AD820AN [ADI]

Single Supply, Rail to Rail Low Power FET-Input Op Amp; 单电源,轨至轨低功耗FET输入运算放大器
AD820AN
型号: AD820AN
厂家: ADI    ADI
描述:

Single Supply, Rail to Rail Low Power FET-Input Op Amp
单电源,轨至轨低功耗FET输入运算放大器

运算放大器
文件: 总16页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Supply, Rail to Rail  
a
Low Power FET-Input Op Amp  
AD820  
CONNECTION DIAGRAMS  
FEATURES  
True Single Supply Operation  
Output Swings Rail-to-Rail  
8-Lead Plastic Mini-DIP  
8-Lead SOIC  
Input Voltage Range Extends Below Ground  
Single Supply Capability from +3 V to +36 V  
Dual Supply Capability from ؎1.5 V to ؎18 V  
Excellent Load Drive  
Capacitive Load Drive Up to 350 pF  
Minimum Output Current of 15 mA  
Excellent AC Performance for Low Power  
800 A Max Quiescent Current  
Unity Gain Bandwidth: 1.8 MHz  
Slew Rate of 3.0 V/s  
NULL  
–IN  
1
2
8
7
NC  
+V  
AD820  
AD820  
NC  
–IN  
+IN  
1
2
3
8
7
6
NC  
+V  
S
S
+IN  
3
4
6
5
V
OUT  
V
OUT  
TOP VIEW  
(Not to Scale)  
–V  
S
TOP VIEW  
(Not to Scale)  
NULL  
–V  
S
4
5
NC  
NC = NO CONNECT  
allowing the AD820 to accommodate input signals below  
Excellent DC Performance  
ground in the single supply mode. Output voltage swing extends  
to within 10 mV of each rail providing the maximum output  
dynamic range.  
800 V Max Input Offset Voltage  
1 V/؇C Typ Offset Voltage Drift  
25 pA Max Input Bias Current  
Low Noise  
Offset voltage of 800 µV max, offset voltage drift of 1 µV/°C, typ  
input bias currents below 25 pA and low input voltage noise  
provide dc precision with source impedances up to a Gigaohm.  
1.8 MHz unity gain bandwidth, –93 dB THD at 10 kHz and  
3 V/µs slew rate are provided for a low supply current of  
800 µA. The AD820 drives up to 350 pF of direct capacitive  
load and provides a minimum output current of 15 mA. This  
allows the amplifier to handle a wide range of load conditions.  
This combination of ac and dc performance, plus the outstand-  
ing load drive capability, results in an exceptionally versatile  
amplifier for the single supply user.  
13 nV/Hz @ 10 kHz  
APPLICATIONS  
Battery Powered Precision Instrumentation  
Photodiode Preamps  
Active Filters  
12- to 14-Bit Data Acquisition Systems  
Medical Instrumentation  
Low Power References and Regulators  
PRODUCT DESCRIPTION  
The AD820 is a precision, low power FET input op amp that  
can operate from a single supply of +3.0 V to 36 V, or dual  
supplies of ±1.5 V to ±18 V. It has true single supply capability  
with an input voltage range extending below the negative rail,  
The AD820 is available in three performance grades. The A and  
B grades are rated over the industrial temperature range of  
–40°C to +85°C. There is 3 V grade—the AD820A-3V, rated  
over the industrial temperature range.  
The AD820 is offered in two varieties of 8-lead package: plastic  
DIP, and surface mount (SOIC).  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
1
2
3
4
5
6
7
8
9
10  
INPUT BIAS CURRENT – pA  
Figure 2. Gain of +2 Amplifier; VS = +5, 0, VIN = 2.5 V Sine  
Centered at 1.25 Volts  
Figure 1. Typical Distribution of Input Bias Current  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
(VS = 0, 5 volts @ TA = +25؇C, VCM = 0 V, VOUT = 0.2 V unless otherwise noted)  
AD820–SPECIFICATIONS  
AD820A  
Typ  
AD820B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Units  
DC PERFORMANCE  
Initial Offset  
Max Offset over Temperature  
Offset Drift  
Input Bias Current  
at TMAX  
Input Offset Current  
at TMAX  
0.1  
0.5  
2
2
0.5  
2
0.8  
1.2  
0.1  
0.5  
2
2
0.5  
2
0.4  
0.9  
mV  
mV  
µV/°C  
pA  
nA  
pA  
V
O = 0 V to 4 V  
25  
5
20  
10  
2.5  
10  
0.5  
0.5  
nA  
Open-Loop Gain  
V
O = 0.2 V to 4 V  
RL = 100k  
RL = 10k  
RL = 1k  
400  
400  
80  
80  
15  
1000  
150  
30  
500  
400  
80  
80  
15  
1000  
150  
30  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
T
T
MIN to TMAX  
MIN to TMAX  
TMIN to TMAX  
10  
10  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
0.1 Hz to 10 Hz  
f = 10 Hz  
2
2
µV p-p  
25  
21  
16  
13  
25  
21  
16  
13  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
0.1 Hz to 10 Hz  
f = 1 kHz  
Harmonic Distortion  
f = 10 kHz  
18  
0.8  
18  
0.8  
fA p-p  
fA/Hz  
RL = 10k to 2.5 V  
VO = 0.25 V to 4.75 V  
–93  
–93  
dB  
DYNAMIC PERFORMANCE  
Unity Gain Frequency  
Full Power Response  
Slew Rate  
1.8  
210  
3
1.8  
210  
3
MHz  
kHz  
V/µs  
VO p-p = 4.5 V  
Settling Time  
to 0.1%  
to 0.01%  
V
O = 0.2 V to 4.5 V  
1.4  
1.8  
1.4  
1.8  
µs  
µs  
INPUT CHARACTERISTICS  
Common-Mode Voltage Range1  
–0.2  
–0.2  
66  
4
4
–0.2  
–0.2  
72  
4
4
V
V
dB  
dB  
T
MIN to TMAX  
CMRR  
V
CM = 0 V to +2 V  
80  
80  
T
MIN to TMAX  
66  
66  
Input Impedance  
Differential  
Common Mode  
1013ʈ0.5  
1013ʈ0.5  
1013ʈ2.8  
ʈpF  
ʈpF  
1013ʈ2.8  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL–VEE  
ISINK = 20 µA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
pF  
T
MIN to TMAX  
CC–VOH  
MIN to TMAX  
OL–VEE  
MIN to TMAX  
CC–VOH  
MIN to TMAX  
OL–VEE  
MIN to TMAX  
CC–VOH  
MIN to TMAX  
Operating Output Current  
MIN to TMAX  
V
V
V
V
V
ISOURCE = 20 µA  
ISINK = 2 mA  
10  
40  
80  
300  
800  
10  
40  
80  
300  
800  
T
T
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
T
T
T
15  
12  
15  
12  
T
Short Circuit Current  
Capacitive Load Drive  
25  
350  
25  
350  
POWER SUPPLY  
Quiescent Current  
Power Supply Rejection  
TMIN to TMAX  
TMIN to TMAX  
VS+ = 5 V to 15 V  
620  
80  
800  
620  
80  
800  
µA  
dB  
dB  
70  
70  
66  
66  
–2–  
REV. B  
AD820  
(VS = +5 volts @ TA = +25؇C, VCM = 0 V, VOUT = 0 V unless otherwise noted)  
AD820A  
Typ  
AD820B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Units  
DC PERFORMANCE  
Initial Offset  
Max Offset over Temperature  
Offset Drift  
Input Bias Current  
at TMAX  
Input Offset Current  
at TMAX  
0.1  
0.5  
2
2
0.5  
2
0.8  
1.5  
0.3  
0.5  
2
2
0.5  
2
0.4  
1
mV  
mV  
µV/°C  
pA  
nA  
pA  
V
V
CM = –5 V to 4 V  
O = 4 V to –4 V  
25  
5
20  
10  
2.5  
10  
0.5  
0.5  
nA  
Open-Loop Gain  
RL = 100k  
RL = 10k  
RL = 1k  
400  
400  
80  
80  
20  
1000  
150  
30  
400  
400  
80  
80  
20  
1000  
150  
30  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
T
T
MIN to TMAX  
MIN to TMAX  
TMIN to TMAX  
10  
10  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
0.1 Hz to 10 Hz  
f = 10 Hz  
2
2
µV p-p  
25  
21  
16  
13  
25  
21  
16  
13  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
0.1 Hz to 10 Hz  
f = 1 kHz  
Harmonic Distortion  
f = 10 kHz  
18  
0.8  
18  
0.8  
fA p-p  
fA/Hz  
RL = 10k  
VO = ±4.5 V  
–93  
–93  
dB  
DYNAMIC PERFORMANCE  
Unity Gain Frequency  
Full Power Response  
Slew Rate  
1.9  
105  
3
1.8  
105  
3
MHz  
kHz  
V/µs  
VO p-p = 9 V  
Settling Time  
to 0.1%  
to 0.01%  
V
O = 0 V to ±4.5 V  
1.4  
1.8  
1.4  
1.8  
µs  
µs  
INPUT CHARACTERISTICS  
Common-Mode Voltage Range1  
–5.2  
–5.2  
66  
4
4
–5.2  
–5.2  
72  
4
4
V
V
dB  
dB  
T
MIN to TMAX  
CMRR  
V
CM = –5 V to +2 V  
80  
80  
T
MIN to TMAX  
66  
66  
Input Impedance  
Differential  
Common Mode  
1013ʈ0.5  
1013ʈ0.5  
1013ʈ2.8  
ʈpF  
ʈpF  
1013ʈ2.8  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL–VEE  
ISINK = 20 µA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
pF  
T
MIN to TMAX  
CC–VOH  
MIN to TMAX  
OL–VEE  
MIN to TMAX  
CC–VOH  
MIN to TMAX  
OL–VEE  
MIN to TMAX  
CC–VOH  
MIN to TMAX  
Operating Output Current  
MIN to TMAX  
V
V
V
V
V
ISOURCE = 20 µA  
ISINK = 2 mA  
10  
40  
80  
300  
800  
10  
40  
80  
300  
800  
T
T
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
T
T
T
15  
12  
15  
12  
T
Short Circuit Current  
Capacitive Load Drive  
30  
350  
30  
350  
POWER SUPPLY  
Quiescent Current  
Power Supply Rejection  
TMIN to TMAX  
TMIN to TMAX  
VS+ = 5 V to 15 V  
650  
80  
800  
620  
80  
800  
µA  
dB  
dB  
70  
70  
70  
70  
REV. B  
–3–  
(VS = ؎15 volts @ TA = +25؇C, VCM = 0 V, VOUT = 0 V unless otherwise noted)  
AD820–SPECIFICATIONS  
AD820A  
Typ  
AD820B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Units  
DC PERFORMANCE  
Initial Offset  
Max Offset over Temperature  
Offset Drift  
Input Bias Current  
0.4  
0.5  
2
2
3
0.3  
0.5  
2
1.0  
2
mV  
mV  
µV/°C  
pA  
V
CM = 0 V  
2
25  
2
10  
VCM = –10 V  
VCM = 0 V  
40  
0.5  
2
40  
0.5  
2
pA  
at TMAX  
5
20  
2.5  
10  
nA  
Input Offset Current  
at TMAX  
pA  
0.5  
0.5  
nA  
Open-Loop Gain  
VO = +10 V to –10 V  
RL = 100k  
500  
500  
100  
100  
30  
2000  
500  
45  
500  
500  
100  
100  
30  
2000  
500  
45  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
T
MIN to TMAX  
RL = 10k  
RL = 1k  
TMIN to TMAX  
TMIN to TMAX  
20  
20  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
0.1 Hz to 10 Hz  
f = 10 Hz  
2
2
µV p-p  
25  
21  
16  
13  
25  
21  
16  
13  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
0.1 Hz to 10 Hz  
f = 1 kHz  
Harmonic Distortion  
f = 10 kHz  
18  
0.8  
18  
0.8  
fA p-p  
fA/Hz  
RL = 10k  
VO = ±10 V  
–85  
–85  
dB  
DYNAMIC PERFORMANCE  
Unity Gain Frequency  
Full Power Response  
Slew Rate  
1.9  
45  
3
1.9  
45  
3
MHz  
kHz  
V/µs  
VO p-p = 20 V  
Settling Time  
to 0.1%  
to 0.01%  
VO = 0 V to ±10 V  
4.1  
4.5  
4.1  
4.5  
µs  
µs  
INPUT CHARACTERISTICS  
Common-Mode Voltage Range1  
TMIN to TMAX  
–15.2  
–15.2  
70  
14  
14  
–15.2  
–15.2  
74  
14  
14  
V
V
CMRR  
VCM = –15 V to 12 V  
80  
90  
dB  
dB  
TMIN to TMAX  
70  
74  
Input Impedance  
Differential  
Common Mode  
1013ʈ0.5  
1013ʈ2.8  
1013ʈ0.5  
1013ʈ2.8  
ʈpF  
ʈpF  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL–VEE  
ISINK = 20 µA  
5
7
5
7
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
TMIN to TMAX  
10  
10  
VCC–VOH  
ISOURCE = 20 µA  
ISINK = 2 mA  
10  
40  
80  
300  
800  
14  
10  
40  
80  
300  
800  
14  
TMIN to TMAX  
20  
20  
VOL–VEE  
55  
55  
TMIN to TMAX  
80  
80  
VCC–VOH  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
110  
160  
500  
1000  
1500  
1900  
110  
160  
500  
1000  
1500  
1900  
TMIN to TMAX  
VOL–VEE  
TMIN to TMAX  
VCC–VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
20  
15  
20  
15  
Short Circuit Current  
Capacitive Load Drive  
45  
350  
45  
350  
POWER SUPPLY  
Quiescent Current  
Power Supply Rejection  
TMIN to TMAX  
TMIN to TMAX  
VS+ = 5 V to 15 V  
700  
80  
900  
700  
80  
900  
µA  
dB  
dB  
70  
70  
70  
70  
–4–  
REV. B  
AD820  
(VS = 0, 3 volts @ TA = +25؇C, VCM = 0 V, VOUT = 0.2 V unless otherwise noted)  
AD820A-3V  
Typ  
Parameter  
Conditions  
Min  
Max  
Units  
DC PERFORMANCE  
Initial Offset  
Max Offset over Temperature  
Offset Drift  
Input Bias Current  
at TMAX  
Input Offset Current  
at TMAX  
0.2  
0.5  
1
2
0.5  
2
1
1.5  
mV  
mV  
µV/°C  
pA  
nA  
pA  
V
V
CM = 0 V to +2 V  
O = 0.2 V to 2 V  
25  
5
20  
0.5  
nA  
Open-Loop Gain  
RL = 100k  
RL = 10k  
RL = 1k  
300  
400  
60  
80  
10  
8
1000  
150  
30  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
T
T
MIN to TMAX  
MIN to TMAX  
TMIN to TMAX  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
0.1 Hz to 10 Hz  
f = 10 Hz  
2
µV p-p  
25  
21  
16  
13  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
0.1 Hz to 10 Hz  
f = 1 kHz  
Harmonic Distortion  
f = 10 kHz  
18  
0.8  
fA p-p  
fA/Hz  
RL = 10k to 1.5 V  
VO = ±1.25 V  
–92  
dB  
DYNAMIC PERFORMANCE  
Unity Gain Frequency  
Full Power Response  
Slew Rate  
Settling Time  
to 0.1%  
1.5  
240  
3
MHz  
kHz  
V/µs  
V
V
O p-p = 2.5 V  
O = 0.2 V to 2.5 V  
1
1.4  
µs  
µs  
to 0.01%  
INPUT CHARACTERISTICS  
Common-Mode Voltage Range1  
–0.2  
–0.2  
60  
2
2
V
V
dB  
dB  
T
MIN to TMAX  
CMRR  
V
CM = 0 V to +1 V  
74  
T
MIN to TMAX  
60  
Input Impedance  
Differential  
Common Mode  
1013ʈ0.5  
1013ʈ2.8  
ʈpF  
ʈpF  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL–VEE  
ISINK = 20 µA  
5
7
10  
14  
20  
55  
80  
110  
160  
400  
400  
1000  
1000  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
pF  
T
MIN to TMAX  
CC–VOH  
MIN to TMAX  
OL–VEE  
MIN to TMAX  
CC–VOH  
MIN to TMAX  
OL–VEE  
MIN to TMAX  
CC–VOH  
MIN to TMAX  
Operating Output Current  
MIN to TMAX  
Short Circuit Current  
MIN to TMAX  
V
V
V
V
V
ISOURCE = 20 µA  
ISINK = 2 mA  
10  
40  
80  
200  
500  
T
T
ISOURCE = 2 mA  
ISINK = 10 mA  
ISOURCE = 10 mA  
T
T
T
15  
12  
18  
15  
T
25  
T
Capacitive Load Drive  
350  
POWER SUPPLY  
Quiescent Current  
Power Supply Rejection  
TMIN to TMAX  
T
MIN to TMAX  
620  
80  
800  
µA  
dB  
dB  
VS+ = 3 V to 15 V  
70  
70  
REV. B  
–5–  
AD820–SPECIFICATIONS  
NOTES  
1This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (+ VS – 1 V) to +VS.  
Common-mode error voltage is typically less than 5 mV with the common-mode voltage set at 1 volt below the positive supply.  
2VOL–VEE is defined as the difference between the lowest possible output voltage (VOL) and the minus voltage supply rail (VEE).  
VCC–VOH is defined as the difference between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
28-Lead Plastic DIP Package: θJA = 90°C/Watt  
Internal Power Dissipation2  
Plastic DIP (N) . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Watts  
SOIC (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 Watts  
Input Voltage . . . . . . . . . . . . . . (+VS + 0.2 V) to – (20 V + VS)  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±30 V  
Storage Temperature Range (N) . . . . . . . . . –65°C to +125°C  
Storage Temperature Range (R) . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
8-Lead SOIC Package: θJA = 160°C/Watt  
AD820A/B . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Lead Temperature Range  
(Soldering 60 sec) . . . . . . . . . . . . . . . . . . . . . . . . . .+260°C  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Options  
Model  
AD820AN  
AD820BN  
AD820AR  
AD820BR  
AD820AR-3V  
AD820AN-3V  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Plastic Mini-DIP  
8-Lead Plastic Mini-DIP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
N-8  
N-8  
R-8  
R-8  
R-8  
N-8  
8-Lead Plastic Mini-DIP  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD820 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–6–  
REV. B  
Typical Characteristics–AD820  
50  
40  
30  
20  
10  
0
5
V
= 0V, 5V  
S
0
V
= 0V, +5V AND ؎5V  
S
V
= ؎5V  
S
–5  
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
OFFSET VOLTAGE – mV  
COMMON-MODE VOLTAGE – Volts  
Figure 3. Typical Distribution of Offset Voltage (248 Units)  
Figure 6. Input Bias Current vs. Common-Mode  
Voltage; VS = +5 V, 0 V and VS = ±5 V  
48  
1k  
V
V
= ؎5V  
S
S
40  
32  
24  
16  
8
= ؎15V  
100  
10  
1
0
–10  
0.1  
–16  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
–12  
–8  
–4  
0
4
8
12  
16  
COMMON-MODE VOLTAGE – Volts  
OFFSET VOLTAGE DRIFT – V/؇C  
Figure 4. Typical Distribution of Offset Voltage Drift  
(120 Units)  
Figure 7. Input Bias Current vs. Common-Mode  
Voltage; VS = ±15 V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100k  
10k  
1k  
100  
10  
1
0
0.1  
20  
0
1
2
3
4
5
6
7
8
9
10  
40  
60  
80  
100  
120  
140  
INPUT BIAS CURRENT – pA  
TEMPERATURE – ؇C  
Figure 5. Typical Distribution of Input Bias Current  
(213 Units)  
Figure 8. Input Bias Current vs. Temperature;  
VS = 5 V, VCM = 0  
REV. B  
–7–  
AD820–Typical Characteristics  
40  
20  
10M  
POS RAIL  
NEG RAIL  
R
= 2k⍀  
L
V
= ؎15V  
S
R
= 20k⍀  
1M  
100k  
10k  
L
V
= 0V, 5V  
S
POS  
RAIL  
0
POS RAIL  
V
= 0V, 3V  
S
–20  
–40  
NEG RAIL  
NEG RAIL  
R
= 100k⍀  
L
100  
1k  
10k  
100k  
0
60  
120  
180  
240  
300  
LOAD RESISTANCE – ⍀  
OUTPUT VOLTAGE FROM VOLTAGE RAILS – mV  
Figure 9. Open-Loop Gain vs. Load Resistance  
Figure 12. Input Error Voltage with Output Voltage within  
300 mV of Either Supply Rail for Various Resistive Loads;  
VS = ±5 V  
10M  
1k  
100  
10  
V
V
= ؎15V  
R
= 100k⍀  
= 10k⍀  
S
L
1M  
100k  
10k  
= 0V, 5V  
S
V
= ؎15V  
S
S
R
L
V
= 0V, 5V  
V
= ؎15V  
S
R
= 600⍀  
L
V
= 0V, 5V  
S
1
1
10  
100  
1k  
10k  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY – Hz  
TEMPERATURE – ؇C  
Figure 10. Open-Loop Gain vs. Temperature  
Figure 13. Input Voltage Noise vs. Frequency  
–40  
300  
200  
R
A
= 10k⍀  
L
–50  
–60  
= –1  
CL  
100  
R
= 10k⍀  
L
R
= 100k⍀  
V
= 0V, 3V; V  
= 2.5V p-p  
L
S
OUT  
–70  
0
–80  
V
= ؎15V; V  
= 20V p-p  
S
OUT  
–100  
–90  
V
V
= ؎5V; V  
= 9V p-p  
S
OUT  
R
4
= 600⍀  
–200  
–300  
L
–100  
= 0V, 5V; V  
= 4.5V p-p  
S
OUT  
–110  
100  
1k  
10k  
FREQUENCY – Hz  
100k  
–16  
–12  
–8  
–4  
0
8
12  
16  
OUTPUT VOLTAGE – Volts  
Figure 11. Input Error Voltage vs. Output Voltage for  
Resistive Loads  
Figure 14. Total Harmonic Distortion vs. Frequency  
REV. B  
–8–  
AD820  
100  
80  
100  
80  
60  
40  
20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PHASE  
60  
40  
20  
0
V
V
= 0V, 5V  
AND  
= 0V, 3V  
V
= ؎15V  
S
GAIN  
S
S
R
C
= 2k⍀  
= 100pF  
L
L
–20  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 15. Open-Loop Gain and Phase Margin vs.  
Frequency  
Figure 18. Common-Mode Rejection vs. Frequency  
5
4
1k  
A
= +1  
= ؎15V  
CL  
V
S
100  
10  
POSITIVE  
RAIL  
NEGATIVE  
RAIL  
3
2
1
0
+25؇C  
1
+125؇C  
+125؇C  
0.1  
0.01  
–55؇C  
–55؇C  
100  
1k  
10k  
100k  
1M  
10M  
–1  
0
1
2
3
FREQUENCY – Hz  
COMMON-MODE VOLTAGE FROM SUPPLY RAILS – Volts  
Figure 16. Output Impedance vs. Frequency  
Figure 19. Absolute Common-Mode Error vs. Common-  
Mode Voltage from Supply Rails (VS – VCM  
)
16  
12  
1000  
100  
10  
1%  
8
4
V
– V  
OH  
S
0
–4  
0.1%  
0.01%  
ERROR  
V
– V  
OL  
S
–8  
1%  
1.0  
–12  
–16  
0.0  
0
2.0  
3.0  
4.0  
5.0  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT – mA  
SETTLING TIME – s  
Figure 17. Output Swing and Error vs. Settling Time  
Figure 20. Output Saturation Voltage vs Load Current  
-
REV. B  
–9–  
AD820–Typical Characteristics  
1000  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 10mA  
SOURCE  
I
= 10mA  
SINK  
100  
10  
1
I
= 1mA  
SOURCE  
I
= 1mA  
SINK  
+PSRR  
–PSRR  
I
= 10A  
SOURCE  
I
= 10A  
SINK  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
Figure 21. Output Saturation Voltage vs. Temperature  
Figure 24. Power Supply Rejection vs. Frequency  
30  
80  
70  
R1 = 2k⍀  
25  
V
= ؎15V  
S
60  
50  
40  
30  
20  
10  
0
V
= ؎15V  
S
20  
15  
10  
5
–OUT  
+
V
= ؎15V  
S
V
V
= 0V, 5V  
= 0V, 3V  
S
S
V
= 0V, 5V  
= 0V ,3V  
+
+
S
V
= 0V, 3V  
V
= 0V, 5V  
S
S
V
S
0
10k  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
100k  
1M  
10M  
FREQUENCY – Hz  
TEMPERATURE – ؇C  
Figure 22. Short Circuit Current Limit vs. Temperature  
Figure 25. Large Signal Frequency Response  
800  
T = +125؇C  
700  
T = +25؇C  
600  
T = –55؇C  
500  
400  
300  
200  
100  
0
0
4
8
12  
16  
20  
24  
28  
30  
36  
TOTAL SUPPLY VOLTAGE – Volts  
Figure 23. Quiescent Current vs. Supply Voltage vs.  
Temperature  
REV. B  
–10–  
AD820  
+V  
7
S
0.01F  
3
2
V
IN  
6
AD820  
V
OUT  
R
100pF  
L
0.01F  
4
–V  
S
Figure 26. Unity-Gain Follower  
Figure 29. Large Signal Response Unity Gain Follower;  
VS = ±15 V, RL = 10 kΩ  
Figure 27. 20 V, 25 kHz Sine Input; Unity Gain Follower;  
RL = 600 , VS = ±15 V  
Figure 30. Small Signal Response Unity Gain Follower;  
VS = ±15 V, RL = 10 k  
GND  
GND  
Figure 28. VS = +5 V, 0 V; Unity Gain Follower Response  
to 0 V to 4 V Step  
Figure 31. VS = +5 V, 0 V; Unity Gain Follower Response  
to 0 V to 5 V Step  
REV. B  
–11–  
AD820  
+V  
7
S
0.01F  
3
2
V
IN  
6
AD820  
V
OUT  
100pF  
R
L
4
GND  
Figure 32. Unity-Gain Follower  
Figure 35. VS = +5 V, 0 V; Unity Gain Follower Response  
to 40 mV Step Centered 40 mV Above Ground  
10k⍀  
20k⍀  
100  
V
IN  
V
+V  
S
OUT  
0.01F  
7
2
3
6
AD820  
100pF  
R
L
4
GND  
Figure 33. Gain of Two Inverter  
Figure 36. VS = +5 V, 0 V; Gain of Two Inverter Response  
to 20 mV Step, Centered 20 mV Below Ground  
GND  
GND  
Figure 34. VS = +5 V, 0 V; Gain of Two Inverter Response  
to 2.5 V Step Centered –1.25 V Below Ground  
Figure 37. VS = 3 V, 0 V; Gain of Two Inverter, VIN = 1.25 V,  
25 kHz, Sine Wave Centered at –0.75 V, RL = 600 Ω  
–12–  
REV. B  
AD820  
APPLICATION NOTES  
INPUT CHARACTERISTICS  
A current limiting resistor should be used in series with the  
input of the AD820 if there is a possibility of the input voltage  
exceeding the positive supply by more than 300 mV, or if an  
input voltage will be applied to the AD820 when ±VS = 0. The  
amplifier will be damaged if left in that condition for more than  
10 seconds. A 1 kresistor allows the amplifier to withstand up  
to 10 volts of continuous overvoltage, and increases the input  
voltage noise by a negligible amount.  
In the AD820, n-channel JFETs are used to provide a low off-  
set, low noise, high impedance input stage. Minimum input  
common-mode voltage extends from 0.2 V below –VS to 1 V  
less than +VS. Driving the input voltage closer to the positive  
rail will cause a loss of amplifier bandwidth (as can be seen by  
comparing the large signal responses shown in Figures 28 and  
31) and increased common-mode voltage error as illustrated in  
Figure 19.  
Input voltages less than –VS are a completely different story.  
The amplifier can safely withstand input voltages 20 volts below  
the minus supply voltage as long as the total voltage from the  
positive supply to the input terminal is less than 36 volts. In  
addition, the input stage typically maintains picoamp level input  
currents across that input voltage range.  
The AD820 does not exhibit phase reversal for input voltages  
up to and including +VS. Figure 38a shows the response of an  
AD820 voltage follower to a 0 V to +5 V (+VS) square wave  
input. The input and output are superimposed. The output  
polarity tracks the input polarity up to +VS—no phase reversal.  
The reduced bandwidth above a 4 V input causes the rounding  
of the output wave form. For input voltages greater than +VS, a  
resistor in series with the AD820’s plus input will prevent phase  
reversal, at the expense of greater input voltage noise. This is  
illustrated in Figure 38b.  
The AD820 is designed for 13 nV/Hz wideband input voltage  
noise and maintains low noise performance to low frequencies  
(refer to Figure 13). This noise performance, along with the  
AD820’s low input current and current noise means that the  
AD820 contributes negligible noise for applications with source  
resistances greater than 10 kand signal bandwidths greater  
than 1 kHz. This is illustrated in Figure 39.  
Since the input stage uses n-channel JFETs, input current dur-  
ing normal operation is negative; the current flows out from the  
input terminals. If the input voltage is driven more positive than  
+VS – 0.4 V, the input current will reverse direction as internal  
device junctions become forward biased. This is illustrated in  
Figure 6.  
100k  
WHENEVER JOHNSON NOISE IS GREATER THAN  
AMPLIFIER NOISE, AMPLIFIER NOISE CAN BE  
CONSIDERED NEGLIGIBLE FOR APPLICATION.  
10k  
1kHz  
1k  
RESISTOR JOHNSON  
NOISE  
100  
10  
10Hz  
1
AMPLIFIER-GENERATED  
NOISE  
GND  
0.1  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
SOURCE IMPEDANCE – ⍀  
(a)  
Figure 39. Total Noise vs. Source Impedance  
OUTPUT CHARACTERISTICS  
The AD820’s unique bipolar rail-to-rail output stage swings  
within 5 mV of the minus supply and 10 mV of the positive  
supply with no external resistive load. The AD820’s approxi-  
mate output saturation resistance is 40 sourcing and 20 Ω  
sinking. This can be used to estimate output saturation voltage  
when driving heavier current loads. For instance, when sourcing  
5 mA, the saturation voltage to the positive supply rail will be  
200 mV, when sinking 5 mA, the saturation voltage to the  
minus rail will he 100 mV.  
+V  
S
GND  
(b)  
The amplifier’s open-loop gain characteristic will change as a  
function of resistive load, as shown in Figures 9 through 12. For  
load resistances over 20 k, the AD820’s input error voltage is  
virtually unchanged until the output voltage is driven to 180 mV  
of either supply.  
+5V  
R
P
V
IN  
AD820  
V
OUT  
If the AD820’s output is driven hard against the output satura-  
tion voltage, it will recover within 2 µs of the input returning to  
the amplifier’s linear operating region.  
Figure 38. (a) Response with RP = 0; VIN from 0 to +VS  
Figure 36. (b) VIN = 0 to +VS + 200 mV  
VOUT = 0 to +VS  
RP = 49.9 kΩ  
REV. B  
–13–  
AD820  
+V  
7
Direct capacitive load will interact with the amplifier’s effective  
output impedance to form an additional pole in the amplifier’s  
feedback loop, which can cause excessive peaking on the pulse  
response or loss of stability. Worst case is when the amplifier is  
used as a unity gain follower. Figure 40 shows the AD820’s  
pulse response as a unity gain follower driving 350 pF. This  
amount of overshoot indicates approximately 20 degrees of  
phase margin—the system is stable, but is nearing the edge.  
Configurations with less loop gain, and as a result less loop  
bandwidth, will be much less sensitive to capacitance load ef-  
fects. Figure 41 is a plot of capacitive load that will result in a  
20 degree phase margin versus noise gain for the AD820. Noise  
gain is the inverse of the feedback attenuation factor provided  
by the feedback network in use.  
S
0.01F  
3
2
V
IN  
100⍀  
20k⍀  
6
AD820  
V
OUT  
0.01F  
4
–V  
S
20pF  
Figure 42. Extending Unity Gain Follower Capacitive Load  
Capability Beyond 350 pF  
OFFSET VOLTAGE ADJUSTMENT  
The AD820’s offset voltage is low, so external offset voltage  
nulling is not usually required. Figure 43 shows the recom-  
mended technique for AD820’s packaged in plastic DIPs.  
Adjusting offset voltage in this manner will change the offset  
voltage temperature drift by 4 µV/°C for every millivolt of in-  
duced offset. The null pins are not functional for AD820s in the  
SO-8 “R” package.  
+V  
S
7
3
6
AD820  
5
1
2
20k⍀  
Figure 40. Small Signal Response of AD820 as Unity Gain  
Follower Driving 350 pF Capacitive Load  
4
–V  
S
5
4
3
Figure 43. Offset Null  
APPLICATIONS  
Single Supply Half-Wave and Full-Wave Rectifiers  
An AD820 configured as a unity gain follower and operated  
with a single supply can be used as a simple half-wave rectifier.  
The AD820’s inputs maintain picoamp level input currents even  
when driven well below the minus supply. The rectifier puts that  
behavior to good use, maintaining an input impedance of over  
1011 for input voltages from 1 volt from the positive supply to  
20 volts below the negative supply.  
2
1
The full and half-wave rectifier shown in Figure 44 operates as  
follows: when VIN is above ground, R1 is bootstrapped through  
the unity gain follower A1 and the loop of amplifier A2. This  
forces the inputs of A2 to be equal, thus no current flows through  
R1 or R2, and the circuit output tracks the input. When VIN is  
below ground, the output of A1 is forced to ground. The non-  
inverting input of amplifier A2 sees the ground level output of  
A1, therefore A2 operates as a unity gain inverter. The output at  
node C is then a full-wave rectified version of the input. Node B  
is a buffered half-wave rectified version of the input. Input volt-  
ages up to ±18 volts can be rectified, depending on the voltage  
supply used.  
300  
1k  
3k  
10k  
30k  
CAPACITIVE LOAD FOR 20؇ PHASE MARGIN – pF  
R
F
R
I
Figure 41. Capacitive Load Tolerance vs. Noise Gain  
Figure 42 shows a possible configuration for extending capaci-  
tance load drive capability for a unity gain follower. With these  
component values, the circuit will drive 5,000 pF with a 10%  
overshoot.  
–14–  
REV. B  
AD820  
Low Power Three-Pole Sallen Key Low-Pass Filter  
R1  
100k⍀  
R2  
100k⍀  
The AD820’s high input impedance makes it a good selection  
for active filters. High value resistors can be used to construct  
low frequency filters with capacitors much less than 1 µF. The  
AD820’s picoamp level input currents contribute minimal dc  
errors.  
+V  
S
+V  
0.01F  
S
7
0.01F  
3
2
A
7
C
3
2
6
A2  
V
6
IN  
FULL-WAVE  
RECTIFIED OUTPUT  
Figure 46 shows an example, a 10 Hz three-pole Sallen Key  
Filter. The high value used for R1 minimizes interaction with  
signal source resistance. Pole placement in this version of the  
filter minimizes the Q associated with the two-pole section of  
the filter. This eliminates any peaking of the noise contribution  
of resistors R1, R2, and R3, thus minimizing the inherent out-  
put voltage noise of the filter.  
A1  
AD820  
4
AD820  
4
B
HALF-WAVE  
RECTIFIED OUTPUT  
C2  
0.022F  
A
+V  
S
0.01F  
R2  
243k⍀  
R3  
243k⍀  
R1  
243k⍀  
7
3
2
B
C
V
IN  
C3  
0.022F  
C1  
6
0.022F  
AD820  
V
OUT  
0.01F  
4
–V  
S
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
Figure 44. Single Supply Half- and Full-Wave Rectifier  
4.5 Volt Low Dropout, Low Power Reference  
The rail-to-rail performance of the AD820 can be used to pro-  
vide low dropout performance for low power reference circuits  
powered with a single low voltage supply. Figure 45 shows a  
4.5 volt reference using the AD820 and the AD680, a low power  
2.5 volt bandgap reference. R2 and R3 set up the required gain  
of 1.8 to develop the 4.5 volt output. R1 and C2 form a low-  
pass RC filter to reduce the noise contribution of the AD680.  
+2.5V  
OUTPUT  
–100  
0.1  
1
10  
100  
1k  
+4.5V  
FREQUENCY – Hz  
OUTPUT  
U2  
6
+5V  
AD820  
Figure 46. 10 Hz Sallen Key Low-Pass Filter  
R2  
80k⍀  
7
4
(20k)  
2
+2.5V ؎10mV  
3
2
C3  
3
6
U1  
10F/25V  
AD680  
R1  
100k⍀  
R3  
100k⍀  
(25k)  
C2  
0.1F FILM  
4
C1  
0.1F  
REF  
COMMON  
Figure 45. Single Supply 4.5 Volt Low Dropout Reference  
With a 1 mA load, this reference maintains the 4.5 volt output  
with a supply voltage down to 4.7 volts. The amplitude of the  
recovery transient for a 1 mA to 10 mA step change in load  
current is under 20 mV, and settles out in a few microseconds.  
Output voltage noise is less than 10 µV rms in a 25 kHz noise  
bandwidth.  
REV. B  
–15–  
AD820  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Mini-DIP Package  
(N-8)  
0.39 (9.91)  
MAX  
8
5
0.31  
(7.87)  
0.25  
(6.35)  
1
4
PIN 1  
0.30 (7.62)  
REF  
0.10 (2.54)  
BSC  
0.035 ؎ 0.01  
(0.89 ؎ 0.25)  
0.165 ؎ 0.01  
(4.19 ؎ 0.25)  
0.011 ؎0.003  
(0.28 ؎ 0.08)  
0.18 ؎0.03  
(4.57 ؎ 0.75)  
0.125 (3.18)  
MIN  
15؇  
0؇  
0.018 ؎0.003  
(0.46 ؎ 0.08)  
SEATING  
PLANE  
0.033  
(0.84)  
NOM  
SOIC Package  
(R-8)  
0.150 (3.81)  
8
1
5
4
0.244 (6.20)  
0.228 (5.79)  
0.157 (3.99)  
0.150 (3.81)  
0.020 (0.051) 
؋
 45؇  
CHAMF  
PIN 1  
0.190 (4.82)  
0.170 (4.32)  
0.197 (5.01)  
0.189 (4.80)  
8؇  
0؇  
0.102 (2.59)  
0.094 (2.39)  
0.090  
(2.29)  
0.010 (0.25)  
0.004 (0.10)  
10؇  
0؇  
0.030 (0.76)  
0.018 (0.46)  
0.050 0.019 (0.48)  
SEATING  
PLANE  
0.098 (0.2482)  
0.075 (0.1905)  
(1.27)  
0.014 (0.36)  
BSC  
–16–  
REV. B  

相关型号:

AD820AN-3V

Single Supply, Rail to Rail Low Power FET-Input Op Amp
ADI

AD820ANZ

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp
ADI

AD820ANZ

OP-AMP, 1500 uV OFFSET-MAX, 1.9 MHz BAND WIDTH, PDIP8, ROHS COMPLIANT, PLASTIC, MS-001, DIP-8
ROCHESTER

AD820AQ

IC OP-AMP, 1000 uV OFFSET-MAX, 2 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

AD820AR

Single Supply, Rail to Rail Low Power FET-Input Op Amp
ADI

AD820AR-3V

Single Supply, Rail to Rail Low Power FET-Input Op Amp
ADI

AD820AR-3V-REEL

AD820AR-3V-REEL
ADI

AD820AR-REEL

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp
ADI

AD820AR-REEL7

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp
ADI

AD820AR-REEL7

OP-AMP, 1500 uV OFFSET-MAX, 1.9 MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8
ROCHESTER

AD820ARMZ

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp
ADI

AD820ARMZ-R7

OP-AMP, 1500 uV OFFSET-MAX, 1.9 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER