AD8223ARM-R7 [ADI]

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier; 单电源,轨到轨,低成本仪表放大器
AD8223ARM-R7
型号: AD8223ARM-R7
厂家: ADI    ADI
描述:

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
单电源,轨到轨,低成本仪表放大器

仪表放大器 放大器电路 光电二极管
文件: 总20页 (文件大小:420K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Supply, Rail-to-Rail, Low Cost  
Instrumentation Amplifier  
Preliminary Technical Data  
AD8223  
FEATURES  
CONNECTION DIAGRAM  
Gain set with 1 resistor per amplifier  
Gain = 5 to 1000  
Inputs  
Voltage range to 150 mV below negative rail  
25 nA maximum input bias current  
30 nV/√Hz, RTI noise @ 1 kHz  
Power supplies  
1
2
3
4
8
7
6
5
–R  
+R  
G
G
+
–IN  
+IN  
+V  
S
OUTPUT  
REF  
–V  
S
AD8223  
Figure 1. 8-Lead SOIC (R) and 8-Lead MSOP SOIC (RM) Packages  
Dual supply: 2.5V to 12.5  
Single supply: 3V to 25V  
600 μA maximum supply current  
APPLICATIONS  
Low power medical instrumentation  
Transducer interface  
Thermocouple amplifiers  
Industrial process controls  
Difference amplifiers  
Low power data acquisition  
GENERAL DESCRIPTION  
mode range and can amplify signals that have a common-mode  
voltage 150 mV below ground. Although the design of the AD8223  
is optimized to operate from a single supply, the AD8223 still  
provides superior performance when operated from a dual  
voltage supply ( 2.5 V to 12.5 V).  
The AD8223 is an integrated single-supply instrumentation  
amplifier that delivers rail-to-rail output swing on a single  
supply (+3.0 V to +25 V supplies). The AD8223 offers superior  
user flexibility by allowing single-gain set resistor program-  
ming, and conforming to the 8-lead industry standard pinout  
configuration.  
Low power consumption (1.5 mW at 3 V), wide supply voltage  
range, and rail-to-rail output swing make the AD8223 ideal for  
battery-powered applications. The rail-to-rail output stage  
maximizes the dynamic range when operating from low supply  
voltages. The AD8223 replaces discrete instrumentation  
amplifier designs and offers superior linearity, temperature  
stability and reliability in a minimum of space.  
With no external resistor, the AD8223 is configured for G = 5  
and with an external resistor, the AD8223 can be programmed  
for gains up to 1000.  
The AD8223 holds errors to a minimum by providing superior  
ac CMRR that increases with increasing gain. Line noise, as  
well as line harmonics, is rejected because the CMRR remains  
constant up to 200 Hz. The AD8223 has a wide input common-  
Rev. PrA  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
AD8223  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Voltage Range................................................................... 13  
Reference Terminal .................................................................... 14  
Input Protection ......................................................................... 14  
RF Interference ........................................................................... 14  
Ground Returns for Input Bias Currents ................................ 15  
Applications Information.............................................................. 16  
Basic Connection ....................................................................... 16  
Differential Output .................................................................... 16  
Output Buffering ........................................................................ 16  
Cables........................................................................................... 16  
A Single-Supply Data Acquisition System .............................. 17  
Amplifying Signals with Low Common-Mode Voltage........ 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Connection Diagram ....................................................................... 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Single Supply................................................................................. 3  
Dual Supply................................................................................... 5  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 13  
Amplifier Architecture .............................................................. 13  
Gain Selection............................................................................. 13  
REVISION HISTORY  
Rev. PrA | Page 2 of 20  
Preliminary Technical Data  
AD8223  
SPECIFICATIONS  
SINGLE SUPPLY  
TA = 25°C, single supply, VS = +5 V, and RL = 10 kΩ, unless otherwise noted.  
Table 1  
AD8223A  
Typ  
AD8223B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
COMMON MODE REJECTION RATIO  
DC to 60 Hz with 1 kΩ Source  
Imbalance  
VCM = 0 V to 3 V  
G = 5  
G = 10  
G = 100  
G = 1000  
74  
80  
88  
88  
86  
92  
100  
100  
dB  
dB  
dB  
dB  
NOISE  
Voltage Noise, 1 kHz  
G = 5  
G = 1000  
50  
30  
50  
30  
nV/√Hz  
nV/√Hz  
RTI, 0.1 Hz to 10 Hz  
G = 5  
G = 1000  
Current Noise, 1 kHz  
0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
3.0  
1.5  
100  
1.5  
3.0  
1.5  
100  
1.5  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
Total RTI Error =  
VOSI + VOSO/G  
Input Offset, VOSI  
Average TC  
Output Offset, VOSO  
Average TC  
400  
5
1000  
15  
200  
3
500  
10  
μV  
μV/°C  
μV  
μV/°C  
Offset Referred to Input vs.  
Supply (PSR)  
G = 5  
G = 10  
G = 100  
G = 1000  
80  
86  
90  
90  
90  
96  
100  
100  
dB  
dB  
dB  
dB  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
17  
25  
27.5  
17  
25  
27.5  
nA  
nA  
Average Temperature  
Coefficient  
25  
25  
pA/°C  
Input Offset Current  
Over Temperature  
0.25  
2
2.5  
0.25  
2
2.5  
nA  
nA  
Average Temperature  
Coefficient  
5
5
pA/°C  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 5  
G = 10  
G = 100  
G = 1000  
Slew Rate  
200  
190  
75  
8
0.3  
200  
190  
75  
8
0.3  
kHz  
kHz  
kHz  
kHz  
V/μs  
Rev. PrA | Page 3 of 20  
AD8223  
Preliminary Technical Data  
AD8223A  
Typ  
AD8223B  
Typ  
Parameter  
Settling Time to 0.01%  
G = 5  
Conditions  
Min  
Max  
Min  
Max  
Unit  
Step size = 3.5 V  
μs  
μs  
μs  
G = 100  
G = 1000  
GAIN  
G = 5 + (80 k/RG)  
Gain Range  
Gain Error1  
G = 5  
5
1000  
5
1000  
V/V  
VOUT = 0.05 V to 4.5 V  
0.03  
0.10  
0.10  
0.10  
0.15  
0.03  
0.10  
0.10  
0.10  
0.1  
0.5  
0.5  
0.5  
%
%
%
%
G = 10  
G = 100  
G = 1000  
1
1
1
Nonlinearity  
G = 5 to 1000  
Gain vs. Temperature  
G = 5  
VOUT = 0.05 V to 4.5 V  
50  
50  
ppm  
5
50  
10  
5
50  
10  
ppm/°C  
ppm/°C  
G > 51  
INPUT  
Input Impedance  
Differential  
Common-Mode  
Input Voltage Range2  
2||2  
2||2  
2||2  
2||2  
GΩ||pF  
GΩ||pF  
V
(−VS) −  
0.15  
(+VS) −  
1.5  
(−VS) −  
0.15  
(+VS) −  
1.5  
OUTPUT  
Output Swing  
RL = 10 kΩ to ground +0.01  
(+VS) −  
0.5  
(+VS) −  
0.2  
+0.01  
+0.01  
(+VS) −  
0.5  
(+VS) −  
0.2  
V
V
RL = 100 kΩ to  
ground  
+0.01  
REFERENCE INPUT  
RIN  
IIN  
60  
+50  
20%  
+60  
+VS  
60  
+50  
20%  
+60  
+VS  
kΩ  
μA  
V
VIN+, VREF = 0  
Voltage Range  
Gain to Output  
−VS  
−VS  
1
1
V
0.0002  
0.0002  
POWER SUPPLY  
Operating Range  
+3.0  
-40  
+25  
550  
+3.0  
−40  
+25  
550  
V
μA  
Quiescent Current  
TEMPERATURE RANGE  
For Specified Performance  
+85  
+85  
°C  
1 Does not include effects of external resistor RG.  
2 One input grounded. G = 1.  
Rev. PrA | Page 4 of 20  
Preliminary Technical Data  
AD8223  
DUAL SUPPLY  
TA = 25°C, dual supply, VS = 12 V, and RL = 10 kꢀ, unless otherwise noted.  
Table 2.  
AD8223A  
Typ  
AD8223B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
COMMON MODE REJECTION RATIO  
DC to 60 Hz with 1 kΩ Source  
Imbalance  
VCM = −10 V to 10 V  
G = 5  
G = 10  
G = 100  
G = 1000  
74  
80  
88  
88  
86  
92  
100  
100  
dB  
dB  
dB  
dB  
NOISE  
Voltage Noise, 1 kHz  
G = 5  
G = 1000  
50  
30  
50  
30  
nV/√Hz  
nV/√Hz  
RTI, 0.1 Hz to 10 Hz  
G = 5  
G = 1000  
Current Noise, 1 kHz  
0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
3.0  
1.5  
100  
1.5  
3.0  
1.5  
100  
1.5  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
Total RTI Error =  
VOSI + VOSO/G  
Input Offset, VOSI  
Average TC  
Output Offset, VOSO  
Average TC  
400  
5
1000  
15  
200  
3
500  
10  
μV  
μV/°C  
μV  
μV/°C  
Offset Referred to Input vs. Supply  
(PSR)  
G = 5  
G = 10  
G = 100  
G = 1000  
80  
86  
90  
90  
90  
96  
100  
100  
dB  
dB  
dB  
dB  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
17  
25  
27.5  
17  
25  
27.5  
nA  
nA  
Average Temperature  
Coefficient  
25  
25  
pA/°C  
Input Offset Current  
Over Temperature  
0.25  
2
2.5  
0.25  
2
2.5  
nA  
nA  
Average Temperature  
Coefficient  
5
5
pA/°C  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 5  
G = 10  
G = 100  
G = 1000  
Slew Rate  
Settling Time to 0.01%  
G = 5  
G = 100  
G = 1000  
200  
190  
75  
8
0.3  
200  
190  
75  
8
0.3  
kHz  
kHz  
kHz  
kHz  
V/μs  
Step size = 10 V  
30  
30  
140  
30  
30  
140  
μs  
μs  
μs  
Rev. PrA | Page 5 of 20  
AD8223  
Preliminary Technical Data  
AD8223A  
Typ  
AD8223B  
Typ  
Parameter  
GAIN  
Conditions  
Min  
Max  
Min  
Max  
Unit  
G = 5 + (80 k/RG)  
Gain Range  
Gain Error1  
G = 5  
G = 10  
G = 100  
G = 1000  
Nonlinearity  
5
1000  
5
1000  
V/V  
VOUT = −10 V to +10 V  
0.03  
0.10  
0.10  
0.10  
0.15  
0.03  
0.10  
0.10  
0.10  
0.1  
0.5  
0.5  
0.5  
%
%
%
%
1
1
1
VOUT = −10 V to +10 V  
G = 5 to 1000  
50  
50  
ppm  
Gain vs. Temperature  
G = 5  
5
10  
5
10  
ppm/°  
C
ppm/°  
C
G > 51  
50  
50  
INPUT  
Input Impedance  
Differential  
Common-Mode  
Input Voltage Range2  
2||2  
2||2  
2||2  
2||2  
GΩ||pF  
GΩ||pF  
V
(−VS) −  
0.15  
(+VS) −  
1.5  
(−VS) −  
0.15  
(+VS) −  
1.5  
OUTPUT  
Output Swing  
RL = 10 kΩ to ground  
(−VS) +  
0.2  
(+VS) −  
0.5  
(+VS) −  
0.2  
(−VS) +  
0.2  
(−VS) +  
0.1  
(+VS) −  
0.5  
(+VS) −  
0.2  
V
V
RL = 100 kΩ to ground (−VS) +  
0.1  
REFERENCE INPUT  
RIN  
IIN  
60  
+50  
20%  
+60  
+VS  
60  
+50  
20%  
+60  
+VS  
kΩ  
μA  
V
VIN+, VREF = 0  
Voltage Range  
Gain to Output  
−VS  
−VS  
1
1
V
0.0002  
0.0002  
POWER SUPPLY  
Operating Range  
2.5  
12.5  
600  
2.5  
12.5  
600  
V
μA  
Quiescent Current  
TEMPERATURE RANGE  
For Specified Performance  
−40  
+85  
−40  
+85  
°C  
1 Does not include effects of external resistor RG.  
2 One input grounded. G = 1.  
Rev. PrA | Page 6 of 20  
Preliminary Technical Data  
AD8223  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage  
12.5 V  
Specification is for device in free air.  
Internal Power Dissipation  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range (R, RM)  
Operating Temperature Range (A)  
Lead Temperature (Soldering 10 sec)  
650 mW  
6 V  
Indefinite  
−65°C to +125°C  
−40°C to +85°C  
+300°C  
Table 4. Thermal Resistance  
Package Type  
8-Lead SOIC  
8-Lead MSOP  
θJA  
Unit  
°C/W  
°C/W  
155  
200  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. PrA | Page 7 of 20  
AD8223  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C VS = 5 V, RL = 10 kꢀ, unless otherwise noted.  
50  
40  
35  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
0
–9  
–6  
–3  
0
3
6
9
–200  
–150  
–100  
–50  
0
50  
100  
150  
200  
CMRR, G = 100 (µV/V)  
INPUT OFFSET VOLTAGE (µV)  
Figure 2. Typical Distribution of Input Offset Voltage  
Figure 5. Typical Distribution for CMRR (G = 100)  
1000  
100  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
G = 5  
G = 10  
G = 1000  
BW LIMIT  
G = 100  
BW LIMIT  
0
3
6
9
12  
15  
18  
21  
24  
0.1  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
100k  
INPUT BIAS CURRENT (nA)  
Figure 3. Typical Distribution of Input Bias Current  
Figure 6. Voltage Noise Spectral Density vs. Frequency  
30  
25  
20  
15  
10  
5
80  
60  
40  
20  
0
0
–40  
–20  
0
20  
40  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
CMRR, G = 5 (µV/V)  
TEMPERATURE (°C)  
Figure 4. Typical Distribution for CMRR (G = 5)  
Figure 7. IBIAS vs. Temperature  
Rev. PrA | Page 8 of 20  
Preliminary Technical Data  
AD8223  
1k  
G = 1000  
100  
G = 5  
10  
1
10  
100  
FREQUENCY (Hz)  
1k  
0.5µV/DIV  
1s/DIV  
Figure 8. Current Noise Spectral Density vs. Frequency  
Figure 11. 0.1 Hz to 10 Hz RTI and RTO Voltage Noise  
120  
110  
100  
90  
18  
16  
14  
12  
10  
8
G = 1000  
G = 5  
V
= ±5V  
S
V
= ±2.5V  
S
V
= ±12V  
S
G = 100  
G = 10  
80  
70  
60  
6
50  
4
40  
2
30  
0
1
10  
100  
1k  
10k  
100k  
–12 –10 –8  
–6  
–4  
–2  
0
2
4
6
8
10  
FREQUENCY (Hz)  
CMV (V)  
Figure 12. CMRR vs. Frequency, 12 VS  
Figure 9. IBIAS vs. CMV  
120  
110  
100  
90  
G = 1000  
0.71pA/DIV  
1s/DIV  
G = 5  
G = 10  
G = 100  
80  
70  
60  
50  
40  
30  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 13. CMRR vs. Frequency, VS = +5 V  
Figure 10. 0.1 Hz to 10 Hz Current Noise (0.71 pA/Div)  
Rev. PrA | Page 9 of 20  
AD8223  
Preliminary Technical Data  
70  
6
5
G = 1000  
G = 100  
60  
V
= ±5V  
S
4
50  
3
40  
2
V
= ±2.5V  
S
30  
1
V
= +5V  
G = 10  
G = 5  
S
20  
0
–1  
–2  
–3  
–4  
–5  
–6  
10  
0
–10  
–20  
–30  
100  
1k  
10k  
100k  
1M  
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
FREQUENCY (Hz)  
OUTPUT (V)  
Figure 14. Gain vs. Frequency  
Figure 17. Common-Mode Input vs. Maximum Output Voltage,  
G = 100, Small Supplies  
6
5
16  
+V = +15V, –V = –5V  
S
S
14  
12  
10  
8
V
= ±12V  
S
4
V
= ±5V  
S
3
2
6
V
= ±2.5V  
S
4
1
2
0
V
= +5V  
S
0
–1  
–2  
–3  
–4  
–5  
–6  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
–14 –12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14 16 18  
OUTPUT (V)  
OUTPUT (V)  
Figure 15. Common-Mode Input vs. Maximum Output Voltage,  
G = 5, Small Supplies  
Figure 18. Common-Mode Input vs. Maximum Output Voltage,  
G = 100, Large Supplies  
16  
140  
+V = +15V, –V = –5V  
S
S
14  
12  
10  
8
120  
V
= ±12V  
S
G = 1000  
100  
6
G = 100  
4
80  
2
G = 10  
0
60  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
G = 5  
40  
20  
0
–14 –12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14 16  
1
10  
100  
1k  
10k  
100k  
OUTPUT (V)  
FREQUENCY (Hz)  
Figure 16. Common-Mode Input vs. Maximum Output Voltage,  
G = 5, Large Supplies  
Figure 19. Positive PSRR vs. Frequency, VS = 12 V  
Rev. PrA | Page 10 of 20  
Preliminary Technical Data  
AD8223  
140  
120  
G = 1000  
100  
80  
60  
40  
20  
0
5V/DIV  
G = 100  
G = 10  
G = 5  
0.1%/DIV  
1
10  
100  
1k  
10k  
100k  
100µs/DIV  
FREQUENCY (Hz)  
Figure 20. Positive PSRR vs. Frequency, VS = 5 V  
Figure 23. Large Signal Response, G = 5  
120  
100  
80  
60  
40  
20  
0
G = 1000  
5V/DIV  
G = 100  
G = 10  
G = 5  
0.1%/DIV  
1
10  
100  
1k  
10k  
100k  
100µs/DIV  
FREQUENCY (Hz)  
Figure 21. Negative PSRR vs. Frequency, VS = 12 V  
Figure 24. Large Signal Pulse Response, G = 100, CL = 100 pF  
5V/DIV  
0.1%/DIV  
100µs/DIV  
Figure 25. Large Signal Pulse Response, G = 1000, CL = 100 pF  
Figure 22. Settling Time to 0.005% vs. Gain, for a 20 V Step at Output,  
CL = 100 pF, VS = 12 V  
Rev. PrA | Page 11 of 20  
AD8223  
Preliminary Technical Data  
+V  
S
G = 5  
G = 10  
–1  
G = 100  
–2  
2
1
2
–V  
S
0.01  
0.1  
1
10  
20mV/DIV  
10µs/DIV  
I
(mA)  
OUT  
Figure 28. Output Voltage Swing vs. Output Current  
Figure 26. Small Signal Pulse Response, G = 5, 10, 100; RL = 10 kΩ  
2
20mV/DIV  
100µs/DIV  
Figure 27. Small Signal Pulse Response, G = 1000, RL = 25 kΩ, CL = 100 pF  
Rev. PrA | Page 12 of 20  
Preliminary Technical Data  
AD8223  
THEORY OF OPERATION  
AMPLIFIER ARCHITECTURE  
GAIN SELECTION  
The AD8223 is an instrumentation amplifier based on a  
classic 3-op amp approach, modified to assure operation  
even at common-mode voltages at the negative supply rail.  
The architecture allows lower voltage offsets, better CMRR,  
and higher gain accuracy than competing instrumentation  
amplifiers in its class.  
Placing a resistor across the RG terminals sets the gain of the  
AD8223, which can be calculated by referring to Table 5 or by  
using the following gain equation:  
80 kꢀ  
RG  
=
G 5  
POSITIVE SUPPLY  
7
Table 5. Gains Achieved Using 1% Resistors  
1% Standard Table  
+
Value of RG (Ω)  
26.7k  
15.8k  
5.36k  
2.26k  
1.78k  
845  
412  
162  
80.6  
Desired Gain  
Calculated Gain  
INVERTING  
2
8
10  
20  
40  
7.99  
10.1  
19.9  
40.4  
49.9  
99.7  
199  
499  
998  
4
8k  
8kΩ  
10kΩ  
10kΩ  
50kΩ  
1
OUT  
6
GAIN  
+
50kΩ  
REF  
5
8
50  
7
4
100  
200  
500  
1000  
+
NON-  
INVERTING  
3
NEGATIVE SUPPLY  
The AD8223 defaults to G = 5 when no gain resistor is used.  
The tolerance and gain drift of the RG resistor should be added  
to the specifications of the AD8223 to determine the total gain  
accuracy of the system. When the gain resistor is not used,  
gain error and gain drift are kept to a minimum.  
Figure 29. Simplified Schematic  
Figure 29 shows a simplified schematic of the AD8223. The  
AD8223 has three stages. In the first stage, the input signal is  
applied to PNP transistors. These PNP transistors act as voltage  
buffers and allow input voltages below ground. The second  
stage consists of a pair of 8 kꢀ resistors, the RG resistor, and a  
pair of amplifiers. This stage allows the amplification of the  
AD8223 to be set with a single external resistor. The third stage  
is a differential amplifier composed of an op amp, two 10 kꢀ  
resistors, and two 50 kꢀ resistors. This stage removes the  
common mode signal and applies an additional gain of 5.  
INPUT VOLTAGE RANGE  
The 3-op amp architecture of the AD8223 applies gain and then  
removes the common-mode voltage. Therefore, internal nodes  
in the AD8223 experience a combination of both the gained  
signal and the common-mode signal. This combined signal can  
be limited by the voltage supplies even when the individual input  
and output signals are not. To determine whether the signal can be  
limited, refer to Figure 15 through Figure 18. Alternatively, use  
the parameters in the Specifications section to verify that the  
input and output are not limited and then use the following  
formula to make sure the internal nodes are not limited:  
The transfer function of the AD8223 is  
V
OUT = G(VIN+ VIN−) + VREF  
where:  
80 kꢀ  
G = 5 +  
RG  
To check if it is limited by the internal nodes,  
VDIFF ×Gain  
VS + 0.01 V < 0.6 + VCM  
±
<+ VS 0.1 V  
10  
If more common-mode range is required, a solution is to apply less  
gain in the instrumentation amplifier and more in a later stage.  
Rev. PrA | Page 13 of 20  
AD8223  
Preliminary Technical Data  
REFERENCE TERMINAL  
RF INTERFERENCE  
The output voltage of the AD8223 is developed with respect to  
the potential on the reference terminal. This is useful when the  
output signal needs to be offset to a precise midsupply level. For  
example, a voltage source can be tied to the REF pin to level-  
shift the output so that the AD8223 can drive a single-supply  
ADC. The REF pin is protected with ESD diodes and should  
not exceed either +VS or −VS by more than 0.3 V.  
RF rectification is often a problem when amplifiers are used in  
applications where there are strong RF signals. The disturbance  
can appear as a small dc offset voltage. High frequency signals  
can be filtered with a low-pass, R-C network placed at the input  
of the instrumentation amplifier, as shown in Figure 32. The  
filter limits the input signal bandwidth according to the follow-  
ing relationship:  
1
For best performance, source impedance to the REF terminal  
should be kept below 5 Ω. As shown in Figure 29, the reference  
terminal, REF, is at one end of a 50 kꢀ resistor. Additional  
impedance at the REF terminal adds to this resistor and results  
in poorer CMRR performance.  
FilterFreqDiff =  
2π R(2CD + CC)  
1
FilterFreqCM =  
2π RCC  
INCORRECT  
CORRECT  
where CD ≥ 10CC.  
+15V  
+
10µF  
0.1µF  
+IN  
AD8223  
AD8223  
C
1nF  
C
V
REF  
V
R
REF  
+
4.02kΩ  
+
V
OUT  
C
D
47nF  
R1  
499Ω  
AD8223  
OP2177  
R
REF  
–IN  
4.02kΩ  
C
1nF  
C
Figure 30. Driving the Reference Pin  
10µF  
+
0.1µF  
INPUT PROTECTION  
–15V  
Internal supply referenced clamping diodes allow the input,  
reference, output, and gain terminals of the AD8223 to safely  
withstand overvoltages of 0.3 V above or below the supplies.  
This is true for all gains, and for power-on and power-off. This  
last case is particularly important because the signal source and  
amplifier may be powered separately.  
Figure 32. RFI Suppression  
Figure 32 shows an example where the differential filter  
frequency is approximately 400 Hz, and the common-mode  
filter frequency is approximately 40 kHz. The typical dc offset  
shift over frequency is less than 1.5 μV and the circuits RF  
signal rejection is better than 71 dB.  
If the overvoltage is expected to exceed this value, the current  
through these diodes should be limited to about 10 mA using  
external current limiting resistors. This is shown in Figure 31.  
The size of this resistor is defined by the supply voltage and the  
required overvoltage protection.  
The resistors were selected to be large enough to isolate the  
circuit’s input from the capacitors, but not large enough to  
significantly increase the circuit’s noise. Values of R and CC  
should be chosen to minimize RFI. Mismatch between the R × CC  
at the positive input and the R × CC at negative input degrades  
the CMRR of the AD8223. Because of their higher accuracy and  
stability, COG/NPO type ceramic capacitors are recommended  
for the CC capacitors. The dielectric for the CD capacitor is not  
as critical.  
+V  
S
1 = 10mA MAX  
R
LIM  
+
V
OVER  
R
G
OUTPUT  
AD8223  
R
LIM  
V
V
– V + 0.7V  
S
OVER  
OVER  
R
=
LIM  
10mA  
–V  
S
Figure 31. Input Protection  
Rev. PrA | Page 14 of 20  
Preliminary Technical Data  
AD8223  
INCORRECT  
+V  
CORRECT  
+V  
GROUND RETURNS FOR INPUT BIAS CURRENTS  
S
S
Input bias currents are those dc currents that must flow to bias  
the input transistors of an amplifier. These are usually transistor  
base currents. When amplifying floating input sources such as  
transformers or ac-coupled sources, there must be a direct dc  
path into each input so that the bias current can flow. Figure 33  
shows how a bias current path can be provided for the cases of  
transformer coupling, capacitive ac-coupling and for a  
thermocouple application.  
AD8223  
AD8223  
REF  
REF  
REF  
REF  
–V  
–V  
S
S
TRANSFORMER  
TRANSFORMER  
In dc-coupled resistive bridge applications, providing this path  
is generally not necessary as the bias current simply flows from  
the bridge supply through the bridge and into the amplifier.  
However, if the impedances that the two inputs see are large and  
differ by a large amount (>10 kꢀ), the offset current of the  
input stage causes dc errors proportional with the input offset  
voltage of the amplifier.  
+V  
+V  
S
S
AD8223  
AD8223  
REF  
10M  
–V  
–V  
S
S
THERMOCOUPLE  
THERMOCOUPLE  
+V  
+V  
S
S
C
C
C
1
R
R
fHIGH-PASS  
=
2πRC  
AD8223  
AD8223  
C
REF  
–V  
–V  
S
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 33. Creating an IBIAS Path  
Rev. PrA | Page 15 of 20  
AD8223  
Preliminary Technical Data  
APPLICATIONS INFORMATION  
+V  
+V  
S
S
+2.5V TO +6V  
+3V TO +12V  
+
+
0.1µF  
10µF  
0.1µF  
10µF  
+
+
R
R
G
G
G
V
R
V
R
G
OUTPUT  
V
OUTPUT  
V
OUT  
IN  
G
IN  
OUT  
R
R
REF  
REF  
G
REF (INPUT)  
REF (INPUT)  
0.1µF  
10µF  
+
–2.5V TO –6V  
–V  
S
A. DUAL SUPPLY  
B. SINGLE SUPPLY  
Figure 34. Basic Connections  
BASIC CONNECTION  
OUTPUT BUFFERING  
Figure 34 shows the basic connection circuit for the AD8223.  
The +VS and −VS terminals are connected to the power supply.  
The supply can be either bipolar (VS = 2.5 V to 12.5 V) or  
single supply (−VS = 0 V, +VS = +3.0 V to +25 V). Power  
supplies should be capacitively decoupled close to the devices  
power pins. For best results, use surface-mount 0.1 μF ceramic  
chip capacitors and 10 μF electrolytic tantalum capacitors.  
The AD8223 is designed to drive loads of 10 kꢀ or greater. If  
the load is less than this value, the AD8223 output should be  
buffered with a precision single-supply op amp such as the  
OP113. This op amp can swing from 0 V to 4 V on its output  
while driving a load as small as 600 ꢀ.  
5V  
0.1µF  
5V  
The input voltage, which can be either single-ended (tie either  
−IN or +IN to ground) or differential, is amplified by the  
programmed gain. The output signal appears as the voltage  
difference between the output pin and the externally applied  
voltage on the REF input.  
0.1µF  
+
AD8223  
V
R
G
IN  
+
OP113  
V
OUT  
REF  
DIFFERENTIAL OUTPUT  
Figure 36. Output Buffering  
Figure 35 shows how to create a differential output in-amp. A  
OP1177 op amp creates the inverted output. Because the op  
amp drives the AD8223 reference pin, the AD8223 can still  
ensure that the differential voltage is correct. Errors from the  
op amp or mismatched resistors are common to both outputs  
and are thus common mode. These common-mode errors  
should be rejected by the next device in the signal chain.  
CABLES  
Receiving from a Cable  
In many applications, shielded cables are used to minimize  
noise; for best CMR over frequency, the shield should be  
properly driven. Figure 37 shows an active guard drive that  
is configured to improve ac common-mode rejection by  
bootstrapping the capacitances of input cable shields, thus  
minimizing the capacitance mismatch between the inputs.  
+IN  
+OUT  
AD8223  
+V  
S
–INPUT  
2
1
–IN  
7
20k  
20kΩ  
REF  
R
V
G
G
REF  
100Ω  
2
6
V
AD8223  
AD8031  
OUT  
R
+
5
2
8
3
OP1177  
4
REFERENCE  
+INPUT  
–V  
S
Figure 37. Common-Mode Shield Driver  
–OUT  
Figure 35. Differential Output Using Op Amp  
Rev. PrA | Page 16 of 20  
Preliminary Technical Data  
AD8223  
Driving a Cable  
The bridge circuit is excited by a +5 V supply. The full-scale  
output voltage from the bridge ( 10 mV) therefore has a  
common-mode level of 2.5 V. The AD8223 removes the  
common-mode component and amplifies the input signal by a  
factor of 100 (RGAIN = 1.02 kꢀ). This results in an output signal  
of 1 V. To prevent this signal from running into the AD8223  
ground rail, the voltage on the REF pin has to be raised to at  
least 1 V. In this example, the 2 V reference voltage from the  
AD7776 ADC is used to bias the AD8223 output voltage to 2 V  
1 V. This corresponds to the input range of the ADC.  
All cables have a certain capacitance per unit length, which  
varies widely with cable type. The capacitive load from the  
cable may cause peaking in the AD8223s output response. To  
reduce the peaking, use a resistor between the AD8223 and the  
cable. Because cable capacitance and desired output response  
vary widely, this resistor is best determined empirically. A good  
starting point is 50 Ω.  
The AD8232 operates at a low enough frequency that  
transmission line effects are rarely an issue; therefore, the  
resistor need not match the characteristic impedance of  
the cable.  
AMPLIFYING SIGNALS WITH LOW COMMON-  
MODE VOLTAGE  
Because the common-mode input range of the AD8223 extends  
0.1 V below ground, it is possible to measure small differential  
signals that have low, or no, common-mode components. Figure 40  
AD8223  
(DIFF OUT)  
shows a thermocouple application where one side of the J-type  
thermocouple is grounded.  
5V  
0.1µF  
AD8223  
+
(SINGLE OUT)  
R
J-TYPE  
THERMOCOUPLE  
G
V
AD8223  
OUT  
1.02k  
REF  
2V  
Figure 38. Driving a Cable  
Figure 40. Amplifying Bipolar Signals with Low Common-Mode Voltage  
Over a temperature range from −200°C to +200°C, the J-type  
thermocouple delivers a voltage ranging from −7.890 mV  
to 10.777 mV. A programmed gain on the AD8223 of 100  
(RG = 845) and a voltage on the AD8223 REF pin of 2 V results  
in the AD8223 output voltage ranging from 1.110 V to 3.077 V  
relative to ground.  
A SINGLE-SUPPLY DATA ACQUISITION SYSTEM  
Interfacing bipolar signals to single-supply analog-to-digital  
converters (ADCs) presents a challenge. The bipolar signal  
must be mapped into the input range of the ADC. Figure 39  
shows how this translation can be achieved.  
5V  
5V  
5V  
0.1µF  
0.1µF  
AD7776  
+
R
G
±10mV  
AD8223  
A
IN  
1.02k  
REF  
REF  
REF  
OUT  
IN  
Figure 39. A Single Supply Data Acquisition System  
Rev. PrA | Page 17 of 20  
AD8223  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 41. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 42. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. PrA | Page 18 of 20  
Preliminary Technical Data  
AD8223  
ORDERING GUIDE  
Model  
AD8223AR  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
R-8  
R-8  
Branding  
8-Lead SOIC_N  
AD8223AR-RL  
AD8223AR-R7  
AD8223ARM  
AD8223ARM-RL  
AD8223ARM-R7  
AD8223ARMZ1  
AD8223ARMZ-RL1  
AD8223ARMZ-R71  
AD8223ARZ1  
AD8223ARZ-RL1  
AD8223ARZ-R71  
AD8223BR  
AD8223BR-RL  
AD8223BR-R7  
AD8223BRM  
8-Lead SOIC_N,13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
Y0U  
Y0U  
Y0U  
Y0Q  
Y0Q  
Y0Q  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
Y0V  
Y0V  
Y0V  
Y0R  
Y0R  
Y0R  
AD8223BRM-RL  
AD8223BRM-R7  
AD8223BRMZ1  
AD8223BRMZ-RL1  
AD8223BRMZ-R71  
AD8223BRZ1  
AD8223BRZ-RL1  
AD8223BRZ-R71  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
Rev. PrA | Page 19 of 20  
AD8223  
NOTES  
Preliminary Technical Data  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR06925-0-1/08(PrA)  
Rev. PrA | Page 20 of 20  

相关型号:

AD8223ARM-RL

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARMZ

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARMZ-R7

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARMZ-R71

Single-Supply, Low Cost Instrumentation Amplifier
ADI

AD8223ARMZ-RL

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARMZ-RL1

Single-Supply, Low Cost Instrumentation Amplifier
ADI

AD8223ARMZ1

Single-Supply, Low Cost Instrumentation Amplifier
ADI

AD8223ARZ

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARZ-R7

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARZ-R71

Single-Supply, Low Cost Instrumentation Amplifier
ADI

AD8223ARZ-RL

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARZ-RL1

Single-Supply, Low Cost Instrumentation Amplifier
ADI