifier. This prevents the video content of the signal from  
varying the black level as happens in a simple ac-coupled circuit.  
When the input goes most positive, which is 700 mV above the  
black level for a standard video signal, it reaches a value of 2.2 V  
and there is enough headroom for the signal. On the output  
side, the magnitude of the signal will change by 1.4 V, which  
will make the maximum output voltage 2.2 V + 1.4 V = 3.6 V.  
This is just within the dynamic range of the output of the part.  
After ac coupling a video signal, it is always necessary to use a  
dc restore to establish where the black level is. Usually, this  
appears at the end of a video signal chain. This dc restore circuit  
needs to have the required accuracy for the system. It compen-  
sates for all the offsets of the preceding stages. Therefore, if a  
dc restore circuit is to be used only for dynamic-range limiting,  
it does not require great dc accuracy.  
AC Coupling  
When a video signal is ac-coupled, the amount of dynamic range  
required to handle the signal can potentially be double that  
required for dc-coupled operation. For the unity-gain AD8186,  
3VTO 5V 5V  
DV  
V
CC  
CCAD8187  
IN0A  
REDA  
IN1A  
OUT0  
GRNA  
RED  
GRN  
BLU  
2  
IN2A  
0.7V MAX  
BLUA  
3.0V  
1.5V  
5V  
1.4V MAX  
2.2V  
3.48kꢁ  
1.5kꢁ  
1.5V  
OUT1  
1.5V  
2  
V
REF  
BLACK  
LEVEL  
BLACK  
LEVEL  
TYPICAL INPUT LEVELS  
(ALL 6 OUTPUTS)  
TYPICAL OUTPUT LEVELS  
(ALL 3 OUTPUTS)  
IN0B  
IN1B  
OUT2  
OE  
REDB  
2  
GRNB  
BLUB  
IN2B  
D
V
SEL A/B  
GND  
EE  
Figure 10. DC-Coupled (Bypassing and Logic Not Shown)  
REV. A  
–15–  
AD8186/AD8187  
A dc restore circuit using the AD8187 is shown in Figure 11.  
Two separate sources of RGB video are ac-coupled to the  
0.1 µF input capacitors of the AD8187. The input points of  
the AD8187 are switched to a 1.5 V reference by the ADG786,  
which works in the following manner:  
The change in voltage is IBIAS times the line time divided by  
the capacitance. With an IBIAS of 2.5 µA, a line time of 30 µs,  
and a 0.1 µF coupling capacitor, the amount of droop is  
0.75 mV. This is roughly 0.1% of the full video amplitude and  
will not be observable in the video display.  
The SEL A/B signal selects the A or B inputs to the AD8187. It  
also selects the switch positions in the ADG786 such that the  
same selected inputs will be connected to VREF when EN is low.  
High Speed Design Considerations  
The AD8186/AD8187 are extremely high speed switching ampli-  
fiers for routing the highest resolution graphic signals. Extra care  
is required in the circuit design and layout to ensure that the full  
resolution of the video is realized.  
During the horizontal interval, all of the RGB input signals are at  
a flat black level. A logic signal that is low during HSYNC is  
applied to the EN of the ADG786. This closes the switches  
and clamps the black level to 1.5 V. At all other times, the switches  
are off and the node at the inputs to the AD8187 floats.  
First, the board should have at least one layer of a solid ground  
plane. Long signal paths should be referenced to a ground plane  
as controlled-impedance traces. All bypass capacitors should be  
very close to the pins of the part with absolutely minimum extra  
circuit length in the path. It is also helpful to have a large VCC  
plane on a circuit board layer that is closely spaced to the ground  
plane. This creates a low inductance interplane capacitance,  
which is very helpful in supplying the fast transient currents that  
the part demands during high resolution signal transitions.  
There are two considerations for sizing the input coupling capaci-  
tors. One is the time constant during the H-pulse clamping. The  
other is the droop associated with the capacitor discharge due to the  
input bias current of the AD8187. For the former, it is better to  
have a small capacitor; but for the latter, a larger capacitor is better.  
The ON resistance of the ADG786 and the coupling capacitor  
forms the time constant of the input clamp. The ADG786 ON  
resistance is 5 max. With a 0.1 µF capacitor, a time constant  
of 0.5 µs is created. Thus, a sync pulse of greater than 2.5 µs will  
cause less than 1% error. This is not critical because the black  
level from successive lines is very close and the voltage changes  
little from line to line.  
Evaluation Board  
An evaluation board has been designed and is offered for run-  
ning the AD8186/AD8187 on a single supply. The inputs and  
outputs are ac-coupled and terminated with 75 resistors.  
For the AD8187, a potentiometer is provided to allow setting  
VREF at any value between VCC and ground.  
The logic control signals can be statically set by adding or  
removing a jumper. If it is required to drive the logic pins  
with a fast signal, an SMA connector can be used to deliver the  
signal, and a place for a termination resistor is provided.  
A rough approximation for the horizontal line time for a graphics  
system is 30 µs. This will vary depending on the resolution and  
the vertical rate. The coupling capacitor needs to hold the voltage  
relatively constant during this time while the input bias current  
of the AD8187 is discharging it.  
5V  
3VTO 5V 5V  
V
0.1F  
0.1F  
DV  
V
CC  
DD  
CC  
IN0A  
IN1A  
IN2A  
REDA  
ADG786  
S1A  
AD8187  
OUT0  
GRNA  
BLUA  
D1  
RED  
GRN  
BLU  
2  
2  
2  
S1B  
0.1F  
5V  
V
REF  
S2A  
S2B  
3.48kꢁ  
1.5kꢁ  
V
OUT1  
OUT2  
OE  
1.5V  
+
REF  
D2  
V
REF  
0.1F  
0.1F  
IN0B  
REDB  
10F 0.1F  
S3A  
S3B  
D3  
IN1B  
IN2B  
D
GRNB  
BLUB  
GND  
EN  
V
SS  
0.1F  
V
SEL A/B  
LOGIC  
A0 A1 A2  
GND  
EE  
HSYNC  
2.4V MIN  
0.8V MIN  
SEL A/B  
Figure 11. AD8187 AC-Coupled with DC Restore  
–16–  
REV. A  
AD8186/AD8187  
EVALUATION BOARD  
Figure 12. Component Side Board Layout  
Figure 13. Circuit Side Board Layout  
REV. A  
–17–  
AD8186/AD8187  
Figure 14. Component Side Silkscreen  
Figure 15. Circuit Side Silkscreen  
–18–  
REV. A  
AD8186/AD8187  
Figure 16. Single-Supply Evaluation Board  
–19–  
REV. A  
AD8186/AD8187  
OUTLINE DIMENSIONS  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-24)  
Dimensions shown in millimeters  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20  
MAX  
0.15  
0.05  
0.75  
0.60  
0.45  
8ꢂ  
0ꢂ  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153AD  
Revision History  
Location  
Page  
6/03—Data Sheet changed from REV. 0 to REV. A.  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to TPCs 32, 35, and 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
REV. A  
–20–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY